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Abstract. We present a new framework for building round-optimal one-
sided statistically secure two party computation (2PC) protocols in the
plain model. We demonstrate that a relatively weak notion of oblivi-
ous transfer (OT), namely a three round elementary oblivious trans-
fer eOT with statistical receiver privacy, along with a non-interactive
commitment scheme suffices to build a one-sided statistically secure two
party computation protocol with black-box simulation. Our framework
enables the first instantiations of round-optimal one-sided statistically
secure 2PC protocols from the CDH assumption and certain families of
isogeny-based assumptions.
As part of our compiler, we introduce the following new one-sided sta-
tistically secure primitives in the pre-processing model that might also
be of independent interest:

1. Three round statistically sender private random-OT where only the
last OT message depends on the receiver’s choice bit and the sender
receives random outputs generated by the protocol.

2. Four round delayed-input statistically sender private conditional dis-
closure of secrets where the first two rounds of the protocol are in-
dependent of the inputs of the parties.

The above primitives are directly constructed from eOT and hence we
obtain their instantiations from the same set of assumptions as our 2PC.

1 Introduction

Secure two party computation (2PC) enables two mutually distrusting parties
to compute a function on their private inputs without revealing anything be-
yond their output. An important question in the study of secure computa-
tion has been designing protocols in minimal rounds. The phenomenal work
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of Katz and Ostrovsky [KO04] showed that four rounds are necessary when
one party receives the output and five rounds are necessary if both parties
wish to receive output. Starting with [KO04], there has been a large body
of work in designing round-optimal protocols in the plain model, secure against
a probabilistic polynomial time (PPT) malicious adversary, in the two-party
setting [ORS15, COSV17, CCG+21] and the multi-party setting with dishonest
majority [GMPP16, BHP17, ACJ17, BGJ+18, HHPV18, CCG+20].

Statistical Security. A natural question to ask is can we obtain round opti-
mal protocols when the parties are computationally unbounded? For the specific
problem of zero knowledge proofs/arguments, this question has been well stud-
ied [GMW91, Nao91, GK96, BJY97, NOVY98, HNO+09]. In particular, assum-
ing collision resistant hash functions: (i) Statistical zero knowledge arguments
for NP, where soundness is computational and zero knowledge is statistical, are
known in four rounds (round optimal) with black-box simulation [BJY97] and (ii)
Computational zero knowledge proofs for NP, that satisfy statistical soundness
and computational zero knowledge, are known in five rounds (round optimal)
with black-box simulation [GK96]. There has also been work on building round-
optimal (two rounds) statistically secure protocols for weaker functionalities like
ZAPs and witness indistinguishable proofs/arguments [DN07, KKS18, BFJ+20,
GJJM20].

Handling computationally unbounded adversaries for general two party func-
tionalities is more challenging. For instance, Katz [Kat08] proved that it is im-
possible to obtain four round zero knowledge (ZK) proofs. This immediately
rules out statistical security in four rounds for a two party secure computation
protocol where only one party (denoted as the receiver) wishes to learn the out-
put and the other party (denoted as the sender) is computationally unbounded.
Therefore, the best possible security that one can hope for in four rounds is secu-
rity against a computationally unbounded receiver and a PPT sender. This was
termed as one-sided statistical security by Khurana and Mughees [KM20]. The
works of [OPP14, CO17, KKS18] considered weaker notions such as one-sided
statistical security with respect to super-polynomial time simulation. However,
the question of obtaining one-sided statistically secure protocols with (standard)
polynomial-time black-box simulation remained elusive for a long time. Only re-
cently, this question was addressed by the work of [KM20]. They constructed
round-optimal one-sided statistically secure two-party computation protocols
with black-box simulation-based security against malicious adversaries:

– A four round statistically sender private (SSP) protocol where the receiver
obtains the output at the end of fourth round,

– A five round statistically sender private protocol where the receiver obtains
the output at the end of fourth round and the sender obtains the output at
the end of fifth round.

The underlying building blocks in [KM20] are two-round statistically sender
private OT (SSPOT) [BD18, NP01, HK12] and a non-interactive commitment
scheme. They instantiate the above protocol based on Learning with Errors
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Fig. 1. Roadmap of our compiler

(LWE), Decisional Diffie Hellman (DDH) or Quadratic Residuosity (QR). How-
ever, it was left as an open problem in their work to study the minimal assump-
tions required to obtain round-optimal 2PC protocols with one-sided statistical
security, following similar investigations on assumptions versus round complexity
in zero knowledge arguments/proofs with statistical security. For instance, it is
unknown whether we can build round-optimal one-sided statistically secure 2PC
protocols from other standard assumptions such as the Computational Diffie-
Hellman (CDH) or the newer class of isogeny-based assumptions. In this work,
we ask the following question:

Can we construct round-optimal one-sided statistically secure 2PC protocols
with black-box simulation in the plain model from a wider class of assumptions?
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1.1 Our Contributions

We answer the above question in the affirmative. We establish a general com-
piler to achieve round-optimal one-sided statistically secure 2PC protocols that
relies on potentially weaker (or “less structured”) cryptographic primitives as
compared to those used by [KM20]. These primitives can be instantiated from
essentially all commonly used cryptographic assumptions, including new instan-
tiations from the CDH assumption and certain isogeny-based assumptions such
as the Reciprocal CSIDH assumption (which were not known before and are
contributions of this work), as well as instantiations from LWE, LPN (+ deran-
domization techniques)4, Quadratic Residuosity, N th Residuosity, and decisional
CSIDH (all of which follow from existing works). In particular, the new instan-
tiations from CDH and Reciprocal CSIDH are enabled precisely by the usage of
potentially weaker (or “less structured”) cryptographic primitives in our frame-
work as compared to those used by [KM20]. Our approach is conceptually similar
to that taken by the authors of [AMPS21] to weaken the underlying primitives
for round-optimal secure computation (MPC) protocols which are secure against
adaptive corruption of parties, but the techniques used by our compiler are fun-
damentally different.

Our Ingredients. We introduce the notion of statistically receiver private
(SRP) elementary OT in the plain model following the work of Dottling et
al. [DGH+20]. We denote it as eOT5 throughout the paper. It is a three round
OT protocol, where the sender, with no input, sends the first message that can
be viewed as a pre-processing phase, the receiver sends the second message based
on its choice bit, and then, the sender computes random outputs (which can be
viewed as its two input messages in the traditional OT definition) and sends
the final OT message. Elementary security ensures that a maliciously corrupt
receiver is unable to compute both sender outputs. Statistical receiver privacy
implies that the choice bit is statistically hidden from a maliciously corrupt
sender, with unbounded computational power. We show that such an OT proto-
col combined with a non-interactive commitment scheme suffices for one-sided
statistical security. This yields a four-round 2PC protocol where the receiver ob-
tains the output at the end of the fourth round, and a five-round protocol where
both parties obtain the output. Our contributions are summarized in Thm. 1
and has been depicted in Fig. 1.

Theorem 1 (Informal). Assuming a non-interactive commitment scheme and
a three round statistically-receiver private elementary OT, denoted as eOT, there
exists:

4 Throughout this paper, when we refer to the LPN assumption, we refer to the
“extremely low-noise” variant of LPN with noise parameters in the O

(
(logn)2 /n

)
regime, as used in many recent works, including [BF22].

5 We consider that our eOT protocol provides statistical receiver privacy, as opposed to
the elementary OT protocol defined in [DGH+20] which only provides computational
receiver privacy.
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– A four-round 2PC protocol where the receiver obtains the output at the end
of the protocol,

– A five-round 2PC protocol where both parties obtain the output.

Both our protocols achieve statistical security against a malicious receiver and
computational security against a malicious sender in the plain model6 and require
black-box simulation.

We demonstrate that a two-round SSPOT implies eOT and a non-interactive
commitment scheme, hence re-obtaining the results of [KM20] through our com-
piler. Instantiating the SSPOT from LPN+Nissan Wigderson style derandomiza-
tion [BF22] and isogeny-based assumption, like decisional CSIDH [ADMP20], we
obtain new instantiations of our compiler. In addition, we also build eOT and
non-interactive commitments from CDH and other isogeny based assumptions
like reciprocal7 CSIDH [LGdSG21]. This gives us one-sided statistical 2PC from
CDH and reciprocal CSIDH which was not known before. Combining the above
results, we obtain one-sided statistical 2PC from most well-studied assumptions
in cryptography.

