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Abstract. Forward-secure encryption (FSE) allows communicating par-
ties to refresh their keys across epochs, in a way that compromising the
current secret key leaves all prior encrypted communication secure. We in-
vestigate a novel dimension in the design of FSE schemes: fast-forwarding
(FF). This refers to the ability of a stale communication party, that is
“stuck” in an old epoch, to efficiently “catch up” to the newest state,
and frequently arises in practice. While this dimension was not explicitly
considered in prior work, we observe that one can augment prior FSEs —
both in symmetric- and public-key settings — to support fast-forwarding
which is sublinear in the number of epochs. However, the resulting schemes
have disadvantages: the symmetric-key scheme is a security parameter
slower than any conventional stream cipher, while the public-key scheme
inherits the inefficiencies of the HIBE-based forward-secure PKE.
To address these inefficiencies, we look at the common real-life situation

which we call the bulletin board model, where communicating parties
rely on some infrastructure — such as an application provider — to
help them store and deliver ciphertexts to each other. We then define
and construct FF-FSE in the bulletin board model, which addresses the
above-mentioned disadvantages. In particular,

– Our FF-stream-cipher in the bulletin-board model has: (a) constant
state size; (b) constant normal (no fast-forward) operation; and (c)
logarithmic fast-forward property. This essentially matches the effi-
ciency of non-fast-forwardable stream ciphers, at the cost of constant
communication complexity with the bulletin board per update.

– Our public-key FF-FSE avoids HIBE-based techniques by instead
using so-called updatable public-key encryption (UPKE), introduced
in several recent works (and more efficient than public-key FSEs).
Our UPKE-based scheme uses a novel type of “update graph” that we
construct in this work. Our graph has constant in-degree, logarithmic
diameter, and logarithmic “cut property” which is essential for the
efficiency of our schemes. Combined with recent UPKE schemes, we
get two FF-FSEs in the bulletin board model, under DDH and LWE.
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1 Introduction

Forward Secrecy. Encryption is the fundamental building block of cryptography
designed to protect the confidentiality of data such as messages. The security
of encryption is, however, confined by its requirement to secretly store the keys.
Indeed, leaking an encryption scheme’s secret key material typically means that
all security is forgone. With cryptographic applications nowadays also typically
running on a wide variety of different (and often poorly maintained) devices,
alongside other software outside of the control of the cryptographic engineer,
such key exposures pose a very real threat scenario.

This risk can be partially mitigated by forward security, which refers to the
concept that the corruption of a system at some point should not adversely affect
the security of prior operations. While initially proposed as a concept for key
exchange [32,20] it soon got broadened to incorporate a variety of non-interactive
cryptographic primitives, such as forward-secure public-key encryption [16] and
forward-secure signatures [6,40]. Roughly speaking, the non-interactive notions
share the idea that they divide time into epochs with the objective that leaking
the secret state at epoch i does not endanger the security properties of past
epochs j < i.

Fast-Forwarding. In this work, we investigate a novel dimension of the price
— in terms of computational and storage overhead — of forward-secure encryp-
tion: fast-forwarding. The term fast-forwarding refers to the ability of a stale
communication party, that is “stuck” in an old epoch, to efficiently “catch up”
to the newest state. Such a situation, for instance, might occur if the user has a
device that is only sporadically used and has consequently been turned off over a
prolonged period.

Indeed, for many applications recovering the latest (or a recent) state seems of
intrinsically higher priority than recovering the intermediate states. For example,
in an email or a group chat it is often the case that messages sent weeks or months
ago might simply no longer be relevant while replying to a recent conversation
might be urgent. Moreover, in many communication protocols sending messages
requires first obtaining (reasonably) up-to-date key material, further motivating
the need for fast-forwarding. An example would be secure group messaging (such
as MLS) where the group maintains a shared symmetric key that is distributed
using public-key cryptography, which is then used to symmetrically encrypt and
authenticate messages. It has been proposed to strengthen MLS’ forward secrecy
[3] by replacing the PKE used for distributing those group keys with a variant of
FS-PKE (called UPKE). One of the main drawbacks of that proposal, however,
was the lack of fast-forwarding, resulting in a party stuck in an old state having to
restore the latest group keys in linear time before being able to send any message.
While sequentially downloading old messages might be fine, being unable to send
messages — until that process is completed — could trigger an assortment of
problems.
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1.1 Basic Solutions and A New Dimension

The functionality of forward-secure encryption — either symmetric- or public-key
— automatically ensures that one can (fast-)forward from period i to period j ≫ i
in time proportional to (j − i). In this work, we will call such solutions linear
and ask if one can build forward-secure encryption with a sublinear fast-forward
property. To the best of our knowledge, this question was not explicitly considered
in the literature. However, one can look at existing techniques for ensuring forward
security and come up with some initial observations and solutions.

Symmetric Encryption: Stream Ciphers. Forward-secure symmetric-key
encryption is typically achieved using basic stream ciphers, constructed from
iteratively evaluating a pseudorandom generator (PRG) [7]. While this construc-
tion is efficient, as it only requires a constant size state and a constant number
of cryptographic operations to encrypt the next message, it does not allow fast-
forwarding: if the receiver last decrypted ciphertext i and now gets ciphertext
j ≫ i, then they need to advance the underlying PRG by (j − i) steps. The
existence of an efficient fast-forwarding method would be highly surprising for
any widely used stream cipher, as they are not based on number theory.3

Instead, we can observe that the Goldreich-Goldwasser-Micali (GGM) con-
struction can be turned into a forward-secure PRG with the fast-forwarding
property. More concretely, one can adapt the template for building forward-secure
signature schemes [6,40], where the PRG outputs correspond to the GGM tree’s
leaves and store the current leaf’s right sibling path, i.e., the set of nodes from
which exactly all leaves to the right of the current leaf can be deduced. We outline
this in more detail in the full version [21].

Lemma 1 (Informal). The template [6,40] (for building forward-secure sig-
nature schemes) can be adapted to the Goldreich-Goldwasser-Micali (GGM)
construction [30] to build a forward-secure PRG with the fast-forward property.
If n denotes the maximal number of epochs, then the scheme stores O(log(n))
seeds as local state, and sequential updating as well as fast-forwarding from epoch
i to j > i take O(log(n)) PRG expansions.

While practically efficient, this folklore construction comes at the cost of
worst-case logarithmic sequential evaluations, logarithmic local state, as well as
a priori bounded number of overall evaluations. While some of those restrictions
can be circumvented using more elaborate constructions — such as growing
trees or potentially a cleverly designed amortized evaluation strategy — at least
logarithmic-sized storage seems inherent. Thus, wearing a theoretician’s hat, the
first question we ask is:

Question 1. Can one have a model that allows for fast-forward stream ciphers
simultaneously having: (a) constant state size; (b) constant sequential (no fast-
forward) operation; and (c) sublinear (ideally, logarithmic) fast-forward property?
3 The number-theoretic Blum-Blum-Shub PRG [8] can be modified to allow sublinear
(in fact, logarithmic) fast-forwarding by additionally keeping the factorization of
N = pq. Doing so, however, loses forward security.
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Forward-Secure Public-Key Encryption. In the public-key setting, Canetti,
Halevi, and Katz [16] introduced the notion of forward-secure public-key encryp-
tion (FS-PKE) and presented a generic construction of FS-PKE from hierarchical
identity-based encryption (HIBE). Their construction essentially mirrors the
simple logarithmic construction of the fast-forward PRG mentioned above, but
replaces the “GGM tree” with the “HIBE tree.” As a result, we observe that this
construction allows us to fast-forward from any epoch i to any epoch j > i using
O(log j) many HIBE secret-key expansions, needs logarithmic-sized storage of
HIBE keys (which, in turn, might be long, depending on the HIBE used) and
does worst-case logarithmic many secret-key expansions to just proceed to the
next epoch.

As of today, this generic construction from HIBE remains the only non-trivial
FS-PKE known. Unfortunately, while HIBE schemes from various assumptions
exist [9,18,10,26,25,15], they are all either built from primitives not readily avail-
able in widespread cryptographic libraries (e.g., bilinear maps) or are primarily
theoretical. To the best of our knowledge, this plays a significant role in why
FS-PKE has never gained significant adoption in the real world. Hence, we ask:

Question 2. Can one have a meaningful model for fast-forward public-key encryp-
tion that potentially enables more efficient schemes than the generic HIBE-based
solution mentioned above?

Bulletin Board Model. To address our motivating questions above, we notice
that most secure real-world communication applications critically rely on the
existence of some centralized server, whose job is to store and appropriately
route encrypted messages to the corresponding participants. In other words, since
communicating parties might not all be online, or might not have direct commu-
nication channels among them, one anyway has to implement some mechanism
where old ciphertexts will be delivered to parties when those parties come online
and request them. In practice, those servers often perform additional tasks such
as helping people discover each other’s keys, verifying the authenticity of the
keys, serializing the order of concurrently received messages, etc.

