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Abstract. The random oracle methodology is central to the design of
many practical cryptosystems. A common challenge faced in several sys-
tems is the need to have a random oracle that outputs from a struc-
tured distribution D, even though most heuristic implementations such
as SHA-3 are best suited for outputting bitstrings.
Our work explores the problem of sampling from discrete Gaussian (and
related) distributions in a manner that they can be programmed into
random oracles. We make the following contributions:
– We provide a definitional framework for our results. We say that a

sampling algorithm Sample for a distribution is explainable if there
exists an algorithm Explain which, when given an x in the support
of D, outputs an r ∈ {0, 1}n such that Sample(r) = x. Moreover, if
x is sampled from D the explained distribution is statistically close
to choosing r uniformly at random. We consider a variant of this
definition that allows the statistical closeness to be a “precision pa-
rameter” given to the Explain algorithm. We show that sampling
algorithms which satisfy our ‘explainability’ property can be pro-
grammed as a random oracle.

– We provide a simple algorithm for explaining any sampling algo-
rithm that works over distributions with polynomial sized ranges.
This includes discrete Gaussians with small standard deviations.

– We show how to transform a (not necessarily explainable) sampling
algorithm Sample for a distribution into a new Sample′ that is ex-
plainable. The requirements for doing this is that (1) the probability
density function is efficiently computable (2) it is possible to effi-
ciently uniformly sample from all elements that have a probability
density above a given threshold p, showing the equivalence of ran-
dom oracles to these distributions and random oracles to uniform
bitstrings. This includes a large class of distributions, including all
discrete Gaussians.

– A potential drawback of the previous approach is that the transfor-
mation requires an additional computation of the density function.
We provide a more customized approach that shows the Miccancio-
Walter discrete Gaussian sampler is explainable as is. This suggests
that other discrete Gaussian samplers in a similar vein might also
be explainable as is.
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1 Introduction

The random oracle methodology proposed by Bellare and Rogaway [5] allows
one to develop a cryptosystem under the premise that all users have access to
an oracle that outputs a random string for each queried input. In practice, when
deploying said systems, the calls to the oracle are heuristically replaced with
calls to an appropriate hash function, such as SHA-3. While the use of such a
heuristic comes with some controversy [13], the methodology has been leveraged
for a broad spectrum of problems such as chosen-ciphertext security [17] and
non-interactive zero knowledge proofs [16], to name just a few. In addition, it
has been key to the development of many practical and deployed cryptosystems.

Although the heuristic of replacing a random oracle with a hash function
such as SHA-3 is naturally aligned with oracles that output random bitstrings,
there are many examples of cryptosystems that require random oracles to out-
put from other distributions. For instance, the seminal identity-based encryption
(IBE) scheme of Boneh-Franklin [7] uses a random oracle that outputs a bilin-
ear group element, as does the Boneh-Lynn-Shacham signature scheme [8] and
the multi-authority Attribute-Based Encryption (ABE) systems of [26]. Other
examples include the GPV IBE scheme [19], which needs a random oracle to
output a vector over Zp for some prime p as well as RSA-based full domain hash
signatures [6], which need an element over ZN for a composite N . Other works
explored constructing random oracles which hash into elliptic curves [20, 23].

If one delves deeper into the deployment of such cryptosystems, we can see
that there is no specialized hash function for each of these different domains. In-
stead, to create a random oracle scheme for a certain distribution D (e.g. random
elements over a particular bilinear group), one will utilize a sampling function
Sample. The function Sample will take in a string r and outputs something in the
desired domain. The distribution of calling Sample on a random string should
be statistically close to that of a given distribution D.

While achieving statistical (or computational) closeness to a given distribu-
tion is a necessary property of a sampling function, it is not sufficient, as the
sampling function may not allow for the “programmability” of a random oracle
necessary in a security proof. For example, suppose we ran the BLS signature
scheme over a bilinear group G of prime order p with generator g, public key
ga and secret key a ∈ Zp. In the scheme, a signature on a message m is cre-
ated as H(m)a where H(·) is an oracle function that outputs a bilinear group
element. Suppose we implement H by employing a random oracle H ′ that out-
puts bitstrings alongside a Sample algorithm that computes gr (interpreting r
as an integer) so that H(m) = gH

′(m). Such an instantiation will indeed output
elements statistically close to random bilinear group elements so long as r is
sufficiently long. However, this results in a completely broken cryptosystem. To
see this, observe that if an attacker can obtain a signature σ on message m, the
attacker can then create a signature σ̃ on any other message m̃ by computing
σ̃ = σH

′(m̃)/H′(m). Similar counterexamples exist for the other cryptosystems
mentioned.
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The more general goal of defining sufficient conditions of replacing crypto-
graphic functionalities with each other has been explored in the line of work on
indifferentiability initiated in [29], and further expanded on in papers such as
[32]. Indeed, the application of the indifferentiability framework with regard to
sampling from particular elliptic curve groups was explored in [11].

We define an important property for any sampler to also have a property we
call explainability. This can be viewed as a relaxation of indifferentiability spe-
cific to sampling functionalities. Roughly, given an element x in the domain, it
should be possible to efficiently “reverse sample” an r such that Sample(r) = x.
Moreover, the distribution of receiving an x from D and then outputting r from
reverse sampling should be close to just choosing r uniformly at random. Prior
works dealt with this issue with various levels of formality. For many of the afore-
mentioned works, ‘ad-hoc’ workarounds often invoking specific cryptographic as-
sumptions are used to obtain a proof from the plain random oracle model. In
bilinear groups, one often calls this a “hash-to-point” function which is present
for many bilinear groups, but not necessarily guaranteed. In general there can
exist distributions where sampling cannot be explained; consider if the function
Sample were a one way function.

Sampling and Explaining Discrete Gaussian Distributions

In this work we explore the problem of sampling and explaining discrete Gaus-
sian distributions. And consequentially, the problem of programming discrete
Gaussian distributions into random oracles. Discrete Gaussian distributions are
heavily utilized in the design and analysis of lattice-based cryptosystems, a flour-
ishing area of research over the last several years. The problem of sampling
discrete Gaussians has been well studied. While it is possible to sample such dis-
tributions using a very basic form of rejection sampling [19], further works have
both improved on the efficiency of the rejection sampling method [10, 12, 25],
as well as explore other techniques to sample from discrete Gaussians [15, 31, 2,
30, 18, 24, 34, 4, 22, 33] such as computing the cumulative density function, or
taking convolutions of smaller standard deviation discrete Gaussians. The goal
of most of these works focus on making these samplers more secure and usable,
allowing for features such as being constant time, providing better memory-time
tradeoffs, or supporting a greater deal of offline precomputation.

To the best of our knowledge, however, the problem of explaining and pro-
gramming random oracles with discrete Gaussian distributions has received lit-
tle attention to date, with a few exceptions. One exception is the universal
sampler work of Hofheinz et al. [21] that implicitly shows how indistinguisha-
bility obfuscation can be used to obtain a computational form of explainability
for any efficiently sampleable distribution from a random oracle. However, all
current indistinguishability obfuscation candidates are highly impractical and
at best invoke further computational assumptions that go beyond those typ-
ically used in lattice-based cryptosytems. Our solutions will be both statisti-
cal and significantly more efficient. In a more recent work [1], Agrawal, Wichs
and Yamada sketch how the rejection sampling algorithm of Gentry-Peikert and
Vaikuntanathan [19] is explainable.
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Interestingly, the problem of explaining such distributions has come up in
multiple contexts. Brakerski, Cash, Tsabary, and Wee [9] gave a homomorphic
ABE scheme provably secure from the LWE assumption in the random oracle
model. At one point, their construction required a random oracle that outputs
a discrete Gaussian. Since no such solution were available, the authors worked
around this by using a specialized sampler due to Lyubashevsky and Wichs [28]
which is a blend of a standard discrete Gaussian and a binary string. Another
example is in a recent multi-authority scheme of Datta, Komargodski and Wa-
ters [14] where the need for a random oracle that outputs discrete Gaussians
arises. In this case the authors compensate by using a random oracle that out-
puts an integer over a subexponentially large integer range that can hide a
smaller discrete Gaussian by smudging [3]. In this case the workaround resulted
in a subexponentially large modulus. (It should be noted that smudging was
used elsewhere in their analysis as well).

