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Abstract. The celebrated Fiat-Shamir transformation turns any public-
coin interactive proof into a non-interactive one, which inherits the main
security properties (in the random oracle model) of the interactive ver-
sion. While originally considered in the context of 3-move public-coin
interactive proofs, i.e., so-called Σ-protocols, it is now applied to multi-
round protocols as well. Unfortunately, the security loss for a (2µ + 1)-
move protocol is, in general, approximately Qµ, where Q is the number
of oracle queries performed by the attacker. In general, this is the best
one can hope for, as it is easy to see that this loss applies to the µ-fold
sequential repetition of Σ-protocols, but it raises the question whether
certain (natural) classes of interactive proofs feature a milder security
loss.
In this work, we give positive and negative results on this question. On
the positive side, we show that for (k1, . . . , kµ)-special-sound protocols
(which cover a broad class of use cases), the knowledge error degrades
linearly in Q, instead of Qµ. On the negative side, we show that for
t-fold parallel repetitions of typical (k1, . . . , kµ)-special-sound protocols
with t ≥ µ (and assuming for simplicity that t and Q are integer mul-
tiples of µ), there is an attack that results in a security loss of approxi-
mately 1

2 Qµ/µµ+t.

1 Introduction

1.1 Background and State of the Art

The celebrated and broadly used Fiat-Shamir transformation turns any public-
coin interactive proof into a non-interactive proof, which inherits the main se-
curity properties (in the random oracle model) of the interactive version. The
rough idea is to replace the random challenges, which are provided by the veri-
fier in the interactive version, by the hash of the current message (concatenated
with the messages from previous rounds). By a small adjustment, where also
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the to-be-signed message is included in the hashes, the transformation turns
any public-coin interactive proof into a signature scheme. Indeed, the latter is a
commonly used design principle for constructing very efficient signature schemes.

While originally considered in the context of 3-move public-coin interactive
proofs, i.e., so-called Σ-protocols, the Fiat-Shamir transformation also applies
to multi-round protocols. However, a major drawback in the case of multi-round
protocols is that, in general, the security loss obtained by applying the Fiat-
Shamir transformation grows exponentially with the number of rounds. Con-
cretely, for any (2µ + 1)-move interactive proof Π (where we may assume that
the prover speaks first and last, so that the number of communication rounds
is indeed odd) that admits a cheating probability of at most ϵ, captured by the
knowledge or soundness error, the Fiat-Shamir-transformed protocol FS[Π] ad-
mits a cheating probability of (approximately) at most Qµ · ϵ, where Q denotes
the number of random-oracle queries admitted to the dishonest prover. A tight
reduction is due to [11] with a security loss

(
Q
µ

)
≈ Qµ

µµ , where the approxima-
tion holds whenever µ is much smaller than Q, which is the typical case. More
concretely, [11] introduces the notions of state-restoration soundness (SRS) and
state-restoration knowledge (SRK), and it shows that any (knowledge) sound
protocol Π satisfies these notions with the claimed security loss.1 The security
of FS[Π] (with the same loss) then follows from the fact that these soundness
notions imply the security of the Fiat-Shamir transformation.

Furthermore, there are (contrived) examples of multi-round protocols Π for
which this Qµ security loss is almost tight. For instance, the µ-fold sequential
repetition Π of a special-sound Σ-protocol with challenge space C is ϵ-sound with
ϵ = 1

|C|µ , while it is easy to see that, by attacking the sequential repetitions round
by round, investing Q/µ queries per round to try to find a “good” challenge, and
assuming |C| to be much larger than Q, its Fiat-Shamir transformation FS[Π]
can be broken with probability approximately

(
Q
µ

1
|C|
)µ = Qµ

µµ · ϵ.2

For µ beyond 1 or 2, let alone for non-constant µ (e.g., for IOP-based pro-
tocols [11,3,10] and also Bulletproofs-like protocols [13,15]), this is a very un-
fortunate situation when it comes to choosing concrete security parameters. If
one wants to rely on the proven security reduction, one needs to choose a large
security parameter for Π, in order to compensate for the order Qµ security loss,
effecting its efficiency; alternatively, one has to give up on proven security and
simply assume that the security loss is much milder than what the general bound
suggests. Often, the security loss is simply ignored.

This situation gives rise to the following question: Do there exist natural
classes of multi-round public-coin interactive proofs for which the security loss
behaves more benign than what the general reduction suggests? Ideally, the gen-
eral Qµ loss appears for contrived examples only.

1 As a matter of fact, [11] considers arbitrary interactive oracle proofs (IOPs), but
these notions are well-defined for ordinary interactive proofs too.

2 This is clearly a contrived example since the natural construction would be to apply
the Fiat-Shamir transformation to the parallel repetition of the original Σ-protocol,
where no such huge security loss would then occur.
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So far, the only positive results, establishing a security loss linear in Q, were
established in the context of straight-line/online extractors that do not require
rewinding. These extractors either rely on the algebraic group model (AGM) [22],
or are restricted to protocols using hash-based commitment schemes in the ran-
dom oracle model [11]. To analyze the properties of straight-line extractors,
new auxiliary soundness notions were introduced: round-by-round (RBR) sound-
ness [17] and RBR knowledge [18]. However, it is unclear if and how these notions
can be used in scenarios where straight-line extraction does not apply.

In this work, we address the above question (in the plain random-oracle
model, and without restricting to schemes that involve hash-based commit-
ments), and give both positive and negative answers, as explained in more detail
below.

1.2 Our Results

Positive Result. We show that the Fiat-Shamir transformation of any
(k1, . . . , kµ)-special-sound interactive proof has a security loss of at most Q + 1.
More concretely, we consider the knowledge error κ as the figure of merit, i.e.,
informally, the maximal probability of the verifier accepting the proof when
the prover does not have a witness for the claimed statement, and we prove
the following result, also formalized in the theorem below. For any (k1, . . . , kµ)-
special-sound (2µ + 1)-move interactive proof Π with knowledge error κ (which
is a known function of (k1, . . . , kµ)), the Fiat-Shamir transformed protocol FS[Π]
has a knowledge error at most (Q + 1) · κ. This result is directly applicable to a
long list of recent zero-knowledge proof systems, e.g., [13,15,29,26,16,4,6,12,21].
While all these works consider the Fiat-Shamir transformation of special-sound
protocols, most of them ignore the associated security loss.

Main Theorem (Theorem 2). Let Π be a (k1, . . . , kµ)-out-of-(N1, . . . , Nµ)
special-sound interactive proof with knowledge error κ. Then the Fiat-Shamir
transformation FS[Π] of Π is knowledge sound with knowledge error

κfs(Q) = (Q + 1) · κ .

Since in the Fiat-Shamir transformation of any (2µ + 1)-move protocol Π,
a dishonest prover can simulate any attack against Π, and can try Q/µ times
when allowed to do Q queries in total, our new upper bound (Q + 1) · κ is
close to the trivial lower bound 1 − (1− κ)Q/µ ≈ Qκ/µ. Another, less explicit,
security measure in the context of knowledge soundness is the run time of the
knowledge extractor. Our bound on the knowledge error holds by means of a
knowledge extractor that makes an expected number of K + Q · (K− 1) queries,
where K = k1 · · · kµ. This is a natural bound: K is the number of necessary
distinct “good” transcripts (which form a certain tree-like structure). The loss
of Q·(K−1) captures the fact that a prover may finish different proofs, depending
on the random oracle answers, and only one out of Q proofs may be useful for
extraction, as explained below.
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Our result on the knowledge soundness of FS[Π] for special-sound protocols Π
immediately carries over to ordinary soundness of FS[Π], with the same security
loss Q + 1. However, proving knowledge soundness is more intricate; showing a
linear-in-Q loss for ordinary soundness can be obtained via simpler arguments
(e.g., there is no need to argue efficiency of the extractor).

The construction of our knowledge extractor is motivated by the extractor
from [5] in the interactive case, but the analysis here in the context of a non-
interactive proof is much more involved. We analyze the extractor in an inductive
manner, and capture the induction step (and the base case) by means of an
abstract experiment. The crucial idea for the analysis (and extractor) is how to
deal with accepting transcripts which are not useful.

To see the core problem, consider a Σ-protocol, i.e., a 3-move k-special-sound
interactive proof, and a semi-honest prover that knows a witness and behaves
as follows. It prepares, independently, Q first messages a1, . . . , aQ and asks for
all hashes ci = RO(ai), and then decides “randomly” (e.g., using a hash over all
random oracle answers) which thread to complete, i.e., for which i∗ to compute
the response z and then output the valid proof (ai∗

, z). When the extractor then
reprograms the random oracle at the point ai∗ to try to obtain another valid
response but now for a different challenge, this affects i∗, and most likely the
prover will then use a different thread j∗ and output the proof (aj∗

, z′) with
aj∗ 6= ai∗ . More precisely, Pr(j∗ = i∗) = 1/Q. Hence, an overhead of Q appears
in the run-time.

In case of an arbitrary dishonest prover with an unknown strategy for com-
puting the ai’s above, and with an arbitrary (unknown) success probability ϵ,
the intuition remains: after reprogramming, we still expect Pr(j∗ = i∗) ≥ 1/Q
and thus a linear-in-Q overhead in the run-time of the extractor. However, pro-
viding a rigorous proof is complicated by the fact that the event j∗ = i∗ is not
necessarily independent of the prover producing a valid proof (again) after the
reprogramming. Furthermore, conditioned on the prover having been successful
in the first run and conditioned on the corresponding i∗, the success probability
of the prover after the reprogramming may be skewed, i.e., may not be ϵ any-
more. As a warm-up for our general multi-round result, we first give a rigorous
analysis of the above case of a Σ-protocol. For that purpose, we introduce an
abstract sampling game that mimics the behavior of the extractor in finding two
valid proofs with j∗ = i∗, and we bound the success probability and the “cost”
(i.e., the number of samples needed) of the game, which directly translate to the
success probability and the run-time of the extractor.