End-to-end (E2E) security means that this centralized infrastructure is treated
as untrusted, ensuring that a breach or a subpoena cannot affect the users’
security. For most applications, however, the server’s collaboration is required for
correctness.4 Generally speaking, for such server-assisted protocols, one requires
that the most harm a malicious server can inflict is a denial of service (DoS)
attack. This is typically deemed an acceptable risk, as a DoS attack is against
the service provider’s economic incentives.

In our work, we assume the existence of such a server and abstract it as
a bulletin board functionality. Intuitively (see Section 3.1), this functionality

4 Indeed, many secure messaging systems are designed for the rather peculiar model
where the server is assumed to be somewhat-but-not-fully trusted. For instance,
MLS aims to provide E2E security, yet exhibits weaknesses if the server does not
consistently order messages.
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allows all the parties to append some data to a public board, in a way that
this data is automatically serialized (so that everybody reads it in the same
order), and cannot disappear. Moreover, while the size of the bulletin board is
allowed to grow linearly with the number of epochs, it does not “count” toward
any of the parties’ storage. However, it is also not completely “free”, as any
party’s reading/appending to the bulletin board counts toward the efficiency
of this party. More concretely, for primitives using this bulletin-board model,
we consider the communication complexity (both in the size of transmitted
messages as well as required rounds) as part of the respective efficiency notion
but choose to disregard the server’s storage requirements. This is motivated by
real-world communication applications often treating server storage as essentially
free (at least for “short” messages such as control messages or text messages,
but not necessarily multi-media content) while paying close attention to the
efficiency constraints of end-user devices. While disregarding server storage is
an oversimplification, we remark that purging could be done in practice, at a
potential functionality loss.5 We can now make our Questions 1 and 2 more
precise. Namely, we will ask (and answer) them in the bulletin-board model :

Question 3. Assuming the existence of a bulletin board, can we design forward-
secure fast-forward stream ciphers and public-key encryption schemes satisfying
the efficiency requirements stated in Questions 1 and 2, respectively?

It is prudent to point out that regular forward-secure stream ciphers are
already extremely efficient. The bulletin board, however, will help us achieve
the fast-forward property whose study we initiate. Even with fast-forwarding,
however, the bulletin board model may be primarily of theoretical interest, as
the adapted GGM construction is most likely efficient enough for all practical
purposes, and the communication latency with the bulletin board likely outweighs
the reduced local storage requirement. Nevertheless, we view Question 1 as an
interesting open theoretical problem, as even a solution with fast-forwarding and
either constant storage or constant sequential updates is an open problem.

In contrast, in the public-key setting there exists no truly practical6 FS-PKE.
It also appears that the bulletin board does not offer any benefit for the HIBE-
based FS-PKE schemes. However, for its variant known as Updatable Public-Key
Encryption (UPKE) [36,3], the bulletin board provides some critical functionality
support. We discuss this in more detail below to motivate our new notion of
fast-forward UPKE.

1.2 Our Contributions

Modeling. We provide a simple yet powerful formalization of the bulletin board
model capturing a central server offering shared untrusted storage to assist the

5 These concerns are interesting but orthogonal to our contributions.
6 Despite some remarkable progress in the construction of pairing-based HIBE (e.g. [10])
over the last decades, those solutions have never gained any widespread adoption,
partially for their omission from popular cryptographic libraries.
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protocol execution. Our model entirely avoids complications such as interactive
models of computation, is carefully designed to ensure that it does not introduce
any side-effects such as the access pattern leaking secret information, and allows
to easily capture bandwidth constraints.

We then provide rigorous definitions of two forward-secure encryption prim-
itives in the bulletin board model, using a common template: fast-forwardable
stream cipher and fast-forwardable updatable public-key encryption (FF-UPKE).
We define correctness as well as IND-CPA security for both notions. We stress
that our notions are the first formalization of the fast-forwarding property: while
we observe that GGM-PRF and HIBE-based FS-PKE happen to allow for such
an operation, none of the respective notions mandates/formalizes it.

Fast-Forwardable Stream Cipher. As a first scheme, we present a fast-
forwardable stream cipher, in the bulletin board model, that requires constant (in
the number of epochs) storage and a constant number of cryptographic operations
to sequentially advance to the next epoch while allowing to fast-forward to any
epoch j in O(log j) cryptographic operations. The communication bandwidth of
each operation also coincidences with the number of cryptographic operations
mentioned above. Thus, we answer the first part of Question 3 affirmatively.
Our construction is based on carefully adapting the GGM-based forward-secure
stream cipher to:

(1) avoid the logarithmic worst-case computational complexity by appropriate
amortization;

(2) offload most of the local storage to the bulletin board without compromising
forward secrecy.

Roughly speaking, our scheme expands two GGM nodes per sequential update
to ensure that whenever we need a leaf it has already been expanded. As this
leads to linearly many expanded but not yet consumed seeds, we have to properly
outsource to the bulletin board. This is achieved by encrypting them under
independent keys associated with the GGM nodes (also derived from the parent
seed), over time forming a linked list among the leaves in increasing order. In the
meantime, forward-secrecy is preserved as all encryptions obey the tree’s preorder,
i.e., we only encrypt a node v’s seed under nodes with a smaller preorder index.
Let us briefly remark on the potential use-cases of such a solution. Compared
to the folklore GGM-based solution, in most settings, trading logarithmic local
computation and storage overhead for the need for communication appears to be
highly undesirable. However, when used e.g. in the context of secure messaging, the
party has to communicate with the server anyway, and as such our construction
does not incur a cost in terms of round-trips but merely bandwidth. In such
cases, trading a small bandwidth overhead for a logarithmic computation gain
could be worthwhile.

One might attempt to apply the same techniques to the HIBE-based FS-PKE
construction. We observe, however, that they do not directly translate over, as
the senders cannot help the (typically single) receiver. As a result, while the
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respective solution inherently does support logarithmic fast-forwarding (without
even using the bulletin board) supporting constant-time sequential updates does
not work in the same way as in the symmetric setting. Concretely, when using
a bulletin board to amortize sequential updates (by outsourcing encryptions of
secret keys) only receivers knowing those secret keys can upload the respective
ciphertexts. This has two major drawbacks. First, for a setting with a single
receiver, once the receiver fast-forwards to obtain the decryption key of an epoch
j ≫ i, they would be “stuck” there and have to make up the missed (j − i)
sequential operations to “complete” the bulletin board before being able to
sequentially update in a constant number of operations again. Second, for certain
applications where all receivers are assumed to be only sporadically online, having
receivers to maintain the bulletin board is generally undesirable. We thus focus
on the slightly different primitive of updatable public-key encryption — which is
well-suited for the bulletin-board model — instead.

Detour: Updatable Public-Key Encryption. Motivated by various applica-
tions to secure messaging, forward-secure PKE in a setting where an untrusted
server provides synchronization among parties has been considered under the
name UPKE in the literature [36,3]. The idea of UPKE is that one can use ci-
phertexts — conveniently serialized and placed on the bulletin board (abstracting
the messaging server) — to also contain information on how to move from the
old (pk, sk) tuple, into a new (pk′, sk′), in a way that: (a) new messages will
be encrypted by pk′ and decrypted by sk′; (b) exposure of sk′ does not help to
decrypt prior ciphertexts (including the one just sent under pk); (c) the person
preparing ciphertext helps to “move” from sk to sk′ without knowing either secret
key but pk only. To show the potential of the bulletin board, the work of [36]
provided a very simple and efficient UPKE (in the random oracle model) that
has similar efficiency to the underlying ElGamal encryption. Recently, [22] also
built two standard model UPKE schemes from the DDH and LWE assumptions,
which were again much more efficient than their HIBE-based counterparts based
on either DDH or LWE.

These constructions further validated the intuition that UPKE may be a
significantly cheaper alternative compared to regular FS-PKE. They, however,
eschew the inherent fast-forwarding property the generic HIBE-based FS-PKE
enjoys. It thus remained an open problem whether it is possible to build a truly
efficient fast-forwardable PKE primitive. In this work, we provide a partially
affirmative answer for FF-UPKE. While not truly practical, our constructions are
again more efficient when compared to their HIBE counterparts from the same
assumptions. Specifically, the LWE-based construction is significantly simpler and
more efficient than the best-known post-quantum secure FS-PKE scheme (see
Section 1.3). Moreover, our novel approach initiates the study in this new dimen-
sion and hopefully serves as a launchpad for improved construction. Critically,
we propose a generic FF-UPKE construction (much like the original FS-PKE
scheme) that is not tethered to any particular assumption. In this process, we
introduce a new primitive, whose instantiation directly implies FF-UPKE.
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Our Work: FF-UPKE. We define FF-UPKE. As with standard UPKE, the
sender can create special ciphertexts which do not encrypt messages,7 but can help
move from the current tuple (pki, ski) for epoch i to the next tuple (pki+1, ski+1)
for epoch (i+1). To support fast-forwarding from epoch i to epoch j, we introduce
a special “leaping” algorithm. This algorithm can help a receiver8 who currently
holds ski to get to the latest key skj , by only reading a sublinear (in (j − i))
number of messages from the bulletin board, and performing a sublinear number
of cryptographic operations. See Definition 4.

