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Abstract. A Bloom filter is a data structure that maintains a succinct
and probabilistic representation of a set S C U of elements from a uni-
verse U. It supports approximate membership queries. The price of the
succinctness is allowing some error, namely false positives: for any = ¢ S,
it might answer ‘Yes’ but with a small (non-negligible) probability.
When dealing with such data structures in adversarial settings, we need
to define the correctness guarantee and formalize the requirement that
bad events happen infrequently and those false positives are appropri-
ately distributed. Recently, several papers investigated this topic, sug-
gesting different robustness definitions.

In this work we unify this line of research and propose several robustness
notions for Bloom filters that allow the adaptivity of queries. The goal is
that a robust Bloom filter should behave like a random biased coin even
against an adaptive adversary. The robustness definitions are expressed
by the type of test that the Bloom filter should withstand. We explore
the relationships between these notions and highlight the notion of Bet-
or-Pass as capturing the desired properties of such a data structure.

1 Introduction

A Bloom filter is a data structure that maintains a succinct representation of a
set S C U of elements from a universe U. It supports an approximate version
of membership queries: for any x € .S, the Bloom filter must answer ‘Yes’ while
for any x € U \ S, it should answer ‘No’, but is allowed to have a small error
probability! (at most €), and answer ‘Yes’. That is, it admits false positives but
not false negatives.

The small memory required by the construction of Bloom filters (as opposed
to storing S precisely) and the fast query time make Bloom filters extremely
attractive in various applications. This comes at the price of a certain rate of
false positive - elements not in the set declared as being in the set. False positives
can affect performance, e.g., they can incur unnecessary disk access, lead to spam
emails that are not marked as spam, and allow misspelled words. Therefore, the
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false positive rate is the main correctness metric that interests us. It is important
to note that the false positive rate cannot be negligible if we wish to save space?.

When we are dealing with a data structure such as Bloom filters, with a non-
negligible false-positive rate the question is how should we define the correctness
guarantee: what does it mean to see bad events infrequently, i.e., how can we
claim the data structure behaves “nicely”. (In contrast, in most of cryptography a
“bad” event happens with only negligible probability and the definition of security
is that we aren’t likely to see it at all). One way to define the correctness is by
first fixing a sequence of inputs (equivalently, the queries) and then show an
upper bound on the false positive rate. However, this is not sufficient in many
scenarios, especially when the queries are chosen adaptively, based on previous
queries’ responses.

This work proposes several robustness notions for Bloom filters that allow
adaptivity and capture adversaries with different goals, using different evaluation
metrics. The robustness definitions are formalized as tests to the Bloom filter.
We investigate the relationships between these notions and propose one notion
as the most desirable one to define robust Bloom filters.

There are many variants of Bloom filters, for instance, where the Bloom filter
is initially empty and the set S is defined via insert queries, or where some extra
information is attached to each element and we wish to retrieve this information
in case the element is in the set. In this work we concentrate on the case where the
set S is fixed and the queries are adaptively chosen. Our definitions are relevant
to the other variants as well, and as far as we can see, so are the relationships
we found. In addition, the question of defining the resiliency of a data structure
with non-negligible failure faced with an adaptive adversary is relevant to other
data structures, and our results may apply to them as well.

Robust Bloom filters. The correctness of Bloom filters was mainly analyzed under
the assumption that we first fix a query = and then compute the error proba-
bility over the internal randomness. We refer to this as the static analysis. One
might ask what happens when an adversary chooses the next query based on the
response of previous ones? Does the error probability remain the same? Those
questions motivated the analysis of Bloom filters in adversarial settings, where
an adversary chooses her queries adaptively.

We refer to a Bloom filter as robust if it satisfies some correctness guarantee
under adaptive adversarial settings. Our wishful thinking is that a “robust” Bloom
filter should behave like a truly unpredictable biased coin; that is, each query
is false positive with probability at most ¢ regardless of the result of previous
queries. Indeed, this is the case in the static settings. However, it is not true and
more complex to formalize when considering a sequence of (mostly adaptively)
chosen queries. One reason this is not true is that seeing the response on previous
inputs might leak some information about the internal state of the data structure

2 The lower bound on memory requirements of a Bloom filter is n log 1/e where n is
the size of the set S and ¢ is the error probability.
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or the random bits used. This, in turn, can be used by an adversary that, for
example, wants to increase the false-positive rate.

An example to demonstrate an adaptive attack is when using Bloom filters
in Web cache sharing (see [12]). When a proxy gets a request for a web page, it
first checks if the page is available in its cache, and only then does it search for
the web page on another proxy cache. As a final resort, it requests the web page
from the Web. Therefore, proxies must know the cache’s content of other proxies.
For such a scheme to be effective, proxies do not transfer the exact contents of
their caches but instead periodically broadcast Bloom filters that represent it.
If a proxy wants to know if another proxy has a page in its cache, it checks
the corresponding Bloom filter. In case of false positives, a proxy may request a
page from another proxy, only to find that this proxy does not have that page. In
this case, a delay is caused. In the static analysis, one would set the error to be
small such that cache misses rarely happen. However, an adversary requesting
for web pages can time the result of the proxy, and learn the responses of the
Bloom filters. In turn, this might enable her to find false positives and cause
unsuccessful cache access, which leads to an overload. Note that the adversary
cannot repeat a false positive since the proxy will save it in its cache once a web
page is requested. A similar example was presented in [23].

1.1 Owur Contributions

We explore old and new notions of robustness for Bloom filters and study the
relationships between them. The precise definitions are given in Section 3. Our
definitions aim to capture the idea that a robust Bloom filter should behave like
a random biased coin even for an adaptive adversary. We highlight the notion of
Bet-or-Pass as capturing the desired properties of such a data structure. First,
as we shall see, it gives us the strongest guarantee we can (currently) imagine.
Second, it is not too strong: there is a Bloom filter satisfying this notion (one
based on a construction in [23]). Finally, it is relatively convenient to check
whether a suggested construction of a Bloom filter satisfies the definition.

Following the work of Naor and Yogev [23] we define robustness tests in
the form of a game with an adversary. The adversary chooses the set S and
adaptively queries the Bloom filter. The goal of the adversary differs between
tests. Naor and Yogev defined that following the adaptive queries, the adversary
must output a never-queried before element x*, which she thinks is a false
positive. They said that an adversary wins if 2* is a false positive. They wanted
the probability of an adversary to win (equivalently- make the Bloom filter fail
the test) to be at most €. We refer to the security notion of Naor and Yogev as
the Always-Bet (AB) test.

We define a new test, extending the AB test. First, we allow the adversary
to pass, meaning she does not have to provide any output. This gives the ad-
versary more flexibility and defines a more robust test. In addition, we define
an adversary’s profit: if she outputs (bets on) an element x* which is indeed a
false positive, she is rewarded; otherwise, she “pays”. If she chooses to pass, her
profit is zero. Our profit definition gives rise to a new metric to evaluate Bloom
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filters: we set the payments so that a random guess with probability € has an
expected profit of 0. We say that an adversary makes the Bloom filter fail in the
Bet-or-Pass (BP) test if her expected profit is noticeably larger than 0. In this
case, the Bloom filter is not BP test resilient, (not robust under the BP test).

The AB and the BP tests consider a one-time challenge, 2*. We also consider
tests with a “continuous” flavor; those tests examine the false positive rate in
the entire sequence of adaptive queries and look for “anomalies”. We propose a
new family of tests following our original desire to require a robust Bloom filter
to behave like a truly unpredictable biased coin. Informally, it tests whether a
sequence generated by the output of a Bloom filter on adaptively selected queries
“looks like” a biased random coin to any efficient observer (that examines some
property of the sequence). Since there can be elements that are always true
negatives and we are only interested in cases where an adversary increases the
false positive rate, we consider monotone observers only - observers that test a
monotone property of the sequence. In other words, observers that are sensitive
to the addition of false positives and not the reduction of ones. If a Bloom filter
does not fail in all monotone tests, we say it is monotone test resilient. We then
analyze a special case of the monotone test: we look at the expected number of
false positives. We say that a Bloom filter is expected count test resilient if for
all adversaries the expected number of false positive in ¢ queries is at most the
expected number of ones in a sequence of ¢t independent biased coin tosses.

Finally, we emphasize why adaptive queries are interesting by introducing a
test we call the semi-adaptive prediction test. In this test, the adversary commits
to a set of queries @) (non-adaptive) before getting access to query the Bloom
filter. The adversary aims to find a false positive element from ) that was not
queried yet (the adaptive part). A Bloom filter is a semi-adaptive prediction re-
silient if no adversary can find a false positive element from @ with a probability
of at least ¢.