Perhaps surprisingly, when moving to multi-round protocols, dealing with the
knowledge error is relatively simple by recursively composing the extractor for
the Σ-protocol. However, controlling the run-time is intricate. If the extractor is
recursively composed, i.e., it makes calls to a sub-extractor to obtain a sub-tree,
then a naive construction and analysis gives a blow-up of Qµ in the run-time.
Intuitively, because only 1/Q of the sub-extractor runs produce useful sub-trees,
i.e., sub-trees which extend the current ai∗ . The other trees belong to some aj∗
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with j∗ 6= i∗ and are thus useless. This overhead of Q then accumulates per
round.

The crucial observation that we exploit in order to overcome the above issue
is that the very first (accepting) transcript sampled by a sub-extractor already
determines whether a sub-tree will be (potentially) useful, or not. Thus, if this
very first transcript already shows that the sub-tree will not be useful, there is
no need to run the full-fledged sub-tree extractor, saving precious time.

To illustrate this more, we again consider the simple case of a dishonest prover
that succeeds with certainty. Then, after the first run of the sub-extractor to
produce the first sub-tree (which requires expected time linear in Q) and having
reprogrammed the random oracle with the goal to find another sub-tree that
extends the current ai∗ , it is cheaper to first do a single run of the prover to
learn j∗ and only run the full fledged sub-extractor if j∗ = i∗, and otherwise
reprogram and re-try again. With this strategy, we expect Q tries, followed by
the run of the sub-extractor, to find a second fitting sub-tree. Altogether, this
amounts to linear-in-Q runs of the prover, compared to the Q2 using the naive
approach.

Again, what complicates the rigorous analysis is that the prover may suc-
ceed with bounded probability ϵ only, and the event j∗ = i∗ may depend on the
prover/sub-extractor being successful (again) after the reprogramming. Further-
more, as an additional complication, conditioned on the sub-extractor having
been successful in the first run and conditioned on the corresponding i∗, both
the success probability of the prover and the run-time of the sub-extractor after
the reprogramming may be skewed now. Again, we deal with this by consider-
ing an abstract sampling game that mimics the behavior of the extractor, but
where the cost function is now more fine-grained in order to distinguish between
a single run of the prover and a run of the sub-extractor. Because of this more
fine-grained way of defining the “cost”, the analysis of the game also becomes
substantially more intricate.

Negative Result. We also show that the general exponential security loss of
the Fiat-Shamir transformation, when applied to a multi-round protocol, is not
an artefact of contrived examples, but there exist natural protocols that indeed
have such an exponential loss. For instance, our negative result applies to the
lattice-based protocols in [14,5]. Concretely, we show that the t-fold parallel
repetition Πt of a typical (k1, . . . , kµ)-special-sound (2µ + 1)-move interactive
proof Π features this behavior when t ≥ µ. For simplicity, let us assume that
t and Q are multiples of µ. Then, in more detail, we show that for any typical
(k1, . . . , kµ)-special-sound protocol Π there exists a poly-time Q-query prover
P∗ against FS[Πt] that succeeds in making the verifier accept with probability
≈ 1

2 Qµκt/µµ+t for any statement x, where κ is the knowledge error (as well as
the soundness error) of Π. Thus, with the claimed probability, P∗ succeeds in
making the verifier accept for statements x that are not in the language and/or
for which P∗ does not know a witness. Given that κt is the soundness error
of Πt (i.e., the soundness error of Πt as an interactive proof), this shows that
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the soundness error of Πt grows proportionally with Qµ when applying the
Fiat-Shamir transformation. Recent work on the knowledge error of the parallel
repetition of special-sound multi-round interactive proofs [7] shows that κt is also
the knowledge error of Πt, and so the above shows that the same exponential
loss holds in the knowledge error of the Fiat-Shamir transformation of a parallel
repetition.

1.3 Related Work

Independent Concurrent Work. In independent and to a large extent con-
current work,3 Wikström [31] achieves a similar positive result on the Fiat-
Shamir transformation, using a different approach and different techniques: [31]
reduces non-interactive extraction to a form of interactive extraction and then
applies a generalized version of [30], while our construction adapts the interac-
tive extractor from [5] and offers a direct analysis. One small difference in the
results, which is mainly of theoretical interest, is that our result holds and is
meaningful for any Q < |C|, whereas [31] requires the challenge set C to be large.

The Forking Lemma. Security of the Fiat–Shamir transformation of k-special-
sound 3-move protocols is widely used for construction of signatures. There, un-
forgeability is typically proven via a forking lemma [28,9], which extracts, with
probability roughly ϵk/Q, a witness from a signature-forging adversary with suc-
cess probability ϵ, where Q is the number of queries to the random oracle. The
loss ϵk is due to strict polynomial time extraction (and can be decreased, but
in general not down to ϵ). Such a k-th power loss in the success probability for
a constant k is fine in certain settings, e.g., for proving the security of signa-
ture schemes; however, not for proofs of knowledge (which, on the other hand,
consider expected polynomial time extraction [8]).

A previous version of [20] generalizes the original forking lemma [28,9] to
accommodate Fiat-Shamir transformations of a larger class of (multi-round) in-
teractive proofs. However, their forking lemma only targets a subclass of the
(k1, . . . , kµ)-special-sound interactive proofs considered in this work. Moreover,
in terms of (expected) runtime and success probability, our techniques signifi-
cantly outperform their generalized forking lemma. For this reason, the latest
version of [20] is based on our extraction techniques instead.

A forking lemma for interactive multi-round proofs was presented in [13] and
its analysis was improved in a line of follow-up works [30,24,27,25,2]. This forking
lemma shows that multi-round special-sound interactive proofs satisfy a notion of
knowledge soundness called witness extended emulation. Eventually, it was shown
that (k1, . . . , kµ)-special-soundness tightly implies knowledge soundness [5].

The aforementioned techniques for interactive proofs are not directly appli-
cable to the Fiat-Shamir mode. First, incorporating the query complexity Q of
a dishonest prover P∗ attacking the non-interactive Fiat–Shamir transformation
3 When finalizing our write-up, we were informed by Wikström that he derived similar

results a few months earlier, subsequently made available online [31].
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complicates the analysis. Second, a naive adaptation of the forking lemmas for
interactive proofs gives a blow-up of Qµ in the run-time.

1.4 Structure of the Paper

Section 2 recalls essential preliminaries. In Section 3, the abstract sampling game
is defined and analyzed. It is used in Section 4 to handle the Fiat–Shamir trans-
formation of Σ-protocols. Building on the intuition, Section 5 introduces the
refined game, and Section 6 uses it to handle multi-round protocols. Lastly, our
negative result on parallel repetitions is presented in Section 7.

2 Preliminaries

2.1 (Non-)Interactive Proofs

We assume the reader to be familiar with the basic concepts related to interactive
proofs, and to non-interactive proofs in the random oracle model. We briefly
recall here the notions that are important for us and fix the notation that we will
be using. For formal definitions and more details, we refer to the full version [1].

Special-Sound Protocols. We consider a public-coin interactive proof Π for
an NP relation R. If Π consists of 3 moves, it is called a Σ-protocol, and we then
typically write a for the first message, c for the challenge, and z for the response.
A Σ-protocol Π is called k-special-sound if there exists a polynomial-time al-
gorithm that computes a witness w for the statement x from any k accepting
transcripts (a, c1, z1), . . . , (a, ck, zk) for x with the same fist message a and pair-
wise distinct challenges ci 6= cj . We refer to Π as being k-out-of-N special-sound
to emphasize that the challenge space C has cardinality N .

More generally, we consider (2µ + 1)-move public-coin interactive proofs.4
The communication transcript is then written as (a1, c1, . . . , aµ, cµ, aµ+1) by de-
fault. Such a protocol is called (k1, . . . , kµ)-special-sound, or (k1, . . . , kµ)-out-of-
(N1, . . . , Nµ) special-sound when we want to be explicit about the sizes of the
challenge sets, if there exists a polynomial-time algorithm that computes a wit-
ness w for the statement x from any accepting (k1, . . . , kµ)-tree of transcripts
for x, defined in Definition 1 and illustrated in Fig. 1.

Definition 1 (Tree of Transcripts). Let k1, . . . , kµ ∈ N. A (k1, . . . , kµ)-tree
of transcripts for a (2µ+1)-move public-coin interactive proof Π = (P,V) is a set
of K =

∏µ
i=1 ki transcripts arranged in the following tree structure. The nodes

in this tree correspond to the prover’s messages and the edges to the verifier’s
challenges. Every node at depth i has precisely ki children corresponding to ki

pairwise distinct challenges. Every transcript corresponds to exactly one path
from the root node to a leaf node. See Figure 1 for a graphical illustration. We
refer to the corresponding tree of challenges as a (k1, . . . , kµ)-tree of challenges.
4 We always assume that the prover sends the first and the last message.
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a1

a1
2 ak1

2

a1,1
3 a1,k2

3 ak1,1
3 ak1,k2

3

a1,1,...,1
µ+1 a

1,1,...,kµ

µ+1 ak1,k2,...,1
µ+1 a

k1,k2,...,kµ

µ+1

· · ·

· · · · · ·

· · ·

· · ·

· · · · · ·

c1
1 ck1

1

c1,1
2 c1,k2

2 ck1,1
2 ck1,k2

2

Fig. 1. (k1, . . . , kµ)-tree of transcripts of a (2µ + 1)-move interactive proof [5].