Aside from solving the practical problem of allowing an offline receiver to
quickly catch up with the current messages, FF-UPKE also weakens the strictly
sequential requirement of standard UPKE, that receiver should read and process
every previous key update message. Indeed, the sublinear efficiency requirement
of FF-UPKE means that the receiver has multiple “opportunities” to catch up,
even if it cannot access some of the key update messages.9

FF-UPKE Construction. We also present a novel FF-UPKE scheme. To
this end, we observe that all existing UPKE schemes refresh the secret key by
having the sender choose an “update secret” δ that is then sent encrypted under
the current public key pki. After decrypting δ using ski, the next secret key
ski+1 = ski + δ (using appropriate group operation +), while the sender can
compute the next public key pki+1 using only the current public key pki and the
value δ. Our generic FF-UPKE construction is built around the idea of so-called
cumulative updates using any so-called update-homomorphic UPKE scheme —
a notion we introduce to formalize that multiple such update messages can be
homomorphically combined. (See Definition 6 for the precise formalization of this
requirement.)

As in prior UPKE schemes, in our construction, the sender for epoch i will
choose update secret δi+1, and we will have the invariant that skj = ski +∆[i, j],
where ∆[i, j] := (δi+1+ . . .+δj), for any j > i. Now, however, senders can use the
update homomorphism to create encryptions upi,j that “cumulatively encrypt”
∆[i, j] under pki, for certain carefully chosen pairs i < j. Those encryption are
then stored in the bulletin board to allow the receiver to fast-forward.

Finally, we show that with minor modifications the standard model DDH/LWE
UPKE schemes of Dodis et al. [22] both satisfy the above homomorphism.10

Technical tool: Update Graph. As one can see, the efficiency of our cumulative
update scheme for building FF-UPKE from update-homomorphic UPKE critically
depends on the properties of what we call an update graph G, which will govern

7 For the highest security, these can be sent after every regular ciphertext encrypting
a message, but we do not require this to allow for the most flexibility.

8 Of course, a new sender who “fell behind” other senders, can trivially “catch up” by
retrieving the latest public key from the bulletin board.

9 Of course, the sender for epoch i should still be able to get the current key pki.
10 Interestingly, the most efficient random-oracle based scheme [36,3] does not appear

to be update-homomorphic, and will not be enough for our purposes.



Forward-Secure Encryption with Fast Forwarding 9

G̃8 G̃8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1: The update graph G̃16, consists of two subgraphs G̃8 and an extra node.

the collection of edges (i, j) for which parties need to maintain update ciphertexts
upi,j . As it turns out (see Definition 8), three such parameters will be essential
for understanding the efficiency of our construction:

– The maximum in-degree α(n) of any vertex j ≤ n;

– The diameter β(n) of the sub-graph of the first n vertices;

– The cardinality γ(n) of the active set that includes all vertices i < n which
have at least one edge (i, j) with j > n in G.

We call such graphs (α(n), β(n), γ(n))-update graphs. To the best of our knowledge,
while many related notions of dynamic graphs are known in the literature (e.g.,
see [42] and references therein), including graphs having small in-degree and
diameter, the exact notion of update graph we need for our construction is new.

We build a nearly optimal (2,O(log n),O(log n))-update graph. Our con-
struction is inspired by the simple family of spanner graphs that recursively
join two consecutive graphs of an equal number of nodes with an overarching
edge spanning from the first to the last node. We observe that this results in a
graph with logarithmic diameter but also logarithmic indegree. To circumvent
the growing indegree, we modify this construction slightly and, in each recursive
step, add one additional node at the end, to which the overarching edge connects.
We call this graph G̃n, where n denotes its number of nodes. See Fig. 1 for the
example of G̃16.

As we will see, using this graph G̃ results in our final FF-UPKE scheme
having logarithmic overhead for key update and fast-forwarding, and no overhead
for public-key size, encryption, and decryption, as compared to the underlying
update-homomorphic UPKE.

Putting It All Together. Instantiating our generic cumulative update scheme
with our update graph and the two homomorphic-update UPKE scheme from
DDH and LWE, we get two concrete FF-UPKE schemes from DDH and LWE,
respectively, achieving greater efficiency than the best-known HIBE-based FS-
PKE scheme from the same assumption (see Section 1.3) and answering Question 2
in the affirmative, in the bulletin board model.
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1.3 Related Work

Hierarchical Identity Based Encryption. As mentioned before, the work of Canetti,
Halevi, and Katz [17] showed how to generically construct Forward-Secure Public
Key Encryption from Hierarchical Identity Based Encryption [29,33]. Indeed,
over time, various HIBE schemes have been proposed under an assortment of
assumptions such as LWE [18,2], CDH/DDH [26,25,15], and pairing-based Diffie-
Hellman Assumptions [9,10], among others. However, despite the beautiful theory,
HIBE-based schemes have not found much adoption in practice, either due to
the reluctance of practitioners to use pairings, or because the constructions are
rather impractical. For example, the CDH/DDH-based constructions [26,25,15],
while giving us constructions of FS-PKE in the standard model, rely on garbled
circuits. More formally, if κ is the security parameter, it relies on a chain of O(κ)
such circuits, and the blow-up of the public key operations performed by the
circuits is significant. HIBE constructions based on LWE [18,2] rely on either
lattice trapdoors or GPV-style pre-image sampling [28] which are inefficient
and quite complex. Additionally, all of these HIBE constructions suffer from
overhead of O(κ) to support an unbounded number of time periods in the FS-PKE
construction built from HIBE. Thus, while our new DDH/LWE schemes are not
yet as practical as PKEs from the same assumption (and we also did not try to
optimize all the constants in our constructions for the elegance of presentation),
they certainly are more efficient than the corresponding HIBE-based FS-PKEs,
even taking into account the reliance on the bulletin board model.

Forward-Secure Signatures. Anderson [4] first proposed the idea of Forward-
Secure signatures. The idea was that the compromise of a secret key at a time
i should not allow for the forgery of messages at a time j < i. Construction of
this primitive was proposed by Bellare and Miner [6] and later extended and
improved by Malkin et al. [40]. There are still other constructions that are secure
in the random oracle model [1,34,38].

Key Evolving Encryption Schemes. Two recent works - Jaeger and Stepanovs
[35] and Poettering and Rössler [41] - proposed a scheme that was secure even
when the key updates were labeled by arbitrary (even adversarially chosen)
strings. This is a stronger setting than even FS-PKE and unsurprisingly, these
constructions were realized from HIBE Schemes.

Updatable Public Key Encryption. The work of Jost et al. [36] and Alwen et al. [3]
formally introduced the primitive and presented constructions that were secure in
the random oracle model. The work of Dodis et al. [22] explored constructions that
were secure in the standard model. In addition, they also considered extensions
of the simpler CPA-based security definition to stronger definitions.

Updatable Encryption. Updatable Encryption [12,27,39,37,14,11], vastly different
from the idea of UPKE, explores the orthogonal problem of updating the cipher-
text that was encrypted under a key at a time i to be consistent, i.e., decryptable
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by the key at a time j > i. This primitive, however, is for the symmetric key
setting. Informally, the construction produces different ciphertexts for the same
messages under different keys. The goal is to produce tokens that help update
the ciphertext without revealing any information about the underlying message.

Key Insulated Public Key Cryptosystems. Key Insulated Public Key Cryptosys-
tems [23,24], though motivated for other purposes, achieves the feature of fast-
forwardability. They do this by offering random-access key updates which help
move from the current period i to any other period j. However, the constructions
and indeed the setting assume that there is a party that is trusted, resistant to
exposure/leakage, and has a secure channel to the secret key owner.

Puncturable (Public Key) Encryption. Puncturable Encryption [5,43] and Punc-
turable PKE [31,19,44] achieve forward secrecy on a per ciphertext basis. That is,
puncturing has to work purely based on received ciphertexts, rather than dividing
time into epochs, with senders not having to “target” a certain epoch or obtain
an updated (public) key. Hence, puncturable PKE solves a much more difficult
problem than FS-PKE or fast-forwardable UPKE, leading to significantly less
efficient solutions.