Relationships. We explore the relationships between the different definitions (see
Fig. 1). We prove that a Bloom filter that is BP test resilient is also AB test
resilient. On the other hand, we show that a Bloom filter that is AB test resilient
is not necessarily BP test resilient. This suggests that the BP test is a more robust
notion than the AB test. We support this idea by showing that BP test resilience
implies monotone test resilience® while a Bloom filter that is AB test resilient is
not necessarily monotone test resilient. However, we show that AB test resilience,
in turn, implies expected count test and semi-adaptive prediction resilience. We
also demonstrate that the expected count test and semi-adaptive prediction are
weak notions: we construct Bloom filters that satisfy those notions and fail the
AB test. Finally, we show that monotone test resilience implies expected count
test resilience, supporting that the expected count is indeed a special case of
monotone test. We conclude that being resilient to the BP test guarantees the

3 This is reminiscent of the fact that in pseudorandomness the next-bit-test implies
all efficient tests.



Bet-or-Pass: Adversarially Robust Bloom Filters 5

desired robust properties and suggests it is the correct way to define a robust
Bloom filter.

BP Test Resilience 2 Monotone Test Resilience
ﬁ% ﬂl /
AB Test Resilience 5

gl —e—

Semi-Adaptive Prediction Resilience <ﬁ= Expected Count Test Resilience

Fig. 1. The relationships between the different definitions.

BP as a natural notion of robustness. Does the BP test capture the desired
behavior of a Bloom filter as a random (biased) coin? At first glance, the skeptical
reader might think that the option of passing is strange?. However, given that
BP test resilience implies monotone test resilience, we can get some intuition
why this is indeed the case. The idea is that when a Bloom filter fails in the
monotone test, we can use the monotone distinguisher to know when to bet.
This means that when a Bloom filter’s behavior is distinguishable from a random
coin, an adversary can exploit that to guess a false positive element with a high
probability (higher than a random guess).

Our work explores what it means to be a robust Bloom filter. When trying to
suggest a definition, we aim to achieve three requirements: First, the definition is
sufficient, i.e., it captures the idea that a robust Bloom filter should behave like a
random biased coin. Second, it’s not too strong, i.e., there exists a construction
of a Bloom filter satisfying this property. Lastly, it is easy to use, i.e., it is
formalized as a simple test for a Bloom filter. The BP test resilience definition
satisfies all these requirements, suggesting it is a natural notion of robustness.

Finally, we give an example to directly motivate the BP definition. Consider a
system containing k different components, each using a Bloom filter to store some
set (e.g., k web proxies with a Bloom filter holding their cache content). Further,
assume that the system as a whole can withstand a certain false positive rate,
denoted by epsilon. Suppose that there exists an adversary that, with noticeable
probability, can find a false positive element with high probability (greater than
epsilon) and knows to indicate when it happens. We can use this adversary in all
the k components simultaneously in the following way: we locate k' components
with a corresponding false positive element. We then query all those k' elements
at about the same time. This results in a short period with a high false positive

4 An analogy is situation in the casino game of blackjack, where at a certain point in
the game the participants may have a small advantage over the house, as more cards
are exposed (followed via “card counting”), and may choose to start betting then or
to increase their bets.
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rate in the system, which can cause a denial of service. Note that the other
notions fail to capture this attack.

The surprise exam and the AB and BP notions. We can demonstrate the dif-
ference between the AB and BP notions by thinking of these variants wrt the
famous surprise exam (or unexpected hanging) paradox [11]. Suppose a teacher
announces that a “surprise exam” will occur sometime in the next six days and
choose the date at random. On the evening of each day, a student can bet whether
the exam will happen the next day. If the student is correct, then she wins 5
dollars; if she is wrong, she loses a Dollar. In both settings the student can bet
only once. In the AB setting, she must bet in at least one day, and in the BP
setting, she can decide not to bet at all. The expected value in the AB setting is
0 (against a random day). In contrast, in the BP setting, the student can wait
until the last day and bet only if the exam did not take place before. In this case,
she knows the exam is on the last day and has a strictly positive expectation
(5/6). If the teacher does not chooses a day at random, but with some other
distribution, then we need a more sophisticated strategy, but it is doable.

Computational Assumptions and One-way Functions. Naor and Yogev [23] proved
existential equivalence between Bloom filters that are AB test resilient (against
a computationally bounded adversary) and one-way functions®. We refer to it as
the equivalence result. We ask whether this equivalence still holds given a Bloom
filter that is BP test resilient. The simpler direction shows that a Bloom filter
that is BP test resilient implies the existence of one way function (we get it im-
mediately by the implication of the BP test on the AB test). Showing the other
direction is a little bit more challenging. We show a modification of the construc-
tion of Bloom filter from [23] that is based on the existence of one-way functions
and prove it is BP test resilient. This, in turn, show the desired equivalence.

In the full version of this paper, we also ask whether weaker notions of robust-
ness imply one-way functions. We show that if one-way functions do not exist,
then any non-trivial® Bloom filter fails the expected count test the semi-adaptive
prediction test.

1.2 Related work

The first work to consider adaptive adversaries that choose queries based on the
respounse of the Bloom filter is by Naor and Yogev [23]. They defined an adver-
sarial model for Bloom filters through a game with an adversary. The adversary
has only oracle access to the Bloom filter and cannot see its internal randomness.
She can adaptively query the filter, and her goal is to find a never-queried-before
false-positive element. We continue this line of research by introducing new ad-
versarial models, suggesting new ways to evaluate the Bloom filter performance.

5 One-way functions are functions that, informally speaking, are easy to compute but
hard to invert.

6 Non-trivial Bloom filters are Bloom filters that require less space than the amount
of space required to explicitly store the set.
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Naor and Yogev also presented a tight connection between Bloom filters in their
model and one-way functions, which we extend to our settings.

Following [23|, Clayton, Patton, and Shrimpton [8] analyzed Bloom filters,
as well as other data structures such as counting Bloom filters and count-min
sketches, in adversarial settings. They analyzed the probability of getting some
predefined number of false-positive elements in a sequence of adaptive queries
(as opposed to the probability of finding one never-queried before false-positive
element). This type of analysis is similar to our expected count test.

Another move towards adaptivity was made by Bender et al. [2]. Similarly
to 23], they indicated that the bound of false-positive probability only applies
to a single fixed query, and a sequence of queries can have a much larger false
positive rate (simply by repeating a false positive query). Their main concern
was when an adversary repeats a false positive query (unlike Naor and Yogev,
which did not allow repeating queries). To deal with this type of attack, they
defined an adaptive filter: a filter that adapts to false positives, which means that
even for an element that was queried and returned as a false positive, repeating
it results in a false positive rate of at most €. Their analysis assumes that the
adversary could not find a never-queried-before element that is a false positive
with probability greater than ¢ when using the result of previous queries. Their
assumption can be achieved using the constructions in [23]. Therefore, their work
is orthogonal to Naor and Yogev (and ours), since their concern is dealing with
repeated queries and does not handle the issue of using adaptivity to find never-
queried false positives. Repeated queries were also discussed by Mitzenmacher
et al. [21] (adaptive cuckoo filter), and by Lee et al. [18] (telescoping adaptive
filter (TAF)).

The problem of defining correctness in adaptive settings was also investi-
gated in the streaming algorithms literature, where there is a growing interest
in adversarial streaming algorithms. These algorithms preserve their efficiency
and correctness even if the stream is chosen adaptively by an adversary that
observes the algorithm’s output (and therefore can depend on the internal ran-
domness of the algorithm). Hardt and Woodruff [15] showed that linear sketches
are inherently non-robust to adaptively chosen inputs and cannot be used to
compute the Euclidean norm of its input (while they are primarily used for this
reason in the static setting). Kaplan et al. [17] introduced a streaming problem
that shows a gap between adversarial and oblivious streaming in the space com-
plexity requirement. On the positive side, Ben-Eliezer et al. [1] presented generic
compilers that transform a non-robust streaming algorithm into a robust one in
various scenarios. Hassidim et al. [16] and Woodruff and Zhou [28] continued
their work suggesting better overhead.

1.3 Open Problems

Our work leaves open several interesting directions. The direct one is whether
Monotone Test Resilience implies BP Test Resilience (recall that we show the
other direction), or whether the two notions are separable. Are the techniques of
Bender et al. [2] compatible with our results? Namely, can we have a robust BP



8 M. Naor and N. Oved

secure Bloom filter against repetition? Another interesting avenue concerns the
idea of allowing to output “don’t know” (pass). To better capture the bit-security
of decision games, Micciancio and Walter permitted an adversary to output a
bot and redefined the advantage of the adversary conditioning on not outputting
a bot (Def. 9 in [20]). Outputting a bot is very similar to pass in the BP test, and
allowing pass and redefining the advantage gives a better notion. One wonders
if there is a connection between these two definitions and if our definition can
be applied in a more general setting (e.g., defining better bit-security for general
decision games). It seems that knowing you don’t know is significant in both
cases. The definitions are related but not identical. For instance, in our case, the
probability of the "secret bit" being 0 or 1 does not equal 1/2 (the probability of
it being 1, a false positive element, is €). In addition, our game is asymmetrical:
there is a difference between the bits 0 and 1 (we are only interested in the
adversary outputting 1). We believe that it can be applied in a more general
setting, but more work needs to be done to determine that.