Finally, we want to emphasize that the need to explainably sample distri-
butions also arises outside of the random oracle model. An interesting example
comes up in the aforementioned work of [1], which requires public parameters
that can generate discrete Gaussians, but should look like uniform bitstrings. To
prove security the authors require the distribution to be explainable.

We advocate for this importance of studying the problem of explaining and
programming discrete Gaussian distributions. Ideally, such solutions will match
the performance of the prior works on discrete Gaussian sampling (e.g. [15,
31, 2, 30, 18, 24, 34, 4, 22, 33]) that were focused on performance, but not
explainability. Pursuing this goal is a natural and fundamental property given
the important role of discrete Gaussians in lattice-based cryptography.

1.1 Our Contributions

Our work consists of the following contributions.

Definitional:

We begin by providing a definitional framework for describing our results. We
define an explainable sampling system for distribution {Dλ}λ to have two effi-
ciently computable algorithms. The first is a Sample(1λ; r) algorithm which is
parameterized by a security parameter and takes in random coins r. This algo-
rithm should output a distribution statistically close (in λ) to Dλ when r is cho-
sen randomly. The second algorithm is a randomized algorithm Explain(1λ, 1κ, x)
that takes as input the security parameter, a “precision” parameters κ and an
element x ∈ Dλ. Its job is to output an r such that Sample(1λ; r) = x. In ad-
dition, calling Explain on an x sampled from D should have a statistically close
distribution to that of simply choosing r at random.

A particular feature of our definition is the use of a tunable precision param-
eter κ where we only require a statistical distance of 1

κ , as opposed to requiring
the statistical distance (or computational advantage) to be negligibly close like
in indifferentiability. We show that this is sufficient to allow for proofs to go
through in programming a random oracle. Intuitively, the parameter κ will in a
reduction will be tuned to an attacker’s advantage. We note that the parameter

4



κ is only used in the Explain algorithm and is not a priori set in the Sample algo-
rithm used in a construction. Thus it can be adjusted to fit a particular attacker
with a particular advantage in a reduction. This relaxation allows us to prove
explainability, and hence show equivalence of random oracles, to a broader range
of distributions than otherwise.

We note that our use of a tunable precision parameter is the main defini-
tional difference between our framework and other works that explored reverse
sampling.

Sampling over Small Ranges:

We next show a simple algorithm for explainable sampling over small ranges.
Suppose that Rλ is the range of distribution Dλ where |Rλ| grows polynomially
in λ. We show that any sampling algorithm Sample for {Dλ}λ is explainable.
One simply calls Sample repeatedly until it outputs a desired x or until |Rλ| · κ
attempts occur without success. This simple process illustrates the flexibility
given by the precision parameter in our framework.

A basic corollary extends this lemma to any distribution which is statisti-
cally close to a distribution with polynomial support. This implies sampling for
discrete Gaussians with poly-sized standard deviations.

Generic Sampling over Conforming Distributions:

A drawback of the previous approach is that it is only applicable when the distri-
bution range is small, and thus cannot be used to explain, say, a discrete Gaus-
sian with a super-polynomial sized standard deviation. We show an approach
to generically sample from a broad class of distributions that includes discrete
Gaussians with large standard deviations. Unlike the prior solution we will not
be able to use a Sample algorithm as is and explain it. Instead we will transform
it into a new Sample′ algorithm that is explainable. For our transformation we
will require a distribution with:

1. A (not necessarily explainable) Sample algorithm for the distribution.
2. A probability density function PDens where PDens(1λ, x) returns a value

proportional to the probability x occurs for distribution Dλ.
3. A “heavy element sampler” SampleUniform where SampleUniform(1λ, p; r) is

an explainable sampling algorithm that samples uniformly from all elements
in the range of Dλ that have a probability density above p.

Given these we can build an explainable Sample′ algorithm that operates
by first sampling x′ from Sample. Then computing the probability density p′ of
x′. Next, it randomly “scales” p′ by choosing a random s0 ∈ [0, 1] and letting
p = s0p

′. Finally, it outputs x← SampleUniform(1λ, p; r). We go on to show that
this distribution is explainable.

We additionally give an explicit heavy element sampler for the case of discrete
Gaussians, and in general observe that this primitive can be computed from
the probability density function for many natural distributions. This gives us
an explainable sampler for all discrete Gaussians with exponentially bounded
centers and standard deviations.
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Finally, we show that something akin to the heavy element sampler is needed
for a truly generic transformation. We describe oracles which describe a distri-
bution which has the first two properties above, but not the third and show that
it is impossible to create an explainable sampler.

Explaining the Miccancio-Walter ’17[30] sampling algorithm:

While the previous technique can create a sampler for discrete Gaussians with
large standard deviations, it requires creating a new sampler rather than using
one as is. If such a sampler is in a critical path, the additional introduced over-
head of a high precision computation of the probability distribution function
may be undesirable.

As our final contribution, we provide a tailored explain algorithm to the MW
sampler. With any sampler, proving its explainability is vital to enabling its use
in random oracle based applications, and allows us to securely instantiate such
cryptosystems while carrying over the performance benefits of the sampler in
question. While we focus on the MW sampler in particular, we believe that the
ideas we demonstrate can extend to similar works [31] and provide techniques
for showing explainability of other classes of discrete Gaussian samplers.

2 Preliminaries

We say a function negl(x) is negligible if for all polynomials p(x), there exists
some N such that ∀x > N, negl(x) < 1

p(x) . A function is noticeable if it is not

negligible. The notation poly(x) will be used to refer to a polynomial function
in x, and EXP(x) will refer to a function ≤ 2poly(x). We will indicate sampling

an element from a probability distribution D as x
R←− D. Similarly, we will use

x
R←− S to indicate sampling over the uniform distribution on a set S. We will use

[a, b] and (a, b) to denote the closed and open interval from a to b respectively
on R. We will subscript the brackets with Z to denote the same interval on
Z. We will use range(D) to refer to the set of elements in D which occur with
probability > 0.

We will use log as logarithms base 2 if no base is explicitly specified. We use
bxc, dxe to refer to the usual floor and ceiling rounding operations to the integers,
and bxe to mean a randomized rounding to dxe with probability x mod 1 and
otherwise bxc. We subscript rounding operations (e.g. bxck) to round to Z/2k
instead of Z.

We use statistical distance between two probability distributions D1 and D2

to refer to

max
A ⊆ range(D1) ∪ range(D2)

∣∣∣Pr[x1
R←− D1, x1 ∈ A]− Pr[x2

R←− D2, x2 ∈ A]
∣∣∣

We will denote a family of distributions indexed by λ as {Dλ}λ. We say two
distribution families {D1

λ}λ, {D2
λ}λ are statistically close if exists some negligible

function negl(λ) such that the statistical distance between D1
λ and D2

λ is <
negl(λ).
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We notate a randomized function f which takes as input x and random-
ness r by f(x; r). For brevity, the function may be written as f(x) when fresh
randomness r is used but does not need to be referenced.