Puncturable PRFs. Our fast-forwardable PRG construction is quite similar to
some of the constructions of puncturable PRFs based on the GGM construction
[13]. We remark, however, that the (standard) notion of a puncturable PRF
is quite different and, for example, lacks the iterative aspect of “continuously
re-puncturing” which we require for our notion.

2 Preliminaries

We write N := {1, 2, . . .} and for x ∈ N we write [x] := {1, 2, . . . , x}. We write
x ← a to assign the value a to the variable x. Moreover, for a set S we write
x←$ S to denote sampling an element from S uniformly at random or according.
For a probabilistic algorithm A, we write A(·; r) to denote that A is run with
explicit randomness r. The security parameter is denoted by κ.

A directed graph G = (V,E) consists of a vertices set V and an edge set
E ⊆ V 2. For an edge (u, v) ∈ E, we call u the tail and v the head. For a node
w ∈ V , we denote by E in

G (w) := {(u, v) ∈ E | v = w} the set of incoming
edges, and by Eout

G (w) := {(u, v) ∈ E | u = w} the set of outgoing edges,

respectively. Moreover, we denote by deginG (w) := |E in
G (w)| and degoutG (w) :=

|Eout
G (w)| the in- and outdegrees, respectively. We often omit to specify the graph

for these functions when the context is clear. For u, v ∈ V we say that edges(
(v1, v2), (v2, v3), . . . , (vn, vn+1)

)
∈ En is a path of length n from v1 to vn+1. If the

concrete path is not of relevance, we sometimes use u⇝ v as a shorthand notation
for and refer by |u ⇝ v| to its length. Additionally, we refer to d(u, v) as the
minimum length of all paths from u to v (or∞ if no such path exists). Finally, the
diameter of the graph G refers to the maximal distance between any nodes u and
v for which a path exists, i.e., diam(G) := max{d(u, v) | u, v ∈ V ∧ d(u, v) ̸=∞}.
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Cryptographic Primitives. We make use of a pseudo-random generator with
expansion factor 4, which is a function PRG.Expand : {0, 1}κ → {0, 1}4κ such
that the two distribution ensembles

{
PRG.Expand(s) | s ←$ {0, 1}κ

}
κ∈N and{

k←$ {0, 1}4κ
}
κ∈N are computationally indistinguishable.

Moreover, we use a nonce-based symmetric encryption scheme, which is a
tuple of deterministic algorithms (SE.Enc,SE.Dec), such that for any encryption
c← SE.Enc(k,m, n), the corresponding decryption recovers the correct message
m← SE.Dec(k, c, n). We require the scheme to satisfy standard IND-CPA security
as long as the nonce n is not reused.

3 Fast-Forwarding in the Bulletin Board Model

3.1 Bulletin Board

In this work, we consider a setting where parties can make use of an append-
only bulletin board BB to store and retrieve (shared) information, reducing their
storage and computation costs. Intuitively, BB can be thought of as an associative
array where for an index idx ∈ I they can retrieve a value v ← BB[idx] either
returning the previously stored value v or a special error symbol ⊥. Along the
same lines, BB[idx]← v′ sets the value to v′ if it has been previously undefined,
or ignores the new value.

We formalize this by using a partial function BB : I ⇀ V . Moreover, we define
two additional operators on the bulletin board: restriction and appending. For a
subset of possible indices I, BB↾I denotes the modified bulletin board only defined
for those indices. We will use this operation as a convenient way to handle a party
“fetching” a subset of the values of the bulletin board alongside the associated
indices. The append operations append another bulletin board to the existing one
while ignoring all already defined values. We will use this operation to represent
a party “uploading” new values to the bulletin board.

Definition 1. For an index space I and a value space V, we call a partial
function BB : I ⇀ V a bulletin board. That is, BB ⊂ I × V such that for all
idx ∈ I and v1, v2 ∈ V, (idx, v1) ∈ BB and (idx, v2) ∈ BB implies v1 = v2.
For a set of indices I ⊆ I, we denote by BB↾I function restriction. That is,
BB↾I := {(idx, v) ∈ BB | idx ∈ I}. Moreover, for bulletin boards BB1 and BB2, we
define BB1 ++ BB2 := BB1 ∪ BB2↾I\dom(BB1), where dom denotes the domain.

3.2 Fast-Forwardable Stream Ciphers

We investigate the construction of fast-forwardable forward-secure stream ciphers
in the bulletin-board model. It is easy to see that the folklore stream cipher
construction from a PRG yields this as long as the PRG is both forward secure
and fast forwardable. We, thus, focus on fast-forwardable PRGs11 instead.

11 For simplicity, we henceforth omit explicitly mentioning forward secrecy as part of
each primitive’s name.
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Game FF-PRG Key Indist.

Initialization

b←$ {0, 1}
safe← true

n← 1
key←$ {0, 1}κ
(st,R,BB)← Init(key)
if b = 1 then R←$ {0, 1}κ
return (R,BB)

Oracle Update

I← Update-Idx(n)
n← n+ 1
(st,R,BBup)← Update(st,BB↾I)
BB← BB ++ BBup

if b = 1 ∧ safe then
R←$ {0, 1}κ

return (R,BBup)

Oracle Corrupt

safe← false

return st

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Fig. 2: The security game of FF-PRGs.

Definition 2. A Fast-Forwardable PRG (FF-PRG) consists of the deterministic
algorithms (Init,Update,Update-Idx, Leap, Leap-Idx), where:

– The (st1,R1,BBinit)← Init(key) algorithm takes key ∈ {0, 1}κ and produces
an initial state st1, output R1, and initial bulletin board state BBinit.

– The (sti+1,Ri+1,BBup)← Update(sti,BB↾Ii) algorithm takes a state and parts
of the bulletin board as inputs, and produces the updated state and the next
output, as well as content to upload to the bulletin board. The corresponding
update-index algorithm Ii ← Update-Idx(i) determines the part of the bulletin
board required for this operation.

– The (stj ,Rj) ← Leap(sti, j,BB↾Ii,j ) algorithm takes a state sti, the target
epoch j > i, and parts of the bulletin board as inputs, to leap to the j-th state
and output. The indices are determined by Ii,j ← Leap-Idx(i, j).

Efficiency. For an FF-PRG scheme to be non-trivial we require fast-forwarding
to be of sub-linear complexity in j − i, concerning both running time and
communication complexity. More specifically, we require the output size of
Leap-Idx to be bounded by fixed polynomials of the security parameter κ, i.e., to
be independent of j − i. This in turn also implies that the running time of Leap
is bounded by a fixed polynomial in κ.

Correctness and Security. For correctness, we intuitively expect that fast-
forwarding results in the same output and state as sequentially advancing through-
out the epochs. Note, however, that fast-forwarding is meant to be a “catching
up” mechanism. Thus, we require fast-forwarding only to work whenever some
other party (using the same bulletin board) has already reached the target epoch.
A formal description of the correctness game is presented in the full version [21].

The key indistinguishability game of an FF-PRG formalizes that Ri look
indistinguishable from fresh uniform random outputs. Forward security moreover
asserts that for past outputs this holds even once the state is leaked. Note that
for defining security, fast-forwarding is irrelevant, as Leap does not write to the
bulletin board and, by correctness, results in the same state as sequential updates.
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Definition 3 (Security). A FF-PRG is secure, if every PPT adversary A
has negligible advantage (i.e, 2Pr[Key-IndistA = true]− 1) in winning the key
indistinguishability game depicted in Fig. 2.

We remark that having explicit indexing algorithms Update-Idx and Leap-Idx
that depend on public information only, guarantees that the access pattern to
the bulletin board does not leak confidential information about a party’s state.

Constructions. In Section 4, we present an FF-PRG scheme with the following
properties: First, Init and Update perform a constant number of cryptographic
operations and output a constant number of elements to be uploaded to the
bulletin board, i.e., |BBinit|, |BBup| ∈ O(1). Second, Update only requires a
constant number of elements from the bulletin board, i.e., |Update-Idx(i)| ∈ O(1).
Third, all elements on the bulletin board are of size O(κ) (such as a key or an
encryption). Finally, Leap(sti, j,BBin) performs at most O(log j) operations and
Leap-Idx(i, j) is of cardinality at most O(log j).

Recall from Section 1.2 that while introducing additional communication might
often be undesirable there are settings where communication with a centralized
server anyways occurs, such as the symmetric ratcheting layer of Signal. There,
switching this to our protocol would not add communication latency, but only
slightly increased bandwidth. Moreover, our scheme is concretely efficient and
for 2T epochs reduces the secret storage compared to the GGM tree by roughly
a factor of T/7. For example, for T = 20 under standard parameter choices of
128 bit seeds we go from 320 bytes to 122 bytes (and the bulletin board material
after 220 epochs will be under 50 MB).