2 Model and Problem Definition

For a universe U = [u] we are given a subset S C U of n elements. The set can
either be fixed throughout the lifetime of the Bloom filter or can be formed via
insert queries. As mentioned, we consider in this work the case where the set S
is fixed; however, our results can be extended to other settings.

Following the work of [23], we model a Bloom filter B = (B, B3) as a data
structure consisting of two parts: a setup algorithm B; and a query algorithm
B.. The setup algorithm is randomized, gets a set S as input, and outputs a
compressed representation of S, denoted by M. The query algorithm Bs, can
be randomized, is given a compressed representation of a set S, and answers
membership queries. It gets an element © € U and outputs 0 or 1, indicating
whether  belongs to S or not (and may be wrong for x ¢ S). For simplicity of
notation, we consider a probabilistic query algorithm that cannot change the set
representation. However, our results also apply to Bloom filters that can change
the set representation.

If x ¢ S and B3(B1(S5),x) = 1 we say that x is a false positive. The main
evaluation metric of a Bloom filter is the false positive rate.

Definition 1 (Bloom filter). Let B = (B, Bs) be a pair of probabilistic poly-
nomial time algorithms such that By gets as input a set S and outputs a rep-
resentation M, and Bs gets as input a representation M and a query element
x € U and outputs a response to the query. We say that B is an (n,e)-Bloom
filter if for all sets S of size n in a suitable universe U it holds that:

1. Completeness: For any x € S we have that Pr[By(By(S,z)) =1] =1
2. Soundness: For any x ¢ S we have that Pr[Bs(B1(S,2)) =1] <e¢,

where the probabilities are over the setup algorithm By and query algorithm Bs.

From here on, we always assume that B has this format and sometimes write
B(S, z) instead of By(B1(S5), x).
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The Adaptive Game. Def. 1 considers a single fixed input element x, and the
probability is taken over the randomness of the Bloom filter (and not over the
choice of z, for example). This is a weak guarantee that we want to strengthen.
We consider a sequence of ¢ inputs 1, ..., z; that is not fixed but chosen adap-
tively by an adversary.

Defining adaptivity requires specifying what information is made available
to the adversary to adapt. Here, we allow the adversary to see the responses of
previous queries before choosing the next one. We formalize this by defining a
game AdaptiveGame 4 ;(A\) where ) is a security parameter (see below). In this
game, we consider a polynomial-time adversary A = (A, As) that consists of
two parts: A; chooses the set S, and As gets as input the set S and oracle access
to the query algorithm (initialized with M) and perform adaptive queries. Az
aims to achieve a different goal in each robustness definition in order to make the
Bloom filter fail the game (equivalently, the test). We measure the ability of A to
make the Bloom filter fail with respect to her and the Bloom filter randomness.

To handle a computationally bounded adversary, we add a security parameter
A, which is given to the setup phase of the Bloom filter and the adversary as an
input (acts as a key length). We now view the running time of the adversary, as
well as her probability to make the Bloom filter fail, as functions of A\. Moreover,
it enables the running time of the Bloom filter to be polynomial in A and hence
the false positive probability € can be a function of A.

We use the notation negl for any function negl: N — R satisfying that for
every positive polynomial p(-) there is an N such that for all integers n > N it
holds that negl(n) < ﬁ. Such functions are called negligible.

Definition 2. The adaptive game AdaptiveGame 4 ;(A):

Mrlos and outputs a set S C U of size

1. The adversary Ay is given input
n.

2. By is given input (1)‘+"1°g“, S) and builds a representation M.

8. The adversary As is given input (1>‘+” logu S) and oracle access to Bo(M, -)

and performs at most t adaptive queries 1, ...,z to Ba(M,-).

We assume wlog that x; ¢ S for all ¢ € [t], since Bloom filters admit false
positives, but not false negatives, and also, Ay is given as input the set S.
Therefore a queried element can be either false positive or true negative.

Definition 3 (A test for Bloom filters). Let B be an (n,e)-Bloom filter.
For a security parameter X, an (n,t,e)-Test(\) 4+ start with an adaptive game
AdaptiveGame 4 ,(A\) with an adversary A. The test is defined by a function that
given the transcript of the game (including the set S) decides ‘succeed’ or ‘fail’.

We say that a Bloom filter is resilient for some test (or family of tests) if the
probability that any adversary makes it fail the test is upper bounded by some
value. This term is formalized for each test in Section 3.
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The role of t. The parameter ¢ indicates the number of queries the adversary
performs. When ¢ is not known in advance and unbounded, the adversaries must
be computationally bounded given the equivalence result of [23] (see Section
1.1). However, when ¢ is known in advance, the adversary does not have to be
computationally bounded: Naor and Yogev presented a construction of a Bloom
filter that is AB test resilient against computationally unbounded adversary using
O(n log% + t) bits of memory.

Inspired by Def. 2.5 in [23] we say that if B is resilient for any polynomial
number of queries, it is strongly resilient.

Definition 4 (Strongly resilient). For a security parameter A, we say that B
is an (n, €)-strongly Test(\) 4,; resilient, if for any polynomial p(-) andt < p(A,n)
it holds that B is an (n,t,e)-Test(A) .4, resilient.

An essential property of a Bloom filter is its memory size. Bloom filters
are used because their memory size is smaller than an explicit representation
of the set. We say that a Bloom filter uses m bits of memory if the largest
representation for all sets S of size n is at most m. Carter et al. [7] showed that
in order to construct a Bloom filter for sets of size n and error rate € one must
use (roughly) m > nlog% bits of memory (as opposed to nlogu bits needed to
answer exact membership queries). We can write this as ¢ > 2~ which leads
us to the following definition:

Definition 5 (Minimal error (Def. 2.7 in [23])). Let B be an (n,e)-Bloom
filter that uses m bits of memory. We say that g = 2= % is the minimal error
of B.

A simple construction of a robust Bloom filter can be achieved by storing
S precisely, and then there are no false positives for an adversary to find. The
disadvantage of this solution is that it requires a large memory, while Bloom
filters aim to reduce the memory size. Similarly, a Bloom filter with a substan-
tially low false-positives rate is robust. We are interested in a robust non-trivial
Bloom filter. Roughly speaking, a non-trivial Bloom filter is a Bloom filter with
e substantially far from 0 and 1 and a large universe (compared to the memory
size, so it will not be possible to store the set explicitly). For convenience, we
use the definition of [23].

Definition 6 (Non-trivial Bloom filter (Def. 2.8 in [23])). Let B be an

(n,e)-Bloom filter that uses m bits of memory and let £g be the minimal error of

B. We say that B is non-trivial if for all constants a > 0 it holds that u > “3*
0

and there exists polynomials p1(-), p2(+) such that ﬁ <gp<e<l— pz%n) 7

" If € is negligible in n, then any polynomial-time adversary has only a negligible chance
of finding any false positive. In that case, we can transform any adaptive adversary
into a non-adaptive adversary since it knows the answers already. The same argument
appears in [6] as Lemma 4. A similar claim applies to the requirement that e will be
substantially far from 1.
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Let A be the security parameter. It holds that n = poly(\).® Therefore we
get that 9 cannot be too small and £ cannot be too large. Le.

1 1
<ep<e<l-—

(1)

for some polynomials ¢ () and ga().

2.1 Prediction and Pseudorandomness

Pseudorandomness captures the idea that an object can “look” completely ran-
dom even though it is far from random, since it was generated from a much
shorter seed. One approach to defining it formally is via indistinguishability: Let
Dist be a distribution on ¢-bit strings. We say that Dist is pseudorandom if it is
infeasible for any polynomial-time algorithm to distinguish (in a non negligibly
better way than guessing) whether it is given a string sampled according to Dist
or whether it is given a uniform ¢-bit string. This means that pseudorandomness
is a computational relaxation of true randomness.

The definition above introduces many tests: each polynomial-time algorithm
(distinguisher) serves as a single test. An example of such a test is an algorithm
D that returns ‘1’ if the input string’s first bit is 0. Therefore, the first bit of
a string sampled from Dist should be equal to 0 with probability very close to
1/2, since the first bit of a string sampled from a uniform distribution equals
0 with probability exactly 1/2. Otherwise, D can distinguish between the two
distributions.

An alternative approach to defining pseudorandomness is having a single
type of test, the next bit test. In this test, a probabilistic polynomial-time algo-
rithm is given a prefix of bits. It aims to predict the next bit of the source with
a probability of success significantly greater than 1/2 (this is the Blum-Micali
definition [5]).

As Yao [29] showed, these two definitions are equivalent and the infeasability
of predicting some bit of a given source can serve as a test for randomness.
We show something of a similar nature. Consider a Bloom filter, an attacker
and the sequence of bits representing whether a false positive occurred or not
on a sequence of queries. Since the probability of a false positive is at most &,
we deal with a non-uniform output distribution. We want this distribution to
be indistinguishable from a random independent biased sequence. This means
that the false positive events are random independent events even in the case of
adaptive queries. We formalize it in the monotone test.