Definition 1. We say a function PDens(1λ, x) with domain x ∈ Dλ computes
the probability density of a distribution family {Dλ}λ if it runs in poly(λ) time,
returns a nonnegative integer, and the distribution where element x′ is selected
with probability

PDens(1λ, x′)∑
x∈Dλ PDens(1

λ, x)

is statistically close to Dλ1.

Since PDens runs in poly(λ), it’s output length is at most polynomial, so we
can bound the maximum value with some PDFmax = PDFmax (λ) ≤ EXP(λ).2

The discrete Gaussian distribution on a set S ⊆ R with center c and standard
deviation σ is defined as the distribution where an element i ∈ S is picked with
probability

e−
(i−c)2

2σ2∑
x∈S e

− (x−c)2
2σ2

When the set S is not specified, assume S = Z. This distribution is of particular
interest to cryptography due to its presence in the learning with errors assump-
tion and other lattice-based cryptosystems. For simplicity, we will mostly con-
sider univariate discrete gaussians, as, much like their continuous counterparts,
discrete gaussians over arbitrary multivariate lattices can be generated via a lin-
ear transformation on a set of independent univariate discrete gaussians, where
the linear transformation is derived from the covariance of the target discrete
gaussian.

3 Explainable Sampling

In this section we define our notion of explainable sampling. Intuitively a distri-
bution {Dλ}λ can be sampled by a function Sample(1λ; r) if Sample(1λ; r) gives
a distribution that is statistically close (in λ) to {Dλ}λ for when the string r is
chosen uniformly at random. We will further say that such a sampling algorithm
is explainable if given an element x in the domain of the distribution there is a
function Explain(1λ, x)→ r′ that will output an r′ such that Sample(1λ; r′)→ x.
Moreover, the process of picking random coins to sample an element compared

1 While this definition is not the most general for probability distributions over infinite
sets, it will suffice for the cases we consider

2 Note that we only require the probability density to be proportional to the probabil-
ity of an element being sampled, rather than equal to. As such, any PDens function
which outputs fixed precision reals can be converted to one which outputs integers
as above by simply multiplying a sufficiently large constant. We choose to define our
output to be integers to give a convenient fixed granularity
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to first sampling a random element and then calculating the coins should be sta-
tistically close. This final property is what allows one to program in a random
oracle.

Below we give our formal definitions of a distribution being sampleable and
a Sample algorithm being explainable. Then we sketch how a pair of algorithms
meeting this criteria can be used in a cryptographic game to sample from a
random oracle.

Definition 2. We say an algorithm Sample(1λ; r ∈ {0, 1}n) is a sampler for
probability distribution family {Dλ}λ if Sample runs in poly(λ) time and the
output of Sample(1λ; r) is statistically close to {Dλ}λ.

Definition 3. We say a Sample algorithm using n = n(λ) bits of randomness
is explainable if there exists a (likely randomized) algorithm Explain(1λ, 1κ, x)
such that Explain runs in poly(λ, κ) time, and there exists a negligible function
negl(λ) such that the statistical distance between the following two distributions
is at most 1

κ + negl(λ) 3.

Distribution A

– r
R←− {0, 1}n.

– x← Sample(1λ; r).
– Return r, x.

Distribution B

– r′
R←− {0, 1}n

– x← Sample(1λ; r′).
– r ← Explain(1λ, 1κ, x).
– Return r, x.

We make a few brief remarks on our definition. First, notice that a call to
Explain(1λ, 1κ, x) algorithm is not explicitly required to even return an r such
that Sample(1λ; r) = x. However, the definition implies that if it does not do so
with sufficiently high probability, it will not meet our requirements.

Next, our Explain definition takes in a “fidelity” parameter κ in unary. Here
we only require that the explain algorithm is within 1/κ statistical difference
in the above game. While also requiring the explain algorithm to run in time
polynomial in κ and λ.

Our motivation is to allow for greater flexibility in the case where it might be
difficult to design a polytime explain algorithm where the statistical difference
is negligibly close, but that there is a natural running time versus precision
tradeoff in the explain algorithm. As we will see below, the latter is sufficient for
proving security in a game which uses said sampler to programs a random oracle.
Suppose there exists an attacker that wins with non-negligible probability ε in
a cryptographic game that samples using a random oracle. In proving security
we will “tune” κ, so we can switch from sampling from the random oracle to
‘reverse sampling’ using explain such that the statistical distance between these
two games is still some nonnegligible fraction (say ε/2). We again remark that

3 One could consider a computational analogue of this definition.
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this relaxation to a tunable precision parameter is the main definitional difference
between our framework and other works that explored reverse sampling.

Finally, we note that it will often be convenient to interpret the randomness
r as being drawn from the uniform distribution on an interval of Z or an ex-
ponentially precise element of R rather than over uniformly random bits. It is
easy to see we can interpret a bitstring as a binary representation either of the
aforementioned domains of values, and so we will directly show that r is uniform
on said domain rather than on the underlying bit representation.

3.1 Explainability in Cryptographic Games

We will use GameR(·)(1λ,A) to refer to a series of cryptographic game parame-
terized by λ where parties are permitted oracle access to some R(·) against an
adversary A consisting of one or more algorithms (also with access to R(·). We

say GameR(·)(1λ, ·) is secure, if for all adversaries A which run in poly(λ) time,

Pr[GameR(·)(1λ,A) = 1] = negl(λ). We will refer to the event of Game returning
1 as ‘winning’.

Theorem 1. Suppose Sample is an explainable sampler for {Dλ}λ with corre-
sponding Explain algorithm. Let R(·) be a random oracle to distribution {Dλ}λ,

and R′(·) be a random oracle to (r, x) where r
R←− {0, 1}n and x = Sample(1λ; r).

Then if GameR(1λ, ·) is secure, then so is GameR
′
(1λ, ·).

Proof. Lemma 1. Suppose Sample is an explainable sampler for {Dλ}λ with
corresponding Explain algorithm. Let R(·) be a random oracle to distribution

{Dλ}λ, and Rκ(·) be a random oracle to (r, x) where x
R←− {Dλ}λ and r ←

Explain(1λ, 1κ, x). Then if GameR(1λ, ·) is secure, then GameRκ(1λ, ·) is secure
for all κ ∈ poly(λ).

Proof. Assume there is some PPT adversary ARκ for which there exists κ′(λ)
such that A wins GameRκ(1λ, ·) with noticeable probability. Then define A′ to
be an adversary for GameR(1λ, ·) which runs ARκ and simulates oracle calls to
Rκ by taking calling oracle R and running Explain(1λ, 1κ, ·) on the output. Since
this is exactly the same game, we conclude A′ has a noticeable probability of
winning GameR(1λ, ·). Since κ ∈ poly(λ), this is efficient.

Lemma 2. Let Rκ(·) be a random oracle to (r, x) where x
R←− {Dλ}λ and r ←

Explain(1λ, 1κ, x). and R′(·) be a random oracle to (r, x) where r
R←− {0, 1}n and

x = Sample(1λ; r) . Suppose GameRκ(1λ, ·) is secure for all κ ∈ poly(λ), then

GameR
′(·)(1λ, ·) is secure.