Theorem 2 (Informal). Assuming CDH, LWE, LPN (+derandomization tech-
niques), QR, N th Residuosity, or isogeny-based assumptions (decisional CSIDH
or Reciprocal CSIDH), there exists:

– A four-round 2PC protocol where the receiver obtains the output at the end
of the protocol,

– A five-round 2PC protocol where both parties obtain the output.

Both our protocols achieve statistical security against a malicious receiver and
computational security against a malicious sender in the plain model and require
black-box simulation.

As part of our building blocks, we introduce the notion of statistically sender
private conditional disclosure of secrets CDS in the preprocessing model and
demonstrate that eOT (and information theoretic garbling for NC1 circuits)
suffices for its construction. This is a weakening of two-round statistically sender
private conditional disclosure of secrets which is built from two-round SSPOT.
Our primitive could be of independent interest, especially in constructing one-
sided statistically secure MPC protocols from different assumptions. Formally,

Theorem 3. Assuming a three round statistically-receiver private elementary
OT, there exists a four-round statistically sender private conditional disclosure
of secrets CDS for NC1 circuits in the pre-processing model, where the first two
rounds of CDS are input-independent.

6 For the five round protocol, receiver is the party that obtains output first (at the
end of round four) and sender is the party that obtains output at the end of round
five.

7 Reciprocal CSIDH is quantum equivalent to computational CSIDH, which is weaker
than decisional CSIDH. However, reciprocal CSIDH and decisional CSIDH assump-
tions are incomparable in the classical setting.
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Instantiating eOT from the above assumptions, we obtain the CDS from most
well-studied assumptions as follows.

Theorem 4. Assuming CDH, LWE, LPN (+derandomization techniques), QR,
N th Residuosity, or isogeny-based assumptions (decisional CSIDH or Reciprocal
CSIDH), there exists a four-round statistically sender private conditional disclo-
sure of secrets CDS for NC1 circuits in the pre-processing model, where the first
two rounds of CDS are input-independent.

The information theoretic garbling [Kol05] for NC1 circuits is used to con-
struct the above CDS for NC1 circuits. The above CDS for NC1 circuits suffice
for one-sided statistical 2PC for all circuits.

Roadmap. We provide a detailed overview of our protocols in Sec. 2. Then
we define our building blocks in Sec. 3. We define other OT protocols in Sec.
4 and construct them from eOT. These OTs protocol would be instrumental in
our final compiler. We construct our round optimal one-sided statistically secure
2PC protocol πexp against explainable parties in Sec. 5. Finally, we compile
πexp to obtain a round optimal one-sided statistically secure 2PC protocol πmal

which is secure against malicious corruptions in Sec. 6. In the same section we
construct statistically sender private CDS in preprocessing model. Finally, we
provide instantiations of eOT from different assumptions in Sec. 7.

2 Technical Overview

In this section we demonstrate that a three round statistically receiver private
elementary OT, denoted as eOT, and a non-interactive commitment scheme
suffices to obtain a five round (which is round optimal) 2PC protocol that ob-
tains security against a computationally unbounded receiver and a PPT sender.
Then we instantiate eOT and the commitment scheme from various assumptions.
Along the way, we introduce new primitives of independent interest - statistical
conditional disclosure of secrets CDS in the preprocessing model and a three
round random SSP-OT, and instantiate them from various assumptions.

2.1 One-Sided Statistical Two-Party Computation Protocol

Our compiler builds upon the compiler of [KM20] by weakening the underlying
primitives in their compiler. We recall their protocol for completeness. [KM20]
constructed a five round 2PC protocol against malicious adversaries. The first
party, denoted as the receiver, is computationally unbounded and obtains the
output at the end of fourth round. The second party, called the sender, is com-
putationally bounded and obtains the output at the end of fifth round. The
protocol proceeds through two transformations- where [KM20] first constructs
a protocol which is secure against explainable adversaries and then compiles it
(interactive proofs) to obtain security against malicious adversaries.
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Robust 2PC Secure against Explainable Adversaries. As the first step,
[KM20] considered explainable adversaries8 which generates protocol messages
in the support of the distribution of all honestly generated transcripts, and the
simulator needs to extract the input and randomness of the adversarial party
from the transcript. In this setting, the classical garbled circuit based approach
of [Yao86], where the receiver is the evaluator and sender is the garbler, fails
since the receiver is computationally unbounded and information theoretically
private garbling scheme is known only for NC1 circuits.

Reversing the Roles. [KM20] takes a different approach where the receiver gar-
bles the circuit and sender evaluates it. The sender obtains the wire labels cor-
responding to its input through a statistical receiver private OT, hence hiding
its input against an unbounded corrupt receiver. The OT protocol takes three
rounds, starting from the receiver (acting as the sender of the OT), and the
garbled circuit is sent in the third round by the receiver.

Simulating against Explainable Parties. The simulator needs to simulate against
explainable adversaries by extracting their inputs. To enable extraction of the
corrupt sender’s input the sender is also required to commit to its input using
a four round statistically hiding and computationally binding extractable com-
mitment scheme. Similarly, the receiver commits to its input and randomness
using a three round statistically binding and computationally hiding extractable
commitment scheme. These commitments allow a simulator to extract the input
and randomness of the explainable adversarial parties. The simulator against a
corrupt sender’s extracts the sender’s input at the end of fourth round from the
commitment scheme and obtains the correct output only at the end of fourth
round. However, the receiver is required to send the garbled circuit in the third
round. This creates a problem in simulation since a corrupt sender, evaluating
the garbled circuit, distinguishes an interaction with an honest receiver from an
interaction with the simulated receiver based on the garbled circuit output.

One Last Modification. To avoid this, the receiver garbles a different circuit
so that the garbled circuit computes an encryption of the output. The sender
obtains the garbled circuit at the end of third round, evaluates it to obtain the
encrypted output and then sends it to the receiver in the fourth round. The
receiver decrypts the output and sends it to the sender in the fifth round. In
the ideal world the simulator sends a simulated garbled circuit which outputs an
encryption of 0 to the corrupt sender, hence providing correct simulation in the
ideal world. [KM20] also ensured that the first two rounds of the protocol are
robust - i.e. if the parties behave maliciously in the first 2 rounds of the protocol
then they can influence the protocol output but they would fail to infer any

8 It is different from the notion of semi-malicious security [MW16] where the adversary
in addition to generating the the protocol messages in the support of the distribution
of all honestly generated transcripts, also outputs the input and randomness that
was used, on a special tape.
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information about the honest party’s input. The robustness property is crucial
when we upgrade to security against malicious adversaries.

Summary. To summarize the result of [KM20] they obtain a robust 5-round
secure two-party computation protocol πexp with black-box simulation against
unbounded explainable receivers and PPT explainable senders, where the re-
ceiver obtains its output at the end of fourth round and the sender obtains its
output at the end of the fifth round. Their underlying primitives are as follows:

1. Three round oblivious transfer with statistical privacy for a receiver and
computational privacy for a sender,

2. Three round statistically binding and computationally hiding commitment
scheme satisfying extractability.

3. Four round statistically hiding and computationally binding commitment
scheme satisfying extractability.

4. Information theoretic garbled circuits for NC1 circuits (used by [KM20] to
validate a specific NC1 relation as part of their statistically secure two-round
CDS protocol – we expand more on this subsequently).

Overview of Our Contributions. We demonstrate that an elementary OT
protocol (denoted simply as eOT in rest of the paper) and a non-interactive
commitment scheme suffices to instantiate the above primitives and hence yield
the protocol πexp from eOT and a non-interactive commitment scheme.

1. The three round SRP-OT protocol, denoted as iOT, that satisfies indistin-
guishability based sender security is built from eOT in Sec. 4.1 in a round
preserving manner. We discuss it in Sec. 2.2.

2. The three round statistically binding and computationally hiding commit-
ment scheme can be constructed [PRS02] from any non-interactive commit-
ment scheme.

3. The four round statistically hiding and computationally binding commit-
ment scheme satisfying extractability can be obtained [KM20] by replacing
the non-interactive commitment scheme in [PRS02] with a two round sta-
tistically hiding commitment scheme. We build the two round statistically
hiding commitment scheme from SRP iOT in Sec. 5.2 and we briefly discus
about it in Sec. 2.2.

4. Garbled circuits can be obtained [Yao86, LP07] from one way functions.

The Final Compiler. Next, the security of πexp is uplifted such that it is secure
against malicious adversaries using zero knowledge protocols as follows.

