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Abstract. Pseudorandom quantum states (PRS) are efficiently con-
structible states that are computationally indistinguishable from being
Haar-random, and have recently found cryptographic applications. We
explore new definitions, new properties and applications of pseudoran-
dom states, and present the following contributions:
1. New Definitions: We study variants of pseudorandom function-like

state (PRFS) generators, introduced by Ananth, Qian, and Yuen
(CRYPTO’22), where the pseudorandomness property holds even
when the generator can be queried adaptively or in superposition.
We show feasibility of these variants assuming the existence of post-
quantum one-way functions.

2. Classical Communication: We show that PRS generators with
logarithmic output length imply commitment and encryption schemes
with classical communication. Previous constructions of such schemes
from PRS generators required quantum communication.

3. Simplified Proof: We give a simpler proof of the Brakerski–Shmueli
(TCC’19) result that polynomially-many copies of uniform superpo-
sition states with random binary phases are indistinguishable from
Haar-random states.

4. Necessity of Computational Assumptions: We also show that
a secure PRS with output length logarithmic, or larger, in the key
length necessarily requires computational assumptions.
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1 Introduction

The study of pseudorandom objects is central to the foundations of cryptogra-
phy. After many decades, cryptographers have developed a deep understanding
of the zoo of pseudorandom primitives such as one-way functions (OWF), pseu-
dorandom generators (PRG), and pseudorandom functions (PRF) [8,9].

The study of pseudorandomness in the quantum setting, on the other hand,
is just getting started. Objects such as state and unitary 𝑘-designs have been
studied extensively, but these are best thought of as quantum analogues of 𝑘-wise
independent hash functions [1,6]. There are unconditional constructions of state
and unitary designs and they do not imply any computational assumptions [1,18].

Quantum pseudorandomness requiring computational assumptions, in con-
trast, has been studied much less. Ji, Liu, and Song introduced the notion
of pseudorandom quantum states (PRS) and pseudorandom quantum unitaries
(PRU) [11]. At a high level, these are efficiently sampleable distributions over
states/unitaries that are computationally indistinguishable from being sampled
from the Haar distribution (i.e., the uniform measure over the space of states/
unitaries). Ji, Liu, and Song as well as Brakerski and Shmueli have presented con-
structions of PRS that are based on quantum-secure OWFs [11,3,4]. Kretschmer
showed, however, that PRS do not necessarily imply OWFs; there are oracles
relative to which PRS exist but OWFs don’t [12]. This was followed by recent
works that demonstrated the cryptographic utility of PRS: basic cryptographic
tasks such as bit commitment, symmetric-key encryption, and secure multiparty
computation can be accomplished using only PRS as a primitive [2,16]. It is an
intriguing research direction to find more cryptographic applications of PRS and
PRU.

The key idea in [2] that unlocked the aforementioned applications was the
notion of a pseudorandom function-like state (PRFS) generator. To explain this
we first review the definition of PRS generators. A quantum polynomial-time
(QPT) algorithm 𝐺 is a PRS generator if for a uniformly random key 𝑘 ∈ {0, 1}𝜆
(with 𝜆 being the security parameter), polynomially-many copies of the state
|𝜓𝑘⟩ = 𝐺(𝑘) is indistinguishable from polynomially-many copies of a state |𝜗⟩
sampled from the Haar measure by all QPT algorithms. One can view this as a
quantum analogue of classical PRGs. Alternately, one could consider a version of
PRS where the adversary only gets one copy of the state. However, as we will see
later, the multi-copy security of PRS will play a crucial role in our applications.

The notion of PRFS generator introduced by [2] is a quantum analogue of
PRF (hence the name function-like): in addition to taking in a key 𝑘, the gener-
ator 𝐺 also takes an input 𝑥 (just like a PRF takes a key 𝑘 and an input 𝑥). Let
|𝜓𝑘,𝑥⟩ = 𝐺(𝑘, 𝑥). The pseudorandomness property of 𝐺 is that for all sequences
of inputs (𝑥1, . . . , 𝑥𝑠) for polynomially large 𝑠, averaged over the key 𝑘, the collec-
tion of states |𝜓𝑘,𝑥1⟩

⊗𝑡
, . . . , |𝜓𝑘,𝑥𝑠⟩

⊗𝑡 for polynomially large 𝑡 is computationally
indistinguishable from |𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡 where the |𝜗𝑖⟩’s are sampled indepen-
dently from the Haar measure. In other words, while PRS generators look like
(to a computationally bounded distinguisher) they are sampling a single state
from the Haar measure, PRFS generators look like they are sampling many (as
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compared to the key length) states from the Haar measure. Importantly, this
still holds true even when the distinguisher is given the inputs 𝑥1, . . . , 𝑥𝑠.

As mentioned, this (seemingly) stronger notion of quantum pseudorandom-
ness provided a useful conceptual tool to perform cryptographic tasks (encryp-
tion, commitments, secure computation, etc) using pseudorandom states alone.
Furthermore, [2] showed that for a number of applications, PRFS generators
with logarithmic input length suffices and furthermore such objects can be con-
structed in a black-box way from PRS generators.5

Despite exciting progress in this area in the last few years, there is still much
to understand about the properties, relationships, and applications of pseudo-
random states. In this paper we explore a number of natural questions about
pseudorandom states:

– Feasibility of Stronger Definitions of PRFS: In the PRFS definition of [2],
it was assumed that the set of inputs on which the adversary obtains the
outputs are determined ahead of time. Moreover, the adversary could obtain
the output of PRFS on only classical inputs. This is often referred to as
selective security in the cryptography literature. For many interesting appli-
cations, this definition is insufficient6. This leads us to ask: is it feasible to
obtain strengthened versions of PRFS that maintain security in the presence
of adaptive and superposition queries?

– Necessity of Assumptions: In the classical setting, essentially all crypto-
graphic primitives require computational assumptions, at the very least 𝖯 ̸=
𝖭𝖯. What computational assumptions are required by pseudorandom quan-
tum states? The answer appears to depend on the output length of the
PRS generator. Brakerski and Shmueli [4] constructed PRS generators with
output length 𝑐 log 𝜆 for some 𝑐 > 0 satisfying statistical security (in other
words, the outputs are statistically close to being Haar-random). On the
other hand, Kretschmer showed that the existence of PRS generators with
output length 𝜆 implies that 𝖡𝖰𝖯 ̸= 𝖯𝖯 [12]. This leads to an intriguing
question: is it possible to unconditionally show the existence of 𝑛(𝜆)-length
output PRS, for some 𝑛(𝜆) ≥ log(𝜆)?

– Necessity of Quantum Communication: A common theme in all the differ-
ent PRS-based cryptographic constructions of [2,16] is that the parties in-
volved in the system perform quantum communication. Looking forward, it
is conceivable that quantum communication will be a much more expensive
resource than having access to a quantum computer. Achieving quantum
cryptography with classical communication has been an important direc-
tion, dating back to Gavinsky [7]. We ask the following question: is quantum
communication inherent in the cryptographic constructions based on PRS?

5 However, unlike the equivalence between PRG and PRF in the classical setting [8], it
is not known whether every PRFS generator can be constructed from PRS generators
in a black-box way.

6 For example, the application of private-key encryption from PRFS as described
in [2] is only selectively secure. This is due to the fact that the underlying PRFS is
selectively secure.
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1.1 Our Results

We explore the aforementioned questions. Our results include the following.

Adaptive-Secure and Quantum-Accessible PRFS. As mentioned earlier, the no-
tion of PRFS given by [2] has selective security, meaning that the inputs 𝑥1, . . . , 𝑥𝑠
are fixed ahead of time. Another way of putting it is, the adversary can only make
non-adaptive, classical queries to the PRFS generator (where by query we mean,
submit an input 𝑥 to the generator and receive |𝜓𝑘,𝑥⟩ = 𝐺(𝑘, 𝑥) where 𝑘 is the
hidden, secret key).

We study the notion of adaptively secure PRFS, in which the security holds
with respect to adversaries that can make queries to the generator adaptively.
We consider two variants of this: one where the adversary is restricted to making
classical queries to the generator (we call this a classically-accessible adaptively
secure PRFS ), and one where there are no restrictions at all; the adversary can
even query the generator on a quantum superposition of inputs (we call this a
quantum-accessible adaptively secure PRFS ). These definitions can be found in
Section 3.

We then show feasibility of these definitions by constructing classically- and
quantum-accessible adaptively secure PRFS generators from the existence of
post-quantum one-way functions. These constructions are given in the full ver-
sion of the paper.

A Sharp Threshold For Computational Assumptions. In Section 4 we show that
there is a sharp threshold between when computational assumptions are required
for the existence of PRS generators: we give a simple argument that demon-
strates that PRS generators with log 𝜆-length outputs require computational
assumptions on the adversary7. This complements the aforementioned result of
Brakerski and Shmueli [4] that shows 𝑐 log 𝜆-length PRS for some 𝑐 > 0 do not
require computational assumptions. We also note that the calculations of [12]
can be refined to show that the existence of (1+ 𝜖) log 𝜆-length PRS for all 𝜖 > 0
implies that 𝖡𝖰𝖯 ̸= 𝖯𝖯.

PRS-Based Constructions With Classical Communication. We show that bit
commitments and pseudo one-time pad schemes can be achieved using only
classical communication based on the existence of PRS with 𝜆-bit keys and
𝑂(log(𝜆))-output length. This improves upon the previous result of [2] who
achieved bit commitments and pseudo one-time pad schemes from PRS using
quantum communication. However, we note that [2] worked with a wider range
7 We also note that there is a much more roundabout argument for a quantitatively

weaker result: [2] constructed bit commitment schemes from 𝑂(log 𝜆)-length PRS. If
such PRS were possible to construct unconditionally, this would imply information-
theoretically secure bit commitment schemes in the quantum setting. However, this
contradicts the famous results of [13,15], which rules out this possibility. Our calcu-
lation, on the other hand, directly shows that log 𝜆 (without any constants in front)
is a sharp threshold.
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of parameters while our constructions are based on PRS with 𝑂(log(𝜆))-output
length.

En route, we use quantum state tomography (or tomography for short), a well
studied concept in quantum information. Roughly speaking, tomography, allows
for obtaining a classical string 𝑢 that captures some properties of an unknown
quantum state 𝜌, given many copies of this state.

We develop a new notion called verifiable tomography that might particularly
be useful in cryptographic settings. Verifiable tomography allows for verifying
whether a given string 𝑢 is consistent (according to some prescribed verification
procedure) with a quantum state 𝜌. We present the definition and instantiations
of verifiable tomography in Section 5. In Section 6, we use verifiable tomography
to achieve the aforementioned applications. At a high level, our constructions
are similar to the ones in [2], except that verifiable tomography is additionally
used to make the communication classical.

A Simpler Analysis of Binary-Phase PRS. Consider the following construction
of PRS. Let {𝐹𝑘 : {0, 1}𝑛 → {0, 1}}𝑘∈{0,1}𝜆 denote a (quantum-secure) pseu-
dorandom function family. Then {|𝜓𝑘⟩}𝑘 forms a PRS, where |𝜓𝑘⟩ is defined
as

|𝜓𝑘⟩ = 2−𝑛/2
∑︁

𝑥∈{0,1}𝑛
(−1)𝐹𝑘(𝑥) |𝑥⟩ . (1)

In other words, the pseudorandom states are binary phase states where the
phases are given by a pseudorandom function. This is a simpler construction of
PRS than the one originally given by [11], where the phases are pseudorandomly
chosen 𝑁 -th roots of unity with 𝑁 = 2𝑛. Ji, Liu, and Song conjectured that the
binary phase construction should also be pseudorandom, and this was confirmed
by Brakerski and Shmueli [3].