Proof. Again, assume for sake of contradiction there is some adversary PPT AR′

which wins GameR
′
(1λ, ·) with noticeable probability. Specifically, since it is poly

time, let’s suppose there exists constants a, b such that AR′ wins GameR
′
(1λ, ·)

makes at most λa queries and wins with probability > λ−b infinitely often.
However, notice that by Definition 3, the statistical distance between queries to
a query to R′ and a query to Rκ is 1

κ . Thus, if we set κ = 2λa+b, we can union
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bound the total statistical difference of all queries with 1
2λb

+ negl(λ). Observe
that this means we can bound

∣∣∣Pr[GameR
′
(1λ,A) = 1]− Pr[GameR2λa+b (1λ,A) = 1]

∣∣∣ ≤ 1

2λb
+ negl(λ)

However, SinceA wins GameR2λa+b (1λ,A) with probability 1
λb

infinitely often,

that means it wins GameR2λa+b (1λ,A) with probability ≥ 1
2λb

infinitely often,

contradicting the assumption that GameRκ(1λ, ·) is secure for all κ ∈ poly(λ).

Taking Lemma 1 and Lemma 2 together gives us the theorem statement.

4 Explaining Sampling over Small Ranges with respect
to Discrete Gaussian Samplers

We begin by showing that any efficient Sample algorithm over a polynomial
sized range, {Rλ}λ, is explainable. The core idea is rather simple. A call to
Explain(1λ, 1κ, x) will simply call the Sample algorithm up to κ · |Rλ| times until
x is output.

We show an immediate corollary to the theorem where if a distribution family
has a super-polynomial size range {Rλ}λ, but there exists subsets of the range
{Sλ}λ where Sλ ⊆ Rλ and {Sλ}λ are polynomially sized, then our sampling
algorithm also works for these distribution. In particular, this covers a discrete
Gaussian where the standard deviation σ grows polynomially with λ. We will
see that this simple procedure can serve for explaining the “base case” for the
Micciancio-Walter algorithm. Below we formally give our theorem and proof.

Theorem 2. Let Sample be an sampler for some distribution family {Dλ}λ on
range {Rλ}λ. If |Rλ| ≤ poly(λ), then Sample is explainable.

Proof. The idea here is to simply brute force the sampler output to find a valid
randomness to a given element x. We use the fact that the range is polynomial
to bound the amount of probability mass which can be contained by ‘infrequent’
elements. Consider the algorithm below:

Explain(1λ, 1κ, x)

– Repeat κ · |Rλ| times

• Select fresh randomness r
• x′ ← Sample(1λ; r)
• If x′ = x, stop and return r.

– Return ⊥

Claim 3. Explain runs in poly(λ, κ) time
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Proof. First, by the efficiency requirement of Definition 2 κ · |Rλ|, Sample(1λ; r)
has runtime poly(λ). Explain simply calls Sample(1λ; r) up to κ · |Rλ| many times
(along with some other minor efficient computation). Thus, we can bound the
runtime with κ · |Rλ| · poly(λ). Since |Rλ| ≤ poly(λ) by assumption, this bounds
the runtime with κ · poly(λ) ∈ poly(λ, κ).

Claim 4. Explain returns ⊥ in Game B with probability ≤ 1
κ

Proof. Observe that over the course of Game B, Sample is called on independent
randomness up to κ·|Rλ|+1 times (once directly from the Game and κ·|Rλ| times
in the execution of Game B). Let us call these outputs x0 and x1, x2, . . . , xκ·|Rλ|
respectively. Let the set X = {xi : ∀j 6= i xj 6= xi} By pigeonhole, we know that
|X | ≤ |Rλ| − 1. Thus, since the calls are independent, the probability that the

single call directly from Game B (x0) is in this set X is |X |
κ|Rλ|+1 ≤

|Rλ|−1
κ|Rλ|+1 <

1
κ .

On the other hand, if this call is not unique, we can see Explain finds j > 0 :
xj = x0 and so does not return ⊥.

Claim 5. The statistical distance of Game A and Game B in Definition 3 using
Explain is ≤ 1

κ

Proof. We first note that if Explain(1λ, 1κ, x) returned r 6= ⊥, then x = x′ =
Sample(1λ; r). Thus, since x is the same function of r in both games, it suffices
to show that r in Game B has statistical distance ≤ 1

κ to uniform.
Consider an alternate Explain′ which, rather than sampling x′ at most κ · |Rλ|

times, samples x′ until it finds an appropriate r. Here, we can compute the
probability that any particular r is chosen as the probability the x chosen for
Explain is equal to Sample(1λ; r) multiplied by the probability that r is chosen
conditional on x′ ← Sample(1λ; r). This is equal to

Pr[Sample(1λ) = x] · 2−n

Pr[Sample(1λ) = x′]
= 2−n

so r is uniform on {0, 1}n. Now note that Explain′ only differs from Explain
when Explain returns ⊥ before finding such an r. By Claim 4, this happens with
probability < 1

κ , bounding the statistical distance.

Corollary 6. Let Sample be a sampler for some distribution family {Dλ}λ with
range {Rλ}λ. If there exists sets {Sλ}λ where Sλ ⊆ Rλ, |Sλ| ≤ poly(λ), and

Pr

[
x

R←− Dλ
x /∈ Sλ

]
< negl(λ),

then Sample is explainable.

Proof. Let {D′λ}λ be the distribution {Dλ}λ conditional on the output being
∈ {Sλ}λ. It is easy to see that {D′λ}λ satisfies the conditions for Theorem 2,
and so any sampler for {D′λ}λ is explainable. Since {D′λ}λ is statistically close to
{Dλ}λ, any sampler for {Dλ}λ is a sampler for {D′λ}λ, and so is explainable.

11



5 Sampling and Explaining Conforming Distributions

The previous section showed how one could explain arbitrary sampler so long as
the corresponding distributions grew polynomially in the security parameter. In
this section we explore a class of distributions for which we can build explain-
able samplers. This includes distributions with superpolynomial sized ranges. To
perform this we require the distribution family to have:

1. A Sample algorithm for the distribution. (It is not necessarily explainable).

2. A probability density function PDens where PDens(1λ, x) returns the prob-
ability density function of x for distribution Dλ.

3. An “heavy element sampler” algorithm SampleUniform which explainably
samples from the uniform distribution over elements in the support of Dλ
that have probability density above p.

We show that if a distribution has all three elements, then there exists another
pair of algorithms Sample′,Explain′ that comprise an explainable sampler for the
family {Dλ}λ.

We argue for the utility of this transformation by observing that many nat-
ural distributions, including the discrete Gaussian, have an easily computable
heavy element sampler. If we consider the discrete Gaussian in particular, then
a heavy element sampler simply needs to calculate the values x0, x1 such that
PDens(1λ, x0) = PDens(1λ, x1) = p, which can be done by explicitly solving for

p using the probability density function of e−
(x−c)2

2σ2 = p. We can then choose
integers uniformly at random in the interval [x0, x1].

In fact, in general for monotonic distributions (or distributions which can be
partitioned into a polynomial number of monotone segments) on ordered sets,
we can easily compute an explainable heavy element sampler by binary searching
for the endpoints of the ranges of heavy element with only polynomially many
calls to the probability density function, then uniformly sampling on the interval
found. As long as the underlying domain has an explainable representation (such
as Z or R), this sampler too is explainable. This condition alone encompasses
almost all frequently seen distributions such as (discrete) Gaussians, binomial,
geometric, Poisson, etc.

We conclude by arguing that having such a heavy element sampler is nec-
essary for a generic transformation. To do this we provide a distribution for
which oracle access to the first two properties is not sufficient to construct an
explainable sampler to said distribution.

5.1 Explainable Sampling through heavy element samplers

Definition 4. We say a function SampleUniform(1λ, p; r) is a heavy element
sampler for a distribution family {Dλ}λ with probability density function PDens if
it runs in poly(λ) time, and for all p ∈ [0,PDFmax ), Sp(1

λ; r) = SampleUniform(1λ, p; r)
is a sampler for the uniform distribution on elements x ∈ Rλ with PDens(1λ, x) ≥
p (we will notate said set as Rpλ. We say a heavy element sampler is explainable if
there exists a poly(1λ, 1κ) algorithm ExplainUniform(1λ, 1κ, p, x) such that for all

12



p = p(λ) ∈ EXP(λ), Ep(1
λ, 1κ, x) = ExplainUniform(1λ, 1κ, p, x) is an explainer

for Sp.