A (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound protocol is known to be
(knowledge) sound with knowledge/soundness error

Er(k1, . . . , kµ; N1, . . . , Nµ) = 1−
µ∏

i=1

Ni − ki + 1
Ni

= 1−
µ∏

i=1

(
1− ki − 1

Ni

)
, (1)

which is tight in general [5]. Note that Er(k; N) = (k − 1)/N and, for all 1 ≤
m ≤ µ,

Er(km, . . . , kµ; Nm, . . . , Nµ)

= 1− Nm − km + 1
Nm

(
1− Er(km+1, . . . , kµ; Nm+1, . . . , Nµ)

)
,

(2)

where we define Er(∅; ∅) = 1. If N1 = · · · = Nµ = N , we simply write
Er(k1, . . . , kµ; N), or Er(k; N) for k = (k1, . . . , kµ).

The Fiat-Shamir Transformation and NIROPs. By applying the Fiat-
Shamir transformation [19] to a public-coin interactive proof, one obtains a non-
interactive proof in the random oracle model, i.e., a so-called non-interactive
random oracle proof (NIROP). In the case of a Σ-protocol, the Fiat-Shamir
transformation replaces the random choice of the challenge c by setting c =
RO(a) (or c = RO(x, a) in case of adaptive security), where RO is a random
oracle. In case of multi-round protocols, the idea is the same, but one has to
be careful with “chaining” the challenges properly. For concreteness, we specify
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that the i-th challenge is set to be

ci = ROi(a1, . . . , ai−1, ai) .

Note that, for simplicity, we assume µ different random oracles ROi then. Fur-
thermore, we assume the range of ROi to be the corresponding challenge set Ci,
and the domain to be {0, 1}≤u for large enough u.

The notion of knowledge soundness that we consider for NIROPs, and in
particular for the Fiat-Shamir transformation of special-sound protocols, is the
natural modification of the knowledge soundness definition of interactive proofs
as introduced by Goldreich [23], to the setting of non-interactive proofs in the
random oracle model. In more detail, a NIROP is knowledge sound with know-
ledge error κ : N × N → [0, 1], if there exists an expected polynomial time
knowledge extractor E and a polynomial q such that for every Q-query dishon-
est prover P∗ that succeeds to convince the verifier about a statement x with
probability ϵ(P∗, x), when E is given black-box access to P∗ it holds that

Pr
(
(x; w) ∈ R : w ← EP∗

(x)
)
≥ ϵ(P∗, x)− κ(|x|, Q)

q(|x|)
,

i.e., E succeeds to extract a witness w for x with the above probability. It is not
too hard to see that it is sufficient to consider deterministic provers P∗.

2.2 Negative Hypergeometric Distribution

An important tool in our analysis is the negative hypergeometric distribution.
Consider a bucket containing ℓ green balls and N − ℓ red balls, i.e., a total of
N balls. In the negative hypergeometric experiment, balls are drawn uniformly
at random from this bucket, without replacement, until k green balls have been
found or until the bucket is empty. The number of red balls X drawn in this
experiment is said to have a negative hypergeometric distribution with parameters
N, ℓ, k, which is denoted by X ∼ NHG(N, ℓ, k).

Lemma 1 (Negative Hypergeometric Distribution). Let N, ℓ, k ∈ N with
ℓ, k ≤ N , and let X ∼ NHG(N, ℓ, k). Then E[X] ≤ k N−ℓ

ℓ+1 .

Remark 1. Typically, negative hypergeometric experiments are restricted to the
non-trivial case ℓ ≥ k. For reasons to become clear later, we also allow parameter
choices with ℓ < k resulting in a trivial negative hypergeometric experiment in
which all balls are always drawn.

Remark 2. The above has a straightforward generalization to buckets with balls
of more than 2 colors: say ℓ green balls and mi balls of color i for 1 ≤ i ≤ M .
The experiment proceeds as before, i.e., drawing until either k green balls have
been found or the bucket is empty. Let Xi be the number of balls of color i
that are drawn in this experiment. Then Xi ∼ NHG(ℓ + mi, ℓ, k) for all i. To
see this, simply run the generalized negative hypergeometric experiment without
counting the balls that are neither green nor of color i.
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3 An Abstract Sampling Game

Towards the goal of constructing and analyzing a knowledge extractor for the
Fiat-Shamir transformation FS[Π] of special-sound interactive proofs Π, we de-
fine and analyze an abstract sampling game. Given access to a deterministic Q-
query prover P∗, attacking the non-interactive random oracle proof FS[Π], our
extractor will essentially play this abstract game in the case Π is a Σ-protocol,
and it will play this game recursively in the general case of a multi-round proto-
col. The abstraction allows us to focus on the crucial properties of the extraction
algorithm, without unnecessarily complicating the notation.

The game considers an arbitrary but fixed U -dimensional array M , where, for
all 1 ≤ j1, . . . , jU ≤ N , the entry M(j1, . . . , jU ) = (v, i) contains a bit v ∈ {0, 1}
and an index i ∈ {1, . . . , U}. Think of the bit v indicating whether this entry
is “good” or “bad”, and the index i points to one of the U dimensions. The
goal will be to find k “good” entries with the same index i, and with all of
them lying in the 1-dimensional array M(j1, . . . , ji−1, · , ji+1, . . . , jU ) for some
1 ≤ j1, . . . , ji−1, ji+1, . . . , jU ≤ N .

Looking ahead, considering the case of a Σ-protocol first, this game captures
the task of our extractor to find k proofs that are valid and feature the same first
message but have different hash values assigned to the first message. Thus, in our
application, the sequence j1, . . . , jU specifies the function table of the random
oracle RO : {1, . . . , U} → {1, . . . , N}, i 7→ ji, while the entry M(j1, . . . , jU ) =
(v, i) captures the relevant properties of the proof produced by the considered
prover when interacting with that particular specification of the random oracle.
Concretely, the bit v indicates whether the proof is valid, and the index i is the
first message a of the proof. Replacing ji by j′

i then means to reprogram the
random oracle at the point i = a. Note that after the reprogramming, we want
to obtain another valid proof with the same first message, i.e., with the same
index i (but now a different challenge, due to the reprogramming).

The game is formally defined in Figure 2 and its core properties are summa-
rized in Lemma 2 below. Looking ahead, we note that for efficiency reasons, the
extractor will not sample the entire sequence j1, . . . , jU (i.e., function table), but
will sample its components on the fly using lazy sampling.

It will be useful to define, for all 1 ≤ i ≤ U , the function

ai : {1, . . . , N}U → N≥0,

(j1, . . . , jU ) 7→
∣∣{j : M(j1, . . . , ji−1, j, ji+1, . . . , jU ) = (1, i)

}∣∣ .
(3)

The value ai(j1, . . . , jU ) counts the number of entries that are “good” and have
index i in the 1-dimensional array M(j1, . . . , ji−1, · , ji+1, . . . , jU ). Note that ai

does not depend on the i-th entry of the input vector (j1, . . . , jU ), and so, by a
slight abuse of notation, we sometimes also write ai(j1, . . . , ji−1, ji+1, . . . , jU ).

Lemma 2 (Abstract Sampling Game). Consider the game in Figure 2.
Let J = (J1, . . . , JU ) be uniformly distributed in {1, . . . , N}U , indicating the
first entry sampled, and let (V, I) = M(J1, . . . , JU ). Further, for all 1 ≤ i ≤ U ,

10



Fig. 2. Abstract Sampling Game.

Parameters: k, N, U ∈ N, and M a U -dimensional array with entries in
M(j1, . . . , jU ) ∈ {0, 1} × {1, . . . , U} for all 1 ≤ j1, . . . , jU ≤ N .

– Sample (j1, . . . , jU ) ∈ {1, . . . , N}U at random and set (v, i) = M(j1, . . . , jU ).
– If v = 0, abort.
– Else, repeat

• sample j′ ∈ {1, . . . , N} \ {ji} (without replacement),
• compute (v′, i′) = M(j1, . . . , ji−1, j′, ji+1, . . . , jU ),

until either k − 1 additional entries equal to (1, i) have been found or until all
indices j′ have been tried.

let Ai = ai(J). Moreover, let X be the number of entries of the form (1, i) with
i = I sampled (including the first one), and let Λ be the total number of entries
sampled in this game. Then

E[Λ] ≤ 1 + (k − 1)P and

Pr(X = k) ≥ N

N − k + 1

(
Pr(V = 1)− P · k − 1

N

)
,

where P =
∑U

i=1 Pr(Ai > 0).

Remark 3. Note the abstractly defined parameter P . In our application, where
the index i of (v, i) = M(j1, . . . , jU ) is determined by the output of a prover
making no more than Q queries to the random oracle with function table
j1, . . . , jU , the parameter P will be bounded by Q + 1. We show this formally
(yet again somewhat abstractly) in Lemma 3. Intuitively, the reason is that
the events Ai > 0 are disjoint for all but Q indices i (those that the consid-
ered prover does not query), and so their probabilities add up to at most 1.
Indeed, if ai(j1, . . . , jU ) > 0 for an index i that the algorithm did not query
then M(j1, . . . , jU ) ∈ {(0, i), (1, i)}; namely, since i has not been queried, the
index i output by the algorithm is oblivious to the value of ji. Therefore, given
j1, . . . , jU , there is at most one unqueried index i with ai(j1, . . . , jU ) > 0.

Proof (of Lemma 2). Expected Number of Samples. Let us first derive an
upper bound on the expected value of Λ. To this end, let X ′ denote the number
of sampled entries of the form (1, i) with i = I, but, in contrast to X, without
counting the first one. Similarly, let Y ′ denote the number of sampled entries of
the form (v, i) with v = 0 or i 6= I, again without counting the first one. Then
Λ = 1 + X ′ + Y ′ and

Pr(X ′ = 0 | V = 0) = Pr(Y ′ = 0 | V = 0) = 1 .