Similar to the result in pseudorandomness, we want to define a prediction
test that implies the monotone test. Our starting point is the natural extension
of the next bit test for biased bits. This test requires that no observer succeeds
in predicting the bits of the source with a probability greater than the bias.
However, Schrift and Shamir [27] showed that the natural extension is no longer

8 Since we want the adversary to run in polynomial time in the security parameter.
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a universal test for independence. Therefore, we choose a different approach that
draws inspiration from the world of gambling.

There are tight connections between gambling and knowledge of a sequence.
Cover and Thomas ([9] Chapter 6) used gambling to express the ability to pre-
dict. They investigated the relationship between information theory and gam-
bling. They looked at a horse race and presented two equivalent ways to describe
the odds. We show one of them, which is referred to as b—to—1: the gambler will
pay 1 dollar after the race if his horse loses, and pick up b dollars after the race
if his horse wins. They looked at the gambler’s wealth, which he wishes to max-
imize. We use their gambling methodology to define a robust Bloom filter. We
let an adversary bet on a false positive: she outputs an element that she believes
is a false positive. She gets rewarded if her output element is a false positive,
while she is penalized if she outputs a true negative. We allow the adversary to
pass, meaning she does not have to bet. In this case, she does not gain or lose
any value. She wishes to maximize her wealth as well. We formalize it in the
Bet-or-Pass Test and show it implies the monotone test.

3 Defining Robust Bloom filters

3.1 Background

We have a data structure, Bloom filter, with a non-negligible rate of false pos-
itives, denoted by €. We want to claim it performs well. We can think of the
Bloom filter response to a sequence of queries as a sequence of independently
biased coin tosses (with bias € to 1). This is mostly the case when an adver-
sary performs non-adaptive queries; she chooses her queries without seeing the
response of the Bloom filter on previous queries. In that case, she gets a false pos-
itive (equivalently, one as a response) with probability at most ¢ in each query.
Our wishful thinking is that a Bloom filter behaves like a truly unpredictable
biased coin even when an adversary sees the response of the Bloom filter on
previous queries. Meaning it performs well (robust) even in adaptive settings.
However, this wish is a bit complex to formalize. Still, we suggest robustness
definitions that try to capture this idea.

Our definition of robust Bloom filter comes in several flavors, depending on
whether the adversary aims to find a never-queried-before false-positive element
or increase the false-positive rate; what the evaluation metric is, and depending
on the information available to the adversary. We discuss each of these choices
in turn.

Adaptive vs. Non-adaptive Queries. When discussing adaptivity, we refer to the
settings where an adversary can choose the next query based on the response of
the Bloom filter on previous ones.

Our wish that a robust Bloom filter behaves like a truly unpredictable biased
coin can be hard to meet, even in the non-adaptive case. False-positive elements
are not necessarily random independent events, e.g., if the universe is divided
into pairs, and both the elements in each pair are either positive or negatives.
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However, the problem is more serious when discussing the adaptive case. In the
above example, an adversary can query one element in each pair and query the
other only if the first one is positive, resulting in a higher false-positive rate.

Therefore, we consider adaptive settings when defining robust Bloom filters:
the adversary can adaptively query the filter. Nevertheless, we also analyze the
non-adaptive settings and, more precisely, the ability of an adversary to predict
a false positive element in the case of non-adaptive queries. We analyze the non-
adaptive settings to understand the significance of seeing the responses of the
Bloom filter.

One-Time Challenge vs. “Continuous” Challenge. We consider both a one-time
challenge and a continuous challenge; By one-time challenge, we refer to tests
in which an adversary performs ¢ adaptive queries, and her goal is to find one
never-queried-before false positive.

Some Bloom filter applications are sensitive to clusters of false positives, e.g.
when Bloom filters are used to hold the content of a cache. An adversary that
finds many false positives can cause unsuccessful cache access for almost every
query, resulting in a Denial of Service (DoS) attack. Motivated by this, we also
consider “continuous” tests, which examine the false-positive rate in a sequence
of t adaptive queries.

3.2 Robustness in All Shapes and Forms

We will describe five definitions of robustness for Bloom filters capturing various
aspects of robustness. For each definition we outline a test for the Bloom filter.
If the Bloom filter is resilient wrt the test against all adversaries, then we say
that it is robust under the corresponding definition. In each of these tests, the
adversary performs t queries with a different challenge to achieve, which gives rise
to a different type of robust Bloom filter. The difference between the definitions
is the goal of the adversary and what she has access to, summarized in Table 1.

The conclusion of this investigation into the various notions of robustness is
that the most desired notion is Bet-or-Pass.

The Always-Bet (AB) Test Our starting point is the definition of [23]: the
adversary participates in an adaptive game AdaptiveGame A,t()‘) and then out-
puts an element z* that was not queried before (and does not belong to S), which
she believes is a false positive. The robustness is defined by the probability that
the element is indeed a false positive.

The AB Test ABTest 4 4()\)

1. A participate in AdaptiveGame 4 ,()) (Def. 2).

2. A outputs z*.

3. The result of the test is 1if z* ¢ SU{xy,...,2:} and Bo(M,2*) =1, and 0
otherwise. If ABTest4,(\) = 1, we say that A made the Bloom filter fail.
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HTest Name [Queries [Adversary Goal H
Always-Bet Adaptive Find a never-queried-before false positive
element
Bet-or-Pass Adaptive Bet on a never-queried-before false positive
element or pass
Monotone Adaptive Find an event that happens more fre-

quently (non-negligibly) than a truly ran-
dom coin tosses

Expected Count Adaptive Find more than ¢ -t false positive in expec-
tation

Semi-Adaptive Pre-|Non-Adaptive |Find a false positive among the queries
diction chosen beforehand

Table 1. A table comparing the settings and the adversary goal within different ro-
bustness definitions.

Definition 7 (Always-Bet (AB) Test’). Let B = (By, By) be an (n,¢)-
Bloom filter. We say that B is an (n,t,e)-Always-Bet (AB) test resilient if for
any probabilistic polynomial-time adversary A = (Aj, As) there exists a negligible
function negl such that:

Pr{ABTest 4,.(A\) = 1] < e + negl()\),

where the probabilities are taken over the internal randomness of B and A.

The Bet-or-Pass (BP) Test The the adversary in the AB-test (Def. 7) must
output a challenge element x*. We suggest a definition that allows the adversary
to pass; the adversary does not have to output an element. We define an adver-
sary’s profit : she gets rewarded if her output element is a false positive, while she
is penalized if she outputs a true negative. She does not gain or lose any value
when she chooses to pass. We use the expected profit to define the robustness:
we want the expected profit to be 0. More formally, the adversary participate in
an AdaptiveGame 4 ,()). She outputs (b, 2*) where x* ¢ SU {z1,..., 7} is the
challenge and b € {0, 1} indicates whether she chooses to bet (b = 1) or to pass
(b = 0). If she passes, z* is ignored and can be a random element.

The BP Test BPTest 4.+(\)

1. A participate in AdaptiveGame 4 ,()) (Def. 2).
2. A outputs (b, z*).
3. A’s profit C4 is defined as:

%, if £* is a false positive and b =1,
Cy = —ﬁ, if * is not a false positive and b =1,
0, ifb=0.

9 In [23] resilience to this test is simply referred to as adversarial resilient Bloom filter.
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Definition 8 (Bet-or-Pass (BP) Test). Let B = (Bj, Bs) be an (n,¢)-
Bloom filter. We say that B is an (n,t,e)-Bet-or-Pass (BP) test resilient if
for every probabilistic polynomial-time adversary A = (A1, As) participating in
BPTest 4 +(\), there exits a negligible function negl such that:

E[C] < negl()).
The expectation is taken over the internal randomness of B and A.

Note that the expected profit of an adversary outputting a random guess
with probability at most € to be a false positive is at most 0:

1
1—c¢

1
E[C4] =Priz* isFP A b=1] o Pr[z* is not FP A b=1] <0

<e >1—¢

The BP test allows an adversary to pass (although if she wants any chance to
make the Bloom filter fail, the probability she passes must be noticeably far from
1). Adding the pass option suggests that the BP test is a stronger requirement
and more robust notion than the AB test: consider a Bloom filter that behaves
“nicely” in most cases except for a few bad cases. The probability of occurrence of
the bad cases is negligible. Then this Bloom filter is AB test resilient. However,
it is not BP test resilient. For the BP test, an adversary can become “active”
(bets) only when she observes the occurrence of some bad cases. Given such bad
cases, her success probability is not negligible.

We support this intuition by showing that BP test resilience implies AB test
resilience, while the other direction does not necessarily hold. In addition, we
consider another family of tests: the monotone tests, which resilience to them
is implied by the BP test but not by the AB test.