Theorem 7. Let Sample, PDens, SampleUniform be a sampler, probability den-
sity function, and explainable heavy element sampler for the probability distri-
bution family {Dλ}λ on range {Rλ}λ. Then there exists a Sample′ which is an
explainable sampler for {Dλ}λ.

Proof. The underlying idea of the construction of this Sample′,Explain′ is very
similar to the generic Explain algorithm in Theorem 2 - we can use a brute force
approach to polynomially approximate {Dλ}λ. However, because the domain can
now be superpolynomial, we can no longer hope polynomially approximate the
exact elements of {Dλ}λ itself. Instead, we categorize elements into ‘buckets’ of
similar approximate probability density. However, ordinarily, finding an element
of a similar probability density would not suffice to satisfy the ‘correctness’ of an
Explain algorithm. Here, we modify our sampler Sample′ so that it uses Sample
to produce an initial sample in the range, but this is then ‘smudged’ to an
element of the range with similar probability density which is the actual output
of Sample′.

By increasing the precision parameter κ, we decrease the size of each bucket,
decreasing the statistical distance of Explain′ but simultaneously increasing the
expected number of tries to find an element in the same bucket.

Let Sample′ be as follows:

Sample′(1λ; r = r0 ∈ {0, 1}n, s0 ∈ [0, 1], t0 ∈ {0, 1}n)

– x′ ← Sample(1λ; r0)

– p′ ← PDens(1λ, x′)

– p← p′ · s0
– x← SampleUniform(1λ, p; t0)

– Return x

As noted in Section 3, we can interpret a uniform bitstring as the binary
expansion of a real number ∈ [0, 1]. Since randomness s0 is only used to compute
the probability density on SampleUniform, which is integral, it suffices to use only
log(PDFmax ) ∈ log(EXP(λ)) = poly(λ) bits of randomness.

Proof of Sampleability We first prove that Sample′ is a good sampler per
Definition 2.

Definition 5. We define the distribution {PDF(Dλ)}λ be defined as the joint
distribution on two variables (a, b) such that the distribution of a is Dλ and b is
uniform from [0,PDens(1λ, a)) where PDens is a probability density function of
Dλ.

Lemma 3. The following distributions are statistically close

13



Distribution 1 = D1

– (a, b)
R←− PDF(Dλ)

– Output (a, b)

Distribution 2 = D2

– (a′, b)
R←− PDF(Dλ)

– a
R←− SampleUniform(1λ, b)

– Output (a, b)

Proof. Consider some fixed (a∗, b∗) in the support of PDF(Dλ). We can compute
the explicit probability this element is picked in distribution 1 as the probability

a∗ is picked - which is PDens(a∗)∑
a∈Rλ

PDens(a) , multiplied by the probability that b∗ is

picked given that a∗ - which is 1
PDens(a∗) , as this is a uniform distribution of size

PDens(a∗). Together, we get

Pr[(a∗, b∗)← D1] =
PDens(a∗)∑
a∈Rλ PDens(a)

· 1

PDens(a∗)
=

1∑
a∈Rλ PDens(a)

In distribution 2, we can write the probability (a∗, b∗) occurs as

Pr[( , b∗)← PDF(Dλ)] · Pr[a∗ = SampleUniform(1λ, b∗)|( , b∗)← PDF(Dλ)]

Note that since SampleUniform and PDF(Dλ) are invoked independently, we
can ignore the conditional. Using our analysis from distribution 1, we can com-
pute the first probability as

Pr[( , b∗)← PDF(Dλ)] =
∑

a:PDens(a)>b∗

Pr[(a, b∗)← PDF(Dλ)]

=
∑

a:PDens(a)>b∗

1∑
a∈Rλ PDens(a)

Meanwhile, since by definition SampleUniform outputs a uniform element of
sufficiently high probability density, we have that

Pr[SampleUniform(1λ, b∗) = a∗] =
1

|{a : PDens(a) > b∗}|

Which brings the total probability of (a∗, b∗)← D2 as

∑
a:PDens(a)>b∗

1∑
a∈Rλ PDens(a)

· 1

|{a : PDens(a) > b∗}|
=

1∑
a∈Rλ PDens(a)

the same as in D1

14



Lemma 4. Sample′ is an sampler for {Dλ}λ.

Proof.

Claim 8. Sample′ produces a distribution statistically close to {Dλ}λ.

Proof. Since Sample is a sampler to {Dλ}λ, the distribution of (x′, p) as defined
in Sample′ is statistically close to {PDF(Dλ)}λ. By Lemma 3, the distribution
of (x, p) must also be statistically close to {PDF(Dλ)}λ. By Definition 5, the
distribution of x must be statistically close to {Dλ}λ.

Claim 9. Sample′ runs in poly(λ) time.

Proof. Sample′ makes a single call to each of Sample,PDens,SampleUniform,
which, by assumption, are poly(λ) time algorithms along with a single multi-
plication, and so is also poly(λ) time.

By Claim 8 and Claim 9, Sample′ fulfills the definition of a sampler for {Dλ}λ

Proof of Explainability We next prove that Sample′ is explainable per Defi-
nition 3. The general idea here is that because x is chosen randomly using the
value p generated by PDens rather than directly from Sample, elements x′ with
similar PDens values are similarly likely to be explanation for x. We can then
use our precision parameter κ to define intervals of PDens(1λ, x′) and sample
an interval of ‘acceptable’ p values relative to the correct conditional density.
By restricting the number and size of such intervals, we can guarantee that a
polynomial number of calls to Sample finds an x′ in the chosen interval while
still ensuring the p is approximated fairly closely.

Lemma 5. Sample′ is explainable.

Proof. Consider the following Explain′ algorithm for Sample′.

PIdx(x, ρ)
– Let b = 1 + 1

ρ

– If PDens(x) = 0,
return ⊥

– Return
blogb(PDens(x))c

Explain′(1λ, 1κ, x)

– p
R←− [0,PDens(x)]

– x0 ← SampleUniform(1λ, p)
– Run 9 ln(PDFmax ) · κ2 · λ times:
• Generate fresh randomness r′.
• x′ ← Sample(1λ; r′).
• If PIdx(x0, 3κ) = PIdx(x′, 3κ).

* Set r0 = r′

* Set s0 = p
PDens(x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Return r = (r0, s0, t0)

– Return ⊥.

Claim 10. Explain′ runs in poly(λ, κ) time.
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Proof. Explain′ utilizes some efficient (polynomial time) subprocedures in Sample,
SampleUniform,PDens, and PIdx. Moreover, since PDFmax ∈ EXP(λ), log(PDFmax ) ∈
poly(λ), so the algorithm loops only a poly(λ, κ) amount of times.

Claim 11. The statistical distance of Game A and Game B in Definition 3
using Explain′ is < 1

κ + negl(λ)

Proof. We will proceed with a sequence of games argument, where Game 0 is
an execution of Game A using Sample′ and Game 11 is an execution of Game B
using Sample′, Explain′.

Game 0

– r = (r0, s0, t0)
R←− {0, 1}n × {0, 1} ×

{0, 1}n
– x← Sample′(x; r)
– Return r, x.