Hence, E[X ′ | V = 0] = E[Y ′ | V = 0] = 0.
Let us now consider the expected value E[Y ′ | V = 1]. To this end, we observe

that, conditioned on the event V = 1 ∧ I = i ∧ Ai = a with a > 0, Y ′ follows a

11



negative hypergeometric distribution with parameters N − 1, a − 1 and k − 1.
Hence, by Lemma 1,

E[Y ′ | V = 1 ∧ I = i ∧Ai = a] ≤ (k − 1)N − a

a
,

and thus, using that Pr(X ′ ≤ k − 1 | V = 1) = 1,

E[X ′ + Y ′ | V = 1 ∧ I = i ∧Ai = a] ≤ (k − 1) + (k − 1)N − a

a
= (k − 1)N

a
.

On the other hand
Pr(V = 1 ∧ I = i | Ai = a) = a

N

and thus
Pr(V = 1 ∧ I = i ∧Ai = a) = Pr(Ai = a) a

N
. (4)

Therefore, and since Pr(V = 1 ∧ I = i ∧Ai = 0) = 0,

Pr(V = 1) · E[X ′ + Y ′ | V = 1] =
U∑

i=1

N∑
a=1

Pr(V = 1 ∧ I = i ∧Ai = a)

· E[X ′ + Y ′ | V = 1 ∧ I = i ∧Ai = a]

≤
U∑

i=1

N∑
a=1

Pr(Ai = a)(k − 1)

= (k − 1)
U∑

i=1
Pr(Ai > 0)

= (k − 1)P ,

where P =
∑U

i=1 Pr(Ai > 0). Hence,

E[Λ] = E[1 + X ′ + Y ′]
= 1 + Pr(V = 0) · E[X ′ + Y ′ | V = 0] + Pr(V = 1) · E[X ′ + Y ′ | V = 1]
≤ 1 + (k − 1)P ,

which proves the claimed upper bound on E[Λ].
Success Probability. Let us now find a lower bound for the “success prob-

ability” Pr(X = k) of this game. Using (4) again, we can write

Pr(X = k) =
U∑

i=1
Pr(V = 1 ∧ I = i ∧Ai ≥ k) =

U∑
i=1

N∑
a=k

Pr(Ai = a) a

N
.

Now, using a ≤ N , note that

a

N
= 1−

(
1− a

N

)
≥ 1− N

N − k + 1

(
1− a

N

)
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= N

N − k + 1

(
N − k + 1

N
− 1 + a

N

)
= N

N − k + 1

(
a

N
− k − 1

N

)
.

Therefore, combining the two, and using that the summand becomes negative
for a < k to argue the second inequality, and using (4) once more, we obtain

Pr(X = k) ≥
U∑

i=1

N∑
a=k

Pr(Ai = a) N

N − k + 1

(
a

N
− k − 1

N

)

≥
U∑

i=1

N∑
a=1

Pr(Ai = a) N

N − k + 1

(
a

N
− k − 1

N

)

= N

N − k + 1

U∑
i=1

N∑
a=1

(
Pr(V = 1 ∧ I = i ∧Ai = a)− Pr(Ai = a) · k − 1

N

)

= N

N − k + 1

(
Pr(V = 1)− k − 1

N

U∑
i=1

Pr(Ai > 0)

)

= N

N − k + 1

(
Pr(V = 1)− P · k − 1

N

)
,

where, as before, we have used that Pr(V = 1 ∧ I = i ∧ Ai = 0) = 0 for all 1 ≤
i ≤ U to conclude the second equality, and finally that P =

∑U
i=1 Pr(Ai > 0).

This completes the proof of the lemma.

Our knowledge extractor will instantiate the abstract sampling game via
a deterministic Q-query prover P∗ attacking the Fiat-Shamir transformation
FS[Π]. The index i of M(v, i) = (j1, . . . , jU ) is then determined by the output
of P∗, with the random oracle being given by the function table j1, . . . , jU . Since
the index i is thus determined by Q queries to the random oracle, the following
shows that the parameter P will in this case be bounded by Q + 1.

Lemma 3. Consider the game in Figure 2. Let v and idx be functions such that
M(j) =

(
v(j), idx(j)

)
for all j ∈ {1, . . . , N}U . Furthermore, let J = (J1, . . . , JU )

be uniformly distributed in {1, . . . , N}U , and set Ai = ai(J) for all 1 ≤ i ≤ U .
Let us additionally assume that for all j ∈ {1, . . . , N}U there exists a subset
S(j) ⊆ {1, . . . , U} of cardinality at most Q such that idx(j) = idx(j′) for all j′

with j′
ℓ = jℓ for all ℓ ∈ S(j). Then

P =
U∑

i=1
Pr(Ai > 0) ≤ Q + 1 .

13



Proof. By basic probability theory, it follows that5

P =
U∑

i=1
Pr(Ai > 0) =

∑
j∈{1,...,N}U

Pr(J = j)
U∑

i=1
Pr(Ai > 0 | J = j)

=
∑

j

Pr(J = j)
( ∑

i∈S(j)

Pr(Ai > 0 | J = j) +
∑

i/∈S(j)

Pr(Ai > 0 | J = j)
)

Since |S(j)| ≤ Q for all j, it follows that

P ≤
∑

j

Pr(J = j)
(

Q +
∑

i/∈S(j)

Pr(Ai > 0 | J = j)
)

≤ Q +
∑

j

Pr(J = j)
∑

i/∈S(j)

Pr(Ai > 0 | J = j)

Now note that, by definition of the sets S(j), for all j ∈ {1, . . . , N}U , i /∈ S(j)
and j∗ ∈ {1, . . . , N}, it holds that

Pr
(
idx(J1, . . . , Ji−1, j∗, Ji+1, . . . , JU ) = idx(j) | J = j

)
= 1 .

Therefore, for all i /∈ S(j) ∪ {idx(j)},

Pr(Ai > 0 | J = j) = 0 .

Hence, ∑
i/∈S(j)

Pr(Ai > 0 | J = j) ≤ Pr(Aidx(j) > 0 | J = j) ≤ 1.

Altogether, it follows that

P ≤ Q +
∑

j

Pr(J = j) = Q + 1 ,

which completes the proof.

4 Fiat-Shamir Transformation of Σ-Protocols

Let us first consider the Fiat-Shamir transformation of a k-special-sound Σ-
protocol Π, i.e., a 3-move interactive proof, with challenge set C; subsequently,
in Section 6, we move to general multi-round interactive proofs.

Let P∗ be a deterministic dishonest Q-query random-oracle prover, attacking
the Fiat-Shamir transformation FS[Π] of Π on input x. Given a statement x as
input, after making Q queries to the random oracle RO : {0, 1}≤u → C, P∗

5 The probabilities Pr(Ai > 0 | J = j) are all 0 or 1; however, it’s still convenient to
use probability notation here.
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outputs a proof π = (a, z). For reasons to become clear later, we re-format (and
partly rename) the output and consider I := a and π as P∗’s output. We refer
to the output I as the index. Furthermore, we extend P∗ to an algorithm A that
additionally checks the correctness of the proof π. Formally, A runs P∗ to obtain
I and π, queries RO to obtain c := RO(I), and then outputs

I = a , y := (a, c, z) and v := V (y) ,

where V (y) = 1 if y is an accepting transcript for the interactive proof Π on
input x and V (y) = 0 otherwise. Hence, A is a random-oracle algorithm making
at most Q + 1 queries; indeed, it relays the oracle queries done by P∗ and makes
the one needed to do the verification. We may write ARO to make the dependency
of A’s output on the choice of the random oracle RO explicit. A has a naturally
defined success probability

ϵ(A) := Pr
(
v = 1 : (I, y, v)← ARO) ,

where RO : {0, 1}≤u → C is chosen uniformly at random. The probability ϵ(A)
equals the success probability ϵ(P∗, x) of the random-oracle prover P∗ on input x.

Our goal is now to construct an extraction algorithm that, when given black-
box access to A, aims to output k accepting transcripts y1, . . . , yk with common
first message a and distinct challenges. By the k-special-soundness property of Π,
a witness for statement x can be computed efficiently from these transcripts.

The extractor E is defined in Figure 3. We note that, after a successful first
run of A, having produced a first accepting transcript (a, c, z), we rerun A from
the very beginning and answer all oracle queries consistently, except the query to
a; i.e., we only reprogram the oracle at the point I = a. Note that since P∗ and
thus A is deterministic, and we only reprogram the oracle at the point I = a, in
each iteration of the repeat loop A is ensured to make the query to I again.6

A crucial observation is the following. Within a run of E , all the queries that
are made by the different invocations of A are answered consistently using lazy
sampling, except for the queries to the index I, where different responses c, c′, . . .
are given. This is indistinguishable from having them answered by a full-fledged
random oracle, i.e., by means of a pre-chosen function RO : {0, 1}≤u → C, but
then replacing the output RO(I) at I by fresh challenges c′ for the runs of A
in the repeat loop. By enumerating the elements in the domain and codomain
of RO, it is easily seen that the extractor is actually running the abstract game
from Figure 2. Thus, bounds on the success probability and the expected run
time (in terms of queries to A) follow from Lemma 2 and Lemma 3. Altogether
we obtain the following result.

Lemma 4 (Extractor). The extractor E of Figure 3 makes an expected num-
ber of at most k+Q ·(k−1) queries to A and succeeds in outputting k transcripts

6 Of course, it would be sufficient to rewind A to the point where it makes the (first)
query to a, but this would make the description more clumsy.
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Fig. 3. Extractor E .

Parameters: k, Q ∈ N
Black-box access to: A as above

– Run A as follows to obtain (I, y1, v): answer all (distinct) oracle queries with
uniformly random values in C. Let c be the response to query I.