We give a simpler proof of this in the full version, which may be of indepen-
dent interest.

1.2 Threshold For Computational Assumptions

We show that PRS generators with 𝜆-bit keys and log 𝜆-length outputs cannot
be statistically secure. To show this we construct an inefficient adversary, given
polynomially many copies of a state, can distinguish whether the state was sam-
pled from the output distribution of a log 𝜆-length PRS generator or sampled
from the Haar distribution on log 𝜆-qubit states with constant probability.

Simple Case: PRS output is always pure. Let us start with a simple case when
the PRS generator is such that each possible PRS state is pure. Consider the
subspace spanned by all possible PRS outputs. The dimension of the subspace
spanned by these states is atmost 2𝜆: the reason being that there are at most
2𝜆 keys. Now, consider the subspace spanned by 𝑡-copies of PRS states. The
dimension of this subspace is still at most 2𝜆 and in particular, independent of
𝑡. Define 𝑃 (𝑡) to be a projector (which could have an inefficient implementation)
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onto this subspace. By definition, the measurement of 𝑡 copies of the output of
a PRS generator with respect to 𝑃 (𝑡) always succeeds.

Recall that the subspace spanned by 𝑡-copies of states sampled from the Haar
distribution (of length log 𝜆) is a symmetric subspace of dimension

(︀
2𝜆+𝑡−1

𝑡

)︀
. By

choosing 𝑡 as an appropriate polynomial (in particular, set 𝑡≫ 𝜆), we can make(︀
2𝜆+𝑡−1

𝑡

)︀
≫ 2𝜆, such that a measurement with 𝑃 (𝑡) on 𝑡 copies of states sampled

from the Haar distribution fails with constant probability. Hence, an adversary,
who just runs 𝑃 , can successfully distinguish between 𝑡 copies of the output of
a log 𝜆-length PRS generator and 𝑡 copies of a sample from a Haar distribution
with constant probability.

General Case. Now let us focus on the case when the PRS generator can also
output mixed states. Then we have 2 cases:

– The majority of outputs of the PRS generator are negligibly close to a pure
state: In this case, we show that the previous approach still works. We replace
the projector 𝑃 (𝑡) with a projection onto the space spanned by states closest
to the output states of the PRS generator and we can show that modified
projector still succeeds with constant probability.

– The majority of outputs of the PRS generator are not negligibly close to a
pure state: In this case, most PRS outputs have purity8 non-negligibly away
from 1. Thus, we can violate the security of PRS as follows: run polynomially
(in 𝜆) many SWAP tests to check if the state is mixed or not. When the input
state is from a Haar distribution, the test will always determine the input
state to be pure. On the other hand, if the input state is the output of a
PRS generator, the test will determine the input to be pure with probability
that is non-negligibly bounded away from 1. Thus, this case cannot happen
if the PRS generator is secure.

Details can be found in Section 4.

1.3 Cryptographic Applications With Classical Communication

We show how to construct bit commitments and pseudo one-time encryption
schemes from𝑂(log(𝜆))-output PRS with classical communication. Previously, [2]
achieved the same result for a wider range of parameters. In this overview, we
mainly focus on bit commitments since the main techniques used in construct-
ing commitments will be re-purposed for designing pseudo one-time encryption
schemes.

We use the construction of bit commitments from [2] as a starting point. Let
𝑑 = 𝑂 (log 𝜆), 𝑛 = 𝑂 (log 𝜆) and 𝐺 is a (𝑑, 𝑛)-PRFS generator9. The commitment
scheme from [2] is as follows:

8 A density matrix 𝜌 has purity 𝑝 if Tr(𝜌2) = 𝑝.
9 This in turn can be built from 𝑂(log(𝜆))-output PRS as shown in [2].

6



– In the commit phase, the receiver sends a random 2𝑑𝑛-qubit Pauli 𝑃 =
𝑃1 ⊗ 𝑃2 ⊗ · · · ⊗ 𝑃2𝑑−1 to the sender, where each 𝑃𝑖 is an 𝑛-qubit Pauli. The
sender on input bit 𝑏, samples a key 𝑘 uniformly at random from {0, 1}𝜆.
The sender then sends the state 𝜌 =

⨂︀
𝑥∈[2𝑑] 𝑃

𝑏
𝑥𝜎𝑘,𝑥𝑃

𝑏
𝑥 , where 𝜎𝑘,𝑥 = 𝐺(𝑘, 𝑥)

to the receiver.
– In the reveal phase, the sender sends (𝑘, 𝑏) to the receiver. The receiver

accepts if 𝑃 𝑏𝜌𝑃 𝑏 is a tensor product of the PRFS evaluations of (𝑘, 𝑥), for
all 𝑥 = 0, . . . , 2𝑑 − 1.

To convert this scheme into one that only has classical comunication, we need a
mechanism to generate classical information 𝑐 from 𝜌, where 𝜌 is generated from
(𝑘, 𝑏) as above, that have the following properties:

1. Classical Description: 𝑐 can be computed efficiently and does not leak any
information about 𝑏.

2. Correctness: (𝑘, 𝑏) is accepted as a valid opening for 𝑐,
3. Binding: (𝑘′, 𝑏′), for 𝑏 ̸= 𝑏′, is rejected as an opening for 𝑐

State Tomography. To design such a mechanism, we turn to quantum state
tomography. Quantum state tomography is a process that takes as input multiple
copies of a quantum state 𝜎 and outputs a string 𝑢 that is close (according
to some distance metric) to a classical description of the state 𝜎. In general,
tomography procedures require exponential in 𝑑 number of copies of a state and
also run in time exponential in 𝑑, where 𝑑 is the dimension of the state. Since the
states in question are 𝑂(log(𝜆))-output length PRFS states, all the algorithms
in the commitment scheme would still be efficient.

Since performing tomography on a PRFS state does not violate its pseudoran-
domness property, the hiding property is unaffected. For achieving correctness
and binding properties, we need to also equip the tomography process with a
verification algorithm, denoted by 𝖵𝖾𝗋𝗂𝖿𝗒. A natural verification algorithm that
can be associated with the tomography procedure is the following: to check if
𝑢 is a valid classical description of a state 𝜎, simply run the above tomography
procedure on many copies of 𝜎 and check if the output density matrix is close
to 𝑢.

More formally, we introduce a new tomography called verifiable tomography
and we present a generic transformation that converts a specific tomography
procedure into one that is also verifiable. We will see how verifiable tomography
helps us achieve both correctness and binding. Before we dive into the new
notion and understand its properties, we will first discuss the specific tomography
procedure that we consider.

Instantiation. We develop a tomography procedure based on [14] that outputs
a denisity matrix close (constant distance away) to the input with 1 − 𝗇𝖾𝗀𝗅(𝜆)
probability. This is an upgrade to the tomography procedure in [14], the expected
distance of whose output was a constant. To achieve this, we make use of the fact
that if we repeat [14]’s tomography procedure polynomially many times, most
output states cluster around the input at a constant distance with 1 − 𝗇𝖾𝗀𝗅(𝜆)
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probability. We believe this procedure might be of independent interest. Details
about this procedure can be found in Section 5.2.

Verifiable Tomography. Verifiable tomography is a pair of efficient algorithms
(𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) associated with a family of channels 𝛷𝜆 such that the fol-
lowing holds:

– Same-input correctness: Let 𝑢1 = 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒(𝛷𝜆(𝑥)) and 𝑢2 = 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒(𝛷𝜆(𝑥)),
then 𝖵𝖾𝗋𝗂𝖿𝗒(𝑢1, 𝑢2) accepts with high probability.

– Different-input correctness: Let 𝑢1 = 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒(𝛷𝜆(𝑥1)) and 𝑢2 = 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒(𝛷𝜆(𝑥2)),
and 𝑥1 ̸= 𝑥2, then 𝖵𝖾𝗋𝗂𝖿𝗒(𝑢1, 𝑢2) rejects with high probability.

The family of channels we consider corresponds to the PRFS state generation.
That is, 𝛷𝜆(𝑥 = (𝑘, 𝑖)) outputs 𝐺(𝑘, 𝑖). As mentioned earlier, we can generically
convert the above instantiation into a verifiable tomography procedure. Let us
see how the generic transformation works.

For simplicity, consider the case when the underlying PRFS has perfect state
generation, i.e., the output of PRFS is always a pure state. In this case, the
verification algorithm is the canonical one that we described earlier: on input
𝑢 and PRFS key 𝑘, input 𝑖, it first performs tomography on many copies of
𝐺(𝑘, 𝑖) to recover 𝑢′ and then checks if 𝑢 is close to 𝑢′ or not. The same-input
correctness follows from the tomography guarantee of the instantiation. To prove
the different-input correctness, we use the fact that PRFS outputs are close to
uniformly distributed and the following fact [2, Fact 6.9]: for two arbitrary 𝑛-
qubit states |𝜓⟩ and |𝜑⟩,

𝔼
𝑃

$←−𝒫𝑛

[︁
|⟨𝜓|𝑃 |𝜑⟩|2

]︁
= 2−𝑛.

Thus, if 𝑥1 ̸= 𝑥2 then 𝑢1 and 𝑢2 are most likely going to be far and thus,
differing-input correctness property is satisfied as well.

The proofs get more involved when the underlying PRFS does not satisfy
perfect state generation. We consider PRFS generators that satisfy recognisable
abort; we note that this notion of PRFS can be instantiated from PRS, also
with 𝑂(log(𝜆)) outpout length, using [2]. A (𝑑(𝜆), 𝑛(𝜆))-PRFS generator 𝐺 has
the strongly recognizable abort property if its output can be written as follows:
𝐺𝜆(𝑘, 𝑥) = 𝑇𝑟𝒜 (𝜂 |0⟩⟨0| ⊗ |𝜓⟩⟨𝜓|+ (1− 𝜂) |⊥⟩⟨⊥|), where 𝒜 is the register with
the first qubit. Moreover, |⊥⟩ is of the form |1⟩ |̂︀⊥⟩ for some 𝑛(𝜆)-qubit state
state |̂︀⊥⟩ so that, (⟨0| ⊗ ⟨𝜓|)(|⊥⟩) = 0. The same-input correctness essentially
follows as before; however arguing differing-input correctness property seems
more challenging.

Arguing different-input correctness is more tricky. Consider the following de-
generate case: suppose 𝑘 be a key and 𝑥1, 𝑥2 be two inputs such that PRFS
on input (𝑘, 𝑥1) and PRFS on (𝑘, 𝑥2) abort with very high probability (say,
close to 1). Note that the recognizable abort property does not rule out this
degenerate case. Then, it holds that the outputs 𝑢1 = 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒(𝛷𝜆(𝑥1))
and 𝑢2 = 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒(𝛷𝜆(𝑥2)) are close. 𝖵𝖾𝗋𝗂𝖿𝗒(𝑢1, 𝑢2) accepts and thus, the
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different-input correctness is not satisfied. To handle such degenerate cases, we
incorporate the following into the verification procedure: on input (𝑢1, 𝑢2), re-
ject if either 𝑢1 or 𝑢2 is close to an abort state. Checking whether a classical
description of a state is close to an abort state can be done efficiently.

From Verifiable Tomography to Commitments. Incorporating verifiable tomog-
raphy into the commitment scheme, we have the following:

– The correctness follows from the same-input correctness of the tomography
procedure.

– The binding property follows from the different-input correctness of the to-
mography procedure.

– The hiding property follows from the fact that the output of a PRFS gener-
ator is indistinguishable from Haar random, even given polynomially many
copies of the state.