Game 0 (Sample′ Expanded)

– r0
R←− {0, 1}n, s0

R←− [0, 1], t0
R←−

{0, 1}n
– x′ ← Sample(1λ; r0)
– p′ ← PDens(1λ, x′)
– p = p′ · s0
– x← SampleUniform(1λ, p; t0)
– Return r0, s0, t0, x.

Game 1

– r0
R←− {0, 1}n, s0

R←− [0, 1], t0
R←− {0, 1}n

– x′′
R←− Dλ

– Run until break4

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′ and break
– p′ ← PDens(1λ, x′′)
– p = p′ · s0
– x← SampleUniform(1λ, p; t0)
– Return r0, s0, t0, x.

Game 2

– s0
R←− [0, 1], t0

R←− {0, 1}n

– x′′
R←− Dλ

– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′′ = x′

* Set r0 = r′ and break

– p′′
R←− [0,PDens(1λ, x′′)]

4 this process could potentially take unbounded time, but simply act as ’bridging’ steps
to make the change in distribution easier to see. The final game will be efficient
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– Set s0 = p′′

PDens(1λ,x′′)

– x← SampleUniform(1λ, p′′; t0)
– Return r0, s0, t0, x.

Game 3

– t0
R←− {0, 1}n

– (x′′, p′′)
R←− PDF(Dλ)

– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′ and break
– Set s0 = p′′

PDens(1λ,x0)

– x← SampleUniform(1λ, p′′; t0)
– Return r0, s0, t0, x.

Game 4

– t0
R←− {0, 1}n

– (x′′, p′′)
R←− PDF(Dλ)

– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′ and break
– Set s0 = p′′

PDens(1λ,x′′)

– x← SampleUniform(1λ, p′′)
– Set t0 = ExplainUniform(1λ, 13κ, p′′, x)
– Return r0, s0, t0, x.

Game 5

– (x′′, p′′)
R←− PDF(Dλ)

– x← SampleUniform(1λ, p′′)
– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′

* Set s0 = p′′

PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p′′, x)
* Break

– Return r0, s0, t0, x.

Game 6
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– (x′′, p′′)
R←− PDF(Dλ)

– Set x0 = x′′

– p
R←− [0,PDens(1λ, x0)]

– x← SampleUniform(1λ, p)
– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 7

– (x′′, p′′)
R←− PDF(Dλ)

– Sample x0
R←− Dλ conditional on PIdx(x0, 3κ) = PIdx(x′′, 3κ)

– p
R←− [0,PDens(1λ, x0)]

– x← SampleUniform(1λ, p)
– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 8

– (x0, p)
R←− PDF(Dλ)

– Sample x′′
R←− Dλ conditional on PIdx(x0, 3κ) = PIdx(x′′, 3κ)

– x← SampleUniform(1λ, p)
– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 9
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– (x0, p)
R←− PDF(Dλ)

– x← SampleUniform(1λ, p)
– Run 9 ln(PDFmax ) · κ2 · λ times
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If PIdx(x0, 3κ) = PIdx(x′, 3κ)

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 10

– (x, p)
R←− PDF(Dλ)

– x0 ← SampleUniform(1λ, p)
– Run 9 ln(PDFmax ) · κ2 · λ times
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If PIdx(x0, 3κ) = PIdx(x′, 3κ)

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 11

– x← Sample′(1λ)

– p
R←− [0,PDens(x)]

– x0 ← SampleUniform(1λ, p)
– Run 9 ln(PDFmax ) · κ2 · λ times
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If PIdx(x0, 3κ) = PIdx(x′, 3κ)

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 11 (Shortened)

– x← Sample′(1λ)
– r = (r0, s0, t0)← Explain(1λ, 1κ, x)
– Return r, x.
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Claim 12. The distributions output by Game 0 and Game 1 have statistical
distance negl(λ).

Proof. By Definition 2, the distribution of x′ in Game 0 (from Sample) and Game
1 (from Dλ) are statistically close. Now since r0 is uniform, the conditional prob-
ability of r0 on any fixed x′ is still uniform on all r0 such that Sample(1λ; r0) = x′

in both games. The only other changes are notational between x′ and x′′, which
are equal in this game.

Claim 13. The distributions output by Game 1 and Game 2 have statistical
distance 0.

Proof. This game only changes the way s0 is generated. In Game 1, the distribu-
tion of s0 is uniform on [0, 1]. In Game 2, it is the quotient of p′′ which is uniform
on [0,PDens(1λ, x′′)] and PDens(1λ, x′′), which is simply uniform on [0, 1].

Claim 14. The distributions output by Game 2 and Game 3 have statistical
distance 0.

Proof. By definition, (x′′, p′′)
R←− PDF(Dλ) is defined to be x′′

R←− Dλ and p′′
R←−

[0,PDens(1λ, x′′)], which is exactly how it is generated in Game 3.

Claim 15. The distributions output by Game 3 and Game 4 have statistical
distance 1

3κ + negl(λ).

Proof. By Definition 3, the distributions

Game A

– t0
R←− {0, 1}n.

– x← SampleUniform(1λ, p; t0).
– Return t0, x.

Game B

– x← SampleUniform(1λ, p).
– r ← ExplainUniform(1λ, 13κ, p, x).
– Return t0, x.

have statistical distance 1
3κ + negl(λ). Note this corresponds exactly to how

t0, x are generated in Games 3 and 4 respectively.

Claim 16. The distributions output by Game 4 and Game 5 have statistical
distance 0.

Proof. The changes in Game 5 only change the order some variables are gener-
ated, but not the way they are generated.

Claim 17. The distributions output by Game 5 and Game 6 have statistical
distance 0.
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Proof. In this game, we substitute all uses of p′′ with p. By Definition 1, x′′
R←−

Dλ, so (x′′, p) is distributed according to PDF(Dλ), so are statistically identical.

Claim 18. The distributions output by Game 6 and Game 7 have statistical
distance 1

3κ .

Proof. In this game, rather than setting x0 = x′′, we set x0 to be an element with
the same PIdx as x′′. Observe that x0 is only used to sample p, and by definition

of PIdx, |PDens(1λ,x0)−PDens(1λ,x′′)|
PDens(1λ,x′′)

is at most 1
3κ , and so we can conclude that the

uniform distribution on [0,PDens(1λ, x0)] and [0,PDens(1λ, x′′)] have statistical
distance at most 1

3κ .

Claim 19. The distributions output by Game 7 and Game 8 have statistical
distance 0.

Proof. By this game, note that p′′ is unused, so we can examine the difference
in how the joint distribution on x0, x

′′, p is generated. Let x0
∗, x′′

∗
, p∗ be some

set of values taken by x0, x
′′, p. We can see the probability density of this is in

Game 7 proportional to

Pr
x′′

R←−Dλ
[x′′
∗

= x′′]· Pr
x0

R←−Dλ
[x0
∗ = x0|PIdx(x′′

∗
, 3κ) = PIdx(x0, 3κ)]· 1

PDens(1λ, x0)

= Pr
x′′

R←−Dλ
[x′′
∗

= x′′] ·
Pr

x0
R←−Dλ

[x0
∗ = x0]

Pr
x0

R←−Dλ
[PIdx(x′′∗, 3κ) = PIdx(x0, 3κ)]

· 1

PDens(1λ, x0)

by definition of conditional probability

=
Pr

x′′
R←−Dλ

[x′′
∗

= x′′]

Pr
x0

R←−Dλ
[PIdx(x′′∗, 3κ) = PIdx(x0, 3κ)]

· Pr
x0

R←−Dλ
[x0
∗ = x0] · 1

PDens(1λ, x0)

via simple algebraic manipulation

=
Pr

x′′
R←−Dλ

[x′′
∗

= x′′]

Pr
x′′

R←−Dλ
[PIdx(x′′∗, 3κ) = PIdx(x′′, 3κ)]

· Pr
x0

R←−Dλ
[x0
∗ = x0] · 1

PDens(1λ, x0)

by simply renaming x0 to x′′

= Pr
x′′

R←−Dλ
[x′′
∗

= x′′|PIdx(x′′∗, 3κ) = PIdx(x′′, 3κ)]· Pr
x0

R←−Dλ
[x0
∗ = x0]· 1

PDens(1λ, x0)

again by definition of conditional probability. We can see the final line is the
probability density of x0

∗, x′′
∗
, p∗ in Game 8.