– If v = 0, abort.
– Else, repeat

• sample c′ ∈ C \ {c} (without replacement);
• run A as follows to obtain (I ′, y′, v′): answer the query to I with c′, while

answering all other queries consistently if the query was performed by A
already on a previous run and with a fresh random value in C otherwise;

until either k − 1 additional challenges c′ with v′ = 1 and I ′ = I have been
found or until all challenges c′ ∈ C \ {c} have been tried.

– In the former case, output the k accepting transcripts y1, . . . , yk.

y1, . . . , yk with common first message a and distinct challenges with probability
at least

N

N − k + 1

(
ϵ(A)− (Q + 1) · k − 1

N

)
.

Proof. By enumerating all the elements in the domain and codomain of the
random oracle RO, we may assume that RO : {1, ..., U} → {1, ..., N}, and thus
RO can be represented by the function table (j1, ..., jU ) ∈ {1, . . . , N}U for
which RO(i) = ji. Further, since P∗ is deterministic, the outputs I, y and
v of the algorithm A can be viewed as functions taking as input the func-
tion table (j1, . . . , jU ) ∈ {1, . . . , N}U of RO, and so we can consider the array
M(j1, . . . , jU ) =

(
I(j1, . . . , jU ), v(j1, . . . , jU )

)
.

Then, a run of the extractor perfectly matches up with the abstract sampling
game of Figure 2 instantiated with array M . The only difference is that, in
this sampling game, we consider full-fledged random oracles encoded by vectors
(j1, . . . , jU ) ∈ {1, . . . , N}U , while the actual extractor implements these random
oracles by lazy sampling. Thus, we can apply Lemma 2 to obtain bounds on the
success probability and the expected run time. However, in order to control the
parameter P , which occurs in the bound of Lemma 2, we make the following
observation, so that we can apply Lemma 3 to bound P ≤ Q + 1.

For every (j1, . . . , jU ), let S(j1, . . . , jU ) ⊆ {1, . . . , U} be the set of points
that P∗ queries to the random oracle when (j1, . . . , jU ) corresponds to the entire
function table of the random oracle. Then, P∗ will produce the same output when
the random oracle is reprogrammed at an index i /∈ S(j1, . . . , jU ). In particular,
I(j1, . . . , ji−1, j, ji+1, . . . , jU ) = I(j1, . . . , ji−1, j′, ji+1, . . . , , jU ) for all j, j′ and
for all i /∈ S(j1, . . . , jU ). Furthermore, |S(j1, . . . , jU )| ≤ Q. Hence, the conditions
of Lemma 3 are satisfied and P ≤ Q + 1. The bounds on the success probability
and the expected run time now follow, completing the proof.

The existence of the above extractor, combined with the k-special-soundness
property, implies the following theorem.
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Theorem 1 (Fiat-Shamir Transformation of a Σ-Protocol). The Fiat-
Shamir transformation FS[Π] of a k-out-of-N special-sound Σ-protocol Π is
knowledge sound with knowledge error

κfs(Q) = (Q + 1) · κ ,

where κ := Er(k; N) = (k − 1)/N is the knowledge error of Π.

5 Refined Analysis of the Abstract Sampling Game

Before we prove knowledge soundness of the Fiat-Shamir transformation of
multi-round interactive protocols, we reconsider the abstract game of Section 3,
and consider a refined analysis of the cost of playing the game. The multi-round
knowledge extractor will essentially play a recursive composition of this game;
however, the analysis of Section 3 is insufficient for our purposes (resulting in
a super-polynomial bound on the run-time of the knowledge extractor). Fortu-
nately, it turns out that a refinement allows us to prove the required (polynomial)
upper bound.

In Section 3, the considered cost measure is the number of entries visited dur-
ing the game. For Σ-protocols, every entry corresponds to a single invocation of
the dishonest prover P∗. For multi-round protocols, every entry will correspond
to a single invocation of a sub-tree extractor. The key observation is that some
invocations of the sub-tree extractor are expensive while others are cheap. For
this reason, we introduce a cost function Γ and a constant cost γ to our abstract
game, allowing us to differentiate between these two cases. Γ and γ assign a
cost to every entry of the array M ; Γ corresponds to the cost of an expensive
invocation of the sub-tree extractor and γ corresponds to the cost of a cheap in-
vocation. While this refinement presents a natural generalization of the abstract
game of Section 3, its analysis becomes significantly more involved.

The following lemma provides an upper bound for the total cost of playing
the abstract game in terms of these two cost functions.

Lemma 5 (Abstract Sampling Game - Weighted Version). Consider
again the game of Figure 2, as well a cost function Γ : {1, . . . , N}U → R≥0
and a constant cost γ ∈ R≥0. Let J = (J1, . . . , JU ) be uniformly distributed in
{1, . . . , N}U , indicating the first entry sampled, and let (V, I) = M(J1, . . . , JU ).
Further, for all 1 ≤ i ≤ U , let Ai = ai(J), where the function ai is as defined in
Equation 3.

We define the cost of sampling an entry M(j1, . . . , jU ) = (v, i) with index
i = I to be Γ (j1, . . . , jU ) and the cost of sampling an entry M(j1, . . . , jU ) = (v, i)
with index i 6= I to be γ. Let ∆ be the total cost of playing this game. Then

E[∆] ≤ k · E[Γ (J)] + (k − 1) · T · γ

where T =
∑U

i=1 Pr(I 6= i ∧Ai > 0) ≤ P .
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Remark 4. Note that the parameter T in the statement here differs slightly from
its counterpart P =

∑
i Pr(Ai > 0) in Lemma 2. Recall the informal discussion

of P in the context of our application (Remark 3), where the array M is instan-
tiated via a Q-query prover P∗ attacking the Fiat-Shamir transformation of an
interactive proof. We immediately see that now the defining events I 6= i∧Ai > 0
are empty for all U −Q indices that the prover does not query, giving the bound
T ≤ Q here, compared to the bound P ≤ Q + 1 on P . The formal (and more
abstract) statement and proof is given in Lemma 6.

Proof. Let us split up ∆ into the cost measures ∆1, ∆2 and ∆3, defined as
follows. ∆1 denotes the total costs of the elements M(j1, . . . , jU ) = (1, i) with
i = I sampled in the game, i.e., the elements with bit v = 1 and index i = I;
correspondingly, X denotes the number of entries of the form (1, i) with i = I
sampled (including the first one if V = 1). Second, ∆2 denotes the total costs of
the elements M(j1, . . . , jU ) = (0, i) with i = I sampled, i.e., the elements with
bit v = 0 and index i = I; correspondingly, Y denotes the number of entries of
the form (0, i) with i = I sampled (including the first one if V = 0). Finally,
∆3 denotes the total costs of the elements M(j1, . . . , jU ) = (v, i) with i 6= I
sampled; correspondingly, Z denotes the number of entries of this form sampled.

Clearly ∆ = ∆1 + ∆2 + ∆3. Moreover, since the cost γ is constant, it fol-
lows that E[∆3] = γ · E[Z]. In a similar manner, we now aim to relate E[∆1]
and E[∆2] to E[Y ] and E[Z], respectively. However, since the cost function
Γ : {1, . . . , N}U → R≥0 is not necessarily constant, this is more involved.

For 1 ≤ i ≤ U let us write J∗
i = (J1, . . . , Ji−1, Ji+1, . . . , JU ), which is uni-

formly random with support {1, . . . , N}U−1. Moreover, for all 1 ≤ i ≤ U and
j∗ = (j∗

1 , . . . , j∗
i−1, j∗

i+1, · · · , jU ) ∈ {1, . . . , N}U−1, let Λ(i, j∗) denote the event

Λ(i, j∗) = [I = i ∧ J∗
i = j∗] .

We note that conditioned on the event Λ(i, j∗), all samples are picked from
the subarray M(j∗

1 , . . . , j∗
i−1, · , j∗

i+1, · · · , j∗
U ); the first one uniformly at random

subject to the index I being i, and the remaining ones (if V = 1) uniformly at
random (without replacement).

We first analyze and bound E[∆1 | Λ(i, j∗)]. We observe that, for all i and j∗

with Pr
(
Λ(i, j∗)

)
> 0,

E[∆1 | Λ(i, j∗)] =
N∑

ℓ=0

Pr
(
X = ℓ | Λ(i, j∗)

)
· E[∆1 | Λ(i, j∗) ∧X = ℓ] .

Since, conditioned on Λ(i, j∗) ∧ X = ℓ for ℓ ∈ {0, . . . , N}, any size-ℓ subset of
elements with v = 1 and index i is equally likely to be sampled, it follows that

E[∆1 | Λ(i, j∗) ∧X = ℓ] = E[Γ (J) | V = 1 ∧ Λ(i, j∗)] · ℓ .

Hence,

E[∆1 | Λ(i, j∗)] = E[Γ (J) | V = 1 ∧ Λ(i, j∗)] ·
∑

ℓ

Pr
(
X = ℓ | Λ(i, j∗)

)
· ℓ

= E[Γ (J) | V = 1 ∧ Λ(i, j∗)] · E[X | Λ(i, j∗)] .

18



Similarly,

E[∆2 | Λ(i, j∗)] = E[Γ (J) | V = 0 ∧ Λ(i, j∗)] · E[Y | Λ(i, j∗)] .

Next, we bound the expected values of X and Y conditioned on Λ(i, j∗).
The analysis is a more fine-grained version of the proof of Lemma 2. Bounding
E[X | Λ(i, j∗)] is quite easy: since V = 0 implies X = 0 and V = 1 implies
X ≤ k, it immediately follows that

E[X | Λ(i, j∗)] = Pr(V = 0 | Λ(i, j∗)) · E[X | V = 0 ∧ Λ(i, j∗)]

+ Pr(V = 1 | Λ(i, j∗)) · E[X | V = 1 ∧ Λ(i, j∗)]

≤ Pr(V = 1 | Λ(i, j∗)) · k .