2 Preliminaries

We present the preliminaries in this section. We use 𝜆 to denote the security
parameter. We use the notation 𝗇𝖾𝗀𝗅(·) to denote a negligible function.

We refer the reader to [17] for a comprehensive reference on the basics of
quantum information and quantum computation. We use 𝐼 to denote the identity
operator. We use 𝒟(ℋ) to denote the set of density matrices on a Hilbert space
ℋ.

Haar Measure. The Haar measure over ℂ𝑑, denoted by H (ℂ𝑑) is the uniform
measure over all 𝑑-dimensional unit vectors. One useful property of the Haar
measure is that for all 𝑑-dimensional unitary matrices 𝑈 , if a random vector |𝜓⟩
is distributed according to the Haar measure H (ℂ𝑑), then the state 𝑈 |𝜓⟩ is
also distributed according to the Haar measure. For notational convenience we
write H𝑚 to denote the Haar measure over 𝑚-qubit space, or H ((ℂ2)⊗𝑚).

Fact 1. We have
𝔼

|𝜓⟩←H (ℂ𝑑)
|𝜓⟩⟨𝜓| = 𝐼

𝑑
.

2.1 Distance Metrics and Matrix Norms

Trace Distance. Let 𝜌, 𝜎 ∈ 𝒟(ℋ) be density matrices. We write TD(𝜌, 𝜎) to
denote the trace distance between them, i.e.,

TD(𝜌, 𝜎) =
1

2
‖𝜌− 𝜎‖1

where ‖𝑋‖1 = Tr(
√
𝑋†𝑋) denotes the trace norm.

We denote ‖𝑋‖ := sup|𝜓⟩{⟨𝜓|𝑋|𝜓⟩} to be the operator norm where the
supremum is taken over all unit vectors. For a vector 𝑥, we denote its Euclidean
norm to be ‖𝑥‖2.
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Frobenius Norm. The Frobenius norm of a matrix 𝑀 is

‖𝑀‖𝐹 =

√︃∑︁
𝑖,𝑗

|𝑀𝑖,𝑗 |2 =
√︁
Tr (𝑀𝑀†),

where 𝑀𝑖,𝑗 denotes the (𝑖, 𝑗)𝑡 entry of 𝑀 .
We state some useful facts about Frobenius norm below.

Fact 2. For all matrices 𝐴,𝐵 we have ‖𝐴−𝐵‖2𝐹 = ‖𝐴‖2𝐹 + ‖𝐵‖2𝐹 − 2Tr(𝐴†𝐵).

Fact 3. Let 𝑀0,𝑀1 be density matricies and |𝜓⟩ be a pure state such that
⟨𝜓|𝑀0 |𝜓⟩ ≤ 𝛼 and ‖𝑀0 −𝑀1‖2𝐹 ≤ 𝛽, where 𝛽 + 2𝛼 < 1 then

⟨𝜓|𝑀1 |𝜓⟩ ≤ 𝛼+
√︀
𝛽 +

√︀
(2− 2𝛼)𝛽.

Proof. From fact 2, we have the following:

‖𝑀0 − |𝜓⟩⟨𝜓| ‖𝐹 =

√︁
‖𝑀0‖2𝐹 + ‖ |𝜓⟩⟨𝜓| ‖2𝐹 − 2Tr(𝑀†0 |𝜓⟩⟨𝜓|)

=
√︁
‖𝑀0‖2𝐹 + 1− 2 ⟨𝜓|𝑀0 |𝜓⟩

≥
√︁
‖𝑀0‖2𝐹 + 1− 2𝛼.

By triangle inequality, we know

‖𝑀1‖𝐹 ≤ ‖𝑀0‖𝐹 + ‖𝑀0 −𝑀1‖𝐹 ≤ ||𝑀0||𝐹 +
√︀
𝛽.

Similarly by fact 2,

‖𝑀1 − |𝜓⟩⟨𝜓| ‖𝐹 =
√︁
1 + ‖𝑀1‖2𝐹 − 2 ⟨𝜓|𝑀1 |𝜓⟩

≤
√︂
1 +

(︁
‖𝑀0‖𝐹 +

√︀
𝛽
)︁2
− 2 ⟨𝜓|𝑀1 |𝜓⟩.

By triangle inequality, we know ‖𝑀0 − |𝜓⟩⟨𝜓| ‖𝐹 ≤ ‖𝑀1 − |𝜓⟩⟨𝜓| ‖𝐹 + ‖𝑀0 −
𝑀1‖𝐹 . Hence,√︁

1 + ‖𝑀0‖2𝐹 − 2𝛼 ≤
√︂
1 +

(︁
‖𝑀0‖𝐹 +

√︀
𝛽
)︁2
− 2 ⟨𝜓|𝑀1 |𝜓⟩+

√︀
𝛽.

By some easy manipulation, we get

⟨𝜓|𝑀1 |𝜓⟩ ≤ 𝛼+ ‖𝑀0‖2𝐹
√︀
𝛽+

√︁
(1 + ‖𝑀0‖2𝐹 − 2𝛼)𝛽 ≤ 𝛼+

√︀
𝛽+

√︀
(2− 2𝛼)𝛽.

Fact 4. For any 0 ≤ 𝜀 ≤ 1,

𝖯𝗋|𝜓1⟩,|𝜓2⟩←H𝑛

[︀
‖ |𝜓1⟩⟨𝜓1| − |𝜓2⟩⟨𝜓2| ‖2𝐹 ≤ 𝜀

]︀
≤ 1

𝑒2
𝑛(1− 𝜀

2 )
.
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Proof. From Fact 2,

‖ |𝜓1⟩⟨𝜓1| − |𝜓2⟩⟨𝜓2| ‖2𝐹 = ‖ |𝜓1⟩⟨𝜓1| ‖2𝐹 + ‖ |𝜓2⟩⟨𝜓2| ‖2𝐹 − 2Tr (|𝜓1⟩⟨𝜓1| |𝜓2⟩⟨𝜓2|)
= 2− 2|⟨𝜓1|𝜓2⟩|2

Thus, we have the following:

𝖯𝗋|𝜓1⟩,|𝜓2⟩←H𝑛

[︀
‖ |𝜓1⟩⟨𝜓1| − |𝜓2⟩⟨𝜓2| ‖2𝐹 ≤ 𝜀

]︀
= 𝖯𝗋|𝜓1⟩,|𝜓2⟩←H𝑛

[︁
|⟨𝜓1|𝜓2⟩|2 ≥ 1− 𝜀

2

]︁
≤ 1

𝑒2
𝑛(1− 𝜀

2 )
,

where the last inequality was shown in [5] (Equation 14).

2.2 Quantum Algorithms

A quantum algorithm 𝐴 is a family of generalized quantum circuits {𝐴𝜆}𝜆∈ℕ
over a discrete universal gate set (such as {𝐶𝑁𝑂𝑇,𝐻, 𝑇}). By generalized, we
mean that such circuits can have a subset of input qubits that are designated to
be initialized in the zero state, and a subset of output qubits that are designated
to be traced out at the end of the computation. Thus a generalized quantum
circuit 𝐴𝜆 corresponds to a quantum channel, which is a is a completely positive
trace-preserving (CPTP) map. When we write 𝐴𝜆(𝜌) for some density matrix
𝜌, we mean the output of the generalized circuit 𝐴𝜆 on input 𝜌. If we only
take the quantum gates of 𝐴𝜆 and ignore the subset of input/output qubits
that are initialized to zeroes/traced out, then we get the unitary part of 𝐴𝜆,
which corresponds to a unitary operator which we denote by 𝐴𝜆. The size of
a generalized quantum circuit is the number of gates in it, plus the number of
input and output qubits.

We say that 𝐴 = {𝐴𝜆}𝜆 is a quantum polynomial-time (QPT) algorithm if
there exists a polynomial 𝑝 such that the size of each circuit 𝐴𝜆 is at most 𝑝(𝜆).
Furthermore we say that 𝐴 is uniform if there exists a deterministic polynomial-
time Turing machine 𝑀 that on input 1𝑛 outputs the description of 𝐴𝜆.

We also define the notion of a non-uniform QPT algorithm 𝐴 that consists
of a family {(𝐴𝜆, 𝜌𝜆)}𝜆 where {𝐴𝜆}𝜆 is a polynomial-size family of circuits (not
necessarily uniformly generated), and for each 𝜆 there is additionally a subset of
input qubits of 𝐴𝜆 that are designated to be initialized with the density matrix
𝜌𝜆 of polynomial length. This is intended to model non-uniform quantum adver-
saries who may receive quantum states as advice. Nevertheless, the reductions
we show in this work are all uniform.

The notation we use to describe the inputs/outputs of quantum algorithms
will largely mimic what is used in the classical cryptography literature. For
example, for a state generator algorithm 𝐺, we write 𝐺𝜆(𝑘) to denote running
the generalized quantum circuit 𝐺𝜆 on input |𝑘⟩⟨𝑘|, which outputs a state 𝜌𝑘.

Ultimately, all inputs to a quantum circuit are density matrices. However, we
mix-and-match between classical, pure state, and density matrix notation; for
example, we may write 𝐴𝜆(𝑘, |𝜃⟩ , 𝜌) to denote running the circuit 𝐴𝜆 on input
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|𝑘⟩⟨𝑘| ⊗ |𝜃⟩⟨𝜃| ⊗ 𝜌. In general, we will not explain all the input and output sizes
of every quantum circuit in excruciating detail; we will implicitly assume that
a quantum circuit in question has the appropriate number of input and output
qubits as required by context.

2.3 Pseudorandomness Notions

Next, we recall the different notions of pseudorandomness. First, in Section 2.3,
we recall (classical) pseudorandom functions (prfs) and consider two notions of
security associated with it. Then in Section 2.3, we define pseudorandom quan-
tum state (PRS) generators, which are a quantum analogue of pseudorandom
generators (PRGs). Finally in Section 2.3, we define pseudorandom function-like
quantum state (PRFS) generators, which are a quantum analogue of pseudoran-
dom functions. To make it less confusing to the reader, we use the abbreviation
“prfs” (small letters) for classical pseudorandom functions and “PRFS” (all caps)
for pseudorandom function-like states.

Pseudorandom Functions We present two security notions of pseudorandom
functions. First, we consider the notion of post-quantum security, defined below.

Definition 1 (Post-quantum pseudorandom functions). We say that a
deterministic polynomial-time algorithm 𝐹 : {0, 1}𝜆 × {0, 1}𝑑(𝜆) → {0, 1}𝑛(𝜆) is
a post-quantum secure pseudorandom function (pq-prf) if for all QPT (non-
uniform) distinguishers 𝐴 = (𝐴𝜆, 𝜌𝜆) there exists a negligible function 𝜀(·) such
that the following holds:⃒⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︁
𝐴
𝒪𝗉𝗋𝖿(𝑘,·)
𝜆 (𝜌𝜆) = 1

]︁
− Pr
𝒪𝖱𝖺𝗇𝖽

[︁
𝐴
𝒪𝖱𝖺𝗇𝖽(·)
𝜆 (𝜌𝜆) = 1

]︁⃒⃒⃒⃒
≤ 𝜀(𝜆),

where:

– 𝒪𝗉𝗋𝖿(𝑘, ·), modeled as a classical algorithm, on input 𝑥 ∈ {0, 1}𝑑(𝜆), outputs
𝐹 (𝑘, 𝑥).

– 𝒪𝖱𝖺𝗇𝖽(·), modeled as a classical algorithm, on input 𝑥 ∈ {0, 1}𝑑(𝜆), outputs
𝑦𝑥, where 𝑦𝑥 ←− {0, 1}𝑛(𝜆).