One may note two differences between the AB and BP tests: the adversary
must always provide a candidate false positive in the AB test, while it is optional
in the BP test. In addition, they differ in the robustness metric: the probability
of outputting a false positive vs. the expected profit. However, for the adversaries
that always output an element with b = 1 we show that the robustness metric is
equivalent (in Claim 3.2 below), meaning that allowing the adversary the option
to pass is the actual difference between the two.

Let A be an adversary performing ABTest 4 ¢(A) (Def. 7). We can think of it
as an adversary performing BPTest 4 (\) (Def. 8) with b = 1 always. Therefore
her expected profit is:

1 1
E[C 4] = Pr[z™ is FP] - — — Pr[z™ is not FP]- T2
€ —€
Claim. Let Abe an adversary in BPTest 4 () game that always sets b = 1. Then

there exists a negligible function negl; such that Pr[z* is FP] < & + negl, (\) iff
there exists a negligible function negl, such that E[C 4] < 0 + negly ().

Proof. Let A be an adversary in the BPTest 4 +(\) game that always sets b = 1.
Assume that there exists a negligible function negl; such that

Priz* is FP] < e + negl; (\).
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Then,

1
1—¢

1
E[C 4] = Pr[z™ is FP] - - Pr[z” is not FP] -
1 1

< (e + negl; (M) - m T
_ negly ()
e(l—e¢)

< negly (M),

for some negligible function negly. The last inequality follows from Inequality (1).
Now, assume that there exists a negligible function negl, such that

E[C.4] < negly()).

Therefore,
. 1 . 1
E[C4] = Pr[z™ is FP] - - Pr[z* is not FP] - T—% < negly (M)

1 1
< — lo (A
e(l—eg) — 1—5+neg2( )
Pr[z" is FP] <e+4¢(1 —¢) -negly(A) < e + negly (A) |,
——

<05

Pr[z* is FP] -

for some negligible function negl;, as desired.

Monotone Efficient Tests Recall our desire (“wishful thinking") that a “ro-
bust” Bloom filter should behave like a truly unpredictable biased coin; It is
not clear for both the AB and BP tests whether they satisfy this wish. To
treat it more formally we consider monotone tests. A monotone test consists
of AdaptiveGame 4 ,()) as before, but now we are not interested in any specific
output element. The test examines the response of the Bloom filter on t adaptive
queries performed by an adversary .A. Continuing the idea of biased coin tosses,
we would like to think of false positives as random independent events with a
probability smaller or equal to . We compare the Bloom filter response on a
sequence of t adaptive queries to a sequence of independent biased bits of length
t with bias ¢ (probability of 1 is €).

In this test, we consider monotone functions. Informally, a monotone function
is a function that can only increase when we flip a 0 in the input string to 1:

Definition 9 (Monotone Function). Let t € N. We say that a function
f:{0,1}* — {0,1} is monotone if for every pair of neighboring strings x,z' €
{0,1}* that are equal in all locations except in one index 1 <i <t, i.e. x; = x3
forallj # i and x; = 0 and z;, = 1, we have that f(x) = 1 implies that f(z') = 1.
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The probability of a false positive can be less than e, though this is hardly dam-
aging. We are interested in clusters of false positives. This is what the monotone
property aims to model.

Let f:{0,1}* — {0,1} be a monotone function and Dy a polynomial time
algorithm computing f. We consider distinguishers of the form Dy.

We now present the formal definition. The fundamental realization is that
a robust Bloom filter should be resilient to all (efficient) monotone tests. That
is, for any efficient monotone test (or distinguisher) D, the probability that D
returns 1, when given the Bloom filter responses on a sequence of adaptively
selected queries, should be close (from below) to the probability that D returns
1 when given an independent biased sequence of the same length and with bias
E.

Definition 10 (Monotone Test Resilient). Let B = (By, B2) be an (n,¢)-
Bloom filter. We say that B is (n,t,c)-monotone test resilient if for every mono-
tone probabilistic polynomial-time algorithm (distinguisher) D: {0,1}* — {0,1}
and every probabilistic polynomial-time adversary A = (A1, As) participating in
an AdaptiveGame 4 ,(A) there exits a negligible function negl such that:

e — g <
(Pr [D(S) =1~ Py [D(S.) = 1] < negl(3)
where G 4 is the distribution of the Bloom filter outcomes on A’s t queries and
B. is a distribution of independent biased sequence of length t with bias €.

Note the similarity and differences with the notion of cryptographic pseudo-
randomness (see Goldreich [13]). In our setting we consider only monotone
polynomial-time tests (whereas in the notion of cryptographic pseudorandomness
all polynomial-time tests are considered) and we look at the difference between
the probabilities without an absolute value (whereas there the absolute value
should be negligible).

We give examples for relevant monotone tests. The first one is the FP’s
count distinguisher, denoted by D, for some w < t. Let s € {0,1}t. We
define,

Du(s) 1, if #1 in s is greater than w,
S) =
v 0, otherwise.

D,, outputs 1 iff the number of ones (equivalently, false-positive elements) is
greater than w. D is monotone. Another example is a Cluster distinguisher
that outputs 1 iff the sequence contains w consecutive ones. Indeed, this defi-
nition captures if a cluster of false positives is found in a Bloom filter response
since the probability of finding a cluster of “1” is negligible in a bias coin tosses.

The Expected Count Test We use AdaptiveGame 4 ;(A). Similar to the mono-
tone test, we are not interested in any output. Inspired by Clayton et al. [8], and
as a special case of the monotone test, we look at the number of false positive
elements that an adversary finds during her ¢ adaptive queries. Let A be an
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adversary participating in AdaptiveGame 4 ;(\) (Def. 2). Let Q = {x1,..., 2}
be the queries performed by A. Denote the number of false positive queries by
#FP, = [{z; | Bo(M,2;) =1 and z; € Q \ S}|.'® We want to upper bound the
expected number of false positives queries. Formally,

Definition 11 (Expected Count Test). Let B = (B, By) be an (n,€)-Bloom
filter. We say that B is (n,t,€)-expected count test resilient if for any probabilistic
polynomial-time adversary A = (A, As) participating in AdaptiveGame 4 ;(\)
there exists a negligible function negl such that:

E[#FP;] <e-t+ negl(X),

where the expectation is taken over the internal randomness of B and A.

The Semi-Adaptive Prediction Test Finally, we define a semi-adaptive test:
the adversary chooses the queries in advance (non-adaptively) and needs to find
a false positive element using oracle access to the Bloom filter (adaptively). This
test allows us to evaluate the “power” of adaptive queries.

We formalize this by defining a game, SemiAdaptiveGame 4 ,()). This is done
in a fashion similar to AdaptiveGame 4 ;(\): we consider a polynomial-time ad-
versary A = (A1, As) that consists of two parts: A4; chooses the set S and
commits to ¢ distinct queries x1,...,x;, and Ay gets as input the set S, the
queries 1, ..., x; and oracle access to the query algorithm (initialized with M).
Ao aims to find a false positive element among the ¢ queries without querying
this element explicitly.

The semi-adaptive game SemiAdaptiveGame 4 ,()):

1. The adversary A; is given input 1**1°8% and outputs a set S C U of size

n and t distinct queries x1,...,2; .1
2. B; is given input (1>‘+"10g“, S) and builds a representation M.
3. The adversary A is given input (1/\+" logu g (z1,... ,xt)) and oracle access

to Bo(M, ). For i € [t]:
(a) Az chooses one of the following: bet on x; to be a false positive or query
Bo(M,x;). If Ao choose to bet, then z* < z; and the game is stopped.
Else, she continues.
4. 5+ x4
5. The result of the game is 1 if z* ¢ S and Ba(M,z*) = 1, and 0 otherwise.
If SemiAdaptiveGame 4 ,(\) = 1, we say that .A made the Bloom filter fail.

Definition 12 (Semi-Adaptive Prediction Resilient). Let B = (By, Bs)
be an (n,e)-Bloom filter. We say that B is an (n,t,c)-semi adaptive prediction

10 Note that we count the number of false positives without duplicates to not over-credit
the adversary.

11 For convenience, we treat the set of queries as an ordered set. The order can be
determined by the adversary when she queries Ba.
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resilient Bloom filter if for every probabilistic polynomial-time adversary A =
(A1, As) there exits a negligible function negl such that:

Pr[SemiAdaptiveGame 4 ,(A) = 1] < & + negl(\).

Note that we allow the adversary to repeat queries in all the mentioned above
definitions, though repeated queries are not counted. We are only interested in
its ability to find “fresh” false positive elements, as opposed to [2] where the
Bloom filter false-positive rate has to be at most € even if an adversary repeat
the same query ¢ times. The latter guarantee forces the Bloom filter to update its
internal state after each query, while in our case, it is unnecessary but allowed.

4 Relationships Between the Various Notions of
Robustness

In Section 3 we defined five different robustness tests. This section shows the
relationships between them: which test gives us the most robust Bloom filter
and which are the weakest tests. As we shall see, the most desirable notion for a
robust Bloom filter is that of Bet-or-Pass. This notion satisfies our desired three
requirements: first, it is sufficient, meaning it satisfies the security requirements.
Second, it is not too strong: we present a construction of a Bloom filter satisfying
the Bet-or-Pass definition. Finally, it is easy to use: it is formalized as a simple
test for a Bloom filter.