3.3 Fast-Forwardable Updatable Public-Key Encryption

We now proceed to formalize fast-forwardable UPKE in the bulletin board model.

Definition 4. A Fast-Forwardable Updatable Public-Key Encryption scheme
is a tuple of PPT algorithms FF-UPKE := (KeyGen,Encrypt,Decrypt,UpdatePK,
UpdatePK-Idx,UpdateSK,UpdateSK-Idx, LeapSK, LeapSK-Idx), defined as follows:

– The (pk1, sk1,BBinit)← KeyGen(1κ) algorithm outputs an initial secret/public
key pair sk1 and pk1 and an initial state of the bulletin board.

– The c ← Encrypt(pki,m) algorithm encrypts m under the public key pki
and the deterministic m ← Decrypt(ski, c) algorithm decrypts c using the
corresponding secret key.

– The (pki+1,BBup)← UpdatePK(pki,BB↾Ii) algorithm takes a public key and
parts of the bulletin board as input, and outputs the updated public key and
content to be upload to the bulletin board.

– The deterministic ski+1 ← UpdateSK(ski,BB↾Ii) algorithm takes a secret key
and parts of the bulletin board as inputs, and outputs the updated secret key.

– The deterministic skj ← LeapSK(ski, j,BB↾Ii,j ) algorithm takes a secret key
ski, the target epoch j > i, and parts of the bulletin board as inputs.
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The deterministic algorithms Ii ← UpdatePK-Idx(i), Ii ← UpdateSK-Idx(i), and
Ii,j ← LeapSK-Idx(i, j) determine the part of the bulletin board required for the
respective operations.

Modeling and Efficiency. One of the key properties of UPKE is that UpdatePK
may be probabilistic. It is thus assumed that multiple senders coordinate on the
advancing of epochs, with only one party executing UpdatePK and then distribut-
ing the updated public key to the other senders. (Indeed, this synchronization
requirement seems to be what gives UPKE a significant performance lead over
FS-PKE.) While in practice this might be achieved by storing the public key
on the bulletin board, passing around an explicit public key allows us to easily
model that during an epoch parties do not need to access the bulletin board.

Moreover, UpdateSK does not write any information to the bulletin board for
the following reasons: First, there is typically only one receiver (per key pair) in
a public-key setting, so there is no need to upload information that might help
other receivers. Second, if the receiver had to somehow assist senders, this would
introduce additional online requirements contradicting the asynchronous nature
of public-key communication. (The synchronization among senders to prevent
conflicting updates does not require all or any particular of them to be online.)

We require all algorithms except LeapSK to run in polynomial time indepen-
dent of the epoch i. The LeapSK is allowed to run in time sublinear in j − i
(non-triviality). However, we stress that LeapSK-Idx must have a running time,
and thus output size, of a fixed polynomial independent of j − i, meaning that
LeapSK has communication complexity at most poly(log j).

Correctness and Security. In a nutshell, there are two ways for an adversary
to break correctness: (1) he breaks the correctness of the encryption, i.e., comes
up with a message such that its encryption does not decrypt properly, or (2)
he breaks the correctness of the fast-forwarding mechanism. For simplicity, we
require from an FF-UPKE scheme that fast-forwarding from epoch i to j results
in the same secret key skj as would have resulted from sequentially updating.
Note that since FF-UPKE is designed for a setting where parties might use bad
randomness, the correctness game allows the adversary to choose all randomness.
A formal definition of correctness can be found in the full version [21].

Security is formalized as an IND-CPA game, depicted in Fig. 3. The game
allows the adversary to make a single challenge from which he must decide
whether he received encryption of m0 or m1. Ahead, he can make an arbitrary
number of updates to the public key, potentially supplying the randomness.
Moreover, to formalize forward secrecy, he can corrupt the receiver’s state to
obtain the secret key — once at least one is secure, i.e., not with adversarially
chosen randomness, an update has been applied. Similar to the FF-PRG notion,
we observe that the LeapSK algorithm is irrelevant for security.

Definition 5 (Security). An FF-UPKE is said to be IND-CPA secure, if every
PPT adversary A has a negligible advantage in winning the IND-CPA game
depicted in Fig. 3.
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Game FF-UPKE IND-CPA

Initialization

b←$ {0, 1}
safe← true

chall← false

n← 1
(pk, sk,BB)
← KeyGen(1κ)

return (pk,BB)

Oracle Update

Input: r ∈ R ∪ {⊥}
if r = ⊥ then

r ←$ R
safe← true

Ipk ← UpdatePK-Idx(n)
Isk ← UpdateSK-Idx(n)
n← n+ 1
(pk,BBup)
← UpdatePK(pk,BB↾Ipk ; r)

BB← BB ++ BBup

sk← UpdateSK(sk,BB↾Isk)
return (pk,BBup)

Oracle Challenge

Input: m0,m1 ∈M
if ¬chall

∧ |m0| = |m1| then
c← Encrypt(pk,mb)
safe← false

chall← true

return c

Oracle Corrupt

if chall ∧ safe then
return sk

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Fig. 3: The IND-CPA game of FF-UPKE.

Constructions. In Section 5, we present a generic FF-UPKE scheme where
public and secret keys do not grow with the epoch number i, the UpdatePK
algorithm reads and writes O(log i) positions on the bulletin board, UpdateSK
reads O(1) positions, and LeapSK accesses O(log j) position to fast-forward from
epoch i to j. The construction makes use of a so-called Update-Homomorphic
UPKE scheme as a building block. In the full version [21] we provide two concrete
instantiations of this building block, based off minor modifications the standard-
model UPKE schemes introduced in the recent work of Dodis et al. [22]. Both lead
two bulletin board values of the order of O(κ2) many cryptographic elements.

4 Constructing a Fast-Forwardable PRNG

In this section, we present a construction of a fast-forwardable PRNG. We first
introduce the basic variant supporting a bounded number of epochs. We then
extend this construction in Section 4.2 to an unbounded number of epochs.

4.1 The Basic Construction

Our construction is based on the GGM construction. To this end, we first observe
that in a GGM tree of height h, and thus 2h leaves, there are a total of 2h−1 inner
nodes to expand. Hence, the amortized number of expansions over the course of
the 2h − 1 many possible updates in this tree is just one. In the following, we
will show that if for each update we do two expansions, then at the time we need
a new leaf it has already been derived.

Implemented naively, this would of course make a party’s state grow linearly
in the number of updates, which is where the outsourcing to the bulletin board
comes into play. Roughly speaking, rather than keeping all the expanded seeds in
the local state, we encrypt them under an appropriate key to outsource. Those
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encryption keys are derived from the GGM tree as well. To this end, we modify
the expansion step of a node v’s seed as follows:

(svleft , kvleft , svright , kvright)← PRG.Expand(sv),

where kv is an encryption key associated with v. Using this key, we can then
encrypt another node’s seed su and key ku using nonce-based symmetric encryp-
tion, i.e., c ← SE.Enc(kv, (su, ku), n). Concretely, we use the index u as nonce,
n = u, and store this ciphertext at index (v, u) in the bulletin board.

To ensure forward secrecy, only certain such links can be stored. Recall to
this end that when using the GGM construction as a forward-secure PRNG, one
expands the tree’s nodes according to the preorder traversal and keeps the nodes
from the copath (sometimes called sibling path) that are right children as a state.
Hence, to preserve forward secrecy, we maintain the following invariant:

I1. Whenever the bulletin board stores an encryption c← SE.Enc(kv, (su, ku), u)
for nodes u and v, then preorderIdx(v) < preorderIdx(u),

where preorderIdx(v) returns v’s index according to the preorder traversal.

Initialization. Let us now turn our attention towards which such links we want
to outsource. Initially Init(key) first derives a seed s and outsourcing key k for
the root (e.g., (s, k, ·, ·) ← PRG.Expand(key) and then proceeds to expand the
leftmost path in the GGM. The copath is outsourced to the bulletin board by
encrypting each node under the previous when traversing the copath from the
leaf to the root. Additionally, we encrypt the first copath node under its left
sibling, i.e., the first epoch’s leaf. All of those encryptions satisfy Invariant 1.

See Fig. 4 for the example of GGM4, the GGM tree of height 4, at the end of
the Init operation. For clarity, we labeled each node with its preorder index. White
nodes represent inner nodes that have already been expanded, black nodes those
for which the seeds are currently known, and gray nodes are currently beyond
the expansion horizon. The dotted arrows represent the outsourced encryptions,
i.e., a dotted arrow from node v to u means that we store SE.Enc(kv, (su, ku), u)
at position (v, u) in the bulletin board.