Moreover, the adversary 𝐴𝜆 only has classical access to 𝒪𝗉𝗋𝖿(𝑘, ·) and 𝒪𝖱𝖺𝗇𝖽(·).
That is, any query made to the oracle is measured in the computational basis.

We also say that 𝐹 is a (𝑑(𝜆), 𝑛(𝜆))-pq-prf to succinctly indicate that its input
length is 𝑑(𝜆) and its output length is 𝑛(𝜆).

Next, we consider the quantum-query security, as considered by Zhandry [19].
In this security notion, the adversary has superposition access to either 𝒪𝗉𝗋𝖿 or
𝒪𝖱𝖺𝗇𝖽. By definition, quantum-query security implies post-quantum security.

Unlike all the other pseudorandom notions considered in this section, we are
going to use a different convention and allow the key length to be a polynomial in
𝜆, instead of it being just 𝜆. We also parameterize the advantage of the adversary.

12



Definition 2 (Quantum-query secure pseudorandom functions). We
say that a deterministic polynomial-time algorithm 𝐹 : {0, 1}ℓ(𝜆) × {0, 1}𝑑(𝜆) →
{0, 1}𝑛(𝜆) is a quantum-query 𝜀-secure pseudorandom function (qprf) if for all
QPT (non-uniform) distinguishers 𝐴 = (𝐴𝜆, 𝜌𝜆) there exists a function 𝜀(·) such
that the following holds:⃒⃒⃒⃒

Pr
𝑘←{0,1}ℓ(𝜆)

[︁
𝐴
|𝒪𝗉𝗋𝖿(𝑘,·)⟩
𝜆 (𝜌𝜆) = 1

]︁
− Pr
𝒪𝖱𝖺𝗇𝖽

[︁
𝐴
|𝒪𝖱𝖺𝗇𝖽(·)⟩
𝜆 (𝜌𝜆) = 1

]︁⃒⃒⃒⃒
≤ 𝜀(𝜆),

where:

– 𝒪𝗉𝗋𝖿(𝑘, ·) on input a (𝑑 + 𝑛)-qubit state on registers 𝐗 (first 𝑑 qubits) and
𝐘, applies an (𝑛 + 𝑑)-qubit unitary 𝑈 described as follows: 𝑈 |𝑥⟩ |𝑎⟩ =
|𝑥⟩ |𝑎⊕ 𝐹 (𝑘, 𝑥)⟩. It sends back the registers 𝐗 and 𝐘.

– 𝒪𝖱𝖺𝗇𝖽(·) on input a (𝑑+𝑛)-qubit state on registers 𝐗 (first 𝑑 qubits) and 𝐘,
applies an (𝑛+𝑑)-qubit unitary 𝑅 described as follows: 𝑅 |𝑥⟩ |𝑎⟩ = |𝑥⟩ |𝑎⊕ 𝑦𝑥⟩,
where 𝑦𝑥 ← {0, 1}𝑛(𝜆). It sends back the registers 𝐗 and 𝐘.

Moreover, 𝐴𝜆 has superposition access to 𝒪𝗉𝗋𝖿(𝑘, ·) and 𝒪𝖱𝖺𝗇𝖽(·). We denote the
fact that 𝐴𝜆 has quantum access to an oracle 𝒪 by 𝐴|𝒪⟩𝜆 .

We also say that 𝐹 is a (ℓ(𝜆), 𝑑(𝜆), 𝑛(𝜆), 𝜀)-qprf to succinctly indicate that
its input length is 𝑑(𝜆) and its output length is 𝑛(𝜆). When ℓ(𝜆) = 𝜆, we drop
ℓ(𝜆) from the notation. Similarly, when 𝜀(𝜆) can be any negligible function, we
drop 𝜀(𝜆) from the notation.

Zhandry [19] presented a construction of quantum-query secure pseudorandom
functions from one-way functions.

Lemma 1 (Zhandry [19]). Assuming post-quantum one-way functions, there
exists quantum-query secure pseudorandom functions.

Useful Lemma. We will use the following lemma due to Zhandry [20]. The lemma
states that any 𝑞-query algorithm cannot distinguish (quantum) oracle access to
a random function versus a 2𝑞-wise independent hash function. We restate the
lemma using our notation.

Lemma 2 ([20, Theorem 3.1]). Let 𝐴 be a 𝑞-query algorithm. Then, for any
𝑑, 𝑛 ∈ ℕ, every 2𝑞-wise independent hash function 𝐻 : {0, 1}ℓ(𝑞) × {0, 1}𝑑 →
{0, 1}𝑛 satisfies the following:⃒⃒⃒⃒

Pr
𝑘←{0,1}ℓ(𝑞)

[︁
𝐴
|𝒪𝖧(𝑘,·)⟩
𝜆 (𝜌𝜆) = 1

]︁
− Pr
𝒪𝖱𝖺𝗇𝖽

[︁
𝐴
|𝒪𝖱𝖺𝗇𝖽(·)⟩
𝜆 (𝜌𝜆) = 1

]︁⃒⃒⃒⃒
= 0,

where 𝒪𝖱𝖺𝗇𝖽 is as defined in Definition 2 and 𝒪𝖧 is defined similarly to 𝒪𝗉𝗋𝖿

except that the unitary 𝑈 uses 𝐻 instead of 𝐹 .
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Pseudorandom Quantum State Generators We move onto the pseudoran-
dom notions in the quantum world. The notion of pseudorandom states were
first introduced by Ji, Liu, and Song in [11]. We reproduce their definition here:

Definition 3 (PRS Generator [11]). We say that a QPT algorithm 𝐺 is a
pseudorandom state (PRS) generator if the following holds.

1. State Generation. For all 𝜆 and for all 𝑘 ∈ {0, 1}𝜆, the algorithm 𝐺
behaves as

𝐺𝜆(𝑘) = |𝜓𝑘⟩⟨𝜓𝑘| .
for some 𝑛(𝜆)-qubit pure state |𝜓𝑘⟩.

2. Pseudorandomness. For all polynomials 𝑡(·) and QPT (nonuniform) dis-
tinguisher 𝐴 there exists a negligible function 𝜀(·) such that for all 𝜆, we
have⃒⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︁
𝐴𝜆(𝐺𝜆(𝑘)

⊗𝑡(𝜆)) = 1
]︁
− Pr
|𝜗⟩←H𝑛(𝜆)

[︁
𝐴𝜆(|𝜗⟩⊗𝑡(𝜆)) = 1

]︁⃒⃒⃒⃒
≤ 𝜀(𝜆) .

We also say that 𝐺 is a 𝑛(𝜆)-PRS generator to succinctly indicate that the output
length of 𝐺 is 𝑛(𝜆).

Ji, Liu, and Song showed that post-quantum one-way functions can be used to
construct PRS generators.

Theorem 5 ([11,4]). If post-quantum one-way functions exist, then there exist
PRS generators for all polynomial output lengths.

Pseudorandom Function-Like State (PRFS) Generators In this section,
we recall the definition of pseudorandom function-like state (PRFS) generators
by Ananth, Qian and Yuen [2]. PRFS generators generalize PRS generators in
two ways: first, in addition to the secret key 𝑘, the PRFS generator additionally
takes a (classical) input 𝑥. The second way in which this definition generalizes
the definition of PRS generators is that the output of the generator need not be
a pure state.

However, they considered the weaker selective security definition where the
adversary needs to choose all the inputs to be queried to the PRFS ahead of time.
Later we will introduce the stronger and the more useful definition of adaptive
security.

Definition 4 (Selectively Secure PRFS generator). We say that a QPT
algorithm 𝐺 is a (selectively secure) pseudorandom function-like state (PRFS)
generator if for all polynomials 𝑠(·), 𝑡(·), QPT (nonuniform) distinguishers 𝐴
and a family of indices

(︀
{𝑥1, . . . , 𝑥𝑠(𝜆)} ⊆ {0, 1}𝑑(𝜆)

)︀
𝜆
, there exists a negligible

function 𝜀(·) such that for all 𝜆,⃒⃒⃒
Pr

𝑘←{0,1}𝜆

[︁
𝐴𝜆(𝑥1, . . . , 𝑥𝑠(𝜆), 𝐺𝜆(𝑘, 𝑥1)

⊗𝑡(𝜆), . . . , 𝐺𝜆(𝑘, 𝑥𝑠(𝜆))
⊗𝑡(𝜆)) = 1

]︁
− Pr
|𝜗1⟩,...,|𝜗𝑠(𝜆)⟩←H𝑛(𝜆)

[︁
𝐴𝜆(𝑥1, . . . , 𝑥𝑠(𝜆), |𝜗1⟩

⊗𝑡(𝜆)
, . . . , |𝜗𝑠(𝜆)⟩

⊗𝑡(𝜆)
) = 1

]︁ ⃒⃒⃒
≤ 𝜀(𝜆) .
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We say that 𝐺 is a (𝑑(𝜆), 𝑛(𝜆))-PRFS generator to succinctly indicate that its
input length is 𝑑(𝜆) and its output length is 𝑛(𝜆).

Our notion of security here can be seen as a version of (classical) selective
security, where the queries to the PRFS generator are fixed before the key is
sampled.

State Generation Guarantees. Towards capturing a natural class of PRFS gen-
erators, [2] introduced the concept of recognizable abort. At a high level, rec-
ognizable abort is the property that the output of PRFS can be written as a
convex combination of a pure state and a known abort state, denoted by |⊥⟩. In
more detail, the PRFS generator works in two stages. In the first stage it either
generates a valid PRFS state |𝜓⟩ or it aborts. If it outputs a valid PRFS state
then the first qubit is set to |0⟩ and if it aborts, the entire state is set to |⊥⟩.
We have the guarantee that |0⟩ |𝜓⟩ is orthogonal to |⊥⟩. In the next stage, the
PRFS generator traces out the first qubit and outputs the resulting state. Our
definition could be useful to capture many generators that don’t always succeed
in generating the pseudorandom state; for example, Brakerski and Shmueli [4]
design generators that doesn’t always succeed in generating the state.

We formally define the notion of recognizable abort10 below.

Definition 5 (Recognizable abort). A (𝑑(𝜆), 𝑛(𝜆))-PRFS generator 𝐺 has
the strongly recognizable abort property if there exists an algorithm ̂︀𝐺 and a
special (𝑛(𝜆) + 1)-qubit state |⊥⟩ such that 𝐺𝜆(𝑘, 𝑥) has the following form: it
takes as input 𝑘 ∈ {0, 1}𝜆, 𝑥 ∈ {0, 1}𝑑(𝜆) and does the following,

– Compute ̂︀𝐺𝜆(𝑘, 𝑥) to obtain an output of the form 𝜂 |0⟩⟨0| ⊗ |𝜓⟩⟨𝜓| + (1 −
𝜂) |⊥⟩⟨⊥| and moreover, |⊥⟩ is of the form |1⟩ |̂︀⊥⟩ for some 𝑛(𝜆)-qubit state
state |̂︀⊥⟩. As a consequence, (⟨0| ⊗ ⟨𝜓|)(|⊥⟩) = 0.

– Trace out the first bit of ̂︀𝐺𝜆(𝑘, 𝑥) and output the resulting state.

As observed by [2], the definition alone does not have any constraint on 𝜂 being
close to 1. The security guarantee of a PRFS generator implies that 𝜂 will be
negligibly close to 1 with overwhelming probability over the choice of 𝑘 [2, Lemma
3.6].