4.1 Implications

We begin by showing which definition implies which (see Fig. 2). All the impli-
cations are true in the strong way; that is if Test; implies Tests; then a Bloom
filter is strongly Test; resilient is also strongly Tests resilient. We present our re-
sults considering a polynomial-time adversary; however, they also apply against
unbounded adversaries if ¢ is known in advance.

BP Test Resilience 2 Monotone Test Resilience
|
AB Test Resilience s 5
ﬂ4 \
Semi-Adaptive Prediction Resilience Expected Count Test Resilience

Fig. 2. Tests’ Implications
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The BP Test

Theorem 1. Let 0 < ¢ < 1 and n € N. Let B be an (n,¢c)-strongly BP test
resilient Bloom filter. Then B is an (n, e)-strongly AB test resilient Bloom filter.

Proof. Appears in the proof of Claim 3.2.

Theorem 2. Let 0 < ¢ < 1 and n € N. Let B be an (n,e)-strongly BP test
resilient Bloom filter. Then B is also (n,e)-strongly monotone test resilient. .

Proof. Suppose, towards contradiction, that B is not an (n, )-strongly monotone
test resilient Bloom filter. There exists a monotone probabilistic polynomial-time
test D and probabilistic polynomial-time adversary A performing ¢ < poly(\,n)
queries such that D distinguish G 4, the vector indicating whether a false positive
occurred or not, from the biased independent sequence B.; that is, for some
polynomial p and infinitely many \’s,

1
st [PE) =11 = R, D) =1] 2 s

(2)

For each A satisfying Eq.(2), recall that ¢t < ¢(\) for some polynomial g. We
define ¢ + 1 hybrids. The i-th hybrid (i = 0,1,...,t), denoted H}, consists of the
i-bit long prefix of G 4 followed by the (¢ — ¢)-bit long suffix of B..

Claim. There exists ¢* € {1,...,t} such that

1
sggi* P) =1~ SEEI'T**[D(S) =1= p(A) -t

(3)

Proof. The proof is immediate by Eq. (2), the pigeonhole principle and the
definition of the hybrids. In particular, we use the fact that Hi = G4 and
H) = B..

We now define an adversary Apgp for the BP test. For simplicity of the analysis,
we assume that App knows ¢*. The idea is that monotonicity implies that an
adversary can know when to bet. Agp produce a (i* — 1)-bit long prefix using
A’s queries and a (t — i* — 1)-bit long suffix that contains random biased bits.
Then, she gives the distinguisher the concatenated sequence twice: one time when
there is 0 in the *-th index and one time where there is 1. If the distinguisher is
sensitive to this change, then Apgp chooses to bet on x;+. Otherwise, she passes.

Adversary Agp

Set ¢ =1*

Run A for i — 1 queries @1,...,2;_1. For each j € [i — 1] let y; = B(S, z;).
Select 741, ..., r, independently with bias ¢ in {0,1} (Pr[r; = 1] = ¢).

If D(yl, ey Yi—1, 1,7’1'_._1, N ,T‘t) 7£ D(yl, ey Yi—1, O,Ti+1, PN ,Tt), then bet
b =1 and output A’s ith query z;.

5. Else, pass: b = 0 (meaning, the adversary does not bet in any round)

W N
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To analyze the success of Agp define two sets of sequences from {0, 1} 1.

The first one is BET; which is defined as

{ylv"'7yi—17ri+17"' art‘D<y17"'ayi—1a17’ri+17' "7Tt) 7& D(yla

and the second one is ONE; which is defined as

{y17"'7yi—17ri+17~-' art‘D(yla"'ayi—1717ri+1)---;rt) = D(yh

By the monotonicity of D we have that if

Dy, Yi—1, L, mige1, oo 5me) DYy, ¥im1, 0,41, - -

ayi—1a07ri+17 s

ayi—laoari-‘rl;-'-

then D(y1,...,yi-1,1,741,...,7¢) = 1 and D(y1,...,¥i-1,0,7541,...,7¢) = 0.

Using this notation we have:

Pr [D(S)=1]=Pry1,-- -, Yir—1,Ti*41,---,7+ € BET;» A xy~ is FP]

SeH{"

+Prlys, .., yis 1,741, -7t € ONE]

and,

Pr [D(S)=1]=¢-Prlys,...,yi—1,741,...,7 € BET;«]

SeHI" !

+ Pr[yl, ey Yir 1, T 1, ..., T € ONEZ*],

where the probabilities are over the internal randomness of B and A and the

biased coin flips. Combining the above with Eq.(3) we get:

1
POV E S SePgi" [D(S) =1] - SEII:;H[D(S) =1

= Pr[yl,... yYix =1, Tix 41, --,T¢ € BETl* A T 18 FP]

—e-Prlyt, .., Yir—1,Tir41,- .-, 7t € BET ;]

Hence we get that the probability that App bets is non-negligible:

PI'[b = 1} = Pr[yl, e 7yi*,1,ri*+1,. oy Tt S BETZ*] 2

p(A)-t-(1—¢)

and the probability that App outputs a false positive element, when she bets,

is noticeably greater than e:

Pr[z;« is FP |b=1) = Pr[z; is FP | y1, ..., Yir—1, Pir41y - -, 7t € BET;]
o PI‘[JZZ‘* is FP/\yl,...’yi*_l,Ti*_;’_l’...77"t S BETI*}

Prlys, ..., yis 1,741,y 7e € BET:]

1
p(A) -t

> + €.

Therefore the expected profit of Agp is noticeably greater then 0, as desired.

ﬂ“t)}

art)

1.
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The AB Test

Theorem 3. Let 0 < ¢ < 1 and n € N. Let B be an (n,¢e)-strongly AB test
resilient Bloom filter. Then B is also (n,€)-expected count test resilient.

Proof. Let 0 < ¢ < 1, n € N and let B be an (n,¢)-strongly AB test resilient
Bloom filter. Assume, for contradiction, that B is not an (n, €)-strongly expected
count test resilient. Meaning there exists a PPT adversary A that makes at most
t < poly(A, n) queries, a polynomial p(-) such that for infinitely many \’s
E[#FP;] > e-t+ !
t] >e€- —_
p(N)

For convenience we assume that the queries were distinct. We use A to build an
adversary A’ that causes B to fail in the (n,t,¢)-AB test.

Adversary A’

1. Choose a random number j € [t].
2. Runs A for j — 1 queries using oracle access to B.
3. Output z;.

Observe that

t t
E[#Fpt] =E Z ]1{931 is FP}] = ZPI‘[J}Z' iS FP]
i=1 i=1
Then,
St Prlz; is FP] 1 1
Pr[ABTest 4/ :(A\) = 1] = = > e+ >e4 —,
| =t t POt~ 4N

for some polynomial ¢(-), where in the last inequality we used the fact that
t < poly(\,n).

Theorem 4. Let 0 < e < 1 and n € N. Let B be an (n,e)-strongly AB test
resilient Bloom filter. Then B is an (n,¢)-strongly semi-adaptive prediction re-
silient.

Proof. Immediate by definition: semi-adaptive prediction resilience is a special
case of the AB test with non-adaptive queries.

Monotone Tests

Theorem 5. Let 0 < ¢ < 1 and n € N. Let B be an (n,¢e)-strongly mono-
tone test resilient Bloom filter. Then B is an (n,e)-strongly expected count test
resilient.
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Proof. Let 0 < ¢ < 1, n € N and let B be an (n,e)-strongly monotone test
resilient Bloom filter. Assume, for contradiction, that B is not an (n, €)-strongly
expected count test resilient. Meaning there exists a PPT adversary A that
makes at most ¢ < poly(A,n) queries , a polynomial p(-) such that for infinitely
many \’s

1

Therefore, there must exist 1 < j <t s.t. for infinitely many \’s

1 1
Prjz; isFP| >e+ —— >+ ——.
oy S Pl 2 e+ 2y 20y

where in the right inequality we used the fact that ¢ < poly(A,n). For every
J € [t], we define a monotone test,

D — 1, if the j-th index in the sequence is 1,
T 0, else.

We show that B fails the test D,;, meaning it is not an (n, €)-strongly monotone
test resilient Bloom filter. Indeed,

1 1
Pr [D;(S)=1]— Pr [D;(S.)=1]>e+— —c= ——
SGGrA[ ]( ) ] SEGI‘BJ ]( 6) }— +q(>\) q( )7
as desired.
4.2 Separations
BP Test Resilience Monotone Test Resilience

o+ =

AB Test Resilience

of

Semi-Adaptive Prediction Resilience <;é= Expected Count Test Resilience

Fig. 3. Tests’ Separations

We now show the separations between the various notions, as described in
Fig. 3; that is, to show a separation between Test; and Tests we present a con-
struction of a Bloom filter that is strongly Test; resilient but is not strongly
Testy resilient.
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AB Test

Theorem 6. Let 0 < e < 1 and n € N, then for any 0 < § < 1 and for large
enough u:

1. Assuming the existence of one-way functions, then there exists a non-trivial
Bloom filter B that is an (n,e)-strongly AB test resilient and is not an (n,d)-
strongly BP test resilient.

