
Collusion Resistant Copy-Protection for
Watermarkable Functionalities

Jiahui Liu1[0000−0003−4380−8168], Qipeng Liu2[0000−0002−3994−7061], Luowen
Qian3[0000−0002−1112−8822], and Mark Zhandry4[0000−0001−7071−6272]

1 University of Texas at Austin, Austin, USA jiahui@cs.utexas.edu
2 Simons Institute for the Theory of Computing, Berkeley, USA

qipengliu0@gmail.com
3 Boston University, Boston, USA luowenq@bu.edu

4 Princeton University & NTT Research, Princeton, USA mzhandry@gmail.com

Abstract. Copy-protection is the task of encoding a program into a quan-
tum state to prevent illegal duplications. A line of recent works studied
copy-protection schemes under “1 → 2 attacks”: the adversary receiv-
ing one program copy can not produce two valid copies. However, under
most circumstances, vendors need to sell more than one copy of a pro-
gram and still ensure that no duplicates can be generated. In this work,
we initiate the study of collusion resistant copy-protection in the plain
model. Our results are twofold:

– The feasibility of copy-protecting all watermarkable functionalities
is an open question raised by Aaronson et al. (CRYPTO’ 21). In the
literature, watermarking decryption, digital signature schemes and
PRFs have been extensively studied.
For the first time, we show that digital signature schemes can be copy-
protected. Together with the previous work on copy-protection of de-
cryption and PRFs by Coladangelo et al. (CRYPTO’ 21), it suggests
that many watermarkable functionalities can be copy-protected, par-
tially answering the above open question by Aaronson et al.

– We make all the above schemes (copy-protection of decryption, digi-
tal signatures and PRFs) 𝑘 bounded collusion resistant for any poly-
nomial 𝑘, giving the first bounded collusion resistant copy-protection
for various functionalities in the plain model.

1 Introduction

The idea of exploiting the quantum no-cloning principle for building cryptog-
raphy was pioneered by Wiesner. In his seminal work [27], he proposed the
notion of quantum banknotes that cannot be counterfeited due to the unclon-
ability of quantum information. This idea has profoundly influenced quantum
cryptography, for example, inspiring the famous work on secure quantum key
exchange [10]. Since all classical information is inherently clonable, unclonable
cryptography is only achievable through the power of quantum information.

Aaronson [2] further leveraged the capability of no-cloning to achieve copy-
protection. The idea of copy-protection is the following. A software vendor

2 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

wants to sell a piece of software, abstracted as a classical function 𝑓 . It pre-
pares a quantum state 𝜌𝑓 so that anyone with a copy of 𝜌𝑓 can evaluate 𝑓 on
a polynomial number of inputs. However, no efficient pirate receiving a single
copy of 𝜌𝑓 , could produce two programs that compute 𝑓 correctly.

The notion above intuitively captures the security of a copy-protection scheme
under what we call an “1 → 2 attack”: the adversary receives 1 program copy,
and attempts to produce 2 copies with the correct functionality. A recent line
of works [4,13,14,6] achieve secure copy-protection for various functionalities
under 1→ 2 attacks.

However, such a security notion is extremely limiting: in most circumstances,
we cannot expect the software vendor to issue only one copy of the program.
When the vendor gives out multiple copies, all users can collude and generate
pirate copies together. Therefore, a useful copy-protection scheme should be
secure against any “𝑘 → 𝑘 + 1 attack” for any polynomial 𝑘. Such security is
usually referred to as collusion resistance in the literature.

Prior Works on Copy-Protection We first recall on a high level how most existing
copy-protection schemes work: a copy-protection program consists of a quan-
tum state as an “unclonable token”, and a classical part containing an obfus-
cated program (either as an oracle or the output coming out of some obfusca-
tion functionality). The obfuscated program takes in a token and an input one
requests to evaluate on; it verifies the validity of the token and if the verification
passes, it outputs the evaluation on the requested input. 5

Until now, collusion resistant copy-protection has essentially been wide open.
The only work that considers issuing more than a single program is Aaronson’s
original work [2], which is proven to be secure in the 𝑘 → 𝑘+𝑟 setting for 𝑟 ≥ 𝑘
in some structured quantum oracle model. This is undesirable in two ways:
(a) it is unclear whether the scheme allows an adversary to double the copies
of programs (Aaronson leaves improving 𝑟 as a challenging open question),
which is not a complete break but still potentially devastating to applications;
but more importantly, (b) unlike a classical oracle which could be heuristically
instantiated using indistinguishability obfuscation, we do not even know how
to heuristically instantiate a quantum oracle. Moreover, we believe that any ex-
tension of Aaronson’s scheme would very likely still require some obfuscation
of quantum circuits, since we have evidence that Haar random states, which
is the core of Aaronson’s scheme, lack the structure that can be verified by a
classical circuit [22].

If we turn to the other works constructing copy-protection without using
quantum oracles, one naïve idea is to take any such scheme that is 1→ 2 secure,
and simply generate and hand out multiple copies of 𝜌𝑓 . It turns out that while
this satisfies correctness, they are all trivially broken once two copies are given.

5 The general functionality copy protection schemes in [2,4] and the schemes in [13,7] all
satisfy this format. The copy-protection schemes for point/compute-and-compare func-
tions in [2,14,6,11] are not necessarily of such a format.

Collusion Resistant Copy-Protection for Watermarkable Functionalities 3

This is because they are all based on quantum states that are unclonable for one
copy, but trivially clonable as soon as two copies are given.

To get around this issue, another idea is to instead employ a quantum state
that already bears a “(𝑘 → 𝑘 + 1)-unclonable” property. However, the only
known such states are Haar random states and its computationally (or statisti-
cally) close neighbors, such as pseudorandom states (or 𝑡-designs), which leads
us back to the verification issue without a quantum oracle from before.

Therefore, we raise the natural question: Is collusion resistant copy-protection
feasible, either resisting 𝑘 → 𝑘+1 attacks, or without using a quantum oracle? (Ideally
both?)

Copy-Protection in the Plain Model In this work, we restrict our attention to inves-
tigate the question above in the plain model, i.e. we want provably secure pro-
tocols without any oracle or heuristics. Unfortunately, it has been known that
copy-protection in the plain model even for unlearnable functions is impossi-
ble in general [7], and thus we have to further restrict ourselves to construct
copy-protection for specific classes of functions that evade the impossibility.

Secure software leasing (SSL) [7] is a weakened notion for copy-protection:
in (infinite-term) SSL, the malicious pirate may attempt to make pirate copies
as it wants. However, the freeloaders are restricted to running a fixed public
quantum circuit on some quantum state produced by the pirate. On the other
hand, in copy-protection, the freeloaders are free to execute any quantum cir-
cuit that the pirate asks them to. Despite facing the same impossibility as copy-
protection, secure software leasing has also been built for various functionali-
ties [7,14,11,4,21]. 6

Especially, [4,21] showed that secure software leasing for watermarkable
functions could be obtained from watermarking and public key quantum money
in a black-box way. Watermarking [8] is a primitive that embeds a watermark
into a program so that any attempt to remove the watermark would destroy
the program’s functionality. Observing this, Aaronson et al. [4] raised the fol-
lowing open question: Can all watermarkable functions also be copy-protected in the
plain model?

In this work, we will use the word “major watermarkable functions” to de-
note (decrypting) public key encryption, (signing) signatures, and (evaluating)
PRFs and only focus on copy-protecting those functionalities. Starting from the
work by Cohen et al. [12], a line of works [19,18,20,28,29] focuses on water-
marking these three functionalities. Copy-protecting these cryptographic func-
tionalities also has a natural and strong motivation: the ability to evaluate these
functions is supposedly private in many circumstances. If owners of a decryp-
tion key, signing key, or PRF key can share their key with others, it will trigger
severe security concerns. Furthermore, copy-protecting a cryptographic func-
tion can lead to copy-protecting a software entity of which this cryptographic
function is a component.

6 The formal security definitions for SSL in [7,14,11,4,21] vary slightly from one to an-
other. We will discuss them in 1.2.

4 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

We observe that collusion resistant secure software leasing for watermark-
able functions can be achieved as long as the underlying watermarking scheme
and quantum money scheme are both collusion resistant, by looking into the
construction in [4,21]. (Bounded) collusion resistant watermarking for PRFs,
public-key encryptions, etc. are constructed in the plain model [18,28,29, . . .]
and quantum money can be made collusion resistant with a digital signature
on its serial number [3]. This observation seems to suggest that collusion resis-
tant copy-protection could be a much more challenging goal.

1.1 Our Results

In this work, we (partially) answer all of the questions above. In particular, we
show how, in the plain model, to construct collusion resistant copy-protection
for (decrypting) public-key encryption, (signing) signatures, and (evaluating)
PRFs. Our results, together with the prior work on copy-protection of decryp-
tion and PRFs (Coladangelo et al. [13]), show that major watermarkable cryp-
tographic functionalities can be copy-protected against even colluding adver-
saries, in the plain model. We now explain this in more detail.

Collusion Resistant Unclonable Decryption Our first result is collusion resistant
copy-protection for decryption keys in a public-key encryption scheme. We re-
fer to such copy-protection scheme as unclonable decryption by convention, as
first proposed by Georgiou and Zhandry [17].

Theorem 1. Assuming post-quantum subexponentially secure indistinguishability ob-
fuscation and subexponentially secure LWE, there exists 𝑘-bounded collusion resistant
unclonable decryption for any polynomial 𝑘.

Our collusion resistant unclonable decryption scheme is based on the con-
struction from the prior work of Coladangelo et al. [13] that achieves the same
except with only 1 → 2 security. Note that while we require subexponential
security, these assumptions match those already required in the prior work. In
particular, here, we invoke subexponential security only for a compute-and-
compare obfuscation scheme with certain properties as our building block. All
the reductions in this work are polynomial.

While we do achieve 𝑘 → 𝑘 + 1 security, a caveat is that we only achieve
“𝑘-bounded collusion resistance”, by which we mean that we need a preset
number of users 𝑘 to generate the public key. Still, we consider all users as po-
tentially malicious and colluding. We note that this is similar to watermarking
decryption circuits of public-key encryption schemes, where to the best of our
knowledge, unbounded collusion resistance is also unknown [28,18]. Further-
more, it is foreseeable that bounded collusion resistance suffices in certain en-
terprise use cases where the number of (partially) authorized parties is a priori
known and fixed; furthermore, such tokens can be transferred to a new em-
ployee irrevocably.

The main challenges are in the anti-piracy security proof. The prior proof
idea for 1 → 2 anti-piracy does not translate to the 𝑘 → 𝑘 + 1 setting. We

Collusion Resistant Copy-Protection for Watermarkable Functionalities 5

present a new view on security reductions to handle a polynomial number of
possibly entangled quantum adversaries, which we will elaborate in the tech-
nical overview.

Copy-Protecting Watermarkable Functionalities We complement the previous the-
orem regarding public-key encryption, with the following result on collusion
resistant copy-protection for signatures and PRFs:

Theorem 2. Assuming post-quantum subexponentially secure indistinguishability ob-
fuscation and subexponentially secure LWE, there exists 𝑘-bounded collusion resistant
copy-protection for digital signatures and PRFs, for any polynomial 𝑘.

We base our construction on the signature token scheme and unclonable
PRF in the plain model built in [13] (with 1 → 2 anti-piracy). However, our
signature scheme is significantly different in two aspects: (a) the signing key
in [13] will be consumed after one use whereas our scheme is reusable, and
(b) unforgeability breaks down when multiple signature queries can be issued,
whereas ours satisfies standard existential unforgeability.

1.2 Related Works

[2] first built copy-protection for all unlearnable functions based on a quantum
oracle, with weak collusion resistance. Besides [13] which we have discussed,
[4] showed a construction for all unlearnable functions based on a classical or-
acle. [14,6] constructed copy-protection for point functions and compute-and-
compare functions in QROM, the latter improving the security of the former.
7

Regarding the negative results: [7] demonstrated that it is impossible to
have a copy-protection scheme for all unlearnable circuits in the plain model,
assuming LWE and quantum FHE. [5] extended this impossibility result to the
setting where we allow approximate correctess of the copy-protection program
and working in the classical-accessible random oracle model.

[7] put forward secure software leasing (SSL). In the finite-term case, a soft-
ware vendor would lease a quantum state as the software to a user; later, the
user needs to return a part of a bipartite state to the vendor, and the vendor
will use its own secret key to verify if this returned state is the one issued in
the authentic program. The security guarantees that while passing the above
verification, the user should not be able to evaluate the functionality correctly
using the other part of its bipartite state executed under a public, fixed quan-
tum circuit 𝖾𝗏𝖺𝗅 (specified by the vendor). In the infinite-term case, the user does
not need to return the state to the vendor; the security guarantees that it should
not produce two states that can both evaluate the function correctly when ex-
ecuted under 𝖾𝗏𝖺𝗅. [7] also built an (infinite-term) SSL scheme for searchable
compute-and-compare circuits under iO and LWE.