3 Adaptive Security

The previous work by [2] only considers PRFS that is selectively secure. That
is, the adversary needs to declare the input queries ahead of time. For many
applications, selective security is insufficient. For example, in the application of
PRFS to secret-key encryption (satisfying multi-message security), the resulting
10 We note that [2] define a slightly weaker definition of recognizable abort. However,

the definitions and results considered in [2] also work with our (stronger) definition
of recognizable abort.
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scheme was also only proven to be selectively secure, whereas one could ask
for security against adversaries that can make adaptive queries to the PRFS
generator. Another drawback of the notion considered by [2] is the assumption
that the adversary can make classical queries to the challenger who either returns
PRFS states or independent Haar random states, whereas one would ideally
prefer security against adversaries that can make quantum superposition queries.

In this work, we consider stronger notions of security for PRFS. We strengthen
the definitions of [2] in two ways. First, we allow the the adversary to make adap-
tive queries to the PRFS oracle, and second, we allow the adversary to make
quantum queries to the oracle. The oracle model we consider here is slightly
different from the usual quantum query model. In the usual model, there is an
underlying function 𝑓 and the oracle is modelled as a unitary acting on two
registers, a query register 𝐗 and an answer register 𝐘 mapping basis states
|𝑥⟩𝐗⊗|𝑦⟩𝐘 to |𝑥⟩𝐗⊗|𝑦 ⊕ 𝑓(𝑥)⟩𝐘 (in other words, the function output is XORed
with answer register in the standard basis). The query algorithm also acts on
the query and answer registers; indeed, it is often useful in quantum algorithms
to initialize the answer register to something other than all zeroes.

In the PRS/PRFS setting, however, there is no underlying classical function:
the output of the PRFS generator 𝐺 could be an entangled pseudorandom state
far from any standard basis state; it seems unnatural to XOR the pseudorandom
the state with a standard basis state. Instead we consider a model where the
query algorithm submits a query register 𝐗 to the oracle, and the oracle returns
the query register 𝐗 as well as an answer register 𝐘. If the algorithm submits
query |𝑥⟩𝐗, then the joint state register 𝐗𝐘 after the query is |𝑥⟩𝐗 ⊗ |𝜓𝑥⟩𝐘 for
some pure state |𝜓𝑥⟩. Each time the algorithm makes a query, the oracle returns
a fresh answer register. Thus, the number of qubits that the query algorithm
acts on grows with the number of queries.11

How the oracle behaves when the query algorithm submits a superposition∑︀
𝑥 𝛼𝑥 |𝑥⟩𝐗 in the query register is a further modeling choice. In the most general

setting, the oracle behaves as a unitary on registers 𝐗𝐘,12 and the resulting state
of the query and answer registers is

∑︀
𝑥 𝛼𝑥 |𝑥⟩𝐗 ⊗ |𝜓𝑥⟩𝐘. That is, queries are

answered in superposition. We call such an oracle quantum-accessible.
We also consider the case where the queries are forced to be classical, which

may already be useful for some applications. Here, the oracle is modeled as
a channel (instead of a unitary) that first measures the query register in the
standard basis before returning the corresponding state |𝜓𝑥⟩. In other words,
if the query is

∑︀
𝑥 𝛼𝑥 |𝑥⟩𝐗, then the resulting state becomes the mixed state∑︀

𝑥 |𝛼𝑥|2 |𝑥⟩⟨𝑥|𝐗 ⊗ |𝜓𝑥⟩⟨𝜓𝑥|𝐘. This way, the algorithm cannot take advantage
of quantum queries – but it can still make queries adaptively. We call such an
oracle classically-accessible.

11 Alternatively, one can think of answer registers 𝐘1,𝐘2, . . . as being initialized in
the zeroes state at the beginning, and the query algorithm is only allowed to act
nontrivially on 𝐘𝑖 after the 𝑖’th query.

12 Alternatively, one can think of the oracle as an isometry mapping register 𝐗 to
registers 𝐗𝐘.
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To distinguish between classical and quantum access to oracles, we write 𝐴𝒪
to denote a quantum algorithm that has classical access to the oracle 𝒪, and
𝐴|𝒪⟩ to denote a quantum algorithm that has quantum access to the oracle 𝒪.

3.1 Classical Access

We define adaptively secure PRFS, where the adversary is given classical access
to the PRFS/Haar-random oracle.

Definition 6 (Adaptively-Secure PRFS). We say that a QPT algorithm 𝐺
is an adaptively secure pseudorandom function-like state (APRFS) generator if
for all QPT (non-uniform) distinguishers 𝐴, there exists a negligible function 𝜀,
such that for all 𝜆, the following holds:⃒⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︁
𝐴
𝒪𝖯𝖱𝖥𝖲(𝑘,·)
𝜆 (𝜌𝜆) = 1

]︁
− Pr
𝒪𝖧𝖺𝖺𝗋

[︁
𝐴
𝒪𝖧𝖺𝖺𝗋(·)
𝜆 (𝜌𝜆) = 1

]︁⃒⃒⃒⃒
≤ 𝜀(𝜆),

where:

– 𝒪𝖯𝖱𝖥𝖲(𝑘, ·), on input 𝑥 ∈ {0, 1}𝑑(𝜆), outputs 𝐺𝜆(𝑘, 𝑥).
– 𝒪𝖧𝖺𝖺𝗋(·), on input 𝑥 ∈ {0, 1}𝑑(𝜆), outputs |𝜗𝑥⟩, where, for every 𝑦 ∈ {0, 1}𝑑(𝜆),
|𝜗𝑦⟩ ←H𝑛(𝜆).

Moreover, the adversary 𝐴𝜆 has classical access to 𝒪𝖯𝖱𝖥𝖲(𝑘, ·) and 𝒪𝖧𝖺𝖺𝗋(·). That
is, we can assume without loss of generality that any query made to either oracle
is measured in the computational basis.

We say that 𝐺 is a (𝑑(𝜆), 𝑛(𝜆))-APRFS generator to succinctly indicate that
its input length is 𝑑(𝜆) and its output length is 𝑛(𝜆).

Some remarks are in order.

Instantiation. For the case when 𝑑(𝜆) = 𝑂(log(𝜆)), selectively secure PRFS
is equivalent to adaptively secure PRFS. The reason being that we can assume
without loss of generality, the selective adversary can query on all possible inputs
(there are only polynomially many) and use the outputs to simulate the adaptive
adversary. As a consequence of the result that log-input selectively-secure PRFS
can be built from PRS [2], we obtain the following.

Lemma 3. For 𝑑 = 𝑂(log(𝜆)) and 𝑛 = 𝑑+ 𝜔(log log 𝜆), assuming the existence
of (𝑑+ 𝑛)-PRS, there exists a (𝑑, 𝑛)-APRFS.

In the case when 𝑑(𝜆) is an arbitrary polynomial in 𝜆, we present a construction
of APRFS from post-quantum one-way functions in the full version of the paper.

Test procedure. It was shown by [2] that a PRFS admits a Test procedure (See
Section 3.3 in [2]). The goal of a Test procedure is to determine whether the
given state is a valid PRFS state or not. Having a Test procedure is useful in
applications. For example, [2] used a Test procedure in the construction of a
bit commitment scheme. We note that the same Test procedure also works for
adaptively secure PRFS.
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Multiple copies. In the definition of PRS (Definition 3) and selectively-secure
PRFS (Definition 4), the adversary is allowed to obtain multiple copies of the
same pseudorandom (or haar random) quantum state. While we do not explicitly
state it, even in Definition 6, the adversary can indeed obtain multiple copies
of a (pseudorandom or haar random) quantum state. To obtain 𝑡 copies of the
output of 𝐺𝜆(𝑘, 𝑥) (or |𝜗𝑥⟩), the adversary can query the same input 𝑥, 𝑡 times,
to the oracle 𝒪𝖯𝖱𝖥𝖲(𝑘, ·) (or 𝒪𝖧𝖺𝖺𝗋(·)).

3.2 Quantum Access

We further strengthen our notion of adaptively secure PRFS by allowing the ad-
versary to make superposition queries to either 𝒪𝖯𝖱𝖥𝖲(𝑘, ·) or 𝒪𝖧𝖺𝖺𝗋(·). Providing
superposition access to the adversary not only makes the definition stronger13
than Definition 6 but is also arguably more useful for a larger class of appli-
cations. To indicate quantum query access, we put the oracle inside the ket
notation: 𝐴|𝒪⟩ (whereas for classical query access we write 𝐴𝒪).

We provide the formal definition below.

Definition 7 (Quantum-accessible Adaptively-secure PRFS). We say
that a QPT algorithm 𝐺 is a quantum-accessible adaptively secure pseudoran-
dom function-like state (QAPRFS) generator if for all QPT (non-uniform) dis-
tinguishers 𝐴 if there exists a negligible function 𝜀, such that for all 𝜆, the fol-
lowing holds:⃒⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︁
𝐴
|𝒪𝖯𝖱𝖥𝖲(𝑘,·)⟩
𝜆 (𝜌𝜆) = 1

]︁
− Pr
𝒪𝖧𝖺𝖺𝗋

[︁
𝐴
|𝒪𝖧𝖺𝖺𝗋(·)⟩
𝜆 (𝜌𝜆) = 1

]︁⃒⃒⃒⃒
≤ 𝜀(𝜆),

where:

– 𝒪𝖯𝖱𝖥𝖲(𝑘, ·), on input a 𝑑-qubit register 𝐗, does the following: it applies a
channel that controlled on the register 𝐗 containing 𝑥, it creates and stores
𝐺𝜆(𝑘, 𝑥) in a new register 𝐘. It outputs the state on the registers 𝐗 and 𝐘.

– 𝒪𝖧𝖺𝖺𝗋(·), modeled as a channel, on input a 𝑑-qubit register 𝐗, does the fol-
lowing: it applies a channel that controlled on the register 𝐗 containing 𝑥,
stores |𝜗𝑥⟩⟨𝜗𝑥| in a new register 𝐘, where |𝜗𝑥⟩ is sampled from the Haar
distribution. It outputs the state on the registers 𝐗 and 𝐘.

Moreover, 𝐴𝜆 has superposition access to 𝒪𝖯𝖱𝖥𝖲(𝑘, ·) and 𝒪𝖧𝖺𝖺𝗋(·).
We say that 𝐺 is a (𝑑(𝜆), 𝑛(𝜆))-QAPRFS generator to succinctly indicate

that its input length is 𝑑(𝜆) and its output length is 𝑛(𝜆).

We present a construction satisfying the above definition in the full version of
the paper.

Unlike Definition 6, it is not without loss of generality that 𝐴𝜆 can get multi-
ple copies of a quantum state. To illustrate, consider an adversary that submits
13 It is stronger in the sense that an algorithm that has quantum query access to the

oracle can simulate an algorithm that only has classical query access.
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a state of the form
∑︀
𝑥 𝛼𝑥 |𝑥⟩ to the oracle. It then gets back

∑︀
𝑥 𝛼𝑥 |𝑥⟩ |𝜓𝑥⟩

(where |𝜓𝑥⟩ is either the output of PRFS14 or it is Haar random) instead of∑︀
𝑥 𝛼𝑥 |𝑥⟩ |𝜓𝑥⟩

⊗𝑡, for some polynomial 𝑡. On the other hand, if the adversary
can create multiple copies of

∑︀
𝑥 𝛼𝑥 |𝑥⟩, the above definition allows the adver-

sary to obtain (
∑︀
𝑥 𝛼𝑥 |𝑥⟩ |𝜓𝑥⟩)

⊗𝑡 for any polynomial 𝑡(·) of its choice.

4 On the Necessity of Computational Assumptions

The following lemma shows that the security guarantee of a PRS generator (and
thus of PRFS generators) can only hold with respect to computationally bounded
distinguishers, provided that the output length is at least log 𝜆.