Claim 20. The distributions output by Game 8 and Game 9 have statistical
distance 1

3κ + negl(λ).
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Proof. Game 9 contains 2 changes. One is purely notational, where x′′ is elim-
inated and we directly test if PIdx(x0, 3κ) = PIdx(x′, 3κ). Since x′′ was drawn
from Dλ and x′ is drawn from Sample(1λ), the distribution of x′ is statisti-
cally close from this change. The other change made here is that we restrict
the loop to 9 ln(PDFmax ) · κ2 · λ iterations rather than an unbounded number.
Note that the loop terminating is entirely dependent on sampling x′ such that
PIdx(x0, 3κ) = PIdx(x′, 3κ). So we will show that in Game 8, such an x′ is found
in the first 9 ln(PDFmax ) · κ2 · λ iterations with probability ≤ 1

3κ + negl(λ).
To see this, we first want to observe that the total number of possible values

of PIdx is bounded by

log1+ 1
3κ

(PDFmax ) = ln(PDFmax )/ ln(((1 +
1

3κ
)3κ·

1
3κ ))

= ln(PDFmax ) · 3κ/ ln((1 +
1

3κ
)3κ) ≈ 3 ln(PDFmax ) · κ

as the PDens function is nonnegative and integral, so PIdx returns ⊥ or an integer
in the range [0, ln(PDFmax ) ·κ)]. Let the set A = {a1, a2, . . . aq} denote the range
of values PIdx can take.

We partition A into sets A0 and A1 such that

a ∈ A0 ⇔ Pr

[
x0 ← Dλ

PIdx(x0, 3κ) = a

]
≤ 1

9 ln(PDFmax ) · κ2

and similarly

a ∈ A1 ⇔ Pr

[
x0 ← Sample(1λ)
PIdx(x0, 3κ) = a

]
>

1

9 ln(PDFmax ) · κ2

Since A has 3 ln(PDFmax ) · κ elements, we can bound

Pr
[
x0 ← DλPIdx(x0, 3κ) ∈ A0

]
≤ 3 ln(PDFmax ) · κ

9 ln(PDFmax ) · κ2
=

1

3κ

If we suppose PIdx(x0, 3κ) ∈ A1, then we can see the probability that 9 ln(PDFmax )·
κ2 · λ fail to find an x’ is lower bounded by(

1− 1

9 ln(PDFmax ) · κ2

)9 ln(PDFmax )·κ2·λ

≈ e−λ ∈ negl(λ)

Since we know PIdx(x0, 3κ) ∈ A1 with probability at least 1 − 1
3κ , we can

lower bound the probability that this loop terminates within 9 ln(PDFmax ) ·κ2 ·λ
iterations as 1 − 1

3κ − negl(λ), which bounds the statistical distance between
Games 8 and 9 with 1

3κ + negl(λ).

Claim 21. The distributions output by Game 9 and Game 10 have statistical
distance negl(λ).
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Proof. In Game 10, we alter the way which we generate the variables x, p, x0.
From Lemma 3, the distributions of x0, p below are statistically close

(x0, p)
R←− PDF(Dλ) ( , p)

R←− PDF(Dλ)

x0 ← SampleUniform(1λ, p)

Using this, we can see that the following distributions of x0, x, p are statisti-
cally close as well (note that the lefthand side is the distribution generated by
Game 9)

(x0, p)
R←− PDF(Dλ)

x← SampleUniform(1λ, p)

( , p)
R←− PDF(Dλ)

x0 ← SampleUniform(1λ, p)

x← SampleUniform(1λ, p)

However, note in the latter distribution, x0 and x are generated indepen-
dently, so this is the same as the left side distribution below

( , p)
R←− PDF(Dλ)

x← SampleUniform(1λ, p)

x0 ← SampleUniform(1λ, p).

(x, p)
R←− PDF(Dλ)

x0 ← SampleUniform(1λ, p).

Applying Lemma 3 again, we can see the above 2 distributions are statisti-
cally close. We can see the final distribution above is the distribution of x0, x, p
in Game 10.

Claim 22. The distributions output by Game 10 and Game 11 have statistical
distance negl(λ).

D1

(x, p)
R←− PDF(Dλ)

D2

x
R←− Dλ

p
R←− [0,PDens(1λ, x)].

D3

x← Sample′(1λ)

p
R←− [0,PDens(1λ, x)].

Proof. By Definition 5, the distribution of (x, p) in D1 and D2 are identical.
From Lemma 4, D2 is statistically close to D3. Note D1 is the distribution of
(x, p) in Game 10 and D3 is the distribution of (x, p) in Game 11.

Combining Claim 12 through Claim 22, we get the total statistical distance
of Game 0 and 11 is ≤ 1

κ + negl(λ)
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Combining Claim 11 and Claim 10, we get the explainability of Sample′.

Combining Lemma 4 and Lemma 5, we get that Sample′ is an explainable
sampler for {Dλ}λ.

5.2 Instantiation on Discrete Gaussians

As an example, we can observe that the above gives us an explainable sampler
for discrete Gaussians centered at c(λ) with standard deviation σ(λ). For the
Sample algorithm, we can use any of the discrete Gaussian samplers present in

literature. We can use PDens(1λ, x) = e−
(x−c)2

2σ2 , which is efficienty computable,
and we can let SampleUniform(1λ, p) simply sample uniformly from integers on

the interval
[⌈
c− σ

√
−2 ln(p)

⌉
,
⌊
c+ σ

√
−2 ln(p)

⌋]
. Since the only randomness

here is sampling uniform integers on a fixed interval, this is easily explainable.

5.3 Impossibility of Generic Sampling without Heavy Element
Samplers

We give some evidence on the tightness of the above result by showing an im-
possibility of a black box construction of an explainable sampler from only a
sampler and probability density function to some distribution. This also high-
lights the inherent need of non-black-box techniques such as indistinguishability
obfuscation used to construct universal samplers in [21].

Theorem 23. There exists a distribution family {Dλ}λ such that there does not
exist an efficient explainable sampler for {Dλ}λ given oracle access to a sampler
Sample and probability density function PDens.

We defer the proof of this theorem to the full version of the paper [27].

6 Explaining Discrete Gaussian Samplers

In this section we show an explanation algorithm for the Miccancio-Walter [30]
Gaussian Sampling algorithm. This algorithm follows a series of works improving
the practicality of discrete Gaussian sampling [10, 12, 15, 31, 25, 2, 24, 34, 4, 22,
33]. This usually comes in the form of some combination of decreased runtime (in
either an offline or online phase), decreased memory usage, and decreased entropy
usage. While we could simply apply our transformation of Section 5 to the MW
sampler to get explainability, this may not in general preserve special properties
of many samplers that could be leveraged, and would add an additional overhead
for computing the probability density function. In this section we will show a
tailored approach to make it explainable as is.