Hence,

E[∆1 | Λ(i, j∗)] ≤ k · Pr(V = 1 | Λ(i, j∗)) · E[Γ (J) | V = 1 ∧ Λ(i, j∗)] . (5)

Suitably bounding the expectation E[Y | Λ(i, j∗)], and thus E[∆2 | Λ(i, j∗)],
is more involved. For that purpose, we introduce the following parameters.
For the considered fixed choice of the index 1 ≤ i ≤ U and of j∗ =
(j∗

1 , . . . , j∗
i−1, j∗

i+1, · · · , j∗
U ), we let7

a := ai(j∗) =
∣∣{j : (vj , ij) = M(j∗

1 , . . . , j∗
i−1, j, j∗

i+1, . . . , j∗
U ) = (1, i)

}∣∣ and

b := bi(j∗) :=
∣∣{j : (vj , ij) = M(j∗

1 , . . . , j∗
i−1, j, j∗

i+1, . . . , j∗
U ) = (0, i)

}∣∣ .

Let us first note that

Pr
(
V = 1 | Λ(i, j∗)

)
= a

a + b
and Pr

(
V = 0 | Λ(i, j∗)

)
= b

a + b

for all i and j∗ with Pr
(
Λ(i, j∗)

)
> 0. Therefore, if we condition on the event

V = 1 ∧ Λ(i, j∗) we implicitly assume that i and j∗ are so that a is positive.
Now, towards bounding E[Y | Λ(i, j∗)], we observe that conditioned on the
event V = 1∧Λ(i, j∗), the random variable Y follows a negative hypergeometric
distribution with parameters a + b− 1, a− 1 and k − 1. Hence, by Lemma 1,

E[Y | V = 1 ∧ Λ(i, j∗)] ≤ (k − 1) b

a
,

and thus
E[Y | Λ(i, j∗)] = Pr(V = 0 | Λ(i, j∗)) · E[Y | V = 0 ∧ Λ(i, j∗)]

+ Pr(V = 1 | Λ(i, j∗)) · E[Y | V = 1 ∧ Λ(i, j∗)]

≤ Pr
(
V = 0 | Λ(i, j∗)

)
+ Pr

(
V = 1 | Λ(i, j∗)

)
· (k − 1) b

a

= b

a + b
+ a

a + b
· (k − 1) b

a
= k

b

a + b

= k · Pr(V = 0 | Λ(i, j∗)) ,

7 Recall that we use ai(j1, . . . , jU ) and ai(j1, . . . , ji−1, ji+1, . . . , jU ) interchangeably,
exploiting that ai(j1, . . . , jU ) does not depend on the i-th input ji.
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where we use that E[Y | V = 0 ∧ Λ(i, j∗)] = 1. Hence,

E[∆2 | Λ(i, j∗)] ≤ k · Pr(V = 0 | Λ(i, j∗)) · E[Γ (J) | V = 0 ∧ Λ(i, j∗)] ,

and thus, combined with Equation 5,

E[∆1 + ∆2 | Λ(i, j∗)] ≤ k · E[Γ (J) | Λ(i, j∗)] .

Since this inequality holds for all i and j∗ with Pr
(
Λ(i, j∗)

)
> 0, it follows that

E[∆1 + ∆2] ≤ k · E[Γ (J)] .

What remains is to show that E[Z] ≤ (k − 1)T . The slightly weaker bound
E[Z] ≤ (k − 1)P follows immediately from observing that Z ≤ Y ′ for Y ′ as in
the proof of Lemma 2 (the number of entries counted by Z is a subset of those
counted by Y ′), and using that E[Y ′] ≤ E[X ′ + Y ′] ≤ (k− 1)P as derived in the
proof of Lemma 2. This then implies E[∆3] ≤ (k − 1) · P · γ, and so, altogether,
we obtain the weaker version of the claimed bound:

E[∆] = E[∆1 + ∆2 + ∆3] ≤ k · E[Γ (J)] + (k − 1) · P · γ .

For the stronger version in terms of T , we refer to the full version [1].

Lemma 6. Consider the game in Figure 2. Let v and idx be functions such that
M(j) =

(
v(j), idx(j)

)
for all j ∈ {1, . . . , N}U . Furthermore, let J = (J1, . . . , JU )

be uniformly distributed in {1, . . . , N}U and set Ai = ai(J) for all 1 ≤ i ≤ U
as in Equation 3. Let us additionally assume that for all j ∈ {1, . . . , N}U there
exists a subset S(j) ⊆ {1, . . . , U} of cardinality at most Q such that idx(j) =
idx(j′) for all j, j′ with jℓ = j′

ℓ for all ℓ ∈ S(j). Then

T =
U∑

i=1
Pr
(
idx(J) 6= i ∧Ai > 0

)
≤ Q .

See the full version [1] for a proof of lemma 6.

6 Fiat-Shamir Transformation of Multi-Round Protocols

Let us now move to multi-round interactive proofs. More precisely, we consider
the Fiat-Shamir transformation FS[Π] of a k-special-sound (2µ + 1)-move inter-
active proof Π, with k = (k1, . . . , kµ). While the multi-round extractor has a
natural recursive construction, it requires a more fine-grained analysis to show
that it indeed implies knowledge soundness.

To avoid a cumbersome notation, below we first handle (2µ + 1)-move inter-
active proofs in which the verifier samples all µ challenges uniformly at random
from the same set C. In the full version [1], we consider a generalization for
varying challenges sets and extend our results to adaptive security.
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Consider a deterministic dishonest Q-query random-oracle prover P∗, attack-
ing the Fiat-Shamir transformation FS[Π] of a k-special-sound interactive proof
Π on input x. We assume all challenges to be elements in the same set C.
After making at most Q queries to the random oracle, P∗ outputs a proof
π = (a1, . . . , aµ+1). We re-format the output and consider

I1 := a1 , I2 := (a1, a2) , . . . , Iµ := (a1, . . . , aµ) and π

as P∗’s output. Sometimes it will be convenient to also consider Iµ+1 :=
(a1, . . . , aµ+1). Furthermore, we extend P∗ to a random-oracle algorithm A that
additionally checks the correctness of the proof π. Formally, relaying all the ran-
dom oracle queries that P∗ is making,A runs P∗ to obtain I = (I1, . . . , Iµ) and π,
additionally queries the random oracle to obtain c1 := RO(I1), . . . , cµ := RO(Iµ),
and then outputs

I , y := (a1, c1, . . . , aµ, cµ, aµ+1) and v := V (x, y) ,

where V (x, y) = 1 if y is an accepting transcript for the interactive proof Π on
input x and V (x, y) = 0 otherwise. Hence, A makes at most Q + µ queries (the
queries done by P∗, and the queries to I1, . . . , Iµ). Moreover, A has a naturally
defined success probability

ϵ(A) := Pr
(
v = 1 : (I, y, v)← ARO) ,

where RO : {0, 1}≤u → C is distributed uniformly. As before, ϵ(A) = ϵ(P∗, x).
Our goal is now to construct an extraction algorithm that, when given black-

box access to A, and thus to P∗, aims to output a k-tree of accepting transcripts.
By the k-special-soundness property of Π, a witness for statement x can then
be computed efficiently from these transcripts.

To this end, we recursively introduce a sequence of “sub-extractors”
E1, . . . , Eµ, where Em aims to find a (1, . . . , 1, km, . . . , kµ)-tree of accept-
ing transcripts. The main idea behind this recursion is that such a
(1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts is the composition of km ap-
propriate (1, . . . , 1, km+1, . . . , kµ)-trees.

For technical reasons, we define the sub-extractors Em as random-oracle al-
gorithms, each one making Q + µ queries to a random oracle. As we will see, the
recursive definition of Em is very much like the extractor from the 3-move case,
but with A replaced by the sub-extractor Em+1; however, for this to work we
need the sub-extractor to be the same kind of object as A, thus a random-oracle
algorithm making the same number of queries. As base for the recursion, we
consider the algorithm A (which outputs a single transcript, i.e., a (1, . . . , 1)-
tree); thus, the sub-extractor Eµ (which outputs a (1, . . . , 1, kµ)-tree) is essen-
tially the extractor of the 3-move case, but with A now outputting an index
vector I = (I1, . . . , Iµ), and with Eµ being a random-oracle algorithm, so that
we can recursively replace the random-oracle algorithm A by Eµ to obtain Eµ−1,
etc.

Formally, the recursive definition of Em from Em+1 is given in Figure 4, where
Eµ+1 (the base case) is set to Eµ+1 := A, and where Em exploits the following
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early abort feature of Em+1: like A, the sub-extractor Em+1 computes the index
vector it eventually outputs by running P∗ as its first step (see Lemma 7 below).
This allows the executions of Em+1 in the repeat loop in Fig. 4 to abort after a
single run of P∗ if the requirement I ′

m = Im on its index vector I is not satisfied,
without proceeding to produce the remaining parts y′, v′ of the output (which
would invoke more calls to P∗).

The actual extractor E is then given by a run of E1, with the Q + µ random-
oracle queries made by E1 being answered using lazy-sampling.

Fig. 4. Sub-extractor Em, as a (Q + µ)-query random-oracle algorithm.

Parameters: km, Q ∈ N
Black-box access to: Em+1
Random oracle queries: Q + µ

– Run Em+1 as follows to obtain (I, y1, v): relay the Q+µ queries to the random
oracle and record all query-response pairs. Let c be the response to query Im.