Lemma 4. Let 𝐺 be a PRS generator with output length 𝑛(𝜆) ≥ log 𝜆. Then
there exists a polynomial 𝑡(𝜆) and a quantum algorithm 𝐴 (not efficient in gen-
eral) such that⃒⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︁
𝐴𝜆

(︁
𝐺𝜆(𝑘)

⊗𝑡(𝜆)
)︁
= 1
]︁
− Pr
|𝜗⟩←H𝑛(𝜆)

[︁
𝐴𝜆

(︁
|𝜗⟩⟨𝜗|⊗𝑡(𝜆)

)︁
= 1
]︁⃒⃒⃒⃒
≥ 1

3

for all sufficiently large 𝜆.

Proof. For notational convenience we abbreviate 𝑛 = 𝑛(𝜆) and 𝑡 = 𝑡(𝜆). We
split the proof into two cases.

Case 1: if there does not exist a negligible function 𝜈(·) such that

Pr
𝑘

[︂
min
|𝜃⟩

TD(𝐺𝜆(𝑘), |𝜃⟩⟨𝜃|) ≤ 𝜈(𝜆)
]︂
≥ 1

2
. (2)

Then there exists some non-negligible function 𝜅(·) such that with probability
at least 1

2 over the choice of 𝑘, min|𝜃⟩TD(𝐺𝜆(𝑘), |𝜃⟩⟨𝜃|) ≥ 𝜅(𝜆). Let 𝜈𝑘,1 ≥
... ≥ 𝜈𝑘,2𝑛 and |𝛼𝑘,1⟩ , ..., |𝛼𝑘,2𝑛⟩ be eigenvalues and eigenvectors for 𝐺𝜆(𝑘). Then
𝜅 ≤ TD(𝐺𝜆(𝑘), |𝛼𝑘,1⟩⟨𝛼𝑘,1|) = 1

2 (1 − 𝜈𝑘,1 + 𝜈𝑘,2 + · · · + 𝜈𝑘,2𝑛) = 1 − 𝜈𝑘,1. Thus
by Hölder’s inequality, Tr(𝐺𝜆(𝑘)2) ≤ 1 − 𝜅. Therefore, a purity test using 𝑡 =
𝑂(1/𝜅(𝜆)) copies will correctly reject PRS states with probability at least 1

3 but
never incorrectly reject any Haar random state.

Case 2: if there exists a negligible function 𝜈(·) such that (2) holds. There
exists a polynomial 𝑡(𝜆) such that

2𝜆 ≤ 1

6
· dim𝛱2𝑛,𝑡

𝗌𝗒𝗆 =
1

6
·
(︂
2𝑛 + 𝑡− 1

𝑡

)︂
for all sufficiently large 𝜆. This is because by setting 𝑡 = 𝜆 + 1, we can lower
bound the dimension of 𝛱2𝑛,𝑡

𝗌𝗒𝗆 by
(︀

2𝜆
𝜆+1

)︀
and(︂

2𝜆

𝜆

)︂
≥ 𝜆

𝜆+ 1

4𝜆√
𝜋𝜆

(︂
1− 1

8𝜆

)︂
14 In this illustration, we are pretending that the PRFS satisfies perfect state generation

property. That is, the output of PRFS is always a pure state.
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which is much larger than 6 · 2𝜆 for all sufficiently large 𝜆.
Let 𝑔 ⊆ {0, 1}𝜆 be the set of 𝑘’s such that min|𝜃⟩TD(𝐺𝜆(𝑘), |𝜃⟩⟨𝜃|) ≤ 𝜈(𝜆).

Note that 2𝜆 is an upper bound on the rank of the density matrix

𝔼
𝑘←𝑔
|𝜓𝑘⟩⟨𝜓𝑘|⊗𝑡 , (3)

where |𝜓𝑘⟩ = argmin|𝜃⟩ TD(𝐺𝜆(𝑘), |𝜃⟩⟨𝜃|). Note that the rank of the density
matrix

𝔼
|𝜗⟩←H𝑛(𝜆)

|𝜗⟩⟨𝜗|⊗𝑡 =
𝛱2𝑛,𝑡

𝗌𝗒𝗆

dim𝛱2𝑛,𝑡
𝗌𝗒𝗆

(4)

is equal to dim𝛱2𝑛,𝑡
𝗌𝗒𝗆 .

For all 𝜆, define the quantum circuit 𝐴𝜆 that, given a state on 𝑡𝑛 qubits,
performs the two-outcome measurement {𝑃, 𝐼 − 𝑃} where 𝑃 is the projector
onto the support of 𝔼𝑘←𝑔 |𝜓𝑘⟩⟨𝜓𝑘|⊗𝑡, and accepts if the 𝑃 outcome occurs.

By assumption of case 2, given the density matrix (3) the circuit 𝐴𝜆 will ac-
cept with probability at least 1

2 . On the other hand, given the density matrix (4)
the circuit 𝐴𝜆 will accept with probability

Tr

(︃
𝑃 ·

𝛱2𝑛,𝑡
𝗌𝗒𝗆

dim𝛱2𝑛,𝑡
𝗌𝗒𝗆

)︃
≤ Tr

(︃
𝑃

dim𝛱2𝑛,𝑡
𝗌𝗒𝗆

)︃
=

rank(𝑃 )

dim𝛱2𝑛,𝑡
𝗌𝗒𝗆

≤ 1

6
.

Letting 𝐴 = {𝐴𝜆}𝜆 we obtained the desired Lemma statement.

We remark that the attack given in Lemma 4 cannot be used on smaller
output length, up to additive factors of superpolynomially smaller order in the
output length. Suppose 𝑛 = log 𝜆− 𝜔(log log 𝜆) and for any 𝑡 = 𝜆𝑂(1),

log

(︂
2𝑛 + 𝑡− 1

𝑡

)︂
≤ 2𝑛 · log 𝑒(2

𝑛 + 𝑡− 1)

2𝑛 − 1

=
𝜆

𝜔(log 𝜆)
·𝑂(log 𝜆).

This means that
(︀
2𝑛+𝑡−1

𝑡

)︀
= 2𝜆/𝜔(log 𝜆) ≪ 2𝜆 and therefore the attack above does

not necessarily apply. Indeed, Brakerski and Shmueli [4] have shown that PRS
generators with output length 𝑛(𝜆) ≤ 𝑐 log 𝜆 for some 𝑐 > 0 can be achieved
with statistical security.

We conclude the section by remarking that the result of Kretschmer [12] can
be easily generalized so that PRS generators with output length at least log 𝜆+𝑐
(for some small constant 0 < 𝑐 < 2) imply 𝖡𝖰𝖯 ̸= 𝖯𝖯 as well15.

15 For readers familiar with [12], it can be verified that a sufficient condition for that
proof to go through is if 2𝜆 · 𝑒−2𝑛/3 is negligible, which is satisfied if 𝑛 ≥ log 𝜆+ 2.
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5 Tomography with Verification

Quantum state tomography (or just tomography for short) is a process that takes
as input multiple copies of a quantum state 𝜌 and outputs a string 𝑢 that is a
classical description of the state 𝜌; for example, 𝑢 can describe an approximation
of the density matrix 𝜌, or it could be a a more succinct description such as a
classical shadow in the sense of [10]. In this paper, we use tomography as a
tool to construct protocols based on pseudorandom states with only classical
communication.

For our applications, we require tomography procedures satisfying a useful
property called verification. Suppose we execute a tomography algorithm on
multiple copies of a state to obtain a classical string 𝑢. The verification algo-
rithm, given 𝑢 and the algorithm to create this state, checks if 𝑢 is consistent
with this state or not. Verification comes in handy when tomography is used in
cryptographic settings, where we would like to make sure that the adversary has
generated the classical description associated with a quantum state according to
some prescribed condition (this will be implictly incorporated in the verification
algorithm).

Verifiable Tomography. Let 𝒞 = {𝛷𝜆 : 𝜆 ∈ ℕ} be a family of channels where
each channel 𝛷𝜆 takes as input ℓ(𝜆) qubits for some polynomial ℓ(·). A verifiable
tomography scheme associated with 𝒞 is a pair (𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) of QPT
algorithms, which have the following input/output behavior:

– 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒: given as input a quantum state 𝜌⊗𝐿 for some density matrix 𝜌
and some number 𝐿, output a classical string 𝑢 (called a tomograph of 𝜌).

– 𝖵𝖾𝗋𝗂𝖿𝗒: given as input a pair of classical strings (𝐱, 𝑢) where 𝐱 has length
ℓ(𝜆), output 𝖵𝖺𝗅𝗂𝖽 or 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

We would like (𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) to satisfy correctness which we describe next.

5.1 Correctness Notions for Verifiable Tomography

We can consider two types of correctness. The first type of correctness, referred to
as same-input correctness, states that 𝖵𝖾𝗋𝗂𝖿𝗒(𝐱, 𝑢) outputs 𝖵𝖺𝗅𝗂𝖽 if 𝑢 is obtained
by running the 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒 procedure on copies of the output of 𝛷𝜆(𝐱). The
second type of correctness, referred to as different-input correctness, states that
𝖵𝖾𝗋𝗂𝖿𝗒(𝐱′, 𝑢) outputs 𝖨𝗇𝗏𝖺𝗅𝗂𝖽 if 𝑢 is obtained by applying tomography to 𝛷𝜆(𝐱),
where (𝐱′,𝐱) do not satisfy a predicate 𝛱.

Same-Input Correctness. Consider the following definition.

Definition 8 (Same-Input Correctness). We say that (𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒)
satisfies 𝐿-same-input correctness, for some polynomial 𝐿(·), such that for every
𝐱 ∈ {0, 1}ℓ(𝜆), if the following holds:

𝖯𝗋
[︁
𝖵𝖺𝗅𝗂𝖽← 𝖵𝖾𝗋𝗂𝖿𝗒

(︁
𝐱,𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒

(︁
(𝛷𝜆(𝐱))

⊗𝐿(𝜆)
)︁)︁]︁
≥ 1− 𝗇𝖾𝗀𝗅(𝜆),
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For some applications, it suffices to consider a weaker definition. Instead of re-
quiring the correctness guarantee to hold for every input, we instead require that
it holds over some input distribution.

Definition 9 (Distributional Same-Input Correctness). We say that
(𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) satisfies (𝐿,𝒟)-distributional same-input correctness, for
some polynomial 𝐿(·) and distribution 𝒟 on ℓ(𝜆)-length strings, if the following
holds:

𝖯𝗋
[︁
𝖵𝖺𝗅𝗂𝖽← 𝖵𝖾𝗋𝗂𝖿𝗒

(︁
𝐱,𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒

(︁
(𝛷𝜆(𝐱))

⊗𝐿(𝜆)
)︁)︁

: 𝐱← 𝒟
]︁
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Different-Input Correctness. Ideally, we would require that 𝖵𝖾𝗋𝗂𝖿𝗒(𝐱, 𝑢) outputs
𝖨𝗇𝗏𝖺𝗅𝗂𝖽 if 𝑢 is produced by tomographing 𝛷𝜆(𝐱′), and 𝐱′ is any string such that
𝐱′ ̸= 𝐱. However, for applications, we only require that this be the case when
the pair (𝐱,𝐱′) satisfy a relation defined by a predicate 𝛱. In other words, we
require 𝖵𝖾𝗋𝗂𝖿𝗒(𝐱, 𝑢) outputs 𝖨𝗇𝗏𝖺𝗅𝗂𝖽 only when 𝑢 is a tomograph of 𝛷𝜆(𝐱′) and
𝛱(𝐱′,𝐱) = 0.

We define this formally below.