7 All constructions discussed in this section are not proved under collusion resistant
security unless otherwise specified.

6 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

[4] observed that under a definition essentially equivalent to infinite-term
SSL, namely copy-detection, one could obtain a black-box construction for infinite-
term SSL from watermarking and public-key quantum money. [21] constructed
finite-term SSL for PRFs and compute-and-compare functions from (subexpo-
nential) LWE, with similar observations.

[11,14] constructed secure software leasing for point functions and compute-
and-compare functions; [11] is information-theoretically secure and [14] is se-
cure under QROM. They both used a stronger version of finite-term SSL secu-
rity: while the vendor will honestly check the returned state from the adversary,
the adversary can execute the leftover half of its bipartite state maliciously, i.e.,
not following the instructions in 𝖾𝗏𝖺𝗅. SSL security of this stronger finite-term
variant is only known for point/compute-and-compare functions up till now.

1.3 Technical Overview

We start by showing how to overcome the aforementioned barriers and con-
struct Collusion Resistant Unclonable Decryption (𝖢𝖱𝖴𝖣). As briefly discussed
in the introduction, there are challenges to constructing collusion resistant copy-
protection based on the so-called “𝑘 → (𝑘 + 1) no-cloning theorem”. Instead,
we take a different approach by constructing collusion resistant unclonable de-
cryption 𝖢𝖱𝖴𝖣 from unclonable decryption 𝖴𝖣 whose security only holds for
“1→ 2 attacks”. The construction uses 𝖴𝖣 in a black-box manner:

– For every 𝑖 ∈ [𝑘], sample (|𝗌𝗄𝑖⟩ , 𝗉𝗄𝑖) ← 𝖴𝖣.𝖪𝖾𝗒𝖦𝖾𝗇; |𝗌𝗄𝑖⟩ will be the 𝑖-th
copy of the quantum unclonable decryption key; the public key will be 𝗉𝗄 =
(𝗉𝗄1, · · · , 𝗉𝗄𝑘).

– The encryption algorithm takes a single bit message 𝑚 and outputs a clas-
sical ciphertext 𝖼𝗍 that consists of 𝑘 copies of ciphertext, among which the
𝑖-th copy 𝖼𝗍𝑖 is the ciphertext of 𝑚 under 𝗉𝗄𝑖.

– To decrypt 𝖼𝗍 = (𝖼𝗍1, · · · , 𝖼𝗍𝑘) with |𝗌𝗄𝑖⟩, one can decrypt the 𝑖-th ciphertext
𝖼𝗍𝑖.

Intuitively in the above encryption scheme, one can decrypt only if it knows the
decryption key for at least one of the public keys. Note that our 𝑘 decryption
keys are sampled independently at random and each state satisfies 1 → 2 un-
clonability. To establish anti-piracy, we want to prove a security reduction from
a 𝑘 → 𝑘 + 1 quantum pirate decryptors to the 1→ 2 unclonability of one of the
decryption keys.

Unfortunately, we do not know how to prove the security of this scheme
generically. As we will elaborate in Section 1.4, we need to open up the con-
struction of the underlying unclonable encryption in order to establish the se-
curity.

More importantly, in the following section, we demonstrate that even if we
open up the construction and the proof, the proof technique in [13] seems not
sufficient for CRUD and we thereby work on a new technique that subsumes
that in [13] to complete the proof. We start by recalling the definition of regular
UD and the proof in [13].

Collusion Resistant Copy-Protection for Watermarkable Functionalities 7

Regular Unclonable Decryption. Let 𝖴𝖣 be a regular (1 → 2) unclonable de-
cryption scheme. For the sake of convenience, we assume the message space
is {0, 1}. A pair of a classical public key 𝗉𝗄 and a quantum unclonable secret
key |𝗌𝗄⟩ is generated by 𝖪𝖾𝗒𝖦𝖾𝗇.

The anti-piracy security guarantees that no efficient adversary with |𝗌𝗄⟩ can
produce two “working” keys by a CPA indistinguishability standard: if one
estimates the success probabilities of both decryption keys on distinguishing
a ciphertext of 0 from a ciphertext of 1, their success probabilities cannot be
simultaneously significantly greater than 1/2, except with negligible probability.
This security notion has been previously studied by Aaronson et al. [4] and
Coladangelo et al. [13]

Before we delve into the security proof, it is enlightening to see how this
security guarantee is efficiently “falsifiable”. Estimating the success probabil-
ity of a classical decryptor is easy. One can generate a ciphertext for a random
message using the public key and check whether the classical decryptor is cor-
rect on that ciphertext; then, a simple counting estimates its success probability
within any inverse polynomial error. Unfortunately, this method does not nat-
urally work in the quantum setting since a single execution of the decryption
key (produced by the adversary) may disturb the state and prevent further ex-
ecution of the same key.

Nevertheless, Zhandry [30] shows that such estimation can be done analo-
gous to the classical setting, inspired by the famous work of Marriot and Wa-
trous [23] for witness-preserving error reduction for quantum Arthur–Merlin
game. Informally, the work of Zhandry utilizes a measurement procedure called
“projective implementation” (abbreviated as 𝖯𝖨)8 to estimate the success prob-
ability of a quantum adversary (see Figure 1).

1. Let 𝒟 be a ciphertext distribution we define the procedure with respect to.
2. For any quantum decryptor 𝜎 with success probability 𝑝 over 𝒟, running

𝖯𝖨𝒟 on the decryptor produces a probability 𝑝′ and 𝜎 collapses to 𝜎′;
3. 𝜎′ as a decryptor, has success probability 𝑝′ over 𝒟;
4. Applying 𝖯𝖨𝒟 on 𝜎′ always produces 𝑝′ and 𝜎′ remains intact;
5. The expectation of 𝑝′ is 𝑝.

(𝜎, 𝑝) 𝖯𝖨𝒟 (𝜎′, 𝑝′)

𝔼[𝑝′] = 𝑝

𝖯𝖨𝒟 (𝜎′, 𝑝′)

Fig. 1: 𝖯𝖨: measure success probability of a decryptor.

8 For simplicity, we only use the inefficient estimation procedure. The same argument
in the technical overview holds using an efficient and approximated version. Similarly
for 𝖳𝖨.

8 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

Put shortly, this measurement procedure will output an estimation of the
success probability 𝑝′ for a quantum decryptor 𝜎. After the measurement, the
decryptor collapsed to another decryptor 𝜎′, whose success probability is still
𝑝′. We will intuitively call 𝖯𝖨 as “probability estimation’ instead of its original
name in the scope of the overview.

In the anti-piracy security definition, we care about whether both decryp-
tors have the success probability significantly greater than 1/2. [13] defines the
following “threshold measurement” or “goodness measurement” 𝖳𝖨𝒟,𝜖 for de-
ciding if a quantum decryptor 𝜎 is good, for some inverse-polynomial 𝜖:

1. Let 𝒟 be a ciphertext distribution we define the procedure with respect to.
2. Run 𝖯𝖨𝒟 coherently on 𝜎 and measure if the outcome register (containing

the resulting probability 𝑝′) is greater than 1/2+ 𝜖, which produces a single
bit outcome 𝑏. The quantum decryptor collapses to 𝜎′.

3. If 𝑏 = 1, 𝜎′ lies in the span of good decryptors, whose success probability is
at least 1/2+𝜖; otherwise, 𝜎′ is in the subspace with the basis being quantum
decryptors whose winning probability is strictly less than 1/2 + 𝜖.

𝜎 𝖳𝖨𝒟,𝜖 (𝜎′, 𝑏)

Fig. 2: 𝖳𝖨: measure goodness of a decryptor.

We note that 𝖳𝖨𝒟,𝜖 is a projection, which says if 𝜎′ is the collapsed decryptor for
outcome 𝑏, applying 𝖳𝖨𝒟,𝜖 will always produce 𝑏 and 𝜎′ does not change.

We are now ready to formally define the anti-piracy security in [13]. Let𝒟 be
the ciphertext distribution for honestly generated ciphertext, which encodes a
uniformly random message. No efficient adversary can turn |𝗌𝗄⟩ into a possibly
entangled decryptors 𝜎 over two registers, such that applying the threshold
measurement 𝖳𝖨𝒟,𝜖 on both decryptors 𝜎[1], 𝜎[2] will produce two outcomes 1s
with non-negligible probability. To put it another way, no efficient adversary
can produce two decryptors such that they jointly have non-negligible weight
on good decryptors.

Security Proof for “1 → 2 Attacks”. Before scoping the proof of our collusion
resistant unclonable decryption, we recall the security proof in [13] for “1 → 2
unclonability”. In this following section, we will highlight the difficulties of
applying the same ideas to CRUD and introduce a new approach to resolve this
issue.

The proof works as follows:

– A reduction applies 𝖳𝖨𝒟,𝜖 on both decryptors 𝜎[1], 𝜎[2]. With some non-
negligible probability, it will produce two outcomes 1s and the two decryp-
tors become 𝜎′[1], 𝜎′[2].

Collusion Resistant Copy-Protection for Watermarkable Functionalities 9

– Extraction on the first register. Let 𝒟′ be the ciphertext distribution for
“junk” ciphertext which only encrypts an empty symbol⊥. Applying 𝖳𝖨𝒟′,𝜖

on 𝜎′[1] always result in outcome 0, whereas the outcome of applying 𝖳𝖨𝒟,𝜖

on 𝜎′[1] is always 1.
We can thereby conclude that 𝜎′[1] must contain some secret information
about the secret key |𝗌𝗄⟩. In fact, we can use an extraction algorithm to ex-
tract the classical information about the secret key. Note that the algorithm
may be destructive that, for example, may measure 𝜎′[1] completely.

– Extraction on the second register. Conditioned on the successful extraction
on 𝜎′[1], we want to argue that a similar extraction on the second register
works. If so, we can simultaneously extract secret information about |𝗌𝗄⟩ from
two non-communicating parties. This will violate the underlying quantum
information guarantee9.

The remaining is to show such an extraction is feasible on the second decryptor,
even conditioned on the successful extraction on 𝜎′[1]. This is because 𝖳𝖨𝒟,𝜖 is a
projection, conditioned on the outcome being 1, 𝜎′[2] will be in the span of good
decryptors (see bullet (3) of the description of 𝖳𝖨). Regardless of what event
is conditioned on 𝜎′[1], the second decryptor is still in the span of good de-
cryptors. Thus, an extraction algorithm would extract the classical information
about the secret key from 𝜎′[2] with non-negligible probability. This concludes
the proof idea in [13].

To conclude, the core idea in the proof is that, a “1 → 2 attack” produces
two quantum registers that

1. they have a non-negligible probability 𝑤1 = 𝛾 on both registers being good
decryptors on 𝒟 (with success probabilities at least 1/2 + 𝜖);

2. they have a negligible probability 𝑤2 on both being good decryptors on 𝒟′.

If both 1 and 2 are satisfied, a simultaneous extraction succeeds with a non-
negligible probability.

In the next few paragraphs, we still denote 𝑤1 as the joint probability of
both decryptors being good on distribution 𝒟; 𝑤2 as the joint probability of
both decryptors being good on distribution 𝒟′.

In the above proof for 1→ 2 attack, we crucially require 𝑤1 is non-negligible
and 𝑤2 is negligible or zero, in order to argue that extraction would succeed
even after conditioned on successful extraction on one side.

We can also observe that for the 1 → 2 proof, 𝑤2 is automatically zero.
As 𝒟′ does not encode a real message, no quantum decryptor can achieve
any advantage over random guessing. But this is not always the case when
it turns to our CRUD security proof: for which, 𝒟 = (𝖼𝗍⊥, · · · , 𝖼𝗍𝑗 , 𝖼𝗍𝑗+1, · · ·)
has the first (𝑗 − 1) ciphertexts being junk and the rest being real; whereas
𝒟′ = (𝖼𝗍⊥, · · · , 𝖼𝗍⊥, 𝖼𝗍𝑗+1, · · ·) has the first 𝑗 ciphertexts being junk.

9 In the actual proof, two non-communicating parties will extract two vectors, one in
the primal coset and the other in the dual coset of a coset state. This will violate the
strong computational monogamy-of-entanglement property of coset states.

10 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

As we will see in the following section, for CRUD, the condition “𝑤1 −𝑤2 is
non-negligible” is the best we can hope for. Therefore, we attempted to see if a
proof similar to the above exists, when we can only condition on "𝑤1−𝑤2 is non-
negligible". Unfortunately, the answer to this attempt is negative, as we will
provide some intuition in the immediate next paragraph. We thereby conclude
that the proof technique in [13] cannot extend to collusion resistant anti-piracy
security proof in a generic way.