The Init algorithm outputs the seed R1 = sh+1 (of the leftmost leaf) and a
state containing the following values: the key ki and the seeds and keys of the
thirst three nodes on i’s right copath, starting at its right sibling. We call those
three nodes the initial frontier, which we discuss in a moment. In our example of
GGM4, this is s5 and (sj , kj) for j ∈ {6, 7, 10}.

Expanding the Tree. The nodes are expanded according to their preorder
index. We call the first not yet expanded node the frontier. In our example of
GGM4, the initial frontier is node 7, which is then expanded into nodes 8 and 9.
In this step, Update “replaces” (they remain on the bulletin board but are no
longer needed for this party) the links (6, 7) and (7, 10) with the following ones:
(6, 8), (8, 9), and (9, 10). (All those newly added encryptions satisfy Invariant 1.)



18 Yevgeniy Dodis, Daniel Jost, and Harish Karthikeyan

1

2

3

4

5
6

7

T1

10

T2

17

T3

Fig. 4: The tree GGM4 after the Init algorithm. Dotted arrows represent encryp-
tions outsourced to the bulletin board.

The new frontier is now 10. When later expanding node 10 into nodes 11 and 14,
we upload links (9, 11), (11, 14), and (14, 17), replacing the existing links (9, 10)
and (10, 17). See Fig. 5 for the state of the tree after the expansion of f = 10.
More generally, when expanding f, we consider the following two additional nodes

– f− := prevLeaf(f) denoting the the largest leaf index f− < f that is not a
descendent of f.

– f+ := rCoPath(f) denoting the first node on f’s right copath,

and replace the links (f−, f) and (f, f+) by link

– (f−, leftChild(f)),
– (leftChild(f), rightChild(f)),
– (rightChild(f), f+).

We observe that by definition rCoPath(rightChild(f)) = rCoPath(f) = f+

and rCoPath(leftChild(f)) = rightChild(f). Thus, storing those additional links
maintains the first of the following invariant that will become crucial for fast
forwarding.

I2. For any v not on the leftmost path, if sv has been computed, then the link
(v, rCoPath(v)), i.e., SE.Enc(kv, (srCoPath(v), krCoPath(v)), rCoPath(v)), has been
added to the bulletin board.

I3. For any leaf v except the leftmost one, if sv has been computed, then the
link (prevLeaf(v), v) has been added to the bulletin board.

To be able to efficiently create those links described above, our algorithm
keeps at any point in time the index, seed, and key of the f, f−, and f+ as part
of the state. After the expansion, those pointers of course have to be adjusted
and the respective seeds and keys locally stored.

– If leftChild(f) is not a leaf, then f ′ becomes this node. The new f+ is thus is
the right sibling that we also just derived and f− remains unchanged.

– If leftChild(f) is a leaf, then this node becomes the new f−. The new f gets
the old f+. Its first right copath node becomes the new f+. While for the
latter we do not have seed or key readily stored, we know from Invariant 2
that there is a link from the old to the new f+ stored in the bulletin board
that we can use to retrieve those values.
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Fig. 5: A visualization of the node expansion in the enhanced GGM construction.

Sequential Updates. For each sequential update from epoch e to e+ 1, the
Update algorithm has to output the seed of the (e+1)-th leaf, which we denote by
leaf(e+1). For this to be done in a constant number of cryptographic operations,
the algorithm relies on a link (leaf(e), leaf(e+ 1)) is readily stored in the bulletin
board. Recall from Invariant 3 that such a link exists as long as the seed leaf(e+1)
has been derived at this point, meaning that Update just needs to expand the
frontier sufficiently fast.

We achieve this by doing two expansions per invocation of Update, as long as
there are still nodes to expand. Consider the inner nodes on the copath of the
leftmost leaf. Those node root h− 1 trees T1, . . . Th−1 of increasing height that
still need to be expanded after Init, as shown in Fig. 4. During the first update,
i.e., when moving to node 6 in our example of GGM4, we can expand T1. More
generally, we observe that Tj has 2j leaves and Tj+1 has 2j inner nodes that
need to be expanded. Hence, doing two expansion steps per Update invocation
maintains the following invariant:

I4. By the time the epoch advances from Tj to Tj+1, i.e., when transitioning
from epoch e to e+ 1 such that leaf(e) ∈ Tj and leaf(e+ 1) ∈ Tj+1, the tree
Tj+1 has already been fully expanded.

In summary, our algorithm achieves sequential updating using at most three
elements from the bulletin board (one to derive the new epoch’s output and two
for the tree expansion) and two PRG expansion and uploading at most six new
elements to the bulletin board.

Fast Forwarding. We now describe the process of forwarding from epoch e to
e′ ≫ e in logarithmic time. Observe that by Invariant 2 there is an encryption
chain along the right copath of leaf(e) stored in the bulletin board. (This holds as
the second node on the right copath of leaf(e) is equal to rCoPath(rCoPath(leaf(e)))
and so forth.) Thus, Update can work analogously to the basic GGM-PRNG con-
struction by determining the first node of this copath intersecting with leaf(e′)’s
path and recover this node decrypting a logarithmic number of ciphertexts.
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Then, the seed and key of leaf(e′) can be derived using a logarithmic number of
PRG.Expand calls. The local state consisting of the keys and seeds of f−, f, and
f+ can be restored analogously.

Finally observe that for the party to be able to continue from epoch e′ it may
not sufficient to just recover the local state, as subsequent calls to both Update
and Leap require certain links to be stored in the bulletin board. For our setting,
where we assume that Leap is only used to catch up with other parties, this is
not an issue, however. For each epoch between e and e′ the first party reaching it
must have done so using a sequential update, uploading all necessary encryptions
as part of this process.

Efficiency. Let n denote the maximal number of epochs, i.e., n = 2h. Then, the
Init algorithm performs O(log(n)) many cryptographic operations and uploads
this many elements to the bulletin board. Afterwards, Update requires at most
3 = O(1) elements from the bulletin board and performs O(1) cryptographic
operations and uploads at most 6 = O(1) elements. So far we have glossed
over how the UpdateSK-Idx(e) algorithm works. In short, it needs to be able to
compute leaf(e), the f corresponding to leaf(e), rCoPath(f) and prevLeaf(f). Each
of them can be easily computed in time O(log n) given that f advances at the
predictable double speed compared to leaf(e). Finally, Leap requires O(log n)
elements from the bulletin board and performs O(log n) computation. In addition,
Leap-Idx(e, e′) needs to compute the elements of the right copath of leaf(e) that
are ancestors of leaf(e′), the corresponding frontier f ′, and prevLeaf(f ′). It then
outputs the corresponding paths to recover e′, prevLeaf(f ′), f ′, and rCoPath(f ′),
where the latter can be directly recovered from f ′. All of those computations can
be done in O(log n) as well.

Correctness and Security. Let us briefly summarize the main results of this
section, which is that our modifications to the forward-secure GGM-based PRNG
do not affect either correctness or security. A proof of the follow theorem is
presented in the full version [21].

Theorem 1. The scheme outlined in Section 4.1 is correct and secure FF-PRNG,
for a bounded number of at most 2h epochs.

4.2 Supporting an Unbounded Number of Epochs

In this section, we now briefly outline how our construction can be extended to
support an unbounded number of epochs, and in the process reduce the running
time of Init to O(1).

In a nutshell, we can apply the idea of a sequence of GGM trees of growing
height, as used in [40]. Their roots can be derived using a forward-secure PRNG,
such as the folklore construction from PRG.Expand. Recall from Invariant 4 that
within a tree GGMt, Update is done expanding before the epoch reaches the
subtree Tt−1 (cf. Fig. 4). As this subtree has 2t−1 more leaves, we can spend this



Forward-Secure Encryption with Fast Forwarding 21

time initializing the next tree GGMt+1 instead, deriving its leftmost path and
storing encryptions of its copath on the bulletin board.

We refer to the full version of the paper [21] for a more detailed description
of the scheme.

5 Fast-Forwardable Updatable Public-Key Encryption

Our generic FF-UPKE uses any update-homomorphic UPKE (H-UPKE) and is
built around the idea of so-called cumulative updates, i.e., update ciphertexts
that aggregate a sequence of individual updates. We use an update graph to
govern which cumulative updates are produced, to balance the senders’ overhead
with the receiver’s ability to fast forward. (For instance, the complete update
graph would allow the receiver to update in constant time while imposing an
undesirable linear overhead on each sender, while the empty update graph results
in a plain UPKE without fast-forwarding.)

5.1 Update-Homomorphic UPKE

As a building block — to allow for cumulative updates — our construction makes
use of an update-homomorphic UPKE scheme, constituting a special case of
updatable public-key encryption.