Definition 10 (Different-Input Correctness). We say that
(𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) satisfies (𝐿,𝛱)-different-input correctness, for some poly-
nomial 𝐿(·) and predicate 𝛱 : {0, 1}ℓ(𝜆)×{0, 1}ℓ(𝜆) → {0, 1}, such that for every
𝐱,𝐱′ ∈ {0, 1}ℓ(𝜆) satisfying 𝛱(𝐱,𝐱′) = 0, if the following holds:

𝖯𝗋
[︁
𝖨𝗇𝗏𝖺𝗅𝗂𝖽← 𝖵𝖾𝗋𝗂𝖿𝗒

(︁
𝐱′,𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒

(︁
(𝛷𝜆(𝐱))

⊗𝐿(𝜆)
)︁)︁]︁
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Analogous to Definition 9, we correspondingly define below the notion of (𝐿,𝒟, 𝛱)-
different-input correctness.

Definition 11 (Distributional Different-Input Correctness). We say that
(𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) satisfies (𝐿,𝛱,𝒟)-distributional different-input correctness,
for some polynomial 𝐿(·), predicate 𝛱 : {0, 1}𝜆 × {0, 1}𝜆 → {0, 1} and distribu-
tion 𝒟 supported on (𝐱,𝐱′) ∈ {0, 1}ℓ(𝜆) × {0, 1}ℓ(𝜆) satisfying 𝛱(𝐱,𝐱′) = 0, if
the following holds:

𝖯𝗋(𝐱,𝐱′)←𝒟

[︁
𝖨𝗇𝗏𝖺𝗅𝗂𝖽← 𝖵𝖾𝗋𝗂𝖿𝗒

(︁
𝐱′,𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒

(︁
(𝛷𝜆(𝐱))

⊗𝐿(𝜆)
)︁)︁]︁
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Sometimes we will use the more general (𝜀, 𝐿,𝛱,𝒟)-distributional different-
input correctness definition. In this case, the probability of 𝖵𝖾𝗋𝗂𝖿𝗒 outputting
𝖨𝗇𝗏𝖺𝗅𝗂𝖽 is bounded below by 1− 𝜀 instead of 1− 𝗇𝖾𝗀𝗅(𝜆).

5.2 Verifiable Tomography Procedures

We will consider two different instantiations of (𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) where the
first instantiation will be useful for bit commitments and the second instantiation
will be useful for pseudo one-time pad schemes.

In both the instantiations, we use an existing tomography procedure stated
in the lemma below.
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Lemma 5 (Section 1.5.3, [14]). There exists a tomography procedure 𝒯 that
given 𝑠𝑁2 copies of an 𝑁 -dimensional density matrix 𝜌, outputs a matrix 𝑀
such that 𝔼‖𝑀 − 𝜌‖2𝐹 ≤ 𝑁

𝑠 where the expectation is over the randomness of the
tomography procedure. Moreover, the running time of 𝒯 is polynomial in 𝑠 and
𝑁 .

We state and prove a useful corollary of the above lemma.

Corollary 1. There exists a tomography procedure 𝒯𝗂𝗆𝗉 that given 4𝑠𝑁2𝜆 copies
of an 𝑁 -dimensional density matrix 𝜌, outputs a matrix 𝑀 such that the follow-
ing holds:

𝖯𝗋

[︂
‖𝑀 − 𝜌‖2𝐹 ≤

9𝑁

𝑠

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Moreover, the running time of 𝒯𝗂𝗆𝗉 is polynomial in 𝑠,𝑁 and 𝜆.

The proof of this corollary can be found in the full version.

First Instantiation We will work with a verifiable tomography procedure that
will be closely associated with a PRFS. In particular, we will use a (𝑑(𝜆), 𝑛(𝜆))-
PRFS {𝐺𝜆 (·, ·)} satisfying recognizable abort property (Definition 5). Let ̂︀𝐺 be
the QPT algorithm associated with 𝐺 according to Definition 5. Note that the
output length of ̂︀𝐺 is 𝑛+ 1. We set 𝑑(𝜆) = ⌈ log(𝜆)

log(log(𝜆))⌉ and 𝑛(𝜆) = ⌈3 log(𝜆)⌉.
We will describe the algorithms (𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) in Figure 1. The set of

channels 𝒞 = {𝛷𝜆 : 𝜆 ∈ ℕ} is associated with (𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒), where 𝛷𝜆 is
defined as follows:

– Let the input be initialized on register 𝐀.
– Controlled on the first register containing the value (𝑃𝑥, 𝑘, 𝑥, 𝑏), where 𝑃𝑥

is an 𝑛-qubit Pauli, 𝑘 ∈ {0, 1}𝜆, 𝑏 ∈ {0, 1}, do the following: compute(︀
𝐼 ⊗ 𝑃 𝑏𝑥

)︀ ̂︀𝐺𝜆(𝑘, 𝑥) (︀𝐼 ⊗ 𝑃 𝑏𝑥)︀ and store it in the register 𝐁.
– Trace out 𝐀 and output 𝐁.

The channel 𝛷𝜆 can be represented as a quantum circuit of size polynomial in 𝜆
as the PRFS generator �̂� runs in time polynomial in 𝜆.

Distributional Same-Input Correctness. We prove below that
(𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) satisfies distributional same-input correctness. For every
𝑥 ∈ {0, 1}𝑑(𝜆), for every 𝑛-qubit Pauli 𝑃𝑥 and 𝑏 ∈ {0, 1}, define the distribution
𝒟𝑃𝑥,𝑥,𝑏 as follows: sample 𝑘 $←− {0, 1}𝜆 and output 𝐱 = (𝑃𝑥, 𝑘, 𝑥, 𝑏).

Lemma 6. Let 𝐿 = 𝑂(23𝑛𝜆). The verifiable tomography scheme
(𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) described in Figure 1 satisfies (𝐿,𝒟𝑃𝑥,𝑥,𝑏)-distributional
same-input correctness for all 𝑃𝑥, 𝑥, 𝑏.

The proof of this lemma can be found in the full version.
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𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒(𝜌⊗𝐿): On input 𝐿 copies of an 2(𝑛+1)-dimensional density matrix 𝜌, com-
pute 𝒯𝗂𝗆𝗉(𝜌

⊗𝐿) to obtain 𝑀 , where 𝒯𝗂𝗆𝗉 is given in Corollary 1. Output 𝑀 .

𝖵𝖾𝗋𝗂𝖿𝗒(𝐱,𝑀):

1. Run 𝜌⊗𝐿 ← (𝛷𝜆 (𝐱))⊗𝐿, where 𝐿 = 3823(𝑛+1)+2𝜆.
2. Compute ̂︁𝑀 ← 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒

(︀
𝜌⊗𝐿

)︀
.

3. If ⟨⊥|𝑀 |⊥⟩ > 1
9

for any 𝑥 ∈ {0, 1}𝑑, output 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.
4. If ‖𝑀 − ̂︁𝑀‖2𝐹 ≤ 4

729
output 𝖵𝖺𝗅𝗂𝖽. Output 𝖨𝗇𝗏𝖺𝗅𝗂𝖽 otherwise.

Fig. 1. First instantiation of 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒

Distributional Different-Input Correctness. We prove below that
(𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) satisfies (𝜀, 𝐿,𝛱,𝒟𝑥)-different-input correctness, where 𝛱
and 𝒟𝑥 are defined as follows:

𝛱 ((𝑃0, 𝑘0, 𝑥0, 𝑏0) , (𝑃1, 𝑘1, 𝑥1, 𝑏1)) =

{︃
0 𝑃0 = 𝑃1, 𝑥0 = 𝑥1 and 𝑏0 ̸= 𝑏1,

1 otherwise.

The sampler for 𝒟𝑥 is defined as follows: sample 𝑃𝑥
$←− 𝒫𝑛, 𝑘0, 𝑘1

$←− {0, 1}𝜆
and output ((𝑃𝑥, 𝑘0, 𝑥, 0) , ((𝑃𝑥, 𝑘1, 𝑥, 1)). We first prove an intermediate lemma
that will be useful for proving distributional different-input correctness. Later
on, this lemma will also be useful in the application of bit commitments.

Lemma 7. Let 𝑃𝑥 ∈ 𝒫𝑛 and there exists a density matrix 𝑀 such that
𝖵𝖾𝗋𝗂𝖿𝗒(𝑃𝑥‖𝑘0‖𝑥‖0,𝑀) = 𝖵𝖺𝗅𝗂𝖽 and 𝖵𝖾𝗋𝗂𝖿𝗒(𝑃𝑥‖𝑘1‖𝑥‖1,𝑀) = 𝖵𝖺𝗅𝗂𝖽, for some
𝑘0, 𝑘1 ∈ {0, 1}𝜆. Then

Tr (𝑃𝑥 |𝜓𝑘1,𝑥⟩⟨𝜓𝑘1,𝑥|𝑃𝑥 |𝜓𝑘0,𝑥⟩⟨𝜓𝑘0,𝑥|) ≥
542

729
.

The proof of this lemma can be found in the full version. With the above
lemma in mind, we can prove the different-input correctness.

Lemma 8. (𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒,𝖵𝖾𝗋𝗂𝖿𝗒) in Figure 1 satisfies (𝑂(2−𝑛), 𝐿,𝛱,𝒟𝑥)-
different-input correctness, where 𝐿 = 𝑂(23𝑛𝜆).

The proof of this lemma can be found in the full version.
We give a second instantiation in the full version that is used to achieve a

psuedo-random one time pad.

6 Applications

In this section, we show how to use PRFS to constrtuct a variety of applications:
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1. Bit commitments with classical communication and,
2. Pseudo one-time pad schemes with classical communication.

To accomplish the above applications, we use verifiable tomography from Sec-
tion 5. The construction and proofs of the pseudo one-time pad schemes can be
found in the full version of the paper.

6.1 Commitment scheme

We construct bit commitments with classical communication from pseudoran-
dom function-like quantum states. We recall the definition by [2].

A (bit) commitment scheme is given by a pair of (uniform) QPT algorithms
(𝐶,𝑅), where 𝐶 = {𝐶𝜆}𝜆∈ℕ is called the committer and 𝑅 = {𝑅𝜆}𝜆∈ℕ is called
the receiver. There are two phases in a commitment scheme: a commit phase
and a reveal phase.

– In the (possibly interactive) commit phase between 𝐶𝜆 and 𝑅𝜆, the commit-
ter 𝐶𝜆 commits to a bit, say 𝑏. We denote the execution of the commit phase
to be 𝜎𝐶𝑅 ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(𝑏), 𝑅𝜆⟩, where 𝜎𝐶𝑅 is a joint state of 𝐶𝜆 and 𝑅𝜆
after the commit phase.

– In the reveal phase 𝐶𝜆 interacts with 𝑅𝜆 and the output is a trit 𝜇 ∈ {0, 1,⊥}
indicating the receiver’s output bit or a rejection flag. We denote an execution
of the reveal phase where the committer and receiver start with the joint
state 𝜎𝐶𝑅 by 𝜇← 𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶𝜆, 𝑅𝜆, 𝜎𝐶𝑅⟩.

We require that the above commitment scheme satisfies the correctness, compu-
tational hiding, and statistical binding properties below.

Definition 12 (Correctness). We say that a commitment scheme (𝐶,𝑅) sat-
isfies correctness if

𝖯𝗋
[︁
𝑏* = 𝑏 :

𝜎𝐶𝑅←−𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(𝑏),𝑅𝜆⟩,

𝑏*←𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶𝜆,𝑅𝜆,𝜎𝐶𝑅⟩

]︁
≥ 1− 𝜈(𝜆),

where 𝜈(·) is a negligible function.