To see why the condition “𝑤1 − 𝑤2 is non-negligible” does not necessarily
give a simultaneous extraction, we consider the time when a successful extrac-
tion has already been done on the first decryptor 𝜎′[1]. If 𝑤2 is negligible, the
leftover state of the second decryptor 𝜎′[2] has at most 𝑤2/𝜁 weight lying in
the span of bad decryptors. Here 𝜁 is the probability of a successful extraction
on the first decryptor and conditioned on this extraction, the weight 𝑤2 will be
amplied by at most 1/𝜁. Since 𝑤2/𝜁 is still negligible, this allows an extraction
from 𝜎′[2] happens with a non-negligible chance. However, if 𝑤2 is not negligi-
ble but only satisfies 𝑤1 − 𝑤2 is non-negligible, 𝜎′[2] can lie in the span of bad
decryptors: the extreme case will be the event of successful extraction on 𝜎′[1]
has “positive correlation” with 𝜎′[2] being bad; in this case, the weight can be
as large as 𝑤2/𝜁 ≈ 1.

Obstacles for Extraction from Quantum Decryptors. The high-level intuition for
why such a construction would satisfy 𝑘 → 𝑘 + 1 is comprehensible. Assume
an adversary uses |𝗌𝗄1⟩ , · · · , |𝗌𝗄𝑘⟩ to produce (𝑘 + 1) (possibly entangled) ma-
licious decryptors 𝜎. Let 𝜎[𝑖] denote the 𝑖-th pirate decryptor. Since each 𝜎[𝑖] is
a “working” pirate decryptor, it should at least decrypt one of 𝖼𝗍1, · · · , 𝖼𝗍𝑘 (say
𝖼𝗍𝑗). Applying pigeonhole principle, there are two decryptors that decrypts the
same ciphertext slot, which would violate 1 → 2 unclonability. However, such
an intuition is nontrivial to formalize since a quantum adversary could dis-
tribute these secret keys in multiple ways in superposition.

A straightforward idea is to extract secret information for the 𝑗-th private
key |𝗌𝗄𝑗⟩ from 𝜎[𝑖]. Let 𝒟′ be the ciphertext distribution (𝖼𝗍⊥, 𝖼𝗍⊥, · · · , 𝖼𝗍⊥) con-
taining all junk ciphertext. Clearly, if we apply 𝖳𝖨𝒟′,𝜖 on any quantum decryp-
tor, the result is always 0 (meaning “bad”). If we can find an index 𝑗 such that𝒟𝑗

is the distribution (𝖼𝗍⊥, 𝖼𝗍⊥, · · · , 𝖼𝗍𝑗 , · · · , 𝖼𝗍⊥) and applying 𝖳𝖨𝒟𝑗 ,𝜖 on 𝜎[𝑖] gives
1 with non-negligible chance, we can extract secrets for |𝗌𝗄𝑗⟩ from 𝜎[𝑖]. If one
can extract from every 𝜎[𝑖], by the pigeonhole principle, it breaks the underly-
ing quantum information guarantee for one of the unclonable decryption keys.
Unfortunately, this idea does not go through, considering the following bad
situation.

Even if 𝜎[𝑖] has success probability 1, such 𝑗 may not exist. Consider a quan-
tum program that knows all the decryption keys |𝗌𝗄1⟩, · · · , |𝗌𝗄𝑘⟩ but only de-
crypts 𝖼𝗍 if and only if every |𝗌𝗄𝑗⟩ can successfully decrypt 𝖼𝗍𝑗 ; if any decryp-
tion fails to decrypt, it outputs a random guess. Feeding (· · · , 𝖼𝗍⊥, 𝖼𝗍𝑗 , 𝖼𝗍⊥, · · · ,)
to the decryptor will always result in a random guessing.

Collusion Resistant Copy-Protection for Watermarkable Functionalities 11

Note that this is not only an issue for quantum decryptors but also presents
if decryptors are classical.

A natural fix of the above idea is to consider the following hybrid distribu-
tions. We define 𝒟𝑗 for every 𝑗 ∈ {0, 1, · · · , 𝑘}:

– 𝒟𝑗 : = (𝖼𝗍⊥, · · · , 𝖼𝗍⊥, 𝖼𝗍𝑗 , 𝖼𝗍𝑗+1 · · ·). In other words, only the last 𝑘− 𝑗 cipher-
texts encode the same random message 𝑚 ∈ {0, 1}, the first 𝑗 ciphertexts
are junk ciphertexts .

– 𝖳𝖨𝑗 := 𝖳𝖨𝒟𝑗 ,𝜖: the goodness estimation with respect to the ciphertext distri-
bution 𝒟𝑗 and threshold 1/2 + 𝜖.

That is, each𝒟𝑗 will replace the first non-junk ciphertext from𝒟𝑗−1 with a junk
ciphertext. Note that 𝒟 := 𝒟0. By the definition of 𝜎[𝑖] is a working decryptor,
applying 𝖳𝖨0 on 𝜎[𝑖] will produce 1 with a non-negligible probability. On the
flip side, applying 𝖳𝖨𝑘 on 𝜎[𝑖] will always produce 0.

We denote 𝑤𝑗 as the probability of applying 𝖳𝖨𝒟𝑗 ,𝜖 on the decryptor 𝜎[𝑖] and
getting outcome 1. By a standard hybrid argument, we can conclude that there
must exist an index 𝑗 ∈ [𝑘] such that,

𝑤𝑗−1 − 𝑤𝑗 is non-negligible.

The gap allows extraction on 𝜎[𝑖]. However, as we discussed in the last sec-
tion, it does not satisfy the condition “𝑤𝑗−1 is non-negligible and 𝑤𝑗 is negligi-
ble”, which can not guarantee a simultaneous extraction when we consider two
decryptors.

A bad example looks like the following: 𝑤0 = 𝛾 for some inverse polynomial
𝛾 and 𝑤𝑗 = 𝛾/2𝑗 for all 𝑗 ̸= 𝑘 and 𝑤𝑘 = 0. There does not exists a 𝑗 such that
𝑤𝑗−1 is non-negligible but 𝑤𝑗 is negligible.

We now elaborate on our approaches to resolve these obstacles. Our ap-
proach directly takes advantage of the probability measure 𝖯𝖨 instead of 𝖳𝖨.
This also gives an alternative security proof for the construction in [13].

Extract a Single Decryption Key: Detect a Large Jump in Success Probability Let us
start with attempts to extract from a single “working” decryptor 𝜎, using the
probability estimation 𝖯𝖨. Recall that by the definition of “working”, we mean
applying 𝖯𝖨𝒟 on 𝜎 yields some probability 𝑝 significantly larger than the trivial
guessing probability 1/2.

We first recall the following ciphertext distributions𝒟𝑗 and define probabil-
ity estimation procedure 𝖯𝖨𝑗 for every 𝑗 ∈ {0, 1, · · · , 𝑘}:

– 𝒟𝑗 : = (𝖼𝗍⊥, · · · , 𝖼𝗍⊥, 𝖼𝗍𝑗 , 𝖼𝗍𝑗+1 · · ·).
– 𝖯𝖨𝑗 := 𝖯𝖨𝒟𝑗 : the probability estimation with respect to the ciphertext distri-

bution 𝒟𝑗 .

Now we give the following attempted extraction, which almost works but
has one caveat. We call this extraction procedure a “repeated probability esti-
mation/measurement”:

12 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

1. We first apply 𝖯𝖨0 to 𝜎 and obtain 𝑝0 and a collapsed decryption key 𝜎0.
2. We then apply 𝖯𝖨1 to the collapsed 𝜎0 to obtain 𝑝1 and 𝜎1.

Now if 𝑝1−𝑝0 is at least 𝑝0− 1
2

𝑘 , we perform an extraction procedure to extract
secrets for |𝗌𝗄1⟩ from 𝜎0. Intuitively, since we observe a noticeable probabil-
ity decrease when 𝖼𝗍1 is replaced with junk ciphertext, there must be some
part of 𝜎[𝑖] that uses 𝖼𝗍1 to recover the original plaintext. We then abort the
procedure.

3. Otherwise, 𝑝0 and 𝑝1 should be negligibly close. We again apply 𝖯𝖨2 on 𝜎1

and obtain 𝑝2, 𝜎2. If 𝑝2−𝑝1 is at least 𝑝0− 1
2

𝑘 , we perform extraction on 𝜎1 and
abort.

4. We continue this process for all 𝑗 = 3, ..., 𝑘.

We claim that the above repeated measurement procedure will always ter-
minate at some 𝑗 ∈ [𝑘]. To see this, think of 𝑝1, ..., 𝑝𝑘 as a sequence of random
variables, whose values are only observed when the corresponding measure-
ment is applied. Note that 𝑝𝑘 = 1/2 always, because the underlying ciphertext
distribution𝒟𝑘 encodes all junk ciphertexts, so no adversary can achieve better
advantage than guessing. Therefore, the claim follows from triangle inequality.

(𝜎0, 𝑝0)
𝖯𝖨1−−→ (𝜎1, 𝑝1)

𝖯𝖨2−−→ (𝜎2, 𝑝2)
𝖯𝖨3−−→ · · · 𝖯𝖨𝑘−1−−−→ (𝜎𝑘, 𝑝𝑘)

The above extraction procedure almost works. But it is actually not physi-
cally executable: we need 𝜎𝑗−1 in order to perform extraction as that is the state
with a “working” component for ciphertext 𝖼𝗍𝑗 , but by the time that we decide
to extract, we already get to state 𝜎𝑗 because we have to obtain measurement
outcome 𝑝𝑗 to claim a jump in probability happens. It is generally infeasible to
rewind a quantum state, in this case from 𝜎𝑗 to 𝜎𝑗−1.10

Fortunately, it is plausible for a single decryptor: we guess 𝑗 (denoting the
first index having a probability jump) and stop the procedure when we have
done 𝖯𝖨0, · · · ,𝖯𝖨𝑗−1. With probability at least 1/𝑘, we can extract for |𝗌𝗄𝑗⟩ from
the current decryptor 𝜎𝑗−1. We will get to why this procedure avoids the rewind-
ing issue and preserves our success probability, when it comes to the (𝑘 + 1)
decryptors case in the next paragraph.

Extending to (𝑘 + 1) decryptors. Finally, we show how to generalize the above
extraction strategy to extracting secrets from the same key |𝗌𝗄𝑗⟩.

We apply the repeated measurement individually to every decryptor: that
is, for the 𝑖-th decryptor, we apply 𝖯𝖨0,𝖯𝖨1, · · · ,𝖯𝖨𝑘, one upon another. The pro-
cedure will yield 𝑝𝑖,0, 𝑝𝑖,1, · · · , 𝑝𝑖,𝑘. Since 𝑝𝑖,0 is always greater than 1/2+ 𝛾 and
𝑝𝑖,𝑘 = 1/2, there must exist a large probability gap between 𝑝𝑖,𝑗𝑖−1 and 𝑝𝑖,𝑗𝑖 for
some 𝑗𝑖 ∈ [𝑘]. By the pigeonhole principle, for some 𝑥 ̸= 𝑦, 𝑗 := 𝑗𝑥 = 𝑗𝑦 . We
hope to stop at the 𝑥-th and 𝑦-th decryptors before applying 𝖯𝖨𝑗 and simultane-
ously turn them into two keys for 𝖼𝗍𝑗 .

10 The probability estimation 𝖯𝖨𝑗 will preserve the success probability of the state but
nothing else. Applying 𝖯𝖨𝑗 will likely change 𝜎𝑗−1.

Collusion Resistant Copy-Protection for Watermarkable Functionalities 13

Since there will always be two decryptors having large probability gaps for
the same index, the chance of having such gaps for randomly guessed 𝑥, 𝑦 and
𝑗 is at least 1

(𝑘+1
2)𝑘

≥ 1/𝑘3. But the success probability of this guess is not im-

mediately guaranteed, because we need to stop before the 𝑗-th probability es-
timation for states 𝜎[𝑥], 𝜎[𝑦] otherwise we can’t rewind to this state needed for
extraction. We are still two unpredictable measurements away from the event
we guess for. Fortunately, guessing and stopping before the 𝑗-th 𝖯𝖨 will indeed
work with probability at least 1/(2𝑘3), through a trick for randomized algo-
rithms.

Now we can apply repeated measurement and stop before applying 𝖯𝖨𝑗 on
any of these two decryptors. Let the leftover decryptors be 𝜎*[𝑥, 𝑦] and the last
probability outcomes be 𝑝𝑥,𝑗−1 and 𝑝𝑦,𝑗−1. With probability at least 1/(2𝑘3),
(𝜎*[𝑥, 𝑦], 𝑝𝑥,𝑗−1, 𝑝𝑦,𝑗−1) satisfy the following conditions (*) and (**):

(*) Applying 𝖯𝖨𝑗−1 on both 𝜎*[𝑥] and 𝜎*[𝑦] always produces 𝑝𝑥,𝑗−1 and 𝑝𝑦,𝑗−1.
(**) Applying 𝖯𝖨𝑗 on both 𝜎*[𝑥] and 𝜎*[𝑦], with probability at least 1/(2𝑘3), pro-

duces large probabilities gaps for both 𝑝𝑥,𝑗−1 and 𝑝𝑦,𝑗−1.