In brief, in addition to a key-generation algorithm (pk1, sk1, pp)← KeyGen(1κ),
and respective message encryption and decryption algorithms c← Encrypt(pki,m)
and m← Decrypt(ski, c), an update-homomorphic UPKE scheme provides the
following structure:

(1) update ciphertext consist of an encrypted update message, i.e., upi+1 ←
UpdEnc(pki, δi+1), sampled using δi+1 ← UpdGen(pp) based on the public
parameters pp;

(2) update messages are elements from the secret-key space which forms a group
under some operator ⋆;

(3) the secret keys are updated according to ski+1 = ski ⋆ δi+1;
(4) UpdEnc is message homomorphic, i.e., there is an algorithm Upd-Comb(up, up′)

homomorphically combining two updates encrypted under the same public
key pki.

Using the shorthand notation ∆[j,ℓ] := (δj+1 ⋆ · · · ⋆ δℓ), the homomorphism
property thus ensures that we can compute an encryption that is equivalent to
Upi[j,ℓ] ← UpdEnc(pki, ∆[j,ℓ]) from two partial updates Upi[j,k] and Upi[k,ℓ], for any
j < k < ℓ. More formally, we define update-homomorphic UPKE schemes as
follows.

Definition 6. An update-homomorphic UPKE (H-UPKE) scheme is a tu-
ple of algorithms (KeyGen,Encrypt,Decrypt,UpdGen,UpdEnc,UpdDec,UpdatePK,
Upd-Comb) for which the secret-key space SK forms a semigroup (i.e., is as-
sociative with respect to some operator ⋆) and the algorithms are defined as
follows:
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– the key-generation algorithm (pk1, sk1, pp)← KeyGen(1κ), which outputs an
initial key pair sk1 and pk1, as well as public parameters pp;

– the encryption algorithm c ← Encrypt(pki,m) and the and deterministic
decryption algorithm m← Decrypt(ski, c), respectively;

– the update-sample algorithm δi+1 ← UpdGen(pp) producing δi+1 ∈ SK;
– the deterministic public-key update algorithm pki+1 ← UpdatePK(pki, δi+1),

which given a public key and an update message produces an updated one;
– the update-encryption algorithm upij ← UpdEnc(pki, δj), for j > i;

– the update-combination algorithm Upi[j,ℓ] ← Upd-Comb(Upi[j,k],Up
i
[k,ℓ]), merg-

ing two updates encrypted under the same public key pki.
– the and deterministic update-decryption ∆i

[j,ℓ] ← UpdDec(ski,Up
i
[j,ℓ]);

Correctness and Security. We formalize correctness using two separate proper-
ties. The first property essentially demands that the pairs (Encrypt,Decrypt) and
(UpdEnc,UpdDec) represent correct pairs of encryption and decryption algorithms
for their respective message spaces — analogously to the standard UPKE defini-
tion. This is formalized in the game on the left side of Fig. 6. To account for the
evolving sequence of public and secret keys, as well as the use of bad randomness,
the game allows the adversary to update the keys an arbitrary number of periods
under his randomness before submitting a challenge message to be encrypted.
The adversary wins if either the ciphertext or one of the update messages gets
decrypted incorrectly. The second property concerns homomorphism and is, thus,
unique to update-homomorphic UPKE. It requires that the output of Upd-Comb
must correctly decrypt to the multiplication of the underlying update secrets (for
the group operator ⋆), i.e., that

∆[j,k] ⋆ ∆[k,ℓ]

= UpdDec
(
ski,Upd-Comb

(
UpdEnc(pki, ∆[j,k]),UpdEnc(pki, ∆[k,ℓ])

))
.

Finally, we require IND-CPA security. The IND-CPA game is essentially the
same as for regular UPKE, when accounting for the imposed special structure of
the updating mechanism, via the sender invoking

1. δ ← UpdGen(pp)
2. up← UpdEnc(pk, δ)
3. pk′ ← UpdatePK(pk, δ),

and on the other side the receiver using δ ← UpdDec(sk, up) and sk′ ← sk ⋆ δ. A
formal description of the resulting IND-CPA game can be found on the right
hand side of Fig. 6.

Definition 7 (Security). A UPKE scheme is said to be IND-CPA secure if
any PPT adversary A has a negligible probability of winning the game depicted
in Fig. 6.
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Game UPKE IND-CPA

Initialization

b←$ {0, 1}
safe← true

chall← false

n← 1
(pk, sk, pp)← KeyGen(1κ)
return pk

Oracle Corrupt

if chall ∧ safe then
return sk

Oracle Update

Input: r1, r2 ∈ R ∪ {⊥}
if r1 = ⊥ ∨ r2 = ⊥ then

r1 ←$ R
r2 ←$ R
safe← true

n← n+ 1
δ ← UpdGen(pp; r1)
up← UpdEnc(pk, δ; r2)
pk← UpdatePK(pk, δ)
sk← sk ⋆ δ
return (pk, up)

Oracle Challenge

Input: m0,m1 ∈M
if ¬chall ∧ |m0| = |m1| then

c← Encrypt(sk,mb)
safe← false

chall← true

return c

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Fig. 6: The IND-CPA game of Update-Homomorphic Updatable Public-Key
Encryption (H-UPKE).

Schemes. In the full version [21] we show that with minor modifications the
standard-model UPKE schemes of Dodis et al. [22] do lend themselves to an
update-homomorphic UPKE scheme, resulting in instantiations under either
the DDH or the LWE assumption. We remark that both constructions have
some (different) caveats: the LWE-based scheme supports a bounded number of
homomorphic operations, supporting aggregation of at most q atomic updates
(but q can be chosen superpolynomially large at the expense of slightly larger other
parameters) while the DDH-based construction supports an a priori unbounded
number of aggregations but decryption of an aggregated update takes local
computation time O(

√
n) in the number of underlying updates n.

5.2 Update Graphs

A crucial part of our construction will be deciding which cumulative updates
to generate. If, on the one hand, we insert too few such cumulative updates,
then LeapSK-Idx(i, j) ≈ j − i loses the fast-forward property. If, on the other
hand, we insert too many — e.g., all of them — then both UpdatePK will need
both to read and write linearly many elements from the bulletin board. Indeed,
such a solution would represent in many aspects the trivial dual solution to no
fast-forwarding, as the former requires linear bandwidth for the receiver whereas
the latter requires linear bandwidth for all the senders.

To examine those trade-offs in more detail, we reformulate the insertion of
cumulative updates as a graph-theoretic problem. To simplify the reasoning about
the index set, we moreover include the atomic (non fast-forward) updates into
the graph, as formalized by the following definition.

Definition 8. Let α, β, γ : N → N. An (α, β, γ)-update graph G = (N, E) is a
directed acyclic graph with the following properties:

1. ∀i ∈ N : (i, i+ 1) ∈ E,
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2. ∀(i, j) ∈ E : i < j,
3. ∀n ∈ N : deginG (n) ≤ α(n),
4. ∀n ∈ N : diam(Gn) ≤ β(n),
5. ∀n ∈ N : |activeG(n)| ≤ γ(n),

where activeG(n) := {i ∈ [n − 1] | ∃j > n : (i, j) ∈ E}, and (Gn)n∈N with
Gn := ([n], En) and En := E ∩ [n]2 denotes the sequence of prefix graphs.

Looking slightly ahead, let us briefly consider how the different parameters
will affect the efficiency of our construction. First, the number of update messages
required by LeapSK is bounded by β(j). Second, activeG(n) ≤ γ(n) corresponds
to the set of cumulative updates that need to be extended when a sender initiates
the i-th epoch using UpdatePK. Finally, the indegree represents the number of
“finalized” updates for the respective epoch. This mainly becomes of relevance if
the FF-UPKE scheme is deployed in a single-sender setting.

To be of use for our construction, we need that a given update graph can be
efficiently computed. Specifically, our construction will need to compute the sets
E in

G (i) and activeG(i) for each node i, as well as computing short paths between
any nodes i and j.

Definition 9. We say that an (α, β, γ)-update graph G = (N, E) is implemented
by a pair of deterministic algorithms (G.Eval,G.Path) if:

– G.Eval(n) outputs E in(n) and active(n) in O(poly(log n)) time;
– G.Path(i, j) outputs a path e⃗ from node i to j such that |e⃗| ≤ β(j) in
O(poly(β(j) · j)).

5.3 A Generic Construction

We now construct a Fast-Forwardable UPKE scheme based on an Update-
Homomorphic UPKE scheme and an update graph. The basic idea is very simple:
When the sender j chooses the corresponding update secret δj+1, in addition to
updating pkj to pkj+1, they will also

(1) produce fresh ciphertext Up[j,j+1] encrypting δj+1 under pkj ; and

(2) for every i ∈ active(j+1)∪E in(j+1), fetch Up[i,j] from the bulletin board, and
use the update-homomorphic property of the UPKE to compute ciphertexts
Up[i,j+1] to be published in the bulletin board.