Tackling a Malicious Sender. The sender is required to prove that it generated
the second and fourth round messages of πexp correctly. This is performed using
a four round delayed-input statistical zero knowledge protocol SZK where the
input statement is chosen by the sender (behaving as the prover) in the last
round of SZK. SZK is run in parallel to πexp and the robustness of the first two
rounds of πexp ensures that the input of an honest receiver is not leaked even if a
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corrupt sender constructs the second round message of πexp maliciously. We also
require SZK to be an argument of knowledge for reasons, discussed later. SZK
can be built [LS91] from two round statistically hiding commitment scheme.

Tackling a Malicious Receiver. Similar to the sender, the receiver is required to
prove that it generated the first, third and fifth round messages of πexp correctly.
This is performed using a five round delayed-input zero knowledge proof ZKP
where the input statement is chosen by the receiver (behaving as the prover) in
the last round of ZKP. ZKP is run in parallel to πexp and the robustness of the first
two rounds of πexp ensures that the input of an honest sender is not leaked even
if a corrupt receiver constructs the first round message of πexp maliciously. ZKP
can be built ( [LS91]+ [GK96]) from two round statistically hiding commitment
scheme. However, a maliciously constructed third round message of πexp could
leak an honest sender’s input when the sender sends the fourth round message
of πexp. ZKP fails to address this issue since it takes five rounds to complete and
an honest sender could detect the malicious behavior of a corrupt receiver only
at the end of the fifth round. This leaks the honest sender’s inputs.

Conditional Disclosure of Secrets. [KM20] addresses the above situation by us-
ing a two round conditional disclosure of secrets CDS where the receiver sends
the public key for the CDS alongwith the third round message of πexp. The sender
encrypts the fourth round message of πexp under the CDS public key and input
statement - the first and third round message of πexp is constructed in an ex-
plainable manner by the receiver. The receiver successfully decrypts the fourth
round message of πexp if it produces a witness attesting to the fact that the first
and third round message of πexp is explainable. If the receiver fails to produce
such a witness, then the CDS plaintext (fourth round message of πexp) remains
statistically hidden. The CDS protocol requires soundness against a statistical
receiver and witness privacy against a semi-honest computationally bounded
sender. In the final protocol, the sender is required to prove in the fourth round
that it constructed the CDS sender message correctly using SZK since the CDS
provides security guarantees against a semi-honest sender. We require the SZK
to be argument of knowledge so that the simulator (against a corrupt sender) is
able to extract the encrypted CDS plaintext, which is the fourth round message
of πexp, in order to generate the final message of the protocol.

Note that [KM20] constructs an NC1 circuit which checks the validity of
receiver’s witness. The authors of [KM20] then proceed to construct a (two-
round) CDS protocol with statistical security for the class of relations that are
verifiable by NC1 circuits by combining two round statistically sender private OT
with information-theoretic garbled circuits for NC1. In fact, it can be shown (via
dashed lines in Fig. 1) that two-round statistically sender private OT suffices to
instantiate the 2PC protocol of [KM20]. However, two-round statistically sender
private OT is a relatively strong primitive and is not known from many well-
studied assumptions, like CDH.
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Our Proposal. We shift our starting point to presumably weaker primitives -
a three round SRP eOT protocol where only the second OT message depends
on the receiver’s input and the sender’s outputs are random. We show that eOT
suffices for compiling πexp to our final protocol πmal which provides statistical
security against a malicious receiver and computational security against a mali-
cious sender as follows:

1. By applying round-preserving transformations on eOT we obtain a three
round delayed-input statistical sender private OT protocol SSPOT - where
only the last OT message depends on the receiver’s input and the sender’s
outputs are random. Combining SSPOT with information theoretic garbling
for NC1 we obtain a four round statistical CDS protocol where the first two
rounds, aka preprocessing phase, are independent of the input statement and
the witness. This new primitive suffices for conditional disclosure of secrets
in the above 2PC protocol since the first two rounds can be used for the
preprocessing phase of the SSPOT and the last two rounds can be used to
run the input-dependent phase of CDS.

2. The four round delayed-input statistical zero knowledge SZK can be built
[LS91] from two round statistically hiding commitment.

3. The five round delayed-input zero knowledge proof ZKP can be obtained
[LS91]+ [GK96] from two round statistically hiding commitment.

4. The first two rounds of iOT implies a two round statistically hiding commit-
ment scheme.

Previously, we have shown that πexp can be obtained from a non-interactive
commitment scheme and eOT. Combining the two results, we obtain our one-
sided 2PC protocol from a non-interactive commitment scheme and eOT.

Instantiations. We demonstrate that a two-round statistical sender private
OT implements eOT (by applying OT reversal techniques [WW06]) and the
first message of the two-round statistical sender private OT is a non-interactive
commitment scheme. Hence, our result generalizes the work of [KM20] and we
obtain instantiations from LWE, QR, N th residuosity, DDH, Decisional CSIDH
and LPN+Nissan Wigderson derandomization by instantiating [BD18, NP01,
HK12, HK12, ADMP20, BF22] the underlying two-round statistical sender pri-
vate OT from the above assumptions. Furthermore, we build eOT and the non-
interactive commitment scheme from CDH and reciprocal CSIDH [LGdSG21]
assumptions. This was not previously known from [KM20]. To summarize, our
proposed framework enables one-sided statistical 2PC from essentially all well-
studied cryptographic assumptions.

2.2 Constructing our Ingredients from eOT

Next, we briefly introduce our ingredient primitives and discuss their construc-
tions. A roadmap explaining our framework based on these ingredients can be
found in Fig. 1.
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Three Round Statistically Receiver Private eOT. We introduce the no-
tion of statistically receiver private elementary OT in plain model following the
work of [DGH+20]. It is a three round OT protocol where the sender sends the
first message as a preprocessing phase, the receiver sends the second message
based on its choice bit, and the sender sends the third message. The sender
obtains random outputs. The elementary security ensures that a maliciously
corrupt receiver is unable to compute both sender outputs. Statistical receiver
privacy implies that the choice bit is statistically hidden from a maliciously cor-
rupt sender. We show that a two round statistically sender private OT can be
used to build eOT through OT reversal techniques [WW06], hence obtaining
instantiations from a wide variety of assumptions (namely LWE, QR, N th resid-
uosity, DDH, Decisional CSIDH and LPN+Nissan Wigderson derandomization).
We also construct eOT from CDH by building upon the two-round CDH based
protocol of [DGH+20] in the crs model. In the CDH-based eOT instantiation,
the sender sends the crs of the CDH based protocol of [DGH+20] as the OT
first message and then their two-round CDH based protocol is run between the
parties using the first message as the crs. We also provide the first construction
of eOT based on reciprocal CSIDH assumption. 9

Three Round Statistically Receiver Private iOT. We uplift the security
of eOT to construct iOT such that it obtains indistinguishability based secu-
rity against a malicious receiver. If the receiver’s choice bit is γ then m1−γ

is computationally indistinguishable from a random string to a malicious re-
ceiver. We perform this in a round-preserving way by applying the elementary
OT (via search OT) to indistinguishability-based security OT transformations
from [DGH+20] based on Goldreich-Levin hash function. This yields iOT from
the same set of assumptions as eOT.

Three Round Delayed-input Statistically Sender Private SSPOT. Next,
we introduce the notion of delayed-input statistically sender private SSPOT,
where only the last OT message depends on the receiver’s choice bit γ. It is
a three round OT protocol where the receiver sends the first message as a re-
ceiver preprocessing phase, the sender sends the second message as a sender
preprocessing phase, and the receiver sends the third message based on γ. The
sender obtains random output strings. We carefully apply OT reversal tech-
niques on three-round SRP iOT in a round-preserving way to obtain a version of
SSPOT where the sender obtains random output bits. Then we combine multiple
such bit SSPOT protocol with a randomness extractor to obtain the final SSPOT

protocol. This yields SSPOT from the same set of assumptions as iOT (and eOT).

Statistically Sender Private CDS with Preprocessing. We introduce the
notion of conditional disclosure of secrets CDS in the preprocessing phase. The
first two rounds of CDS are input-independent. The receiver sends the third

9 Reciprocal CSIDH assumption is quantum equivalent to computational CSIDH and
it is incomparable to decisional CSIDH.
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message which depends on the statement-witness pair. The sender encrypts the
plaintext under the statement and sends the ciphertext as the fourth message.