It seems that we have come to the right “spot” for extraction. However,
we still face a challenge. How do we guarantee that we can simultaneously
extract from two possibly entangled states? A possible malicious behavior is
that measuring one decryptor’s key will collapse the other decryptor to a “not
working” state.

We can clearly extract secrets for |𝗌𝗄𝑗⟩ from either 𝜎*[𝑥] or 𝜎*[𝑦]: since there
is a probability gap, it must mean 𝜎*[𝑥] (or 𝜎*[𝑦]) use 𝖼𝗍𝑗 for decryption at some
point. From the probability point of view, we then argue why simultaneous
extraction is feasible.

Define 𝐄𝑥 (𝐄𝑦 , here 𝐄 stands for “(E)xtraction”) be the event of a successful
extraction on the 𝑥-th decryptor (or on the 𝑦-th decryptor respectively). Define
𝐆𝑥 (𝐆𝑦 , here 𝐆 stands for “(G)ap”) be the event that applying 𝖯𝖨𝑗 on the 𝑥-th
decryptor (or on the 𝑦-th decryptor respectively) yields a large probability gap.
We will prove Pr[𝐄𝑥 ∧𝐄𝑦] is non-negligible by contradiction.

It is clear that Pr[𝐄𝑥] is non-negligible. To show Pr[𝐄𝑦|𝐄𝑥] is non-negligible,
it is sufficient to show that Pr[𝐆𝑦|𝐄𝑥] is non-negligible, since a large gap implies
a large chance of extraction.

We can intuitively think of Pr[𝐄𝑥] = 0.1Pr[𝐆𝑥] and Pr[𝐄𝑦] = 0.1Pr[𝐆𝑦]
11.

We may expect that Pr[𝐄𝑥 ∧𝐄𝑦] = 0.1Pr[𝐆𝑥 ∧𝐆𝑦], which would conclude the
proof. However, this does not follow immediately from above as it could be the
case that 𝐆𝑥 ∧ 𝐆𝑦 occurs with non-negligible probability, but 𝐄𝑥 ∧ 𝐄𝑦 never
occurs. The main insight here is that we can instead show that Pr[𝐄𝑥|𝐆𝑦] =
0.1Pr[𝐆𝑥|𝐆𝑦], as finding the gap for 𝑦 does not impact the extraction for 𝑥.
Invoking Bayes’ rule, this shows that Pr[𝐆𝑦|𝐄𝑥] = Pr[𝐄𝑥|𝐆𝑦] Pr[𝐆𝑦]/Pr[𝐄𝑥]
is non-negligible as well. As a consequence, Pr[𝐄𝑦|𝐄𝑥] and thus Pr[𝐄𝑥 ∧ 𝐄𝑦]
(simultaneous extraction) are both large.
11 The choice of 0.1 is arbitrary here. Indeed, they are polynomially related. For the sake

of simplicity, we assume they are linearly related.

14 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

Collusion Resistant Copy-Protection for Signatures and PRFs Now with the build-
ing block of collusion resistant unclonable decryption, we come to copy-protect
more cryptographic functions.

As briefly discussed in the introduction, even though [13] presented the first
unclonable signature scheme without oracles, its scheme is a signature token
that will be consumed after one use. One-time signature is a security notion
interesting under many circumstances [9,17], but it’s crucial that we investigate
the possibility of copy-protecting a standard digital signature. Moreover, once
achieved, this construction helps us get closer to the goal of copy-protecting all
watermarkable functionalities.

The [13] signature token is one-time because when signing a message, the
signer simply measures the quantum key and the measurement outcome is a
signature. It is not existentially unforgeable for the same reason: if an adversary
gets a few random measurement results of quantum keys, he is granted the
power to sign, without the need of an intact quantum key.

To resolve the problem, we resort to the classic picture of generic copy-
protection: the signing program first verifies if a quantum key is a valid “to-
ken” and then outputs a signature (computed independently of the quantum
key) as well as the almost unharmed key. In particular, we observe that the un-
clonable decryption scheme in [13] will pave the way for such a construction.
Their scheme can be extended to a copy-protection for evaluating puncturable
PRFs with the “ hidden trigger” technique from [25]. Meanwhile, such PRF
evaluation functionality can be used as a signing program after obfuscation.

We thereby give a copy-protection for existentially unforgeable, publicly-
verifiable signature scheme, based on the above ideas. Along the way, we deal
with a few subtleties that emerge because we need public verification and gen-
eralization to collusion resistance. More specifically, we present a 𝑘-party ver-
sion of the [25] hidden trigger technique to obtain both collusion resistant copy-
protection for signatures and for PRFs.

1.4 Discussions and Open Problems

Comparisons to [13]. An informed reader may claim that one main obstacle
(namely simultaneous extraction) for proving anti-piracy security in this paper
resembles the obstacle in the 1 → 2 anti-piracy schemes of [4,13]. We empha-
size that while this issue may be bumped into in all quantum copy-protection
proofs, our approach of resolving the issue is different from previous works,
especially to identify gaps in a repeated probability estimation procedure (see
more details in the technical overview). In particular, our approach can be used
to prove security for the schemes in [4] and [13], but as we have discussed in
the technical overview, their techniques will not work for the 𝑘 → 𝑘 + 1 setting
12

12 The approach for simultaneous extraction when showing 1 → 2 anti-piracy in [4]
bears a high-level similarity with [13]. We have discussed [13] in the overview since
we focus on unclonable decryption.

Collusion Resistant Copy-Protection for Watermarkable Functionalities 15

On Non-Black-Box Reduction. In the technical overview, we describe a black-box
way of reducing “𝑘 → (𝑘 + 1) security” to “1→ 2 security”. As mentioned ear-
lier, we cheat in the technical overview and the approach is not entirely black-
box.

A high-level summary for the reason is: a black-box reduction algorithm (i.e.
an adversary for a 1→ 2 unclonable decryption scheme) is not able to generate
the correct distribution for the ciphertext to feed to the 𝑘 collusion resistant
adversary. Elaborated as follows:

First, recall that in a 𝑘 collusion resistant scheme, an encryption for a mes-
sage 𝑚 is an ensemble of ciphertexts 𝖼𝗍 = (𝖼𝗍1, ..., 𝖼𝗍𝑘) where 𝖼𝗍𝑖 = 𝖤𝗇𝖼(𝗉𝗄𝑖,𝑚)
for all 𝑖 ∈ [𝑘].

In the reduction, we want to apply 𝖯𝖨𝒟𝑗 on a malicious decryptor to extract
secrets from |𝗌𝗄𝑗⟩ for some 𝑗 ∈ [𝑘]:

𝒟𝑗 : the first 𝑗 ciphertexts (that is, 𝖼𝗍1, · · · up to 𝖼𝗍𝑗) are simulated ciphertexts,
the rest of them encrypt the same message.

The problem is the following: the reduction only gets a single ciphertext
𝖼𝗍𝑗+1, whereas the malicious decryptor takes input of the form in 𝒟𝑗 . The re-
duction needs to generate other ciphertext on its own: including those simu-
lated and those encrypting the same message as 𝑐𝑗+1. Since the reduction does
not know which message is encrypted in 𝖼𝗍𝑗+1 (otherwise, the reduction itself
already breaks the security of the underlying 1 → 2 unclonable decryption), it
cannot generate a valid ciphertext 𝖼𝗍 = (𝖼𝗍1, · · · , 𝖼𝗍𝑘) from the distribution 𝒟𝑗 .

Therefore, we need to open this proof up in a non-black-box way: it’s based
on the security of coset states. When we break the security of coset states, the
message (encrypted in 𝖼𝗍𝑗+1) is known by the reduction. In fact, it is even sam-
pled by the reduction 𝑅.

Open Problems. The main limitation of our constructions is that the number of
collusions is bounded to a polynomial specified during setup, and the param-
eters grow with the collusion bound. Because of this collusion bound, our re-
sults are technically incomparable to [2], which, despite having a much weaker
copy-protection guarantee and using a strong oracle, required no prefixed user
number. We leave achieving unbounded 𝑘 → 𝑘 + 1 collusion resistance as an
interesting open question.

1.5 Organization

The rest of the paper is organized as follows. In Section 2, we recall the defi-
nitions and properties of coset states and how to measure success probabilities
of quantum adversaries. In Section 3, we present the definition, construction,
and security proof of collusion resistant unclonable decryption. Our construc-
tions and security proofs for (collusion resistant) copy-protection for signature
schemes and PRFs are covered in the full version.

16 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

2 Preliminaries

In this paper, 𝜆 denotes the security parameter. 𝗉𝗈𝗅𝗒(·) denotes a polynomial
function. We say a function 𝑓(·) : ℕ → ℝ≥0 is negligible if for all constant
𝑐 > 0, 𝑓(𝑛) ≤ 1

𝑛𝑐 for all sufficiently large 𝑛. 𝗇𝖾𝗀𝗅(·) denotes a negligible function.
Similarly, we say a function 𝑓(·) : ℕ → ℝ≥0 is sub-exponential if there exists a
constant 𝑐 < 1, such that 𝑓(𝑛) ≤ 2𝑛

𝑐

for all sufficiently large 𝑛. 𝗌𝗎𝖻𝖾𝗑𝗉(·) denotes
a sub-exponential function. For an integer 𝑘, We denote {1, 2, · · · , 𝑘} by [𝑘]. We
denote 𝔽2 to be the binary field.

We refer the reader to [24] for a reference of basic quantum information
and computation concepts. We also leave the definition for indistinguishability
obfuscation in the full version. Readers can also find the definition in [8,16].

2.1 Coset States

We recall the notion of coset states, introduced by [26] and later studied by
[13] in the setting of quantum copy-protection. We then present a property of
coset states: a strong computational monogamy-of-entanglement (MOE) prop-
erty. This property is used to obtain an unclonable decryption scheme and other
copy-protection of watermarkable cryptographic primitives in this work. Some
part of this section is taken verbatim from [13].

Definitions For any subspace 𝐴, its complement is 𝐴⊥ = {𝑏 ∈ 𝔽𝑛
2 | ⟨𝑎, 𝑏⟩ =

0 , ∀𝑎 ∈ 𝐴}. It satisfies dim(𝐴) + dim(𝐴⊥) = 𝑛. We also let |𝐴| = 2dim(𝐴) denote
the number of elements in the subspace 𝐴.

Definition 1 (Coset States). For any subspace 𝐴 ⊆ 𝔽𝑛
2 and vectors 𝑠, 𝑠′ ∈ 𝔽𝑛

2 , the
coset state |𝐴𝑠,𝑠′⟩ is defined as:

|𝐴𝑠,𝑠′⟩ =
1√︀
|𝐴|

∑︁
𝑎∈𝐴

(−1)⟨𝑠
′,𝑎⟩ |𝑎+ 𝑠⟩ .

By applying 𝐻⊗𝑛 (Hadamard on every qubit) on the state |𝐴𝑠,𝑠′⟩, one ob-
tains exactly |𝐴⊥𝑠′,𝑠⟩. Given 𝐴, 𝑠 and 𝑠′, there is an efficient quantum algorithm
that generates |𝐴𝑠,𝑠′⟩, by [13].

For a subspace 𝐴 and vectors 𝑠, 𝑠′, we define cosets 𝐴+ 𝑠 = {𝑣 + 𝑠 : 𝑣 ∈ 𝐴},
and 𝐴⊥+ 𝑠′ = {𝑣+ 𝑠′ : 𝑣 ∈ 𝐴⊥}. It is also convenient for later sections to define
a canonical representative, with respect to subspace 𝐴, of the coset 𝐴+ 𝑠.

Definition 2 (Canonical Representative of a Coset). For a subspace 𝐴, we de-
fine the function 𝖢𝖺𝗇𝐴(·) such that 𝖢𝖺𝗇𝐴(𝑠) is the lexicographically smallest vector
contained in 𝐴+ 𝑠 (we call this the canonical representative of coset 𝐴+ 𝑠).

[13] showed that, 𝖢𝖺𝗇𝐴 and 𝖢𝖺𝗇𝐴⊥ are efficiently computable given the clas-
sical description of 𝐴.

When it is clear from the context, we will write 𝐴+ 𝑠 to denote the program
that checks membership in 𝐴 + 𝑠. The following equivalences, which follow

Collusion Resistant Copy-Protection for Watermarkable Functionalities 17

straightforwardly from the security of 𝗂𝖮, will be useful in our security proofs
later on.

Proposition 1. For any subspace 𝐴 ⊆ 𝔽𝑛
2 , 𝗂𝖮(𝐴 + 𝑠) ≈𝑐 𝗂𝖮(𝖢𝖢[𝖢𝖺𝗇𝐴,𝖢𝖺𝗇𝐴(𝑠)]).