We begin by giving an adapted definition for explainable discrete Gaussian
samplers that explicitly allows for the standard deviation and center of the dis-
tribution to be given as parameters. The syntax from the previous sections re-
stricts these to be functions of the security parameter λ. We then describe the
explainability algorithm for the Miccancio-Walter discrete Gaussian sampler.
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Discrete Gaussians

To talk specifically about discrete Gaussians, we will modify need to expand the
definition of distribution samplers to accomodate parameterization. The theo-
rems and their proofs shown in the previous sections translate analogously to the
definitions here. For completeness, the proofs will be available in the appendices.

Definition 6. We say an algorithm SampleDG(1λ, c, σ; r) is an fσ(λ)-discrete
Gaussian sampler for a discrete Gaussians if for all c ∈ [0, 1] and σ ≤ fσ(λ),
Sample runs in poly(λ) time and the output of SampleDG(1λ, c, σ; r) is statisti-
cally close to the discrete Gaussian on Z+c centered at 0 with standard deviation
σ. Note that this is equivalent to producing discrete Gaussians samples on Z cen-
tered at any c′ ∈ exp(λ), as we can simply generate a sample on Z+(−c mod 1)
centered at 0 and add c.

Definition 7. Analogously, we say a SampleDG algorithm is explainable if there
exists a (possibly randomized) algorithm ExplainDG(1λ, 1κ, x, c, σ) such that ExplainDG
runs in poly(λ, κ) time, and there exists a negligible function negl(λ) such that
for all c ∈ [0, 1], σ ≤ fσ(λ), the statistical distance between the following 2
distributions is at most 1

κ + negl(λ).

Game A

– r
R←− {0, 1}n.

– x← SampleDG(1λ, c, σ; r).
– Return r, x.

Game B

– x← SampleDG(1λ, c, σ).
– r ← ExplainDG(1λ, 1κ, x, c, σ).
– Return r, x.

While Theorem 7 does imply the existence of an explainable discrete Gaus-
sian sampler, oftentimes, it may be of interest whether existing implementations
using particular sampling algorithms are explainable. We’ll use this MW17 as
an example of a practical discrete Gaussian sampler and prove its explainabil-
ity, along the way hopefully demonstrating some techniques useful for proving
explainability of other sampling algorithms.

6.1 Miccancio-Walter ’17

Here, we look at a fairly recent method of sampling discrete Gaussians pre-
sented in [30]. Informally, this is done by taking a sampler SampleBase to discrete
Gaussians with small standard deviation, for which there are easier and more ef-
ficient to compute, then taking particular linear combinations to create discrete
Gaussian samples with large standard deviation in SampleI, before employing a
randomized rounding technique in SampleC to sample from a specific coset of Z.

In comparison to previous works, this has the advantage of better perfor-
mance, as well as taking time independent of the sample value. In addition,
much of the computation can be done offline, without knowing the standard
deviation or center an algorithm which calls the sampler may request.
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SampleI(1λ, i)
– If i = 0
• x← SampleBase(1λ, 0, s0)
• Return x

– x1 ← SampleI(1λ, i− 1)
– x2 ← SampleI(1λ, i− 1)
– y = zix1 + max(1, zi − 1)x2
– Return y

SampleC(1λ, c, k)
– If k = 0
• Return 0.

– g ← 2−k+1 · SampleBase(1λ, 2k−1c, s0)
– Return g + SampleC(1λ, c− g, k − 1)

SampleDG(1λ, c, s)a

– x← SampleI(m)
– K ←

√
s2 − s̄2k/sm

– c′ ← bc+Kxek
– y ← SampleC(1λ, c′, k)
– Return y

a This was referred to as SampleZ in [30]

We remark that the notation of the above algorithms has been slightly altered
to better fit with our definition of a discrete Gaussian sampler. To align with
our definition of statistical closeness, we consider k ∈ Θ(λ). As in the original
construction, we let si denote the exact standard deviation of SampleI, zi denote
the multipliers used in SampleI, and s̄k to be the standard deviation ‘added’
by SampleC, whose explicit values are determined recursively by the equations
below. The exact formula is given as a function of the smoothing parameter
ηε(Z) of the discrete Gaussian, which, for our purposes, we will only bound as a
value ∈ O(log(λ)). Similarly, m = m(λ) is a parameter controlling the precision
controlling the maximum standard deviation SampleDG can generate, which we
can think of as a value bounded by log(λ) + O(1). Readers of [30] may notice
the lack of a base parameter b which controls the ‘base’ for (e.g. binary, decimal)
which randomized rounding occurs. This has been fixed to 2 for simplicity.

s0 =
√

2ηε(Z), zi =

⌊
si−1√
2ηε(Z)

⌋

s2i =
(
z2i + max((zi − 1)2, 1)

)
s2i−1, s̄k = s0 ·


√√√√k−1∑

i=0

2−2i


Theorem 24. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Then SampleDG(1λ, c, s; r) is an explainable exp(λ)-discrete Gaussian sam-
pler for the family of discrete Gaussians centered at c with standard deviation s.

Proof. Lemma 6. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaus-
sian sampler. Then for i ≤ log(λ) + O(1), SampleI(1λ, i) is a sampler for the

family of discrete Gaussians centered at 0 with standard deviation ω(22
i

).

See [30] for proof.
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Lemma 7. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Then y = SampleC(1λ, c, k) is a sampler for the distribution of discrete
Gaussians on c+ Z with standard deviation s̄k.

See [30] for proof.

Corollary 25. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian
sampler. Let c′ be a sample from a discrete Gaussians on Z/2k with standard
deviation

√
σ2 − s̄2k and center c. Then for k ∈ Θ(λ), in SampleC(1λ, c′, k),

the output to the recursive call to SampleC(1λ, c′′, i) is statistically close to the
discrete Gaussian on Z + c′′ with standard deviation

√
σ2 − s̄2i .

Proof. This follows from a straightforward induction argument on i.

Lemma 8. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Then SampleDG(1λ, c, σ) is a exp(λ)-discrete Gaussian sampler.

See [30] for proof.

Lemma 9. Any O(log(λ))-discrete Gaussian sampler is explainable.

Proof. Note that we can bound the probability a sample is outside log(λ) stan-

dard deviations with 2 ·
∑∞
i=log(λ)σ e

− i2

2σ Since this decays exponentially, this is

≤ O(e− log(λ)2) ∈ O(λ− log(λ)). Thus, we can take the set Sλ to be the set of
elements within log(λ) standard deviations of the center. By Corollary 6 from
Section 4, this is explainable.

Lemma 10. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Then SampleI(1λ, i) is an explainable sampler for the family of discrete

Gaussians centered at 0 with standard deviation ω(22
i

).

We defer the proof of this lemma to the full version of the paper [27].

Lemma 11. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Let SampleDG2k(1λ, c, σ) be an explainable sampler for discrete Gaussians
on Z/2k with standard deviation σ and center c. Then for k ∈ O(λ), SampleC′(1λ, c, σ) =
SampleC(1λ,SampleDG2k(1λ, c,

√
σ2 − s̄2k), k) is an explainable discrete Gaus-

sian sampler.

We defer the proof of this lemma to the full version of the paper [27].
Using Lemma 10, we know the SampleI algorithm is an explainable sampler

for discrete Gaussians centered at 0 with standard deviation sm. We know from
this that c′ is a sample from a discrete Gaussian on Z/2k centered at c with stan-
dard deviation

√
s2 − s̄2k. Moreover, this is explainable (the only non-reversible

step is the rounding to the nearest 2−k, but since k ∈ Θ(λ), we can pick a
uniform preimage to the rounding and still be statistically close). Thus, using
Lemma 11, taking SampleDG to be the first 3 lines of SampleDG, we can conclude
SampleDG is explainable. Combined with Lemma 8, this gives us the statement
of Theorem 24.
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