2. If t is known in advance, then there exists a non-trivial Bloom filter B that
is an (n,t,e)-AB test resilient and is not an (n,t,0)-BP test resilient.

Proof. Let 0 < e < 1,0 < e1 < ¢, n € N. First, assume that ¢ is unknown and
unbounded. To have an (n,eq)-strongly AB test resilient Bloom filter, we need
to use Naor and Yogev construction that uses one-way functions—using that,
and we have a Bloom filter B that is an (n,e1)-strongly AB test resilient. Let

€9 = $==+. We consider the following Bloom filter B’

—e1

B'(S )= 1, W.p. €2,
’ B(S,), w.p.1—es.

That is, in the setup phase B’ flips a coin with bias €5 to decide whether it
always answers 1 (regardless of the input) or always answers as B. We use the
notation “=” to denote the result of that coin toss. Let € = 3 + (1 — &3) - £7.
The probability of false positive in B’ equals ¢; meaning B’ is an (n, ¢)-Bloom
filter. Moreover, for all t < poly(\,n), B’ is resilient to the (n,t,¢)-AB test:

Pr[ABTest 4+(A\) = 1] = Pr[z™ is false positive]
=Pr[B'(S,-) =1V B/(S,z*) =B(S,z") = 1]
<egter-(1—e9)=¢,

where in the inequality we used the fact that B is an (n,e1)-strongly AB test
resilient. We show that B is not an (n,d)-strongly BP test resilient for any
0<d <1 Let t <poly(A\n)and 0 < § < 1. We describe an adversary A that
causes B’ to fail in the (n,t,5)-BP test. A queries random elements in U \ S to
check whether we are in the “all 17 case where all the elements are false positive.
If all the queries are indeed false positives, then with high probability, we are in
the “all 1”7 case and A bets on a random element. Otherwise, she passes. Formally,

Adversary A

1. Choose a random set S C U of size n.

2. For i € [t]:
(a) Query independent random elements z; € U \ S.

3. Iffor alli € [t]: B'(S, ;) = 1 (i.e., all the queried elements are false positive),
choose a random element z* and output (b = 1,2*) (bet).

4. Otherwise, set b =0 (pass).
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First, note that the probability that A bets is non-negligible:
Pr[A bets] > Pr[A bets | B'=1] -Pr[B' =1| > 1-¢,.

Now, assume that 4 chooses to bet (i.e., all the queries in step 2 are false-
positive elements). Consider the following three cases:

1. We are in the “all 1”7 case. In this case, the profit is 1/0.

2. We are not in the “all 1”7 case, and the false positive rate is greater or equal
to 4. In this case, the profit is non-negative.

3. Otherwise, the profit is negative, but this happens with probability at most
8% (which is a very small probability for sufficiently large ¢)!2.

Summing up the above cases, we get that the expected profit of A is noticeably
greater than zero'®, meaning B is not an (n, §)-strongly BP test resilient.

If ¢ is known in advance, we use Naor and Yogev construction of Bloom
filter that is resilient to the (n,t,e1)-AB test against unbounded adversaries.
The above proof holds for this specific ¢.

Theorem 7. Let 0 < e <1 and n € N, then for any 0 < § < 1 and for large
enough u:

1. Assuming the existence of one-way functions, then there exists a non-trivial
Bloom filter B that is an (n,e)-strongly AB test resilient and is not an (n,d)-
strongly monotone test resilient.

2. If t is known in advance, then there exists a non-trivial Bloom filter B that
is an (n,t,e)-AB test resilient and is not an (n,t,d)-monotone test resilient.

Proof. Let 0 < e <1,0< e, < ¢ and n € N. We use the Bloom filter B’ defined
in the proof of Theorem 6. We show that B’ is not monotone test resilient for
any 0 < § < 1 by proving it fails the FP’s count distinguisher, denoted by
D,, (for some w < t). Recall,

D _ {1, if #1 in the input sequence is greater than w,
w =

0, otherwise.
We define the adversary A as follow:

Adversary A

1. Choose a random set S C U of size n.
2. For i € [t]:
(a) Query independent random elements x; € U \ S.

12 Any (n,e) Bloom filter is robust when the number of queries is small: if ¢ is much
less than 1/e then we do not expect the adversary to see any false positives, and
hence we can consider the queries as chosen in advance. Therefore, if ¢ is not large
enough, it is not interesting.

13 We want 6 < e leading to u >t > log; €2.
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Observe that with probability at least €5 A can achieve as many false positives
as she wants (w.p. 2 all the queries are false positives). Meaning for any ¢ <
poly(A,n) we have

SgGrA[Dt_l(S) = 1] = PI‘[#FPt >t — 1] > eo.

On the other hand, for any 0 < § < 1:

Pr [D,_ =1] =4
S (D (S5) = 1] =6

Therefore,

1
= — = > _ 5t >
SgGrA[Dt_l(S) 1] S&P;I‘B(s [Dt_l(S(S) 1] =2 0 - p()\)’

for some polynomial p(-) and sufficiently large ¢.

Expected Count Test

Theorem 8. Let 0 < e <1 and n € N, then for any 0 < § < 1 and for large
enough u: There exists a Bloom filter B that is an (n,e)-strongly expected count
test resilient, and is not an (n,d)-strongly semi-adaptive prediction resilient.

Proof. Let 0 < e < 1, n € N and a set S of size n. Let g1 < ﬁ s.t. é € N.

We partition the universe into disjoint blocks of size b := % Let B be a Bloom
filter that stores the set S explicitly (we can modify the construction to work for
non-trivial Bloom filters as well). We add “synthetic” false-positive elements to B
in the following way: each block has exactly one false positive element (resulting
in a false positive probability of €; for random queries). In order to determine
which element is positive in each set, we use a pseudorandom function'* PRF.
The PRF gets as input the block name and outputs the positive element in the
block.

As we shall see, the resulting Bloom filter B is an (n,e)-strongly expected
count test resilient. We first claim that the best strategy for an adversary in
order to increase the expected number of false positives is querying each block
until she finds the false positive. Consider an adversary A following this strategy
and focus on one block. The expected number of queried elements until finding
the false positive is 2L, Assume A queries ¢’ blocks (where ¢’ >> b). The false
positive rate in this sequence is (with high probability):

t 2 281

;Lbrl
th =

b+l 1+e

14" A pseudorandom function (PRF) is a keyed function F such that F}, (for key k chosen
uniformly at random) is indistinguishable from a truly random function given only
oracle access to the function. See Goldreich [13].
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Now, consider an adversary A’ that uses a different strategy, i.e., she queries
blocks and might move on to another block before finding the false positive. Let
A" be an adversary that follows A’’s strategy with a slight change: every time
A’ moves on to another block before finding the false-positive, A" continues
querying this block until she finds the false positive. Intuitively, it is better to
keep querying an “open” block since we are left with fewer elements. Formally,
let us look at all the queries A” added when continuing querying a block. They
are divided into blocks of size at most b — 1. Hence, the false-positive rate in
these added queries, similarly to the above computation, is at least 2¢; > e.
Now, consider the rest of A”’s queries. They either contain blocks that a false
positive was found in them or blocks with no false positive. As shown above,
the expected number of queried elements before finding a false positive is %.
Assume that there are t; blocks that a false positive was found in them and ¢,
blocks with no false positive. In each block, we query at least one element hence
the false positive rate in these queries is at most

t1 < t1
tl.lﬂr?l+t2 ty - 2L

Since 2e; > €, we get that A can only improve the expected number of false
positives of A’, as desired.

We conclude that the expected number of false positives in ¢ queries is at
most et, as desired.

On the other hand, B is not an (n,e)-strongly semi-adaptive prediction re-
silient. Let A be an adversary querying p(\) blocks, for some polynomial p(-);
that is, she performs ¢ = p(\) - é queries. She acts as follows: she queries each
block separately. When she gets the response of the Bloom filter on an entire
block except for one element and does not see any false positive, she bets on the
remaining element. Therefore,

1 1
Pr[SemiAdaptiveGame 4 ,(\) =1] =1—(1—¢) ' >1— — >+ —,
[ A,t( ) ] ( 1) q( ) S()\)

for any 0 < ¢ < 1, sufficiently large A and some polynomials g(-), s(-).

Theorem 9. Let 0 < e < 1 and n € N, then for any 0 < § < 1 and for large
enough u: There exists a Bloom filter B that is an (n,e)-strongly expected count
test resilient , and is not an (n,d)-strongly AB test resilient.

Proof. Follows from the proof of Theorem 8.