Recall that 𝖢𝖢[𝖢𝖺𝗇𝐴,𝖢𝖺𝗇𝐴(𝑠)] refers to the compute-and-compare program which on
input 𝑥 outputs 1 if and only if 𝖢𝖺𝗇𝐴(𝑥) = 𝖢𝖺𝗇𝐴(𝑠).

This is due to the fact that 𝐴+𝑠 has the same functionality as 𝖢𝖢[𝖢𝖺𝗇𝐴,𝖢𝖺𝗇𝐴(𝑠)].
The lemma then follows the security of 𝗂𝖮.

Strong Monogamy-of-Entanglement Property Consider a game between a
challenger and an adversary (𝒜0,𝒜1,𝒜2):

– The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 of dimension 𝑛

2 ,
and two uniformly random elements 𝑠, 𝑠′ ∈ 𝔽𝑛

2 . It sends |𝐴𝑠,𝑠′⟩, 𝗂𝖮(𝐴 + 𝑠),
and 𝗂𝖮(𝐴⊥ + 𝑠′) to 𝒜0.

– 𝒜0 creates a bipartite state on registers 𝖡 and 𝖢. Then, 𝒜0 sends register 𝖡
to 𝒜1, and 𝖢 to 𝒜2.

– The classical description of 𝐴 is then sent to both 𝒜1,𝒜2.
– 𝒜1 and 𝒜2 return respectively 𝑠1 and 𝑠2.

(𝒜0,𝒜1,𝒜2) wins if and only if 𝑠1 ∈ 𝐴+ 𝑠 and 𝑠2 ∈ 𝐴⊥ + 𝑠′.

Let 𝖢𝗈𝗆𝗉𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes
the value 1 if the game above is won by adversary (𝒜0,𝒜1,𝒜2), and takes the
value 0 otherwise.

Theorem 3. Assuming the existence of sub-exponentially secure post-quantum 𝗂𝖮
and one-way functions, then for any QPT adversary (𝒜0,𝒜1,𝒜2),

Pr[𝖢𝗈𝗆𝗉𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) = 1] ≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝑛) .

[15] proved an information-theoretic version of the strong monogamy prop-
erty (without giving out the 𝗂𝖮 programs to the adversary). [13] showed that
one can obtain the computational statement by lifting the information-theoretic
statement.

2.2 Measure Success Probabilities of Quantum Adversaries:
Projective/Threshold Implementation

In this section, we include several definitions and results about estimating suc-
cess probabilities or estimating whether the probability is above a threshold.
Part of this section is taken verbatim from [4,13]. In this section, we will mainly
talk about how to measure probability in an inefficient way. The proofs in the
main body of the proof use this inefficient measuring procedure as subroutines.
All these proofs can be translated easily using the efficient version of such mea-
suring procedures. We will cover those in the full version.

18 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

Estimating success probabilities of adversaries is essential in many settings,
especially for a reduction to know whether the adversary is good or if an extrac-
tion on the adversary can succeed with high probability. Classically it is easy.
Let 𝒟 be a testing input distribution and 𝐶 be a classical program for which we
want to estimate probability. We can keep running 𝐶 on uniformly fresh inputs
sampled from𝒟 to estimate the probability up to any inverse polynomial error.
Such procedure is infeasible for quantum adversaries, since a single execution
of a quantum program may completely collapse the program, leading to failure
for future executions.

Projective Implementation Zhandry [30] formalizes the following probability mea-
surement procedure for a quantum program 𝜌 under some test distribution 𝒟.

Consider the following procedure as a binary POVM 𝒫𝒟 = (𝑃𝒟, 𝑄𝒟) acting
on a quantum program 𝜌 (whose success probability is equal to 𝑝): sample an
input 𝑥 from𝒟, evaluates the quantum program 𝜌 on 𝑥, and checks if the output
is correct. Let 𝑃𝒟 denote the operator for output being correct and 𝑄𝒟 be the
quantum operator for the output being incorrect.

Zhandry proposed a procedure that applies an appropriate projective mea-
surement which measures the success probability of 𝜌 on input 𝑥 ← 𝒟, and
outputs the probability 𝑝′. Conditioned on the outcome is some probability 𝑝′,
the quantum program collapsed to 𝜌′ whose success probability is exactly 𝑝′.
Furthermore, the expectation of 𝑝′ equals to 𝑝.

Theorem 4 (Projective Implementation). Let 𝒟 be a distribution of inputs. Let
𝒫𝒟 = (𝑃𝒟, 𝑄𝒟) be a binary outcome POVM described above with respect to the dis-
tribution 𝒟. There exists a projective measurement 𝖯𝖨(𝒫𝒟) such that for any quantum
program 𝜌 with success probability 𝑝 on 𝒟:

(i) Applying 𝖯𝖨(𝒫𝒟) on 𝜌 yields 𝜌′, 𝑝′.
(ii) 𝜌′ has success probability 𝑝′ with respect to 𝒟. Furthermore, applying 𝖯𝖨(𝒫𝒟) on

𝜌′ always produces 𝑝′.
(iii) The expectation of 𝑝′ equals to 𝑝.

We say the above measurement procedure is a projective implementation of 𝒫𝒟. When
the distribution is clear from the context, we sometimes ignore the subscript 𝒟 in both
𝒫𝒟 and 𝖯𝖨(𝒫𝒟).

Threshold Implementation The concept of threshold implementation [4] is similar
to projective implementation, except it now outputs a binary outcome indicat-
ing whether the probability is above or below some threshold.

Theorem 5 (Threshold Implementation). Let 𝒟 be a distribution of inputs. Let
𝒫𝒟 = (𝑃𝒟, 𝑄𝒟) be a binary outcome POVM described above with respect to the dis-
tribution 𝒟. For any 0 ≤ 𝛾 ≤ 1, there exists a projective measurement 𝖳𝖨𝛾(𝒫𝒟) such
that for any quantum program 𝜌:

(i) Applying 𝖳𝖨𝛾(𝒫𝒟) on 𝜌 yields a binary outcome 𝑏′ and a collapsed program 𝜌′.

Collusion Resistant Copy-Protection for Watermarkable Functionalities 19

(ii) If 𝑏′ = 1, 𝜌′ has success probability at least 𝛾 with respect to 𝒟. Furthermore,
applying 𝖳𝖨𝛾(𝒫𝒟) on 𝜌′ always produces 1.

(iii) If 𝑏′ = 0, 𝜌′ has success probability less than 𝛾 with respect to 𝒟. Furthermore,
applying 𝖳𝖨𝛾(𝒫𝒟) on 𝜌′ always produces 0.

We say the above measurement procedure is a threshold implementation of 𝒫𝒟 with
threshold 𝛾. When the distribution is clear from the context, we sometimes ignore the
subscript 𝒟 in 𝖳𝖨(𝒫𝒟).

Moreover, 𝖳𝖨(𝒫𝒟) can be implemented by first applying 𝖯𝖨(𝒫𝒟) to get a outcome 𝑝
and outputting 1 if 𝑝 ≥ 𝛾 or 0 otherwise.

For simplicity, we denote by Tr[𝖳𝖨𝛾(𝒫𝒟) 𝜌] the probability that the thresh-
old implementation applied to 𝜌 outputs 𝟏. Thus, whenever 𝖳𝖨𝛾(𝒫𝒟) appears
inside a trace Tr, we treat 𝖳𝖨𝛾(𝒫𝒟) as a projection onto the 1 outcome.

The approximate and efficient versions of both 𝖯𝖨 and 𝖳𝖨 will be covered in
the full version

3 Collusion Resistant Unclonable Decryption

In this section, we give the formal definition of collusion resistant unclonable
decryption. We will then show the construction for achieving bounded collu-
sion resistance for any 𝑘 — polynomial number of parties. Finally, we prove the
construction satisfies correctness, semantic security and anti-piracy against col-
luding adversaries. Our scheme has security against bounded number of par-
ties. It requires to know the parameter 𝑘 in the setup phase and only 𝑘 copies
of keys can be generated later. Furthermore, the public key, secret key and ci-
phertext have length linear in the number of parties 𝑘. Note that our scheme is
secure even if an adversary takes control of all copies of decryption keys; the
adversary still can not produce any additional functioning key.

3.1 Definitions

Definition 3 (Bounded Collusion Resistant Unclonable Decryption Scheme).
A bounded collusion resistant unclonable decryption scheme 𝖢𝖱𝖴𝖣 for a message space
ℳ consists of the following efficient algorithms:

– 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘)→ (𝗌𝗄, 𝗉𝗄) : a (classical) probabilistic polynomial-time (in 𝜆, 𝑘) algo-
rithm that takes as input an upper bound 𝑘 on the number of users and a security
parameter 𝜆 and outputs a classical secret key 𝗌𝗄 and a classical public key 𝗉𝗄.

– 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄) → 𝜌𝗌𝗄,1 ⊗ 𝜌𝗌𝗄,2 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘 : a quantum algorithm that takes as
input a secret key 𝗌𝗄 and outputs 𝑘 copies of quantum secret keys.

– 𝖤𝗇𝖼(𝗉𝗄,𝑚)→ 𝖼𝗍 : a (classical) probabilistic algorithm that takes as input a public
key 𝗉𝗄, a message 𝑚 and outputs a classical ciphertext 𝖼𝗍.

– 𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍) → 𝑚/⊥ : a quantum algorithm that takes as input a quantum secret
key 𝜌𝗌𝗄 and a classical ciphertext 𝖼𝗍, and outputs a message 𝑚 or a decryption
failure symbol ⊥.

20 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

Here ‘bounded’ refers to the restriction that the 𝖲𝖾𝗍𝗎𝗉 procedure requires to
know the maximal number of keys distributed in the 𝖰𝖪𝖾𝗒𝖦𝖾𝗇.

A bounded collusion resistant unclonable decryption scheme should satisfy
the following:

Correctness: For every polynomial 𝑘(·), there exists a negligible function 𝗇𝖾𝗀𝗅(·),
for all 𝜆 ∈ ℕ, let 𝑘 := 𝑘(𝜆), for all 𝑚 ∈ℳ, all 𝑖 ∈ [𝑘],

Pr

⎡⎣𝖣𝖾𝖼(𝜌𝗌𝗄,𝑖, 𝖼𝗍) = 𝑚

⃒⃒⃒⃒
⃒⃒ (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘),
𝜌𝗌𝗄,1 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄),

𝖼𝗍← 𝖤𝗇𝖼(𝗉𝗄,𝑚)

⎤⎦ ≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

In other words, correctness says the 𝑖-th quantum decryption key will al-
ways decrypt correctly (except with negligible probability). By the gentle
measurement lemma [1], each decryption key can function correctly poly-
nomially many times for honestly generated encryptions.

CPA Security: This is the regular semantic security for an encryption scheme.
An adversary without getting any decryption key (neither 𝗌𝗄 nor these
quantum keys) can not distinguish ciphertexts of chosen plaintexts.
Formally, for every (stateful) QPT adversary 𝒜, for every polynomial 𝑘(·),
there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, the following
holds:

Pr

⎡⎣𝒜(𝖼𝗍) = 𝑏 :
(𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘)

((𝑚0,𝑚1) ∈ℳ2)← 𝒜(1𝜆, 𝗉𝗄)
𝑏← {0, 1}; 𝖼𝗍← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏)

⎤⎦ ≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆),

Anti-Piracy Security Finally, we define anti-piracy against colluding adversaries.
Anti-piracy intuitively says there is no adversary who gets all copies of the de-
cryption keys can successfully produce one additional “working” key.

We will follow the two different definitions of “working” proposed in [13]
and give two definitions for anti-piracy. The first definition allows a pirate to
announce two messages (𝑚0,𝑚1), much like the semantic security. A decryp-
tion key is good if an adversary can distinguish encryptions of 𝑚0 and 𝑚1 by
using the decryption key. The second definition of a “working” decryption key
is basing on whether it decrypts correctly with high probability on uniformly
random inputs.

Before describing the security games, we first recall the concept of a quan-
tum decryptor (or a quantum decryption key) [13] with respect to a collusion
resistant unclonable decryption scheme.

Definition 4 (Quantum Decryptor). A quantum decryptor 𝜌 for ciphertexts of
length 𝑚, is an ℓ-qubit state for some polynomial ℓ. For a ciphertext 𝑐 of length 𝑚, we
say that we run the quantum decryptor 𝜌 on ciphertext 𝑐 to mean that we execute a
universal quantum circuit 𝑈 on inputs |𝑐⟩ and 𝜌, and measure the output registers.

We are now ready to describe the CPA-style anti-piracy game as well as
the random challenge anti-piracy game. We first introduce the notion of good
decryptors with respect to two messages (𝑚0,𝑚1).