For our 2PC protocol, we require security against a maliciously corrupted
statistical receiver and a computationally bounded semi-honest sender. We con-
struct an NC1 circuit which checks the validity of receiver’s witness by relying
on the result of [KM20]. Then we proceed to combine our three round delayed-
input SSPOT protocol with information theoretic garbling scheme [Kol05] for
NC1 circuit to construct our CDS, where the first two rounds of CDS are the
preprocessing phases of SSPOT. In the third round of the CDS the receiver in-
puts the witness bits as the choice bit of the SSPOT protocol. Upon obtaining
the SSPOT third round messages, the semi-honest sender garbles an NC1 circuit
outputs the plaintext if verification of the receiver’s witness succeeds correspond-
ing to the input statement. The sender sends a mapping between the random
outputs of SSPOT to the wire labels corresponding to the witness bits. The re-
ceiver decrypts the wire labels corresponding to the witness bits and evaluates
the garbled circuit to obtain the plaintext. This yields our CDS protocol from
SSPOT and one way functions, obtaining the CDS protocol from the same set of
assumptions as eOT.

Two Round Statistically Hiding Commitment. We show that the first two
rounds of eOT is a two round statistically hiding commitment where the verifier
(acting as the eOT sender) sends the first message as the setup phase. The
committer (acting as the eOT receiver) commits to bit γ using the OT second
message. Statistical receiver privacy of eOT ensures that statistical hiding of γ.
If a corrupt committer breaks binding of the commitment scheme with two valid
decommitments corresponding to bits 0 and 1, then those decommitments can
be used to break computational sender privacy of eOT by recovering both sender
messages of eOT. This yields two round statistically hiding commitments from
the same set of assumptions as eOT.

3 Preliminaries

We present our notations and discuss the building blocks in this section.

3.1 Notations

We denote by a← D a uniform sampling of an element a from a distribution D.
The set of elements {1, . . . , n} is represented by [n]. We denote the computational
security parameter by κ and statistical security parameter by µ respectively. Let
Zq denote the field of order q, where q = p−1

2 and p are primes. Let G be the
multiplicative group corresponding to Z∗

p with generator g, where CDH assump-
tion holds. We denote a field of size O(2µ) as F. For a bit b ∈ {0, 1}, we denote
1−b by b̄. In our paper we consider one-sided statistical 2PC protocol against ex-
plainable parties and also against malicious corruption of parties. We refer to the
paper of [KM20] for the one-sided statistical security model against explainable
parties and against malicious adversaries for the sake of completeness.
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3.2 Oblivious Transfer Protocols

We define our OT notions - eOT, iOT and SSPOT, as follows.

Elementary OT with Statistical Receiver Privacy (eOT). We denote a
three round OT protocol, where sender sends the first message and the sender
receives random outputs, by a tuple of four algorithms defined as follows:

– OT
(1)
S→R(1

κ) : The sender computes ot1 as the OT sender message and sends
it to the receiver.

– OT
(2)
R→S(1

κ, γ, ot1) : The receiver computes the OT receiver message ot2 and
internal state stR based on choice bit γ and ot1. The receiver sends ot2 to
the sender.

– OT
(3)
S→R(1

κ, ot2) : The sender computes (ot3,m0,m1). The sender sends ot3
as the OT sender message and outputs (m0,m1) ∈ {0, 1}.

– OTR(stR, ot3) : The receiver computes m′ and outputs it.

Correctness. The above three-round OT protocol is said to be correct if for any
security parameter κ ∈ N and any bit γ ∈ {0, 1}, letting

ot1 ← OT
(1)
S→R(1

κ) , (ot2, stR)← OT
(2)
R→S(1

κ, γ, ot1),

(ot3,m0,m1)← OT
(3)
S→R(1

κ, ot2) , m′ ← OTR(stR, ot3),

we have m′ = mγ with overwhelming probability.

Statistical Receiver Privacy. The above OT protocol satisfies statistical receiver
privacy if the two tuples are statistically close.

{OT(2)
R→S(1

κ, 0, ot1), ot1}
s
≈ {OT(2)

R→S(1
κ, 1, ot1), ot1},

where ot1 ← A(1κ) is generated by an adversary A who maliciously corrupts
the sender.

Elementary Sender Security. The work of [DGH+20] introduced the notion of
elementary sender security in the crs model. It is the weakest security notion
against a malicious receiver. We extend their notion to the plain model. Let
A = (A1,A2) denote a non-uniform adversary who maliciously corrupts the
receiver. To break elementary security the adversary is required to output both
strings m0 and m1. This is formalized by the following experiment.

ExpκeOT(A) :

1. Run ot1 ← OT
(1)
S→R(1

κ).
2. Obtain (ot2, stA)← A1(1

κ, ot1).

3. Run (ot3,m0,m1)← OT
(3)
S→R(1

κ, ot2).
4. Obtain (m∗

0,m
∗
1)← A2(stA, ot3) and output 1 iff (m∗

0,m
∗
1) == (m0,m1).

We say that the OT protocol satisfies elementary sender security if Pr[ExpκeOT(A) =
1] = neg(κ).

Definition 1. We denote a three-round OT protocol with the above algorithms
as eOT if it satisfies sender elementary security and statistical receiver privacy.
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Indistinguishability OT with Statistical Receiver Privacy (iOT). We
denote a three round OT protocol, where sender sends the first message and the
parties have chosen inputs, by a tuple of four algorithms defined as follows:

– OT
(1)
S→R(1

κ) : The sender computes ot1 as the OT sender message and sends
it to the receiver.

– OT
(2)
R→S(1

κ, γ, ot1) : The receiver computes the OT receiver message ot2 and
internal state stR based on choice bit γ and ot1. The receiver sends ot2 to
the sender.

– OT
(3)
S→R(1

κ, (m0,m1), ot2) : The sender computes ot3 based on ot2 and its
inputs (m0,m1) ∈ {0, 1}. The sender sends ot3 as the OT sender message.

– OTR(stR, ot3) : The receiver computes m′ and outputs it.

Correctness. The above three-round OT protocol is said to be correct if for any
security parameter κ ∈ N and any bit γ ∈ {0, 1}, letting

ot1 ← OT
(1)
S→R(1

κ) , (ot2, stR)← OT
(2)
R→S(1

κ, γ, ot1),

ot3 ← OT
(3)
S→R(1

κ, (m0,m1), ot2) , m′ ← OTR(stR, ot3),

we have m′ = mγ with overwhelming probability.

Statistical Receiver Privacy. The above OT protocol satisfies statistical receiver
privacy if the two tuples are statistically close.

{OT(2)
R→S(1

κ, 0, ot1), ot1}
s
≈ {OT(2)

R→S(1
κ, 1, ot1), ot1},

where ot1 ← A(1κ) is generated by an adversary A who maliciously corrupts
the sender.

Indistinguishability-based Sender Security. Sender’s indistinguishability security
was defined in [DGH+20] in the crs model. We extend it to the plain model

via an experiment Expcrs,r,w,b
iOT (A) between a non-uniform PPT adversary A =

(A1,A2) and a challenger, where the experiment is parameterized by random
coins r ∈ {0, 1}κ, a bit w ∈ {0, 1}, and a bit b ∈ {0, 1}:
Expw,b

iOT(A):

1. Run ot1 ← OT
(1)
S→R(1

κ).
2. Run (m0,m1, ot2, stA)← A1(1

κ, ot1; r).

3. If b = 0, compute ot3 ← OT
(3)
S→R(1

κ, (m0,m1), ot2).

4. If b = 1, compute ot3 ← OT
(3)
S→R(1

κ, (m′
0,m

′
1), ot2) where m′

w ← {0, 1} and
m′

1−w := m1−w.
5. Output s← A2(stA, ot3).

We say that iOT satisfies sender’s indistinguishability security if for any PPT
adversary A, the following holds where the probability is taken over r ← {0, 1}κ.

|Pr[Expcrs,r,w,0
iOT (A) = 1]− Pr[Expcrs,r,w,1

iOT (A) = 1] ≤ neg(κ).

Definition 2. We denote a three-round OT protocol with the above algorithms
as iOT if it satisfies indistinguishability-based sender security and statistical re-
ceiver privacy.

14



Statistically Sender Private Random OT (SSPOT). We denote a three-
round OT protocol, where the receiver sends the first message and the sender
obtains random outputs, by a tuple of four algorithms defined as follows:

– OT
(1)
R→S(1

κ): The receiver computes ot1 as the OT receiver message and stR
as the internal state. The receiver sends ot1 to the sender and stores stR as
the internal receiver state.

– OT
(2)
S→R(1

κ, ot1): Given the OT message ot1, the sender outputs a message
ot2 and secret internal state stS.