– If v = 0, abort with output v = 0.
– Else, repeat

• sample c′ ∈ C \ {c} (without replacement);
• run Em+1 as follows to obtain (I′, y′, v′), aborting right after the initial

run of P∗ if I ′
m 6= Im: answer the query to Im with c′, while answering all

other queries consistently if the query was performed by Em+1 already on
a previous run and with a fresh random value in C otherwise;

until either km −1 additional challenges c′ with v′ = 1 and I ′
m = Im have been

found or until all challenges c′ ∈ C \ {c} have been tried.
– In the former case, output I, the km accepting (1, . . . , 1, km+1, . . . , kµ)-trees

y1, . . . , ykm , and v := 1; in the latter case, output v := 0.

Remark 5. Let us emphasize that within one run of Em, except for the query
to Im for which the response is “reprogrammed”, all the queries made by the
multiple runs of the sub-extractor Em+1 in the repeat loop are answered consis-
tently, both with the run of Em+1 in the first step and among the runs in the
repeat loop. This means, a query to a value ξ that has been answered by η in
a previous run on Em+1 (within the considered run of Em) is again answered by
η, and a query to a value ξ′ that has not been queried yet in a previous run
on Em+1 (within the considered run of Em) is answered with a freshly chosen
uniformly random η′ ∈ C. In multiple runs of Em, very naturally the random
tape of Em will be refreshed, and thus there is no guaranteed consistency among
the answers to the query calls of Em+1 across multiple runs of Em.

The following lemma captures some technical property of the sub-
extractors Em. Subsequently, Proposition 1 shows that Em, if successful, in-
deed outputs a (1, . . . , 1, km . . . , kµ)-tree of accepting transcripts. Proposition 2
bounds the success probability and expected run time of Em. All statements are
understood to hold for any statement x and any m ∈ {1, . . . , µ + 1}.
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Lemma 7 (Consistency of P∗ and Em). Em obtains the index vector I, which
it eventually outputs, by running (I, π)← P∗ as its first step. In particular, for
any fixed choice of the random oracle RO, the index vector I output by ERO

m

matches the one output by P∗,RO.

Proof. The first claim holds for Eµ+1 = A by definition of A, and it holds for Em

with m ≤ µ by induction, given that Em runs Em+1 as a first step. The claim on
the matching index vectors then follows trivially.

Proposition 1 (Correctness). For any fixed choice of the random ora-
cle let (I, y1, . . . , ykm

, v) ← ERO
m (x). If v = 1 then (y1, . . . , ykm

) forms a
(1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts.

Proof. All km+1 · · · kµ transcripts in a (1, . . . , 1, km+1, . . . , kµ)-tree contain the
same partial transcript (a1, c1, . . . , cm, am+1), i.e., the first 2m−1 messages in all
these transcripts coincide. Hence, any (1, . . . , 1, km+1, . . . , kµ)-tree of transcripts
has a well-defined trunk (a1, c1, . . . , cm, am+1).

By induction on m, we will prove that if v = 1 then (y1, . . . , ykm
)

forms a (1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts with trunk
(a1, RO(I1), . . . , RO(Im−1), am), where Im+1 = (a1, . . . , am+1). This obviously
implies the correctness claim.

For the base case m = µ + 1, recall that Eµ+1 = A, and that by definition of
A and its output (I, y, v), if v = 1 then y is an accepting transcript, and thus
a (1, . . . , 1)-tree of accepting transcripts with (a1, RO(I1), . . . , RO(Iµ), aµ+1) as
trunk where Iµ+1 = (a1, . . . , aµ+1), by definition of I = (I1, . . . , Iµ).

For the induction step, by the induction hypothesis on Em+1 and its output
(I, y, v), if v = 1 then y is a (1, . . . , 1, km+1, . . . , kµ)-tree of accepting transcripts
with trunk (a1, RO(I1), . . . , am, RO(Im), am+1), where Im+1 = (a1, . . . , am+1).
This holds for (I, y1, v) output by Em+1 in the first step of Em, but also for any
invocation of Em+1 in the repeat loop with output (I′, y′, v′), here with trunk
(a′

1, RO′(I ′
1), . . . , a′

m, RO′(I ′
m), a′

m+1), where I ′
m+1 = (a′

1, . . . , a′
m+1) and RO′ is

such that RO′(Ij) = RO(Ij) for all j 6= m, while RO(Im) = ci and RO′(Im) = c′
i.

By definition of the output of Em, for y1 and y′ occurring in the output of Em,
it is ensured that Im = I ′

m.
Now note that, by Lemma 7, for the purpose of the argument, Em could have

run P∗ instead of Em+1 to obtain I and I′. Therefore, by definition of the index
vectors output by P∗, which is such that Ij is a (fixed-size) prefix of Im for
j < m, it follows that also Ij = I ′

j for all j < m.
Therefore, the output y1, . . . , ykm of Em forms a (1, . . . , 1, km, . . . , kµ)-tree of

accepting transcripts with trunk (a1, RO(I1), . . . , am−1, RO(Im−1), am), where
Im = (a1, . . . , am). This completes the proof.

Proposition 2 (Run Time and Success Probability). Let Km = km · · · kµ.
The extractor Em makes an expected number of at most Km+Q·(Km−1) queries
to A (and thus to P∗) and successfully outputs v = 1 with probability at least

ϵ(A)− (Q + 1) · κm

1− κm
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where κm := Er(km, . . . , kµ; N) is as defined in Equation 1.

Proof. The proof goes by induction on m. The base case m = µ+1 holds trivially,
understanding that Kµ+1 = 1 and Er(∅, N) = 0. Indeed, Eµ+1 makes 1 call to A
and outputs v = 1 with probability ϵ(A). Alternatively, we can take m = µ as
base case, which follows immediately from Lemma 4.

For the induction step, we assume now that the lemma is true for m′ = m+1
and consider the extractor Em. As in the 3-move case, we observe that, within
a run of Em, all the queries that are made by the different invocations of
Em+1 are answered consistently using lazy sampling, except for the queries
to the index Im, which is answered with different responses c′. This is in-
distinguishable from having them answered by a full-fledged random oracle
RO : {1, . . . , U} → {1, . . . , N}, where we have enumerated the domain and
codomain of RO as before. This enumeration allows RO to be identified with
its function table (j1, . . . , jU ) ∈ {1, . . . , N}U . Thus, the extractor is actually
running the abstract sampling game from Figure 2.

However, in contrast to the instantiation of Section 4, the entries of the
array M are now probabilistic. Namely, while A is deterministic, the extractor
Em+1 is a probabilistic algorithm. Fortunately, this does not influence the key
properties of the abstract sampling game. For the purpose of the analysis we
may namely fix the randomness of the extractor Em+1. By linearity of the success
probability and the expected run time, the bounds that hold for any fixed choice
of randomness also hold when averaged over the randomness. Thus, we can
apply Lemma 2 and Lemma 5 to bound the success probability and the expected
run time.8

To control the parameters P and T , which occur in the bounds of these
lemmas, we make the following observation. A similar observation was required
in the proof of Lemma 4.

First, by Lemma 7, the index vector I output by Em+1 matches the index
vector output by P∗, when given the same random oracle RO. Second, since
P∗ is deterministic, its output can only change when the random oracle is re-
programmed at one of the indices i ∈ {1, . . . , U} queried by P∗. Therefore, for
every (j1, . . . , jU ), let S(j1, . . . , jU ) ⊆ {1, . . . , U} be the set of points that P∗

queries to the random oracle when (j1, . . . , jU ) corresponds to the entire func-
tion table of the random oracle. Then, P∗ will produce the same output when
the random oracle is reprogrammed at an index i /∈ S(j1, . . . , jU ). In particular,
I(j1, . . . , ji−1, j, ji+1, . . . , jU ) = I(j1, . . . , ji−1, j′, ji+1, . . . , , jU ) for all j, j′ and
for all i /∈ S(j1, . . . , jU ). Furthermore, |S(j1, . . . , jU )| ≤ Q. Hence, the condi-
tions of Lemma 3 and Lemma 6 are satisfied, and it follows that P ≤ Q + 1 and
T ≤ Q. We are now ready to analyze the success probability and the expected
number of A queries of Em.
8 To be more precise, to allow for fresh randomness in the different runs of Em+1

within Em, we first replace the randomness of Em+1 by F (j1, . . . , jU ) for a random
function F , where (j1, . . . , jU ) is the function table of the random oracle providing
the answers to Em+1’s queries, and then we fix the choice of F and average over F
after having applied Lemma 2 and Lemma 5.
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Success Probability. By the induction hypothesis, the success probability
pm+1 of Em+1 is bounded by

pm+1 ≥
ϵ(A)− (Q + 1) · κm+1

1− κm+1
.

Then, by Lemma 2 and Lemma 3, the success probability of Em is bounded by

N

N − km + 1

(
pm+1 − (Q + 1)km − 1

N

)

≥ N

N − km + 1

(
ϵ(A)− (Q + 1) · κm+1

1− κm+1
− (Q + 1)km − 1

N

)
.

By the recursive property (2) of κm = Er(km, . . . , kµ; N, . . . , N
)
, it follows that

N − km + 1
N

(1− κm+1) = 1− κm .

Hence,

pm ≥
ϵ(A)− (Q + 1) · κm+1

1− κm
− (Q + 1) km − 1

N − km + 1

= 1
1− κm

(
ϵ(A)− (Q + 1) ·

(
κm+1 + (1− κm) km − 1

N − km + 1

))

= 1
1− κm

(
ϵ(A)− (Q + 1) ·

(
1− (1− κm)·

N

N − km + 1
+ (1− κm) km − 1

N − km + 1

))

= ϵ(A)− (Q + 1) · κm

1− κm
,

which proves the claimed success probability.
Expected Number of A-Queries. Let the random variable Tm denote the

number of A-queries made by extractor Em. By the induction hypothesis,

E[Tm+1] ≤ Km+1 + Q · (Km+1 − 1) .