Collusion Resistant Copy-Protection for Watermarkable Functionalities 21

Definition 5 ((12 + 𝛾)-good Test with respect to (𝑚0,𝑚1)). Let 𝛾 ∈ [0, 1/2].
Let 𝗉𝗄 be a public key, and (𝑚0,𝑚1) be a pair of messages. We refer to the following
procedure as a test for a 𝛾-good quantum decryptor with respect to 𝗉𝗄 and (𝑚0,𝑚1):

– The procedure takes as input a quantum decryptor 𝜌.
– Let 𝒫 = (𝑃, 𝐼 − 𝑃) be the following POVM acting on some quantum state 𝜌′:
∙ Sample a uniform 𝑏← {0, 1} and random coins 𝑟. Compute 𝑐← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏; 𝑟).
∙ Run the quantum decryptor on input 𝑐. Check whether the outcome is 𝑚𝑏. If

so, output 1; otherwise output 0.
– Let (𝖳𝖨1/2+𝛾 , 𝐼 − 𝖳𝖨1/2+𝛾) be the threshold implementation of 𝒫 with threshold

value 1
2 + 𝛾, as defined in Theorem 5. Run the threshold implementation on 𝜌, and

output the outcome. If the output is 1, we say that the test passed, otherwise the
test failed.

Definition 6 (𝑘-Strong-Anti-Piracy Game, CPA-style). Let 𝜆, 𝑘 ∈ ℕ+. The CPA-
style strong anti-piracy game for a collusion resistant unclonable decryption scheme is
the following game between a challenger and an adversary 𝒜.

1. Setup Phase: The challenger samples keys (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘).
2. Quantum Key Generation Phase: The challenger sends𝒜 the classical public key

𝗉𝗄 and all 𝑘 copies of quantum decryption keys 𝜌 = 𝜌𝗌𝗄,1⊗· · · 𝜌𝗌𝗄,𝑘 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄).
3. Output Phase: 𝒜 outputs a pair of distinct messages (𝑚0,𝑚1). It also outputs a

(possibly mixed and entangled) state 𝜎 over 𝑘+1 registers 𝑅1, 𝑅2, · · · , 𝑅𝑘+1. We
interpret 𝜎 as 𝑘+1 (possibly entangled) quantum decryptors 𝜎[𝑅1], · · · , 𝜎[𝑅𝑘+1].

4. Challenge Phase: Let 𝖳𝖨1/2+𝛾 be the (12 + 𝛾)-good test with respect to (𝑚0,𝑚1).
The challenger applies 𝖳𝖨1/2+𝛾 to each of these decryptors. The challenger outputs
1 if and only if all the measurements output 1.

We denote by 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖢𝖯𝖠(1𝜆, 1/2 + 𝛾, 𝑘,𝒜) a random variable for the out-
put of the game.

Definition 7 (Strong Anti-Piracy-Security). Let 𝛾 : ℕ+ → [0, 1]. An unclonable
decryption scheme satisfies strong 𝛾-anti-piracy security, if for any polynomial 𝑘(·), for
any QPT adversary𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that the following
holds for all 𝜆 ∈ ℕ:

Pr
[︀
𝑏 = 1, 𝑏← 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖢𝖯𝖠(1𝜆, 1/2 + 𝛾(𝜆), 𝑘(𝜆),𝒜)

]︀
≤ 𝗇𝖾𝗀𝗅(𝜆) (1)

Note that the above strong anti-piracy security is defined by the threshold
implementation 𝖳𝖨. By [13], this definition implies a weaker notion called regu-
lar CPA-style anti-piracy security, which says the probability of all 𝑘+1 malicious
parties simultaneously distinguish encryptions of 𝑚0 or 𝑚1 (𝑚0 and 𝑚1 are
chosen independently for each malicious parties) is at most negligibly greater
than 1/2.

We can similarly define regular anti-piracy security with random message chal-
lenges: the probability of all 𝑘 + 1 malicious parties simultaneously recover ci-
phertext of independent random messages is at most negligibly greater than
1/2𝑛, where 𝑛 is the message length.

22 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

3.2 Construction

We now give the construction of our collusion resistant unclonable decryption.
Let 𝖴𝖣 be the unclonable decryption scheme based on coset states [13]. Our
𝖢𝖱𝖴𝖣 takes 𝑘 as input and outputs 𝑘 pairs of freshly generated keys for 𝖴𝖣. A
message is encrypted under each public key. Decryption works if a decryptor
can decrypt any ciphertext. The construction of 𝖢𝖱𝖴𝖣 follows from the con-
struction of 𝖴𝖣. The security of our 𝖢𝖱𝖴𝖣 requires a non-black-box analysis for
the last step.

𝖢𝖱𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) :
– For 𝑖 ∈ [𝑘], (𝗌𝗄𝑖, 𝗉𝗄𝑖)← 𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆).
– Let 𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄𝑘) and 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄𝑘). Output (𝗌𝗄, 𝗉𝗄).

𝖢𝖱𝖴𝖣.𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄) :
– Parse 𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄𝑘). Let 𝜌𝑖 ← 𝖴𝖣.𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄𝑖).
– Let 𝜌𝗌𝗄,𝑖 be 𝜌𝑖 padded with a classical index 𝑖, i.e., 𝜌𝗌𝗄,𝑖 = 𝜌𝑖⊗|𝑖⟩ ⟨𝑖|.
– Output 𝜌𝗌𝗄,1 ⊗ · · · ⊗ 𝜌𝗌𝗄,𝑘.

𝖢𝖱𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄,𝑚) :
– Parse 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄𝑘). Let 𝖼𝗍𝑖 ← 𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄𝑖,𝑚).
– Output 𝖼𝗍1, · · · , 𝖼𝗍𝑘.

𝖢𝖱𝖴𝖣.𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍) :
– Parse 𝖼𝗍 = (𝖼𝗍1, · · · , 𝖼𝗍𝑘). Parse 𝜌𝗌𝗄 as 𝜌 and 𝑖.
– Output 𝖴𝖣.𝖣𝖾𝖼(𝜌, 𝖼𝗍𝑖).

Fig. 3: Collusion Resistant Unclonable Decryption.

We recall the unclonable decrytion scheme in [13] (see Figure 4).
There is one additional function 𝖲𝗂𝗆 which takes a parameter 𝑛 (message

length) and outputs a junk ciphertext, which will be crucial for our anti-piracy
proof. Intuitively, if one can distinguish from a honestly generated ciphertext
with a simulated ciphertext, they can extract secrets for the underlying coset
states.

The efficiency, correctness and CPA security of our 𝖢𝖱𝖴𝖣 scheme follows
easily from those of 𝖴𝖣. We are focusing on the proof of its anti-piracy in the
next section.

3.3 Proof of Anti-Piracy

In this section, we prove that our construction satisfies anti-piracy. Although
the proof requires to open up the structure of 𝖴𝖣, this only happens for the last
step: for arguing we can extract secrets for the underlying coset states using
the properties of compute-and-compare obfuscation. Therefore, we will present
the main idea of the proof here, leaving the proof of successful extraction (see
Claim 5) in the full version.

Collusion Resistant Copy-Protection for Watermarkable Functionalities 23

𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗌𝗄, 𝗉𝗄) :
– Sample ℓ random (𝜆/2)-dimensional subspaces 𝐴𝑖 ⊆ 𝔽𝜆

2 for 𝑖 =
1, 2, · · · , ℓ, where ℓ := ℓ(𝜆) is a polynomial in 𝜆.

– For each 𝑖 ∈ [ℓ], choose two uniformly random vectors 𝑠𝑖, 𝑠′𝑖 ∈ 𝔽𝑛
2 .

– Prepare the programs 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝗂𝖮(𝐴⊥
𝑖 + 𝑠′𝑖) (where we as-

sume that the programs 𝐴𝑖 + 𝑠𝑖 and 𝐴⊥
𝑖 + 𝑠′𝑖 are padded to some

appropriate length).
– Output 𝗌𝗄 = {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ], 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴⊥

𝑖 + 𝑠′𝑖)}𝑖∈[ℓ].
𝖴𝖣.𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄) → 𝜌𝗌𝗄 : on input 𝗌𝗄 = {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ], output the “quan-

tum secret key” 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠
′
𝑖
⟩}𝑖∈[ℓ].

𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄,𝑚) → 𝖼𝗍 : on input a public key 𝗉𝗄 =
{𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴⊥

𝑖 + 𝑠′𝑖)}𝑖∈[ℓ] and message 𝑚:
– Sample a uniformly random string 𝑟 ← {0, 1}ℓ.
– Let 𝑟𝑖 be the 𝑖-th bit of 𝑟. Define 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 =

𝗂𝖮(𝐴⊥
𝑖 + 𝑠′𝑖). Let 𝖯𝗆,𝗋 be the following program Figure 5.

– Let �̂�𝑚,𝑟 = 𝗂𝖮(𝖯𝗆,𝗋). Output ciphertext 𝖼𝗍 = (�̂�𝑚,𝑟, 𝑟).
𝖴𝖣.𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍) → 𝑚/⊥ : on input 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠

′
𝑖
⟩}𝑖∈[ℓ] and 𝖼𝗍 =

(�̂�𝑚,𝑟, 𝑟):
– For each 𝑖 ∈ [ℓ], if 𝑟𝑖 = 1, apply 𝐻⊗𝑛 to the 𝑖-th state |𝐴𝑖,𝑠𝑖,𝑠

′
𝑖
⟩; if

𝑟𝑖 = 0, leave the 𝑖-th state |𝐴𝑖,𝑠𝑖,𝑠
′
𝑖
⟩ unchanged. Denote the result-

ing state by 𝜌*𝗌𝗄.
– Evaluate the program �̂�𝑚,𝑟 on input 𝜌*𝗌𝗄 in superposition; measure

the evaluation register and denote the outcome by 𝑚′. Output 𝑚′.
– Rewind by applying the operations in the first step again.

𝖴𝖣.𝖲𝗂𝗆(𝑛) → 𝖼𝗍 : on input a message length 𝑛, 𝖼𝗍 ←
𝗂𝖮(𝖲𝗂𝗆(1𝜆, 𝑃.𝗉𝖺𝗋𝖺𝗆)) where 𝖲𝗂𝗆 denotes the simulator for compute-
and-compare obfuscator, 𝑃.𝗉𝖺𝗋𝖺𝗆 consists of all program parameters
in 𝑃𝑚,𝑟 as in 𝖴𝖣.𝖤𝗇𝖼 for any 𝑚 of length 𝑛.

Fig. 4: Unclonable Decryption in [13].

Theorem 6. The construction in Section 3.2 has strong 𝛾-anti-piracy for any inverse
polynomial 𝛾 (as defined in Definition 7).

Proof. We prove by contradiction. There exist inverse polynomials 𝛾(·), 𝜈(·), 𝑘(·)
and an adversary 𝒜 such that for infinitely many 𝜆 ∈ ℕ+, 𝒜 outputs a pair of
distinct messages (𝑚0,𝑚1) and a state 𝜎 over 𝑘 + 1 registers (which are 𝑘 + 1
decryptors) such that

Tr
[︀(︀
𝖳𝖨1/2+𝛾 ⊗ 𝖳𝖨1/2+𝛾 ⊗ · · · ⊗ 𝖳𝖨1/2+𝛾

)︀
𝜎
]︀
≥ 𝜈. (2)

Let 𝜎* be the leftover state (over the 𝑘 + 1 registers), conditioned on all 𝖳𝖨1/2+𝛾

outputting 1. With Equation (2), we can get to 𝜎* with probability at least 𝜈.
Next we will prove the theorem assuming we have perfect projective imple-

mentation (see below). Therefore, the resulting reduction is inefficient. At the
end of the section, we will show the proof translates easily when we replace

24 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

On input 𝑢 = 𝑢1||𝑢2|| · · · ||𝑢ℓ (where each 𝑢𝑖 ∈
𝔽𝑛
2):

1. If for all 𝑖 ∈ [ℓ], 𝑅𝑟𝑖
𝑖 (𝑢𝑖) = 1:

Output 𝑚
2. Else:

Output ⊥

Fig. 5: Program 𝑃𝑚,𝑟

every projective implementation with its approximated and efficient version.
This replacement will give us an efficient reduction and only incur a small loss.

Defining Probability Measurement 𝖯𝖨. We start by defining the following mea-
surements 𝖯𝖨𝑖 for each 𝑖 ∈ [𝑘]. 𝖯𝖨𝑖 stands for the projective implementation
where the underlying ciphertext distribution is: the first 𝑖 ciphertexts are “fake”,
without encoding any information about the plaintext; the rest are generated
honestly. 𝗉𝗄 are (𝗉𝗄1, · · · , 𝗉𝗄𝑘) as defined in our construction Section 3.2; simi-
larly for 𝗌𝗄𝑖.