– OT
(3)
R→S(stR, γ, ot2): Given a secret state stR, choice bit γ and a message ot2,

the receiver computes m′ ∈ {0, 1}ℓ and the OT message ot3. The receiver
sends ot3 to the sender and outputs m′.

– OTS(stS, ot3): Given the secret state stS and a message ot3, it outputs two
string-messages (m0,m1) ∈ {0, 1}ℓ.

Remark. Note that the receiver’s choice bit γ is not included in the first algorithm

OT
(1)
R→S and is only used in the algorithm OT

(3)
R→S thereby allowing the protocol

to enjoy a “delayed-input” feature.

Correctness. The above protocol is said to be correct if for any κ ∈ N and any
bit γ ∈ {0, 1}, letting

(ot1, stR)← OT
(1)
R→S(1

κ) , (ot2, stS)← OT
(2)
S→R(1

κ, ot1),

(ot3,m
′)← OT

(3)
R→S(stR, γ, ot2) , (m0,m1)← OTS(stS, ot3),

we have m′ = mγ with overwhelming probability.

Computational Receiver Privacy. The above protocol satisfies computational
receiver privacy if for any κ ∈ N, any b ∈ {0, 1}, and any non-uniform PPT
adversary A = (A1,A2), letting β = Expκ,b(A), we have

|Pr[β = 0]− Pr[β = 1]| ≤ negl(κ),

where the experiment Expκ,b(A) is defined as follows:

Expκ,b(A):

1. (ot1, stR)← OT
(1)
R→S(1

κ).

2. (ot2, st)← A1(1
κ, ot1).

3. (ot3,m
′)← OT

(3)
R→S(stR, b, ot2).

4. b′ ← A2(ot3, st).

5. If b = b′, output 0. Else, output 1.

15



Statistical Sender Privacy. Consider an execution of the above three round pro-
tocol involving an honest sender and an (unbounded, non-uniform) malicious
adversary A = (A1,A2):

(ot1, stR)← A1(1
κ) , (ot2, stS)← OT

(2)
S→R(1

κ, ot1),

(ot3, st)← A2(stR, γ, ot2) , (m0,m1)← OTS(stS, ot3).

Let Viewκ(A) denote the view of the adversary A = (A1,A2) in the above
protocol execution. A three-round SSP-string-sROT protocol is said to satisfy
statistical sender privacy if for any κ ∈ N and any (unbounded, non-uniform)
adversary A = (A1,A2), there exists a bit β ∈ {0, 1} such that the following two
distributions are statistically indistinguishable:

(Viewκ(A),mβ)
s
≈ (Viewκ(A),U),

where U← {0, 1}|mβ | denotes a random bit string of size |mβ |.

Definition 3. We denote a three-round OT protocol with the above algorithms
as SSPOT if it satisfies statistical sender privacy and computational receiver pri-
vacy.

3.3 Additional Preliminaries

In this section, we briefly describe some cryptographic primitives that we use for
our constructions.

Garbling Schemes. A garbling scheme [Yao86, LP09, BHR12] consists of the
following algorithms: Gb takes a circuit C as input and outputs a garbled circuit
GC, encoding information Keys, and decoding information d. En takes an input
x and encoding information Keys and outputs a garbled input X. Ev takes a
garbled circuit and garbled input X and outputs a garbled output Y. Finally, De
takes a garbled output Y and decoding information and outputs a plain circuit-
output (or an error, ⊥). There is an additional verification algorithm Ve in the
garbling scheme which when accepts a given (GC,Keys, d) signifies that the GC
is correct, and that the garbled output corresponding to any clear output can
be extracted. The garbling scheme used in our protocols need to satisfy several
properties such as correctness, privacy, verifiability and reconstructability. We
refer to the full version of our paper [BPS22] for formal definitions.

We are interested in a class of garbling schemes referred to as projective
in [BHR12]. When garbling a circuit C : {0, 1}n 7→ {0, 1}m, a projective garbling
scheme produces encoding information of the form Keys =

(
Keys0i ,Keys

1
i

)
i∈[n]

,

and the encoded input X corresponding to x = (xi)i∈[n] can be interpreted as

X = En(x,Keys) = (Keysxi
i )i∈[n]. Information-theoretic Garbled circuits for NC1

circuits with information theoretic privacy can be built from one way functions
[Yao86, LP09] based on one-way functions satisfies.
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Zero-Knowledge Proofs and Arguments for NP [KM20]. An n-round
delayed-input interactive protocol for deciding a language L corresponding to a
relation R is denoted by ⟨P,V⟩ and it proceeds as follows:

– At the beginning of the protocol, P and V receive the size of the instance
and execute the first n− 1 rounds.

– At the start of the last round, P receives input (x,w) ∈ R and V receives x.
Upon receiving the last round message from P, V outputs 0 or 1.

For our protocols, we rely on proofs and arguments for NP that satisfy delayed-
input completeness, adaptive soundness and adaptive ZK. We again refer to
the full version of our paper [BPS22] for formal definitions. We point out that
four round delayed-input statistical zero knowledge arguments can be obtained
from [LS91] by relying on two round statistically hiding commitments, while five
round delayed-input zero knowledge proofs can be obtained by relying on [GK96],
where the instance is adaptively chosen in the last round by the combining
techniques from [LS91]. The proof system can be instantiated from two round
statistically hiding commitments.

Low Depth-Proof Systems [KM20]. The authors of [KM20] described how
any computation that is verifiable by a family of polynomial sized circuits can
be transformed into a proof that is verifiable by a family of circuits in NC1. The
works of [GGH+13] and [KM20] presented a simple construction of a low-depth
non-interactive proof for any NP-verification circuit. The prover P executes the
NP-verification circuit on the witness and generates the proof as the sequential
concatenation (in some specified order) of the bit values assigned to the individ-
ual wires of the circuit. The verifier V proceeds by checking consistency of the
values assigned to the internal wires of the circuit for each gate. In particular
for each gate in the NP-verification circuit the verifier checks if the wire vales
provided in the proof represent a correct evaluation of the gate. Since the verifi-
cation corresponding to each gate can be done independent of every other gate
and in constant depth, we have that V itself is constant depth. We again refer
to the full version of our paper [BPS22] for formal definitions.

4 Three Round Oblivious Transfer Protocols

In this section, we describe our statistically sender private SSPOT construction
from eOT which satisfies statistical receiver privacy. First, we build iOT from
eOT and then we build SSPOT from iOT. All our protocols are round preserving
in nature. The corresponding definitions of the OT protocols can be found in
3.2. Our SSPOT protocol enjoys a delayed-input feature since only the last OT
protocol message depends on the receiver’s input. This will be useful later on in
obtaining statistically sender private CDS in the preprocessing model and also
our one-sided statistical 2PC.
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4.1 Statistically Receiver Private Indistinguishability-based OT

We denote an elementary OT protocol as eOT = (eOT.OT
(1)
S→R, eOT.OT

(2)
R→S,

eOT.OT
(3)
S→R, eOT.OTR). We construct our indistinguishability based SRP-bit

OT protocol, denoted as iOT, as follows:

– OT
(1)
S→R(1

κ) : The sender obtains eOT.ot1 ← eOT.OT
(1)
S→R(1

κ). The sender
sends ot1 = eOT.ot1 as the OT sender message.

– OT
(2)
R→S(1

κ, γ, ot1) : The receiver computes the OT receiver message as

(eOT.ot2, eOT.stR)← eOT.OT
(2)
R→S(1

κ, γ, ot1). It sends ot2 = eOT.ot2 to the
sender and stores stR = eOT.stR.

– OT
(3)
S→R(1

κ, (m0,m1), ot2) : The sender performs the following:
• The sender runs eOT sender protocol for κ times on ot2 to compute

{eOT.ot3,i, (eOT.m0,i, eOT.m1,i)} = eOT.OT
(3)
S→R(1

κ, ot2),

for i ∈ [κ].
• Sender computes eOT.mα = (eOT.mα,1, . . . eOT.mα,κ) for α ∈ {0, 1}.
• Denote the length of eOT.m0 and eOT.m1 as n = n(κ) where n =
|eOT.m0| = |eOT.m1|.

• The sender samples s0, s1 ← {0, 1}n as the description of the Goldreich-
Levin Hash function.

• The sender computes pα = mα ⊕ ⟨eOT.mα, sα⟩ for α ∈ {0, 1}.
The sender sends ot3 = ({eOT.ot3,i}i∈[κ], s0, s1, p0, p1).