Semi-adaptive Prediction Resilient

Theorem 10. Let 0 < e <1 and n € N, then for any 0 < § < 1 and for large
enough u:

1. Assuming the existence of one-way functions, there exists a non-trivial Bloom
filter B that is an (n,)-strongly semi-adaptive prediction resilient and is not
an (n,d)-strongly AB test resilient.
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2. If t is known in advance and sufficiently large, there exists a non-trivial
Bloom filter B that is an (n,t,e)-semi-adaptive prediction resilient and is
not an (n,t,8)-AB test resilient.

The proof appears in the full version and is omitted due to space limitations.

4.3 Conclusions

We showed that if a Bloom filter is resilient to the BP test, it is resilient to all
monotone tests. At the same time, this does not necessarily hold for a Bloom
filter that is resilient to the AB test, demonstrating that the AB test can miss
“bad” events such as clusters of false positives. We also proved that the BP
test implies the AB test. Altogether we highlight the notion of Bet-or-Pass as
capturing the desired properties of a robust Bloom filter.

5 Computational Assumptions and One-way Functions

5.1 Constructions of BP Resilient Filters using One-way Functions

What we know so far:
Weshoyed EN

BP Test Resilience <— AB Test Resilience «<— OWF

The black arrows are existential equivalence and the blue arrows are definition
implication (with the same parameters) or separation. Therefore, if one-way
functions do not exist, any non-trivial Bloom filter fails the BP test. We show
that the existence of one-way functions also implies BP test resilient Bloom fil-
ters. For that, we show a construction of a Bloom filter that is strongly BP test
resilient using one-way functions.

Pseudorandom Functions. A pseudorandom function (PRF) is an efficiently com-
putable, keyed function F' that is indistinguishable from a truly random function
(given only oracle access to the function). A pseudorandom permutation (PRP)
is a pseudorandom function such that F' is a permutation and can be both effi-
ciently computable and efficiently invertible.

We can construct pseudorandom function from any (length-doubling) pseu-
dorandom generators ([14]), which in turn can be based on one-way functions.
In addition, we can obtain a pseudorandom permutations from pseudorandom
functions (i.e., using Luby-Rackoff construction [19], [22]).

Constructing BP Test Resilient Bloom Filters. Our starting point is the trans-
formation presented by Naor and Yogev. Assuming the existence of one-way
functions they showed that any Bloom filter could be efficiently transformed
into an (n,e)-strongly AB test resilient Bloom filter using approximately the
same amount of memory. The idea is simple: adding a layer of a pseudorandom
permutation. That is, on input x, we compute a pseudorandom permutation of
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x and send it to the original Bloom filter. The main idea is that we make the
queries look random by applying a pseudorandom permutation. Therefore an
adversary has no significant advantage in choosing the queries adaptively. Note
that the correctness properties remain when using the permutation. We ask if
the above transformation also yields an (n,e)-strongly BP test resilient Bloom
filter. However, unlike the AB test, the BP test allows an adversary to pass. This
gives rise to two potential attacks:

1. Assume that with some non-negligible probability, all the elements in the uni-
verse (excluding the set S) are false positives (e.g., the Bloom filter presented
in separation 6). Applying a pseudorandom permutation, in that case, will
make no difference; the adversary presented in separation 6 can still make
this Bloom filter to fail the BP test even after adding the PRP layer.

2. The universe is of polynomial size, i.e., |u] = poly()\) and there exists an
attacker that knows the exact number of false positives in the universe (this
is not an unreasonable property of some constructions). In this case, the
attack includes the adversary querying the entire universe U except for one
element z*. Based on the number of false positives she has seen so far, she
knows with high probability if 2* is a false positive or not and chooses to
bet or pass accordingly.

Therefore, we cannot use the transformation of Naor and Yogev when construct-
ing a BP test resilient Bloom filter.'®

Apart from the above mentioned transformation, Naor and Yogev presented
a construction of a Bloom filter B that is an (n,t,¢)-AB test resilient against
an unbounded adversary and a given number t of queries, for any n,t € N and
0 < & < 1/2. As we shall see, this construction is actually also good for the
BP-test (when the adversary is limited to ¢ queries), i.e. B is also an (n,t,¢)-BP
test resilient for any n,t € Nand 0 < e < 1/2.

We use this construction with a slight change to yield a Bloom filter B’
against a computationally bounded adversary when t is not necessarily known
and can be unbounded.

We start by presenting Naor and Yogev’s construction (which in turn builds
on Carter et al. [7]). They suggested to use a Cuckoo Hashing implementation
of dictionary ([26], [25]) to store the set. Roughly speaking, Cuckoo Hashing
consists of two tables Ty and 75 and two hash functions h; and hy. Each element
x is stored in either Ty [hy(x)] or Talha(x)]. Instead of storing x in those locations,
the value of an unpredictable (in the sense described below) function g at point
x (i.e. g(z)) is stored at either T}[hy(z)] or Talha(z)] (see Fig. 4). When doing
a lookup of x the values stored in Ti[hi(x)] and T[he(x)] are retrieved and
compared to g(x) and a yes is returned iff at least one of them is equal to g(x).
The range of g should be about g

5 Tt may be possible to modify the transformation to yield a BP test resilient Bloom
filter; for instance, we can test if we are in case 1 and reselect the random bits or
combat case 2 by adding as noise false positives. We will explore it in future work.
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T T
1 Option 1 Option 2 2

hy (%) 9

ha (%) gx)

Fig. 4. Bloom Filter via Cuckoo Hashing

For the function ¢g: U — V, they used a very high independence function.
More formally, they used a family G of hash functions satisfying that on any
set of k inputs, it behaves like a truly random function with high probability
(based on the work of [24], and [10]). Note that the guarantee of the function still
holds even when the set of queries is chosen adaptively, as shown by Berman
et al. [3]. To reduce the memory size further, they use the family G slightly
differently. Let ¢ = O(log%), and set k = O(%). They chose a family G of
functions g; that outputs a single bit (i.e., V = {0,1}) and defined g to be the
concatenation of ¢ independent g; functions. Given a query z, they compare
g(x) to the appropriate entries, bit by bit. If the first two bits are equal, they
continue to the next bit in a cyclic order. Consider an adversary performing
t queries. Naor and Yogev showed that even though the adversary performs ¢
queries, each of the ¢ different functions g; takes part in at most O(t/¢) = k
queries (with high probability). Hence, each function g; still “looks” random on
the queried elements. Therefore, we get a Bloom filter B that is AB test resilient
for t queries and uses O(n log% + t) bits of memory.

The security of the scheme is based on the randomness properties of g. Even
if all the values in the tables that have ever been used are known to the adversary
(including the functions h; and hs), the value of g(z) is unknown and is uniform
in its range. Therefore the probability that it is equal to the value stored in
Ti[hi(z)] or Ta[ho(z)] is at most 2 - (1/2)¢ < /2. Transforming from exact k-
wise independence to almost k-wise independence adds an error probability of
/2. Thus, the probability that x is a false positive is at most . This proves that
the construction is AB test resilient.

But this also means that there is no hint that a success is coming, i.e. that for
the queried z the value g(x) is going to be equal to the values stored in locations

hi(z) and hs(x). The only possible problem could be that more than O(t/¢) = k
queries involve some g;, but this happens with probability exponentially small
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in k. So we conclude that we can use this for the BP-test as well. Therefore, we
get the following corollary:

Corollary 1. For any n,t € N, universe of size u € N and 0 < ¢ < 1/2 there
exists an (n,t,e)-BP test resilient Bloom filter (against unbounded adversaries
and t known in advance) that uses O(n logé +t) bits of memory. In fact, let
B be a Bloom filter as described above. Then for any constant 0 < ¢ < 1/2, B
is an (n,t,e)-BP test resilient Bloom filter against unbounded adversaries, that
uses m bits of memory where m = O(n log% + t).

Note that ¢ needs to be known in advance in this construction (to set k& and
choose appropriate G).

To get a Bloom filter B’ that is an (n,¢)-strongly BP test resilient, we will
modify this construction a bit. The idea is simple: for the function g, we use a
family of pseudorandom functions. Now, we do not need to set k and the view
of g remains random and unpredictable on any set of queried elements (of any
size). If the resulting Bloom filter is not a BP-test resilient, then this test can be
used to distinguish the PRF from a truly random function. We conclude with
the following theorem that we have just proved:

Theorem 11. Assuming the existence of one-way functions, then for any n €
N, universe of sizen < u € N, and 0 < € < 1/2 there exists a Bloom filter that
is an (n,e)-strongly BP test resilient and uses O(n logé + )\) bits of memory.
In fact, let B' be a Bloom filter as constructed above. Then for any constant
0 <e<1/2, B is an (n,e)-strongly BP test resilient and uses O(nlog  + \)
bits of memory.

Note that it is not known whether replacing the hash functions with a PRF
in the standard construction of Bloom filters (i.e. the one in the style of Bloom’s
original one [4]) results in a Bloom filter that is BP test resilient.
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