– Let𝒫𝑖 = (𝑃𝑖, 𝐼−𝑃𝑖) be the following POVM acting on a quantum decryptor:
∙ Sample a uniform 𝑏 ← {0, 1} and random coins (which will be used to

generated ciphertexts 𝖼𝗍1, · · · , 𝖼𝗍𝑘).
∙ For each 𝑗 ∈ {1, · · · , 𝑖 − 1}, compute 𝖼𝗍𝑗 ← 𝖴𝖣.𝖲𝗂𝗆(𝑛) where 𝑛 is the

length of 𝑚0 and 𝑚1.
∙ For each 𝑗 ∈ {𝑖, · · · , 𝑘}, compute 𝖼𝗍𝑗 ← 𝖴𝖣.𝖤𝗇𝖼(𝗉𝗄𝑗 ,𝑚𝑏).
∙ Let 𝖼𝗍 = (𝖼𝗍1, · · · , 𝖼𝗍𝑘).
∙ Run the quantum decryptor on input 𝖼𝗍. Check whether the outcome is
𝑚𝑏. If so, output 1; otherwise, output 0.

– Let 𝖯𝖨𝑖 be the projective implementation of 𝒫𝑖.

It is easy to see that when a quantum decryptor is in the subspace defined by
𝖳𝖨1/2+𝛾 , applying 𝖯𝖨0 on the state will always produce a real number 𝛽 ≥ 1/2+
𝛾. This is a simple observation following Theorem 5: 𝖳𝖨1/2+𝛾 is implemented by
first applying 𝖯𝖨0 and comparing the outcome with 1/2 + 𝛾.

Let the outcome of applying 𝖯𝖨0 on the 𝑖-th quantum decryptor of 𝜎* be a
random variable 𝑏𝑖,0. We have:

Pr

[︂
∀𝑖 ∈ [𝑘 + 1], 𝑏𝑖,0 ≥

1

2
+ 𝛾

]︂
= 1. (3)

Repeated Probability Measure and Its Properties. We then define repeated projec-
tive implementation. For the first quantum decryptor 𝜎*[1], we apply 𝖯𝖨0 to
obtain a outcome 𝑏1,0. Then we apply the next projective implementation 𝖯𝖨1
on the leftover state to obtain a outcome 𝑏1,1. So on and so forth, until we stop
after applying 𝖯𝖨𝑘. The outcomes of all measurements are denoted by random
variables 𝑏1,0, · · · , 𝑏1,𝑘.

Collusion Resistant Copy-Protection for Watermarkable Functionalities 25

Claim 1. There always exists 𝑗 ∈ [𝑘] such that 𝑏1,𝑗−1 − 𝑏1,𝑗 ≥ 𝛾/𝑘.

Proof. For any quantum decryptor, if we apply 𝖯𝖨𝑘 on it, the outcome will al-
ways be 1/2. This is because the ciphertext in 𝖯𝖨𝑘 is always generated without
any information about 𝑚0 or 𝑚1. Therefore, every decryptor’s behavior is ran-
dom guessing: 𝑏1,𝑘 is always 1/2.

From Equation (3), we know that 𝑏1,0 ≥ 1/2 + 𝛾. By triangle inequality, the
claim holds.

We use a random variable 𝑗1 for the first index such that 𝑏1,𝑗1−1−𝑏1,𝑗1 ≥ 𝛾/𝑘.

We similarly define the above repeated projective implementation for every
quantum decryptor 𝜎*[𝑖]. Since the repeated measurement on the 𝑖-th decryp-
tor commutes with the repeated measurement on the 𝑖′-th (𝑖′ ̸= 𝑖) decryptor,
we can safely assume they are done in any order. Let (𝑏𝑖,0, · · · , 𝑏𝑖,𝑗 , · · · , 𝑏𝑖,𝑘)
be the outcome of the repeated projective implementation the 𝑖-th decryptor.
Similarly, Claim 1 holds for every decryptor:

Claim 2. For every 𝑖 ∈ [𝑘+1], there always exists 𝑗 ∈ [𝑘] such that 𝑏𝑖,𝑗−1−𝑏𝑖,𝑗 ≥
𝛾/𝑘.

Let 𝑗𝑖 be the first index such that 𝑏𝑖,𝑗𝑖−1 − 𝑏𝑖,𝑗𝑖 ≥ 𝛾/𝑘. We next show that
there always exist 𝑥 ̸= 𝑦 such that 𝑗𝑥 = 𝑗𝑦 .

Claim 3. Pr [∃𝑥 ̸= 𝑦, 𝑗𝑥 = 𝑗𝑦] = 1.

Proof. This is simply because for every 𝑖 ∈ [𝑘 + 1], 𝑗𝑖 ∈ [𝑘]. The claim follows
from the pigeonhole principle.

Guessing 𝑥, 𝑦 and 𝑗𝑥. We describe the first half of our reduction algorithm. The
algorithm takes as input 𝜎* (postselecting on all 𝖳𝖨1/2+𝛾 output 1, and aborting
if it fails). In the second part of the reduction algorithm, it will extract a pair of

On input the 𝑘 + 1 quantum decryptors 𝜎*:

1. Randomly sample 1 ≤ 𝑥 < 𝑦 ≤ 𝑘 + 1 and 𝑗 ∈ [𝑘];
2. Apply repeated projective measurement 𝖯𝖨0 to 𝖯𝖨𝑗−1 to 𝜎*[𝑥]. Let

𝑏𝑥,𝑗−1 be the last outcome.
3. Apply repeated projective measurement 𝖯𝖨0 to 𝖯𝖨𝑗−1 to 𝜎*[𝑦]. Let 𝑏𝑦,𝑗−1

be the last outcome.
4. Output (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and both the 𝑥-th and 𝑦-th decryptors,

denoted by 𝜎**[𝑥, 𝑦].

Fig. 6: Reduction Algorithm Part 1

secrets for the same coset states from 𝜎**[𝑥, 𝑦].
We prove the following claim for the above algorithm.

26 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

Claim 4. With probability at least 1/(2𝑘3), the above procedure produces
(𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and 𝜎**[𝑥, 𝑦] satisfy:

1. Applying 𝖯𝖨⊗2𝑗−1 jointly on 𝜎*[𝑥, 𝑦] produces 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1 with probability 1.
2. Applying 𝖯𝖨⊗2𝑗 jointly on 𝜎*[𝑥, 𝑦] produces 𝑏𝑥,𝑗 , 𝑏𝑦,𝑗 , such that:

Pr
[︁
𝑏𝑥,𝑗−1 − 𝑏𝑥,𝑗 ≥

𝛾

𝑘
∧ 𝑏𝑦,𝑗−1 − 𝑏𝑦,𝑗 ≥

𝛾

𝑘

]︁
≥ 1

2𝑘3
.

Proof for Claim 4. By Claim 2, there is always a pair of indices 𝑥 < 𝑦 and an in-
teger 𝑗 ∈ [𝑘] such that 𝑏𝑥,𝑗−1−𝑏𝑥,𝑗 ≥ 𝛾

𝑘 and 𝑏𝑦,𝑗−1−𝑏𝑦,𝑗 ≥ 𝛾
𝑘 simultaneously. As

a consequence, suppose that we guess 𝑥, 𝑦 and 𝑗 uniformly at random after ap-
plying the repeated projective implementation 𝖯𝖨0, · · · ,𝖯𝖨𝑘 on every quantum
decryptor, then

Pr
[︁
𝑏𝑥,𝑗−1 − 𝑏𝑥,𝑗 ≥

𝛾

𝑘
∧ 𝑏𝑦,𝑗−1 − 𝑏𝑦,𝑗 ≥

𝛾

𝑘

]︁
≥ 1(︀

𝑘+1
2

)︀
· 𝑘
≥ 1

𝑘3
, (4)

where the last inequality follows by 𝑘 ≥ 1.
Since the repeated projective implementations on disjoint quantum decryp-

tors commute , the same probability can be achieved if we only apply the re-
peated measurements on the 𝑥-th and 𝑦-th decryptors, skipping the other (𝑘−1)
ones (see Figure 7).

On input the 𝑘 + 1 quantum decryptors 𝜎*:
1. Randomly sample 1 ≤ 𝑥 < 𝑦 ≤ 𝑘 + 1 and 𝑗 ∈ [𝑘];
2. Apply repeated projective measurement 𝖯𝖨0 to 𝖯𝖨𝑗 to 𝜎*[𝑥]. Let

𝑏𝑥,𝑗−1, 𝑏𝑥,𝑗 be the last two outcomes.
3. Apply repeated projective measurement 𝖯𝖨0 to 𝖯𝖨𝑗 to 𝜎*[𝑦]. Let

𝑏𝑦,𝑗−1, 𝑏𝑦,𝑗 be the last two outcomes.
4. Output (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑥,𝑗 , 𝑏𝑦,𝑗−1, 𝑏𝑦,𝑗).

Fig. 7: Algorithm 𝖱𝖺𝗇𝖽𝗈𝗆𝖬𝖾𝖺𝗌𝗎𝗋𝖾(𝜎*)

We have

Pr
𝖱𝖺𝗇𝖽𝗈𝗆𝖬𝖾𝖺𝗌𝗎𝗋𝖾(𝜎*)

[︁
𝑏𝑥,𝑗−1 − 𝑏𝑥,𝑗 ≥

𝛾

𝑘
∧ 𝑏𝑦,𝑗−1 − 𝑏𝑦,𝑗 ≥

𝛾

𝑘

]︁
≥ 1

𝑘3
. (5)

Equation (4) and Equation (5) differ on how 𝑏𝑥,𝑗−1, 𝑏𝑥,𝑗 , 𝑏𝑦,𝑗−1, 𝑏𝑦,𝑗 is sampled.

We can view our reduction algorithm (Figure 6) as the first step of Ran-
domMeasure (Figure 7). More formally, RandomMeasure first runs the reduction
algorithm to get (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and 𝜎**[𝑥, 𝑦]; it then applies 𝖯𝖨𝑗 on both
registers to obtain 𝑏𝑥,𝑗 and 𝑏𝑦,𝑗 .

Collusion Resistant Copy-Protection for Watermarkable Functionalities 27

If the claim we want to prove does not hold, then with probability < 1/(2𝑘3),
the outcome (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and 𝜎**[𝑥, 𝑦] satisfy condition (2) in Claim 4.
Therefore, the probability in Equation (5) is strictly smaller than 1/(2𝑘3)+1/(2𝑘3).
This is a contradiction .

Extracting Secrets from 𝜎**[𝑥, 𝑦]. We describe the second half of our reduction al-
gorithm. Given (𝑥, 𝑦, 𝑗, 𝑏𝑥,𝑗−1, 𝑏𝑦,𝑗−1) and 𝜎**[𝑥, 𝑦] that satisfy both conditions
in Claim 4, we can extract secrets for both coset states. This violates the strong
computational monogamy-of-entanglement property of coset states, thus fin-
ishes the proof.

Recall the underlying ciphertext distribution of 𝖯𝖨𝑗−1 and 𝖯𝖨𝑗 :

1. The first 𝑗 − 1 ciphertexts 𝖼𝗍1, · · · , 𝖼𝗍𝑗−1 are generated by 𝖲𝗂𝗆(𝑛).
2. The last 𝑘 − 𝑗 ciphertexts 𝖼𝗍𝑗+1, · · · , 𝖼𝗍𝑘 are generated honestly, using their

corresponding public key.
3. The 𝑗-th ciphertext is either generated honestly using the 𝑗-th public key

𝗉𝗄𝑗 (in 𝖯𝖨𝑗−1), or by 𝖲𝗂𝗆(𝑛) (in 𝖯𝖨𝑗). 𝗉𝗄𝑗 , 𝗌𝗄𝑗 is generated by 𝖴𝖣.𝖲𝖾𝗍𝗎𝗉 in
Figure 4. Let the underlying cosets be {𝐴𝑙 + 𝑠𝑙, 𝐴

⊥
𝑙 + 𝑠′𝑙}ℓ𝑙=1:

𝗉𝗄𝑗 = {𝗂𝖮(𝐴𝑙 + 𝑠𝑙), 𝗂𝖮(𝐴
⊥
𝑙 + 𝑠′𝑙)}𝑙∈[ℓ],

𝗌𝗄𝑗 = {𝐴𝑙, 𝑠𝑙, 𝑠
′
𝑙}𝑙∈[ℓ].

The following claim says that if applying 𝑃𝑗−1 or 𝑃𝑗 on a quantum decryptor
produce different values (with difference more than 𝛾/𝑘), then we can extract ℓ
vectors 𝑣1, · · · , 𝑣ℓ: each 𝑣𝑙 is uniformly in either 𝐴𝑙 + 𝑠𝑙 or 𝐴⊥𝑙 + 𝑠′𝑙.