– OTR(stR, ot3) : The receiver performs the following:
• The receiver runs eOT decryption algorithm for κ times to compute

{eOT.mγ,i} = eOT.OTR(eOT.stR, eOT.ot3,i),

for i ∈ [κ].
• The receiver sets eOT.mγ = (eOT.mγ,1, . . . , eOT.mγ,κ).
• The receiver outputs mγ = pγ ⊕ ⟨eOT.mγ , sγ⟩.

Correctness. It can be verified in a straightforward manner.

Lemma 1. The above protocol satisfies perfect receiver’s privacy if eOT satisfies
perfect receiver privacy.

Proof. The receiver’s choice bit γ is perfectly hidden in OT message ot2 =
eOT.ot2 if eOT.ot2 perfectly hides γ. ⊓⊔

Lemma 2. The above protocol satisfies sender’s indistinguishability based secu-
rity if eOT satisfies computational sender’s elementary security.

Proof. The work of [DGH+20] showed that the above transformation converts an
elementary OT to an iOT OT protocol (via search OT). By combining Theorems
5.2 and 5.3 of [DGH+20] we prove the above theorem. We refer to their paper
for more details regarding the proof steps. ⊓⊔
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4.2 Three round Statistically Sender Private OT

Our SSPOT construction relies on randomness extractors and the leftover hash
lemma. We briefly define them as follows for completeness.

Definition 4. (Randomness Extractor.) Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ is a
strong (k, ϵ) randomness extractor if for every k-source X ∈ {0, 1}n the following
holds:

{Ud,Ext(X,Ud)}
ϵ
≈ {Ud, Uℓ},

where Ud and Uℓ are uniformly sampled d-bit and ℓ-bit strings respectively.

Definition 5. (Leftover Hash Lemma.) If H = {h : {0, 1}n → {0, 1}ℓ} is a
pairwise independent hash family of hash function where ℓ = k− 2 log2(

1
ϵ ), then

Ext(x, h)
def
= h(x) is a strong (k, ϵ) extractor.

Construction. We denote an iOT protocol as iOT = (iOT.OT
(1)
S→R, iOT.OT

(2)
R→S,

iOT.OT
(3)
S→R, iOT.OTR). We define our SSP-OT SSPOT as a tuple of four algo-

rithms defined as follows:

– OT
(1)
R→S(1

κ) :
• The receiver runs iOT protocol for n times by computing {iOT.ot1,i} =
iOT.OT

(1)
S→R(1

κ) for i ∈ [n].
• The receiver sends ot1 = {iOT.ot1,i}i∈[n] as the OT receiver message.

– OT
(2)
S→R(1

κ, ot1) : The sender performs the following for i ∈ [n]:
• The sender samples γi ← {0, 1}.
• The sender computes (iOT.ot2,i, iOT.stR,i) = iOT.OT

(2)
R→S(1

κ, γi, iOT.ot1,i)
with choice bit set to γi.

• The sender samples a mapping Mapi ← {0, 1}.
• The sender samples a pairwise independent hash function h← Hκ.

The sender sends ot2 = (h, {iOT.ot2,i,Mapi}i∈[n]) as the OT sender message
and stores stS = {iOT.stR,i,Mapi, γi}i∈[n] as the internal state.

– OT
(3)
R→S(1

κ, b, ot2) :
• The receiver samples p0,i ← {0, 1} and sets p1,i = b⊕p0,i for every i ∈ [n].

The receiver computes iOT.ot3,i = iOT.OT
(3)
S→R(1

κ, (p0,i, p1,i), iOT.ot2,i)
for every i ∈ [n].

• The receiver sets tb,i = Mapi ⊕ p0,i.
• The receiver sets tb = (tb,1, . . . , tb,n).
• The receiver computes mb = H(tb).

The receiver sends ot3 = {iOT.ot3,i}i∈[n] as the OT receiver message and
outputs mb as the output.

– OTS(stS, ot3) :
• The sender computes ai = iOT.OTR(iOT.stR,i, iOT.ot3,i) for i ∈ [n].
• The sender computes ti,0 = Mapi ⊕ ai and ti,1 = γi ⊕ ti,0.
• For α ∈ {0, 1}, the sender sets tα = (tα,1, . . . , tα,n).
• For α ∈ {0, 1}, the sender computes mα = H(tα).

The sender outputs (m0,m1).
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Correctness. The sender computes pi,γi
from the ith iOT run. The sender sets

t0,i = Mapi ⊕ ai = Mapi ⊕ pγi,i and t1,i = γi ⊕ t0,i = γi ⊕ Mapi ⊕ pγi,i. The
receiver computes the following from the ith OT:

(b′, t′bi) = (p0,i ⊕ p1,i,Mapi ⊕ p0,i)

= (p0,i ⊕ p1,i,Mapi ⊕ pγi,i ⊕ (p0,i ⊕ p1,i) · γi)
= (b,Mapi ⊕ pγi,i ⊕ b · γi)
= (b, t0,i ⊕ b · γi)
= (b, tb,i).

The sender outputs mα = H(tα) for α ∈ {0, 1}. And the receiver outputs mb =
H(tb) thus proving correctness.

Lemma 3. The above protocol satisfies statistical sender privacy if iOT satisfies
statistical receiver privacy and H is a (⌈n2 ⌉, ϵ)-randomness extractor.

Proof. The sender’s secret input γi to the ith iOT remains hidden due to sta-
tistical receiver privacy of iOT. Without loss of generality, assuming a corrupt
receiver obtains atmost ⌈n2 ⌉ bits of t0 and ⌊

n
2 ⌋ bits of t1 simultaneously by setting

b == 0 for n
2 runs of iOT and setting b == 1 for the rest n

2 runs of iOT. In such a
case, ⌈n2 ⌉ bits of t1 remains hidden and is uniformly distributed. Thus the input
space of the hash function H has an entropy of k = ⌈n2 ⌉ and ℓ = ⌈n2 ⌉−2 log2(

1
ϵ ).

Applying the leftover hash lemma we argue that H behaves as a (k, ϵ) random-
ness extractor and thus statistically hiding m1. The same argument holds for
statistically hiding m0 if the receiver sets b == 1 in ⌈n2 ⌉ runs of iOT. ⊓⊔

Lemma 4. The above protocol satisfies computational receiver privacy if iOT
satisfies computational sender privacy.

Proof. We demonstrate that execution of the protocol with choice bit b == 0
is indistinguishable from the execution of the protocol with choice bit b == 1
through a sequence of (n+ 1) hybrids. We defer the detailed description of the
hybrids and the corresponding indistinguishability arguments to the full version
of our paper [BPS22].

⊓⊔

5 One-Sided Statistically Secure 2PC against Explainable
Parties

We describe our one-sided statistically secure 2PC protocol πexp secure against
explainable parties in this section. High level overview can be found in Sec. 2.1.

5.1 Protocol πexp

The work of [KM20] built a 2PC protocol against explainable parties given:
(i) a three round statistically binding and computationally hiding commitment
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scheme satisfying extractability, (ii) a four round statistically hiding and com-
putationally binding commitment scheme satisfying extractability, (iii) infor-
mation theoretic garbled circuits for NC1 circuits, and (iv) a three round OT
protocol with statistical privacy for a receiver and computational privacy for a
sender (see [KM20] for the formal theorem statement). We demonstrate that our
elementary OT protocol (with statistical receiver privacy) and a non-interactive
commitment/public key encryption scheme with perfect decryption suffices to
instantiate the primitives used by their construction:

1. Three round statistically binding and computationally hiding commitments
can be based on any non-interactive commitment scheme [PRS02], which
can itself be based on any public-key encryption [LS19] (satisfying perfect
correctness) or injective one-way function [Blu81].

2. Four round statistically hiding and computationally binding commitment
scheme satisfying extractability can be obtained from two round statistically
hiding commitment schemes which we build from iOT in Sec. 5.2.

3. Garbled circuits can be obtained [Yao86] from one way functions.
4. The three round SRP-OT protocol is instantiated using the iOT protocol

from Sec. 4.1.

5.2 Two round Statistically Hiding Commitment

We denote an iOT protocol as iOT = (iOT.OT
(1)
S→R, iOT.OT

(2)
R→S, iOT.OT

(3)
S→R,

iOT.OTR). We define a two round statistically hiding commitment Com as tuple
of three algorithms (Com1,Com2,Decom) between a sender and a receiver as
follows:

– Com1(1
κ) : The receiver computes c1 = iOT.ot1 = iOT.OT

(1)
S→R(1

κ). The
receiver sends c1 as the first message of the commitment scheme.