Definition 13 (Computational Hiding). We say that a commitment scheme
(𝐶,𝑅) satisfies computationally hiding if for any malicious QPT receiver
{𝑅*𝜆}𝜆∈ℕ, for any QPT distinguisher {𝐷𝜆}𝜆∈ℕ, the following holds:⃒⃒

Pr
(𝜏,𝜎𝐶𝑅* )←−𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(0),𝑅*

𝜆⟩
[𝐷𝜆(𝜎𝑅*) = 1]

− Pr
(𝜏,𝜎𝐶𝑅* )←−𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(1),𝑅*

𝜆⟩
[𝐷𝜆(𝜎𝑅*) = 1]

⃒⃒
≤ 𝜀(𝜆),

for some negligible 𝜀(·).
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Definition 14 (Statistical Binding). We say that a commitment scheme
(𝐶,𝑅) satisfies statistical binding if for every QPT sender {𝐶*𝜆}𝜆∈ℕ, there exists
a (possibly inefficient) extractor ℰ such that the following holds:

𝖯𝗋

[︃
𝜇 ̸= 𝑏* ∧ 𝜇 ̸= ⊥ :

(𝜏,𝜎𝐶*𝑅)←−𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶*
𝜆,𝑅𝜆⟩,

𝑏*←ℰ(𝜏),

𝜇←𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶*
𝜆,𝑅𝜆,𝜎𝐶*𝑅⟩

]︃
≤ 𝜈(𝜆),

where 𝜈(·) is a negligible function and 𝜏 is the transcript of the 𝖢𝗈𝗆𝗆𝗂𝗍 phase.

Remark 1 (Comparison with [2]). In the binding definition of [2], given the fact
that the sender’s and the receiver’s state could potentially be entangled with
each other, care had to be taken to ensure that after the extractor was applied
on the receiver’s state, the sender’s state along with the decision bit remains
(indistinguishable) to the real world. In the above definition, however, since the
communication is entirely classical, any operations performed on the receiver’s
end has no consequence to the sender’s state. As a result, our definition is much
simpler than [2].

Construction Towards constructing a commitment scheme with classical com-
munication, we use a verifiable tomography from Figure 1.

Construction. We present the construction in Figure 2. In the construction, we
require 𝑑(𝜆) = ⌈log 3𝜆

𝑛 ⌉ ≥ 1.

𝖢𝗈𝗆𝗆𝗂𝗍(𝑏):

– The reciever 𝑅𝜆 samples an 𝑚-qubit Pauli 𝑃 =
⨂︀

𝑥∈{0,1}𝑑 𝑃𝑥 where 𝑚 = 2𝑑𝑛. It
sends 𝑃 to the commiter.

– The committer 𝐶𝜆 on intput 𝑏 ∈ {0, 1} does the following:
∙ Sample 𝑘

$←− {0, 1}𝜆.
∙ For all 𝑥 ∈ {0, 1}𝑑

∗ Generate 𝜎⊗𝐿
𝑥 ←− (𝛷𝜆 (𝑃𝑥||𝑘||𝑥||𝑏))⊗𝐿, where 𝐿 = 3823𝑛+5𝜆.

∗ 𝑀𝑥 ←− 𝖳𝗈𝗆𝗈𝗀𝗋𝖺𝗉𝗁𝗒
(︀
𝜎⊗𝐿
𝑥

)︀
.

∙ Send 𝑀 = (𝑀𝑥)𝑥∈{0,1}𝑑 to the reciever.

𝖱𝖾𝗏𝖾𝖺𝗅:

– The commiter sends (𝑘, 𝑏) as the decommitment. If 𝑏 ̸∈ {0, 1}, the reciever outputs
⊥. Output 𝑏 if for each 𝑥 ∈ {0, 1}𝑑, 𝖵𝖾𝗋𝗂𝖿𝗒(𝑃𝑥||𝑘||𝑥||𝑏,𝑀) = 𝖵𝖺𝗅𝗂𝖽, output ⊥
otherwise.

Fig. 2. Commitment scheme

We prove that the construction in Figure 2 satisfies correctness, computational
hiding and statistical binding properties.
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Lemma 9 (Correctness). The commitment scheme in Figure 2 satisfies cor-
rectness.

Proof. This follows from Lemma 6.

Lemma 10 (Computational Hiding). The commitment scheme in Figure 2
satisfies computational hiding.

Proof. We prove the security via a hybrid argument. Fix 𝜆 ∈ ℕ. Consider a QPT
adversary 𝑅*𝜆.

Hybrid 𝐻1,𝑏, for all 𝑏 ∈ {0, 1}. This corresponds to 𝐶 commiting to the bit 𝑏.

Hybrid 𝐻2,𝑏, for all 𝑏 ∈ {0, 1}. This hybrid is the same as before except that
for all 𝑥 ∈ {0, 1}𝑑, 𝛷𝜆 (𝑃 ||𝑘||𝑥||𝑏) replaced with

(︀
|0⟩⟨0| ⊗

(︀
𝑃 𝑏𝑥
)︀
(|𝜗𝑥⟩⟨𝜗𝑥|)

(︀
𝑃 𝑏𝑥
)︀)︀

where |𝜗1⟩ , ..., |𝜗2𝑑⟩ ←−H𝑛.
The hybrids 𝐻1,𝑏 and 𝐻2,𝑏 are computationally indistinguishable because of

the security of 𝑃𝑅𝐹𝑆. 𝐻2,0 and 𝐻2,1 are identical by the unitary invariance
property of Haar distribution. Hence, 𝐻1,0 and 𝐻1,1 are computationally indis-
tinguishable.

Lemma 11 (Statistical Binding). The commitment scheme in Figure 2 sat-
isfies 𝑂(2−0.5𝜆)-statistical binding.

Proof of Lemma 11. Let 𝐶* = {𝐶*𝜆}𝜆∈ℕ be a malicous committer. Execute the
commit phase between 𝐶*𝜆 and 𝑅𝜆. Let 𝜏 be the classical transcript and let 𝜎𝐶*𝑅

be the joint state of 𝐶*𝑅. We first provide the description of an extractor.

Description of ℰ. On the input 𝜏 = (𝑃,𝑀), the extractor does the following:

1. For all 𝑘′||𝑏′ ∈ {0, 1}𝜆×{0, 1}, run for all 𝑥 ∈ {0, 1}𝑑, 𝖵𝖾𝗋𝗂𝖿𝗒(𝑃𝑥||𝑘′||𝑥||𝑏′,𝑀).
2. If for all 𝑥 ∈ {0, 1}𝑑, 𝖵𝖾𝗋𝗂𝖿𝗒(𝑃 ||𝑘′||𝑥||𝑏′,𝑀) = 𝖵𝖺𝗅𝗂𝖽, output 𝑏′.
3. Else output ⊥.

Fact 6. Let 𝒫𝑚 be the 𝑚-qubit Pauli group. Then,

Pr
𝑃

$←−𝒫𝑚

[︁
∃𝑘0, 𝑘1 : ∀𝑥 ∈ {0, 1}𝑑, |⟨𝜓𝑘0,𝑥|𝑃𝑥 |𝜓𝑘1,𝑥⟩|

2 ≥ 𝛿
]︁
≤ 𝛿−2

𝑑

22𝜆−𝑚.

Proof. We use the following fact [2, Fact 6.9]: Let |𝜓⟩ and |𝜑⟩ be two arbitrary
𝑛-qubit states. Then,

𝔼
𝑃𝑥

$←−𝒫𝑛

[︁
|⟨𝜓|𝑃𝑥 |𝜑⟩|2

]︁
= 2−𝑛.

For any 𝑘0, 𝑘1, 𝑥 by the above fact, 𝔼
𝑃𝑥

$←−𝒫𝑛

[︁
|⟨𝜓𝑘0,𝑥|𝑃𝑥 |𝜓𝑘1,𝑥⟩|

2
]︁
= 2−𝑛. Using

Markov’s inequality we get that for all 𝛿 > 0,

Pr
𝑃𝑥

$←−𝒫𝑛

[︁
|⟨𝜓𝑘0,𝑥|𝑃𝑥 |𝜓𝑘1,𝑥⟩|

2 ≥ 𝛿
]︁
≤ 𝛿−12−𝑛.
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Since, all 𝑃𝑥’s are independent,

Pr
𝑃

$←−𝒫𝑚

[︁
∀𝑥 ∈ {0, 1}𝑑, |⟨𝜓𝑘0,𝑥|𝑃𝑥 |𝜓𝑘1,𝑥⟩|

2 ≥ 𝛿
]︁
≤
(︀
𝛿−12−𝑛

)︀2𝑑
.

Using a union bound over all 𝑘0, 𝑘1,

Pr
𝑃

$←−𝒫𝑚

[︁
∃𝑘0, 𝑘1 : ∀𝑥 ∈ {0, 1}𝑑, |⟨𝜓𝑘0,𝑥|𝑃𝑥 |𝜓𝑘1,𝑥⟩|

2 ≥ 𝛿
]︁
≤ 𝛿−2

𝑑

22𝜆−𝑚.

Let the transcript be (𝑃,𝑀) where 𝑃 is chosen uniformly at random. Let

𝑝 = 𝖯𝗋

[︃
𝜇 ̸= 𝑏* ∧ 𝜇 ̸= ⊥ :

(𝜏,𝜎𝐶*𝑅)←−𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶*
𝜆,𝑅𝜆⟩,

𝑏*←ℰ(𝜏),

𝜇←𝖱𝖾𝗏𝖾𝖺𝗅⟨𝜏,𝜎𝐶*𝑅⟩

]︃

Then

𝑝 = Pr
𝑃

$←−𝒫𝑚

[︃
∃𝑘0, 𝑘1, 𝑏0, 𝑏1 : ∀𝑥 ∈ {0, 1}𝑑

𝖵𝖾𝗋𝗂𝖿𝗒(𝑃𝑥||𝑘0||𝑥||𝑏0,𝑀𝑥)=𝖵𝖺𝗅𝗂𝖽,

𝖵𝖾𝗋𝗂𝖿𝗒(𝑃𝑥||𝑘1||𝑥||𝑏1,𝑀𝑥)=𝖵𝖺𝗅𝗂𝖽,

𝑏0 ̸=𝑏1

]︃
.

Without loss of generality we can assume 𝑏0 = 0 and 𝑏1 = 1,

𝑝 = Pr
𝑃

$←−𝒫𝑚

[︁
∃𝑘0, 𝑘1 : ∀𝑥 ∈ {0, 1}𝑑 𝖵𝖾𝗋𝗂𝖿𝗒(𝑃𝑥||𝑘0||𝑥||0,𝑀𝑥)=𝖵𝖺𝗅𝗂𝖽,

𝖵𝖾𝗋𝗂𝖿𝗒(𝑃𝑥||𝑘1||𝑥||1,𝑀𝑥)=𝖵𝖺𝗅𝗂𝖽

]︁
.

By Lemma 7,

𝑝 ≤ Pr
𝑃

$←−𝒫𝑚

[︀
∃𝑘0, 𝑘1 :∀𝑥 ∈ {0, 1}𝑑,

𝑇 𝑟(𝑃𝑥 |𝜓𝑘1,𝑥⟩⟨𝜓𝑘1,𝑥|𝑃𝑥 |𝜓𝑘0,𝑥⟩⟨𝜓𝑘0,𝑥|) ≥ 542/729
]︀

By Fact 6,

𝑝 ≤ 729

542

2𝑑 (︀
22𝜆−𝑚

)︀
.

For 𝑚 ≥ 3𝜆, the protocol satisfies 𝑂(2−0.5𝜆)-statistical binding.
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