Claim 5. For any 𝑘 = 𝗉𝗈𝗅𝗒(𝜆), let (𝗌𝗄, 𝗉𝗄) ← 𝖢𝖱𝖴𝖣.𝖲𝖾𝗍𝗎𝗉(1𝜆, 𝑘) where 𝗌𝗄 =
(𝗌𝗄1, · · · , 𝗌𝗄𝑘) and 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄𝑘). Let 𝜌𝗌𝗄 be the unclonable decryption
key. For any 𝑗 ∈ [𝑘], let 𝖯𝖨𝑗−1 and 𝖯𝖨𝑗 be defined at the beginning of the proof.
Let 𝗉𝗄𝑗 = {𝗂𝖮(𝐴𝑙 + 𝑠𝑙), 𝗂𝖮(𝐴

⊥
𝑙 + 𝑠′𝑙)}𝑙∈[ℓ], 𝗌𝗄𝑗 = {𝐴𝑙, 𝑠𝑙, 𝑠

′
𝑙}𝑙∈[ℓ].

If there exist inverse polynomials 𝛼1(·), 𝛼2(·) and an quantum algorithm ℬ
that takes (𝜌𝗌𝗄, 𝗉𝗄) outputs 𝜌 such that with probability at least 𝛼1, 𝜌 satisfies
the following:

1. There exists 𝑏𝑗−1 ∈ (0, 1], applying 𝖯𝖨𝑗−1 on 𝜌 always produces 𝑏𝑗−1.
2. Let the outcome of applying 𝖯𝖨𝑗 on 𝜌 be 𝑏𝑗 . Then Pr[𝑏𝑗−1− 𝑏𝑗 > 𝛾/𝑘] > 𝛼2.

Then there exists another inverse polynomial 𝛽(·) and an efficient quantum
algorithm 𝒞 that takes all the descriptions of {𝐴𝑙}ℓ𝑙=1 (denoted by 𝐀), 𝜌 and ℓ
random coins 𝑟1, · · · , 𝑟ℓ ∈ {0, 1} such that:

Pr
𝗌𝗄,𝗉𝗄,𝜌𝗌𝗄,𝑟

𝜌←ℬ(𝜌𝗌𝗄,𝗉𝗄)

[︃
∀𝑙 ∈ [ℓ], 𝑣𝑙 ∈

{︃
𝐴𝑙 + 𝑠𝑙 if 𝑟𝑙 = 0

𝐴⊥𝑙 + 𝑠′𝑙 if 𝑟𝑙 = 1
, (𝑣1, · · · , 𝑣ℓ)← 𝒞(𝐀, 𝜌, 𝑟)

]︃
≥ 𝛽.

The proof of this is similar to the extraction technique in [13] using compute-
and-compare obfuscation. We refer interested readers to the full version.

28 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

By setting 𝛼1 = 𝛼2 := 1/(2𝑘3), ℬ be the reduction algorithm in Figure 6 and
𝜌 := 𝜎**[𝑥], we conclude that there exists another algorithm that takes 𝜎**[𝑥],
random coins 𝑟1, · · · , 𝑟ℓ and outputs (𝑣1, · · · , 𝑣ℓ) in the corresponding cosets
(depending on each 𝑟𝑙).

Next, we show that after a successful extraction on the 𝜎**[𝑥], the other de-
cryptor still satisfy the conditions (1) (2) for Claim 5. Therefore, we can extract
another random set of vectors from the other decryptor, with non-negligible
probability, even conditioned on a successful extraction on 𝜎**[𝑥].

Assume conditioned on a successful extraction on the 𝜎**[𝑥], the other de-
cryptor becomes 𝜎′[𝑦] and it does not satisfy the conditions in Claim 5.

First, applying 𝖯𝖨𝑗−1 on 𝜎′[𝑦] always produces 𝑏𝑦,𝑗−1. This is because the
extraction on the 𝜎**[𝑥] register does not change the support of 𝜎′[𝑦]. Thus,
condition (2) in Claim 5 can not hold. Let 𝐄1 denote a successful (E)xtraction
on 𝜎**[𝑥] and 𝐆2 be a indicator that applying 𝖯𝖨𝑗 on 𝜎**[𝑦] to get 𝑏𝑦,𝑗 and 𝑏𝑦,𝑗 <
𝑏𝑦,𝑗−1 − 𝛾

𝑘3 (a big (G)ap). We know that in this case, Pr[𝐄1 ∧ 𝐆2] is negligibly
small.

However, this can not be true. We can imagine 𝖯𝖨𝑗 is implemented first. We
know that Pr[𝐆2] is non-negligible by the condition (2) in Claim 4. Conditioned
on 𝐆2, let the 𝑥-th decryptor become 𝜎′[𝑥]. We know that 𝜎′[𝑥] must satisfy both
conditions in Claim 5. Otherwise, condition (2) in Claim 4 can not hold. Thus,
Pr[𝐆2|𝐄1] must be non-negligible. This contradicts with the assumption that
Pr[𝐄1 ∧ 𝐆2] is negligibly small.

Thus, the reduction algorithm, with non-negligible probability, can extract
(𝑣1, · · · , 𝑣ℓ) and (𝑣′1, · · · , 𝑣′ℓ) with respect to random 𝑟1, · · · , 𝑟ℓ and 𝑟′1, · · · , 𝑟′ℓ.
With probability at least 1 − 2−ℓ, there exist 𝑙 ∈ [ℓ] such that 𝑟𝑙 ̸= 𝑟′𝑙. Thus, 𝑣𝑙
and 𝑣′𝑙 will be two vectors in each of the cosets 𝐴𝑙 + 𝑠𝑙 and 𝐴′𝑙 + 𝑠′𝑙. By guessing
this 𝑙, this breaks the computational strong monogamy-of-entanglement game
(Theorem 3).

References

1. Aaronson, S.: Limitations of quantum advice and one-way communication. Theory
of Computing 1(1), 1–28 (2005). https://doi.org/10.4086/toc.2005.v001a001

2. Aaronson, S.: Quantum copy-protection and quantum money. In: Proceedings of
the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris,
France, 15-18 July 2009. pp. 229–242. IEEE Computer Society (2009). https://doi.org/
10.1109/CCC.2009.42

3. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. Theory of
Computing 9(9), 349–401 (2013). https://doi.org/10.4086/toc.2013.v009a009

4. Aaronson, S., Liu, J., Liu, Q., Zhandry, M., Zhang, R.: New approaches for quan-
tum copy-protection. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology -
CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 12825, pp. 526–555. Springer (2021). https://doi.org/10.1007/
978-3-030-84242-0_19

https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-84242-0_19

Collusion Resistant Copy-Protection for Watermarkable Functionalities 29

5. Ananth, P., Kaleoglu, F.: A note on copy-protection from random oracles (2022).
https://doi.org/10.48550/ARXIV.2208.12884, https://arxiv.org/abs/2208.12884

6. Ananth, P., Kaleoglu, F., Li, X., Liu, Q., Zhandry, M.: On the feasibility of unclonable
encryption, and more. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology -
CRYPTO 2022 - 42st Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings. Lecture Notes in Com-
puter Science, vol. 13507. Springer (2022)

7. Ananth, P., Placa, R.L.L.: Secure software leasing. In: Canteaut, A., Standaert, F.
(eds.) Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, October 17-21, 2021, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 12697, pp. 501–530. Springer (2021). https://doi.org/10.1007/
978-3-030-77886-6_17

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings. Lecture Notes in
Computer Science, vol. 2139, pp. 1–18. Springer (2001). https://doi.org/10.1007/
3-540-44647-8_1

9. Ben-David, S., Sattath, O.: Quantum tokens for digital signatures (2016)
10. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and

coin tossing. In: Proceedings of International Conference on Computers, Systems &
Signal Processing, Dec. 9-12, 1984, Bangalore, India. pp. 175–179 (1984)

11. Broadbent, A., Jeffery, S., Lord, S., Podder, S., Sundaram, A.: Secure software leasing
without assumptions. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography - 19th
International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 13042, pp. 90–120. Springer
(2021). https://doi.org/10.1007/978-3-030-90459-3_4

12. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermark-
ing cryptographic capabilities. SIAM Journal on Computing 47(6), 2157–2202 (2018)

13. Coladangelo, A., Liu, J., Liu, Q., Zhandry, M.: Hidden cosets and applications to
unclonable cryptography. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptol-
ogy - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 12825, pp. 556–584. Springer (2021). https://doi.org/10.1007/
978-3-030-84242-0_20

14. Coladangelo, A., Majenz, C., Poremba, A.: Quantum copy-protection of compute-
and-compare programs in the quantum random oracle model (2020), https://arxiv.
org/abs/2009.13865

15. Culf, E., Vidick, T.: A monogamy-of-entanglement game for subspace coset states
(2021)

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indis-
tinguishability obfuscation and functional encryption for all circuits. SIAM Journal
on Computing 45(3), 882–929 (2016). https://doi.org/10.1137/14095772X

17. Georgiou, M., Zhandry, M.: Unclonable decryption keys (2020), https://eprint.iacr.
org/2020/877

18. Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking public-key cryp-
tographic primitives. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptol-
ogy - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2019, Proceedings, Part III. Lecture Notes in Com-

https://doi.org/10.48550/ARXIV.2208.12884
https://doi.org/10.48550/ARXIV.2208.12884
https://arxiv.org/abs/2208.12884
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-030-90459-3_4
https://doi.org/10.1007/978-3-030-90459-3_4
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://arxiv.org/abs/2009.13865
https://arxiv.org/abs/2009.13865
https://doi.org/10.1137/14095772X
https://doi.org/10.1137/14095772X
https://eprint.iacr.org/2020/877
https://eprint.iacr.org/2020/877

30 Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry

puter Science, vol. 11694, pp. 367–398. Springer (2019). https://doi.org/10.1007/
978-3-030-26954-8_12

19. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lat-
tice assumptions. In: Annual International Cryptology Conference. pp. 503–536.
Springer (2017)

20. Kim, S., Wu, D.J.: Watermarking prfs from lattices: stronger security via extractable
prfs. In: Annual International Cryptology Conference. pp. 335–366. Springer (2019)

21. Kitagawa, F., Nishimaki, R., Yamakawa, T.: Secure software leasing from standard
assumptions. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography - 19th Interna-
tional Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 13042, pp. 31–61. Springer (2021).
https://doi.org/10.1007/978-3-030-90459-3_2

22. Kretschmer, W.: Quantum pseudorandomness and classical complexity. In: Hsieh,
M. (ed.) 16th Conference on the Theory of Quantum Computation, Communication
and Cryptography, TQC 2021, July 5-8, 2021, Virtual Conference. LIPIcs, vol. 197,
pp. 2:1–2:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.
org/10.4230/LIPIcs.TQC.2021.2

23. Marriott, C., Watrous, J.: Quantum arthur–merlin games. computational complexity
14(2), 122–152 (6 2005). https://doi.org/10.1007/s00037-005-0194-x

24. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/10.
1017/CBO9780511976667

25. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. SIAM Journal on Computing 50(3), 857–908 (2021). https://doi.org/
10.1137/15M1030108

26. Vidick, T., Zhang, T.: Classical proofs of quantum knowledge. In: Canteaut, A., Stan-
daert, F. (eds.) Advances in Cryptology - EUROCRYPT 2021 - 40th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17-21, 2021, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 12697, pp. 630–660. Springer (2021). https://doi.org/10.1007/
978-3-030-77886-6_22

27. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983). https://doi.org/
10.1145/1008908.1008920

28. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermarking schemes
for cryptographic functionalities. In: Galbraith, S.D., Moriai, S. (eds.) Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December 8-12,
2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11921, pp. 371–
398. Springer (2019). https://doi.org/10.1007/978-3-030-34578-5_14

29. Yang, R., Au, M.H., Yu, Z., Xu, Q.: Collusion resistant watermarkable prfs from stan-
dard assumptions. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 12170, pp. 590–620. Springer (2020). https://doi.org/10.
1007/978-3-030-56784-2_20

30. Zhandry, M.: Schrödinger’s pirate: How to trace a quantum decoder. In: Pass, R.,
Pietrzak, K. (eds.) Theory of Cryptography - 18th International Conference, TCC
2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III. Lecture Notes
in Computer Science, vol. 12552, pp. 61–91. Springer (2020). https://doi.org/10.
1007/978-3-030-64381-2_3

https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-90459-3_2
https://doi.org/10.1007/978-3-030-90459-3_2
https://doi.org/10.4230/LIPIcs.TQC.2021.2
https://doi.org/10.4230/LIPIcs.TQC.2021.2
https://doi.org/10.4230/LIPIcs.TQC.2021.2
https://doi.org/10.4230/LIPIcs.TQC.2021.2
https://doi.org/10.1007/s00037-005-0194-x
https://doi.org/10.1007/s00037-005-0194-x
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1137/15M1030108
https://doi.org/10.1137/15M1030108
https://doi.org/10.1137/15M1030108
https://doi.org/10.1137/15M1030108
https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/978-3-030-64381-2_3
https://doi.org/10.1007/978-3-030-64381-2_3
https://doi.org/10.1007/978-3-030-64381-2_3
https://doi.org/10.1007/978-3-030-64381-2_3

	Collusion Resistant Copy-Protection for Watermarkable Functionalities