– Com2(1
κ, c1, b) : The sender computes (c2, d) = iOT.OT

(2)
R→S(1

κ, b, c1). The
sender sends c2 as the commitment and stores st = (b, d) as the decommit-
ment.

– Decom(st, (c1, c2)) : The sender sends st = (b, d) as the decommitment. The
receiver performs the following for i ∈ [κ] :

• Computes (iOT.oti3, (m
i
0,m

i
1)) = iOT.OT

(3)
S→R(1

κ, c1).

• The receiver aborts if iOT.OTR(st, iOT.ot
i
3) ̸= mi

b.

The receiver outputs accept if the above checks pass.

Theorem 5. Com = (Com1,Com2,Decom) is a two round statistically hiding
commitment scheme with computational binding if iOT satisfies statistical re-
ceiver privacy and computational sender security.

Proof. We argue hiding and binding of Com as follows:

– The sender’s committed bit b remains statistically hidden in c2 since c2 is the

output of iOT.OT
(2)
R→S algorithm and c2 statistically hides b due to statistical

receiver privacy of iOT.
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– If a corrupt receiver breaks binding of the protocol by producing two valid
openings (0, d0) and (1, d1) then it breaks sender privacy of the iOT protocol.
mi

0 (resp. mi
1) can be correctly decrypted using (0, d0) (resp. (1, d1)) as the

receiver’s decryption randomness.
⊓⊔

6 One-Sided Statistically Secure 2PC against Malicious
Corruptions

We describe our one-sided statistically secure 2PC protocol πmal secure against
malicious corruption of parties in this section. We rely on the following primitives
for our protocol.

1. Five round one-sided statistically secure 2PC protocol against explainable
parties where both parties get the output. We instantiate it using πexp based
on eOT (Sec. 5.1) and non-interactive commitments.

2. Four round statistically sender private Conditional Disclosure of Secrets,
denoted as CDS, in the preprocessing phase where the first two rounds are
input-independent.

3. Four round delayed-input statistical zero knowledge SZK. This can be built
[LS91] from two round statistically hiding commitment.

4. The five round delayed-input zero knowledge proof ZKP. This can be ob-
tained [LS91]+ [GK96] from two round statistically hiding commitment.

5. Four round statistically sender private Conditional Disclosure of Secrets,
denoted as CDS, in the preprocessing phase where the first two rounds are
input-independent.

The two round statistically hiding commitment is built from eOT (via iOT)
in Sec. 5.2. Next, we formally define and construct the CDS protocol before
proceeding to the construction of πmal.

6.1 Conditional Disclosure of Secrets in the Preprocessing Model

We denote a Conditional Disclosure of Secrets in preprocessing model as a tuple
of five algorithms CDS = (CDS1,CDS2,CDS3,CDS4,CDS5) defined as follows:

– CDS1(1
κ) : The receiver computes (cds1, stR) in the preprocessing phase. The

receiver sends cds1 and stores stR as the internal state.
– CDS2(1

κ, cds1) : The sender computes (cds2, stS) in the preprocessing phase.
The sender sends cds2 and stores stS as internal state.

– CDS3(1
κ, (x,w), stR, cds2) : The receiver computes (cds3, stR) based on the

statement x, witness w and cds2. The receiver sends cds3 and updates stR as
the internal state.

– CDS4(1
κ, (x, ptxt), stS, cds3) : The sender encrypts plaintext ptxt based on

statement x and cds3 to compute cds4. The sender sends cds4.
– CDS5(stR, cds4) : The receiver outputs ptxt′ as the decrypted message.

The above algorithms should satisfy the following properties:

22



Correctness. For any (x,w) ∈ L, and message ptxt ∈ {0, 1}∗ the following holds:

Pr

[
CDS5(stR, cds4) == ptxt

∣∣(cds1, stR)← CDS1(1
κ), (cds2, stS)← CDS2(1

κ, cds1),

(cds3, stR)← CDS3(1
κ, (x,w), stR, cds2), cds4 ← CDS4(1

κ, (x, ptxt), stS, cds3)

]
= 1.

Message Indistinguishability. For any x /∈ L, cds∗3 ∈ {0, 1}∗ and any two equal-
length messages ptxt0, ptxt1, the following distributions are statistically indis-
tinguishable:

CDS4(1
κ, (x, ptxt0), stS, cds

∗
3)

s
≈ CDS4(1

κ, (x, ptxt1), stS, cds
∗
3).

Receiver Simulation. There exists a simulator Sim = (Sim1,Sim2) such that for
any PPT distinguisher D = (D1,D2), such that for any x ∈ L, with R(x,w) = 1
the following holds:∣∣∣∣Pr[D2(CDS3(1

κ, (x,w), stR, cds2), stD) = 1|(cds1, stR)← CDS1(1
κ),

(cds2, stD)← D1(1
κ)]− Pr[D2(Sim2(x, stSim), stD) = 1|(cds1, stSim)← Sim1(1

κ),

(cds2, stD)← D1(1
κ)]

∣∣∣∣ ≤ neg(κ).

It can be observed that cds1 and cds2 are independent of x and hence can be
performed offline in a preprocessing phase.

Construction. We denote an SSPOT protocol as SSPOT = (SSPOT.OT
(1)
R→S,

SSPOT.OT
(2)
S→R, SSPOT.OT

(3)
R→S, SSPOT.OTS).

– CDS1(1
κ) : For i ∈ [n], the receiver computes cdsi1 = oti1 = SSPOT.OT

(1)
R→S(1

κ).

The receiver sends cds1 = {cdsi}i∈[n] to the sender and stores stR = ⊥ as
the internal state.

– CDS2(1
κ, cds1) : For i ∈ [n], the sender performs the following: (cdsi2,SSPOT.st

i
S)

= SSPOT.OT
(2)
S→R(1

κ, cdsi1). The sender sends cds2 = {cdsi2}i∈[n] to the re-
ceiver and stores stS = {SSPOT.st

i
S} as the internal sender’s state.

– CDS3(1
κ, (x,w), stR, cds2) : The receiver denotes w = {wi}i∈[n]. It computes

(cdsi3,m
′
i) = OTR→S(1

κ, wi, cds
i
2) for i ∈ [n]. The receiver sends cds3 =

{cdsi3}i∈[n] to sender and stores stR = (w, {m′
i}i∈[n]) as internal state.

– CDS4(1
κ, (x, ptxt), stS, cds3) : The sender performs the following:

1. Computes the following circuit C:

C(x,w, ptxt) = ptxt iff (R(x,w) == 1)

= 0, otherwise

x is hardcoded in the circuit, w ∈ {0, 1}n and ptxt ∈ {0, 1}ℓ are inputs to
the circuit. The sender garbles circuit C as (GC, lab)← Garble.Gb(1κ, C).
The computes

23



2. For i ∈ [n], it computes (mi
0,m

i
1) = SSPOT.OTS(SSPOT.st

i
S, cds

i
3).

3. Parse lab = {lab0i , lab
1
i }i∈[n+ℓ]. For i ∈ [n], α ∈ {0, 1}, the sender com-

putes yαi = mα
i ⊕ labαi . Set y = {y0i , y1i }i∈[n].

4. Compute the wire labels corresponding to input ptxt ∈ {0, 1}ℓ as follows
(Li = Garble.En(ptxti, {lab

0
n+i, lab

1
n+i})) for i ∈ [ℓ].

The sender sends cds4 = (GC,y, {Li}i∈[ℓ]) to the receiver.

– CDS5(stR, cds4) : For i ∈ [n], the receiver computes lab′i = m′
i ⊕ ywi

i . The
receiver sets lab′n+i = Li for i ∈ [ℓ]. The receiver evaluates the garbled
circuit to obtain ptxt′ = Garble.Ev(GC, {lab′i}i∈[n+ℓ]). The receiver outputs
ptxt′ as the decrypted message.

Correctness. The receiver obtains lab′i = labwi
i for i ∈ [n] from the ith OT

protocol corresponding to witness bit wi. It evaluates the garbled circuit GC to
obtain the message ptxt′ == ptxt if R(x,w) = 1.

Theorem 6. Assuming SSPOT is a four round OT protocol with statistical sender
privacy against a malicious receiver and computational receiver privacy against
a semi-honest sender, and Garble is an information theoretic garbling scheme
for NC1 circuits, then CDS is a conditional disclosure of secrets for statements
x ∈ L which are verifiable by relations R(x, ·) that can be computed by NC1
circuits. Moreover, it provides receiver simulation against a malicious receiver
and message indistinguishability against a semi-honest sender.