We make one crucial observation, allowing us to achieve the claimed query
complexity, linear in Q. Namely, we can view the run of a (sub)extractor as a
two-stage algorithm that allows an early abort. By Lemma 7, after only one A-
query Em+1 already returns the index Im. At this stage, Em can decide whether
to continue the execution of Em+1 or to early abort this execution. If the index
is incorrect, i.e., it does not match the one obtained in the first invocation of
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Em+1, then Em early aborts the execution of Em+1. Only if the index is correct,
the Em+1 execution has to be finished.

For this reason, we define the function (j1, . . . , jU ) 7→ Γ (j1, . . . , jU ), where
Γ (j1, . . . , jU ) is the (expected) costs of running Em+1 (completely) with random
oracle (j1, . . . , jU ). Moreover, we set γ = 1 indicating the cost of an early abort
invocation of Em+1. These cost functions measure the expected number of calls
to A.

Hence, by Lemma 5 and Lemma 6, the expected cost of running Em is

E[Tm] ≤ km · E[Γ (C)] + γ ·Q · (km − 1) = km · E[Tm+1] + Q · (km − 1)
≤ Km + Q · (Km − km) + Q · (km − 1) = Km + Q · (Km − 1) ,

where C is distributed uniformly at random in CU . This completes the proof.

The existence of extractor E1, combined with the k-special-soundness prop-
erty, implies the following. This theorem shows that the Fiat-Shamir security
loss for k-out-of-N special-sound (2µ + 1)-round interactive proofs is Q + 1,
i.e., the security loss is linear in the query complexity Q of provers P∗ attack-
ing the considered non-interactive random oracle proof FS[Π]. In particular, the
Fiat-Shamir security loss is independent of the number of rounds (2µ+1) of Π.

Theorem 2 (FS Transformation of a (k1, . . . , kµ)-Special-Sound Proto-
col). The Fiat-Shamir transformation FS[Π] of a k = (k1, . . . , kµ)-special-sound
interactive proof Π, in which all challenges are sampled from a set C of size N ,
is knowledge sound with knowledge error

κfs(Q) = (Q + 1)κ ,

where κ := Er(k; N) is the knowledge error of the interactive proof Π.

7 The Fiat-Shamir Transformation of Parallel Repetitions

In the previous sections we have established a positive result; for a broad class
of interactive proofs the Fiat-Shamir security loss is only linear in the query
complexity Q and independent of the number of rounds. One might therefore
wonder whether the generic (Q + 1)µ security loss, for (2µ + 1)-move protocols,
is only tight for contrived examples. In this section, we show that this is not the
case. We demonstrate a non-trivial attack on the Fiat–Shamir transformation of
the parallel repetition of k-special-sound protocols.

Let Π = (P,V) be a (2µ+1)-move k-special-sound interactive proof. We write
Πt = (Pt,Vt) for its t-fold parallel repetition. That is, the prover Pt(x; w) runs
t instances of P(x; w), i.e., each message is a tuple (a1, . . . , at) of messages, one
for each parallel thread of execution. Likewise, the verifier Vt(x) runs t instances
of V(x) in parallel, i.e., each challenge is a tuple (c1, . . . , ct) of challenges, one for
each parallel thread of the execution. Finally, the verifier accepts if all parallel
instances are accepting.
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Assuming certain natural properties on Π, which are satisfied by typical
examples, and assuming again for simplicity that the challenge spaces Ci all
have the same cardinality N , we show that, when t ≥ µ, there exists a malicious
Q-query prover P∗, attacking FS[Πt], that, for any statement x, succeeds in
convincing the verifier with probability at least

1
2

Qµ

µt+µ
Er(k; N)t ,

assuming some mild conditions on the parameters. Given that Er(k; N)t equals
the soundness as well as the knowledge error of Πt,9 our attack shows that
the security loss of the Fiat-Shamir transformation, when applied to the t-fold
parallel repetition of Π, is at least 1

2 Qµ/µt+µ. This stands in stark contrast to a
single execution of a k-special-sound protocol, where the loss is linear in Q and
independent of µ.

We go on to discuss the kind of k-special-sound protocols Π for which our
attack applies. For simplicity, we restrict our attention here to k = (k, . . . , k) and
assume t and Q to be multiples of µ. In the full version [7], we consider the case
of arbitrary k, and the restrictions on t and Q can be easily avoided with some
adjustments to the bound and the reasoning. Let ℓ = (ℓ, . . . , ℓ) where ℓ ≤ k− 1.
The attack on FS[Πt] uses a property most k-special-sound protocols Π satisfy,
namely that there exists an efficient attack strategy A against Π which tries to
guess challenges up front so that:

1. In any round, A can prepare and send a message so that if he is lucky
and the next challenge falls in a certain set Γ of cardinality ℓ, A will be
able to complete the protocol and have the verifier accept (no matter what
challenges A encounters in the remaining rounds), and

2. until A is lucky in the above sense, in any round A can actually prepare B
distinct messages as above, for a given parameter B.

We call protocols which admit such an attack strategy ℓ-special-unsound with B
potential responses per round (see the full version [7] for a formal definition). The
first point in particular implies an attack strategy for the interactive proof Π that
succeeds with probability Er(ℓ + 1, N). Since many k-special-sound interactive
proofs Π are ℓ-special-unsound with ℓ = k−1, this confirms the tightness of the
knowledge error Er(k, N). The second point implies that in the context of the
Fiat-Shamir transformation, an attacker can produce and try multiple message-
challenge pairs in any round.

These requirements are very common (for non-trivial ℓ and large B). For
example, the folding technique of [13], when used to fold two parts into one,
satisfies (3, . . . , 3)-special-soundness and (2, . . . , 2)-special-unsoundness with an
exponential parameter B. Note that, while the honest prover is deterministic, a
9 The soundness and knowledge error of a single invocation of Π are both equal to

Er(k; N). Therefore, it immediately follows that the soundness error of the parallel
repetition Πt is Er(k; N)t. The fact that the knowledge error of Πt also equals
Er(k; N)t follows from the recent work [7].
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dishonest prover can produce different messages (and hope to be lucky with one
of the corresponding challenges).

The following theorem gives a lower bound for the success probability of our
attack on the Fiat-Shamir transformation FS[Πt] of the t-fold parallel repetition
Πt of an interactive proof Π with certain common soundness and unsoundness
properties.

Theorem 3. Let Π be a (2µ + 1)-move (k, . . . , k)-out-of-(N, . . . , N) special-
sound interactive proof that is (ℓ, . . . , ℓ)-special-unsound with B responses per
round for ℓ = k−1. Furthermore, let t, Q ∈ N be integer multiples of µ such that
Q ·
(

ℓ
N

)t/µ ≤ 1/4 and B ≥ Q. Then there exists a Q-query dishonest prover P∗

against (P,V) = FS[Πt] such that, for any statement x ∈ {0, 1}∗,

ϵ(P∗, x) = Pr
(
VRO(x,P∗,RO) = 1

)
≥ 1

2
Qµ

µt+µ
Er(k; N)t .

The run-time of P∗ is at most tQ times the run-time of attack strategy A.

Proof. The basic idea of the attack is that (groups of) parallel threads can be at-
tacked individually and independently from each other over the different rounds
of the protocol. Concretely, the attack is given by the adversary P∗ against
FS[Πt], which makes up to Q = µ ·Q′ queries, defined as follows: P∗ runs attack
strategy A in parallel against all t = µ · t′ threads. Let us call a thread green
if strategy A succeeds in guessing the challenge for that thread (and hence, V
will eventually accept for that thread). Otherwise, a thread is red. All threads
start out red, and the goal of P∗ is to turn all threads green. To do so, in every
round P∗ tries to turn at least t′ = t/µ red threads into green threads (or all
red threads into green threads if fewer than t/µ remain). For this, P∗ uses A to
get the messages which it feeds to the random oracle. If P∗ was lucky with the
received challenges for at least t′ = t/µ threads, then enough red threads turn
green. Else, P∗ tries the considered round again, exploiting that A can produce
up to B distinct messages that give him a chance, each one giving a fresh chal-
lenge from the random oracle. The dishonest prover P∗ tries up to Q′ = Q/µ
times per round until it gives up (and fails).

The number of queries P∗ makes to the random oracle is at most Q, hence
P∗ is a Q-query adversary. The probability that P∗ succeeds for any try in
any round to turn at least t′ = t/µ red threads into green threads is at least
( ℓ

N )t′ = λt′ , where we introduce λ = ℓ
N to simplify the upcoming expressions.

Therefore, since P∗ makes at most Q′ = Q/µ queries in every round, the success
probability for any fixed round is at least

1−
(
1− λt′)Q′

≥ Q′λt′
− 2 Q′2λ2t′

= Q′λt′(
1− 2 Q′λt′)

. (6)

where the inequality follows from the fact that 1− (1−x)n ≥ nx−2n2x2, which
can be shown to hold when nx ≤ 1/2, which is (more than) satisfied for x = λt′

and n = Q′ by assumption. Hence, P∗ succeeds (in all µ rounds) with probability
at least

Q′µλt
(
1− 2 Q′λt′)µ ≥ Q′µλt

(
1− 2Qλt′)

≥ 1
2

Q′µλt ,

28



where we use that (1 − z)n ≥ 1 − nz for n ∈ N and z ∈ [0, 1] to argue the first
inequality, and Q ·

(
ℓ
N

)t′

≤ 1/4 for the second. To complete the analysis of P∗’s
success probability, we observe that

Er(k; N) = 1−
(

1− k − 1
N

)µ

≤ µ · k − 1
N

= µ · ℓ

N
= µ · λ .

Hence, the success probability of P∗ is at least 1
2 Q′µ(Er(k;N)

µ

)t, as claimed.
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