On the receiving side, if the receiver knows key ski, and wishes to jump to
some key skj for j > i, it will:

(1) compute a short “leap path” i = i0 → ii → · · · → id = j in the update graph;
(2) retrieve d ciphertexts {Up[ik,ik+1]

} from the bulletin board;
(3) decrypt Upi0,i1 using ski = ski0 to get ∆[i0,i1];
(4) compute ski1 := ski0 ⋆ ∆[i0,i1];
(5) iterate steps (3)-(4) d times to finally “catch up” with skj = skid .

A formal description of the scheme is presented in Fig. 7.
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Protocol Fast-Forwardable UPKE

KeyGen(1κ)

BBinit[·]← ⊥
(pkH-UPKE, skH-UPKE, ppH-UPKE)← H-UPKE.KeyGen(1κ)

pk← (1, pkH-UPKE, ppH-UPKE)

BB[·, ·]← ⊥
pk← (1, pkH-UPKE, ppH-UPKE,BB)

sk← (1, skH-UPKE)
return (pk, sk,BBinit)

Encrypt(pk,m)

parse (·, pkH-UPKE, ·)← pk

parse (·, pkH-UPKE, ·, ·)← pk

c← H-UPKE.Encrypt(pkH-UPKE,m)
return c

Decrypt(sk, c)

parse (·, skH-UPKE)← sk
m← H-UPKE.Encrypt(skH-UPKE, c)
return m

UpdatePK(pk,BB)

parse (n, pkH-UPKE, ppH-UPKE)← pk

parse (n, pkH-UPKE, ppH-UPKE,BB)← pk

n← n+ 1
BB′[·, ·]← ⊥

// Generate the regular update
δ ← H-UPKE.UpdGen(pp)
pk′H-UPKE ← H-UPKE.UpdatePK(pk, δ)
up(n−1,n) ← H-UPKE.UpdEnc(pk, δ)

// Update all active cumulative updates
(In,A)← G.Eval(n)
for all i ∈ A ∪ In \ {n− 1} do

up(i,n−1) ← BB[i, n− 1]
up(i,n) ← H-UPKE.Upd-Comb(up(i,n−1), up(n−1,n))
BB′[i, n]← up(i,n)

BB′[n− 1, n]← up(n−1,n)

pk′ ← (n, pk′H-UPKE, ppH-UPKE)
return (pk′,BB′)

BB′′[·, ·]← ⊥
BB′′[n− 1, n]← up(n−1,n)

pk′ ← (n, pk′H-UPKE, ppH-UPKE,BB
′)

return (pk′,BB′′)

UpdateSK(sk,BB)

parse (n, skH-UPKE)← sk
n← n+ 1
δ ← H-UPKE.UpdDec(skH-UPKE,BB[n− 1, n])
skH-UPKE ← skH-UPKE ⋆ δ
sk′ ← (n, skH-UPKE)
return sk′

LeapSK(sk, j,BB)

parse (n, skH-UPKE)← sk
if j ≤ n then

return ⊥
e⃗← G.Path(n, j)
for (u, v) ∈ e⃗ do

δ ← H-UPKE.UpdDec(skH-UPKE,BB[u, v])
skH-UPKE ← skH-UPKE ⋆ δ

n← j
sk′ ← (n, sk′H-UPKE)
return sk′

UpdatePK-Idx(n)

I← ∅
(In,A)← G.Eval(n+ 1)
for all i ∈ A ∪ In \ {n} do

I← I ∪ {(i, n)}
return I

UpdateSK-Idx(n)

return {(n, n+ 1)}

LeapSK-Idx(n, j)

e⃗← G.Path(n, j)
I← ∅
for (u, v) ∈ e⃗ do

I← I ∪ {(u, v)}
return I

Fig. 7: The FF-UPKE protocols are built from an Update-Homomorphic UPKE
scheme H-UPKE and an update graph G. Lines enclosed in solid boxes belong

to the regular multi-sender protocol, whereas lines enclosed in dashed boxes
represent the single-sender variant.
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A Single-Sender Variant. When deployed in a single-sender setting, such
as a two-party secure messaging scheme (considered as the original motivation
for UPKE by Jost et al. [36]) the scheme can be slightly tweaked for a different
storage/bandwidth trade-off. To this end, we observe that in our scheme the
receiver will never access the temporary “ongoing” update messages but only
ever use an element (i, j) if (i, j) ∈ E. As a consequence, the sender may choose
to upload only the elements from E in(n) while keeping the ongoing cumulative
updates as part of his local state.

This works nicely since the sender does not need arbitrary γ(n) + α(n) many
of the O(n) so far uploaded elements, but in each step we have

active(n) ∪ E in(n) ⊆ active(n− 1) ∪ {n− 1},

implying that O(γ + α(n)) storage suffices. Additionally, this variant has the
distinct advantage that UpdatePK does not need to read anything from the
bulletin board, i.e., UpdatePK-Idx(n) = ∅, potentially reducing latency.

The corresponding protocol is depicted in Fig. 7 as well using the dashed boxes.
For simplicity, we model the local state as the public key containing a “local”
bulletin board.

Correctness and Efficiency. Correctness of the construction follows essentially
directly from the correctness of the underlying Update-Homomorphic UPKE
scheme, which is formalized in parts of the correctness of a regular UPKE
scheme plus the correctness condition of the homomorphism. Moreover, by the
construction the various parameters of the update graph directly translate to the
efficiency of the scheme, yielding the following result.

Theorem 2. The FF-UPKE schemes presented in Fig. 7 are correct if the
underlying scheme H-UPKE is correct and update homomorphic as formalized via
the games from Fig. 6.

Moreover, the regular scheme has public and secret keys of roughly the same
size, and encryption and decryption of the same efficiency, as the underlying
H-UPKE scheme. Using an (α, β, γ)-update graph, yields the following efficiency:

– UpdatePK: |UpdatePK-Idx(n)| ≤ γ(n+ 1) and |BBup| ≤ γ(n+ 1) + 1. More-
over, UpdatePK needs O(γ(n+ 1)) as many cryptographic operations as the
underlying scheme.

– UpdateSK: |UpdateSK-Idx(n)| = 1 and UpdateSK uses O(1) as many crypto-
graphic operations as the underlying scheme.

– LeapSK: |LeapSK-Idx(n, j)| ≤ β(j) and LeapSK uses O(β(j)) as many cryp-
tographic operations as the underlying scheme.

The single-sender scheme has a secret key of roughly the same size as the
underlying H-UPKE scheme, and a public key size of roughly γ(n) as big as the
underlying scheme (modeling local storage) and the same efficiency except that
|UpdatePK-Idx(n)| = 0 and |BBup| ≤ α(n+ 1).

A proof is presented in the full version of the paper [21].
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Security. Security also follows directly from the security of the underlying
Update-Homomorphic UPKE scheme, as intuitively the cumulative updates
represent a computation on public data.

Theorem 3. The FF-UPKE schemes presented in Fig. 7 are IND-CPA secure,
according to Definition 5, if the underlying scheme H-UPKE is IND-CPA secure
according to Definition 7.

A proof can be found in the full version [21] of this document.

6 Conclusions and Open Problems

We identified fast-forwarding as a compelling property of forward-secure en-
cryption, and have shown that in the practically relevant bulletin-board model
fast-forwarding can be obtained at little additional cost. First, we have con-
structed a fast-forwardable stream cipher that maintains a constant local state
and has a constant running time per update operation. This essentially matches
the efficiency of non-fast-forwardable stream ciphers at the cost of constant
communication complexity with the bulletin board per update.

Second, we presented a generic construction of a fast-forwardable updatable
public-key encryption scheme from a novel primitive of an update-homomorphic
UPKE scheme. This bridges the gap between forward-secure PKE, for which
fast-forwardability is the norm, and its more efficient cousin UPKE, where none
of the existing schemes were fast-forwardable. As a feasibility result, we presented
instantiations based on the DDH and LWE assumptions, respectively.

While neither instantiation is truly practical, we believe that our novel
construction of FF-UPKE could ultimately lead to constructions significantly
outperforming those of forward-secure PKE, resolving the dilemma of prac-
tical public-key encryption to having to choose between forward-secrecy and
fast-forwarding. Accordingly, this leaves the construction of efficient update-
homomorphic UPKE schemes as an intriguing problem, demonstrating that while
highly practical UPKE schemes are known to exist in the ROM, the search
for efficient schemes in the standard model may be of interest for the sake of
exhibiting homomorphic properties typically unknown to ROM constructions.

Acknowledgments. We would like to thank Michael Elkin for a useful discussion
about update graphs and bringing [42] to our attention.
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