Proof. We defer the detailed proof to the full version of our paper [BPS22]. ⊓⊔

6.2 Protocol πmal

We compile the 2PC protocol πexp of [KM20] (Sec. 5.1), which is secure against
unbounded explainable receiver and PPT explainable sender, to be secure against
malicious corruptions. Our protocol πmal can be found below and the security is
summarized in Thm. 7. High level overview can be found in Sec. 2.1.

Construction. The receiver R has input A and sender S has input B. We present
our compiler πmal = (R1,S1,R2,S2,R3,S3) as follows:

– R1(1
κ,A) : The receiver performs the following:

1. Sample rR ← {0, 1}∗ and compute π1
exp = πexp.R1(A; rR) according to the

explainable protocol.
2. Set (z1, stZKP,P) ← ZKP.P(1κ) and (z′1, stSZK,V) ← SZK.V1(1

κ) as the
first messages of the ZK proof with R as prover, and SZK argument with
R as verifier, respectively.

3. Set (cds1, stCDS,R) = CDS.CDS1(1
κ) as the first message of the CDS

scheme as receiver.
4. Send π1

mal = (π1
exp, z1, z

′
1, cds1).

5. Store stR = (A, rR, stZKP,P, stSZK,V, stCDS,R).
– S1(1

κ,B, π1
mal) : The sender performs the following:

24



1. Sample rS ← {0, 1}∗ and set π2
exp = πexp.S1(π

1
exp,B; rS) according to the

explainable protocol.
2. Set (z2, stZKP,V) ← ZKP.V1(z1, 1

κ), (z′2, stSZK,P) ← SZK.P1(z
′
1) as the

second message of the ZKPproof with S as verifier, and SZK argument
with sender as prover, respectively.

3. Sample rCDS
S ← {0, 1}∗ and compute (cds2, stCDS,S) = CDS.CDS2(r

CDS
S ,

cds1) as the second message of the CDS scheme as sender.
4. Send π2

mal = (π2
exp, z2, z

′
2, cds2).

5. Store stS = (B, rS, stZKP,V, stSZK,P, stCDS,S).
– R2(stR, π

2
mal) : The receiver performs the following:

1. Compute π3
exp = πexp.R2(π

2
exp,A; rR). Set statement xCDS = (π1

exp, π
2
exp, π

3
exp)

and witness wCDS = (A, rR, ldp) where ldp is a low-depth proof of

(π1
exp = πexp.R1(A; rR) ∧ π3

exp = πexp.R2(π
2
exp,A; rR)).

2. Compute (cds3, stCDS,R)← CDS.CDS3(1
κ, (xCDS, wCDS), stCDS,R, cds2).

3. Compute (z3, stZKP,P)← ZKP.P2(z2, stZKP,P) and (z′3, stSZK,V)← SZK.V2(z
′
2,

stSZK,V).
4. Send π3

mal = (π3
exp, z3, z

′
3, cds3).

5. Update stR = (A, rR, stZKP,P, stSZK,V, stCDS,R).
– S2(stS, π

3
mal) : The sender performs the following:

1. Set π4
exp = πexp.S2(π

3
exp,B; rS).

2. Set statement xCDS = (π1
exp, π

2
exp, π

3
exp). Compute CDS response

cds4 ← CDS.CDS4(r
CDS
S , (xCDS, π

4
exp), stCDS,S, cds3).

3. Compute (z4, stZKP,V)← ZKP.V2(z3, stZKP,V).
4. Set the statement xSZK = (cds1, cds2, cds3, cds4, xCDS) for witness wSZK =

(B, rCDS
S , rS, π

4
exp) and set z′4 ← SZK.P2(z

′
3, xSZK, stSZK,P).

5. Send π4
mal = (cds4, z4, z

′
4).

6. Update stS = (B, rS, stZKP,V, stSZK,P)
– R3(stR, π

4
mal) : The receiver performs the following:

1. Set the statement as xSZK = (cds1, cds2, cds3, cds4, xCDS). The receiver
aborts if the verification fails as SZK.V3(z

′
4, xSZK, stSZK,V) = 0. Otherwise,

decrypt π4
exp = CDS.CDS5(stCDS,R, cds4) and compute the final message

as (π5
exp, out) = πexp.R3(π

4
exp,A; rR).

2. Set xZKP = (π1
exp, π

2
exp, π

3
exp, π

4
exp, π

5
exp), wZKP = (A, rR) and compute the

ZKP proof as z5 = ZKP.P3(z4, xZKP, stZKP,P).
3. Send π5

mal = (π5
exp, z5) to the sender and output out.

– S3(stS, π
5
mal) : Set statement xZKP = (π1

exp, π
2
exp, π

3
exp, π

4
exp, π

5
exp) for ZKP proof.

If ZKP.V3(z5, xZKP, stZKP,V) == 0 then abort. Else, output πexp.S3(π
5
exp,B; rS).

We denote the statement for the CDS as follows:

LCDS = {(π1
exp, π

2
exp, π

3
exp) : ∃(A, rR, ldp) s.t. ldp is a low depth proof of

π1
exp = πexp.R1(A; rR) ∧ π3

exp = πexp.R2(π
2
exp,A; rR)}
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The SZK statement proven by the sender is as follows:

LSZK = {(cds1, cds2, cds3, cds4, xCDS) : ∃(B, rCDS
S , rS, π

4
exp) s.t. π

2
exp = S1(π

1
exp,B; rS)∧

(cds2, stCDS,S) = CDS.CDS2(r
CDS
S )∧cds4 = CDS.CDS4(r

CDS
S , (xCDS, π

4
exp), stCDS,S, cds3)}.

We denote the ZKP statement proven by the receiver as follows:

LZKP = {(π1
exp, π

2
exp, π

3
exp, π

4
exp, π

5
exp)∃(A, rR) s.t. π1

exp = πexp.R1(A; rR)

∧π3
exp = πexp.R2(π

2
exp,A; rR) ∧ π5

exp = πexp.R3(π
4
exp,A; rR)}.

Theorem 7. Assuming the following holds:

1. Four round delayed-input adaptive statistical zero-knowledge arguments of
knowledge SZK = (V1,P1,V2,P2,V3) with adaptive soundness,

2. Five round delayed-input adaptive computational zero-knowledge proofs ZKP =
(P1,V1, P2,V2,P3,V3) with adaptive soundness,

3. Four round statistical Conditional Disclosure of Secrets CDS = (CDS1, CDS2,
CDS3, CDS4, CDS5) for NP relations verifiable by NC1 circuits with two
rounds of preprocessing phase and two rounds of input-dependent phase,

4. Five round robust two-party secure computation protocol πexp=(R1, S1, R2,
S2, R3, S3) against unbounded explainable receiver and PPT explainable
sender

there exists a robust 5-round secure two-party computation protocol πmal=(R1, S1,
R2, S2, R3, S3) with black-box simulation against unbounded malicious receivers
and PPT malicious senders, where the receiver obtains its output at the end of
fourth round and the sender obtains its output at the end of the fifth round.

Proof. We defer the detailed proof to the full version of our paper [BPS22]. ⊓⊔

7 Instantiations of eOT

We instantiate eOTfrom CDH, reciprocal CSIDH assumption and two-round
SSPOT. Due to lack of space, we only describe the CDH-based instantiation
here. We refer to the full version of our paper [BPS22] for the instantiations
based on the reciprocal CSIDH assumption and two-round SSPOT.

CDH-based Instantiation. We define our elementary OT protocol eOT =

(OT
(1)
S→R,OT

(2)
R→S,OT

(3)
S→R,OTR) as a tuple of four algorithms defined as follows:

– OT
(1)
S→R(1

κ) : The sender samples Q← G. The sender sends ot1 = Q as the
OT sender message.

– OT
(2)
R→S(1

κ, γ, ot1) : The receiver performs the following with input choice
bit γ as follows:
• Sample sk← Zq.
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• Set pkγ = gsk and set pk1−γ = Q
pkγ

.

The receiver sends ot2 = pk0 as the OT receiver message and sets stR =
(γ, sk).

– OT
(3)
S→R(1

κ, ot2) : The sender computes following:

• Generate pk1 = Q
pk0

.

• Sample r ← Zq. Compute R = gr.
• Compute m0 = pkr0 and m1 = pkr1.

The sender sends ot3 = R as the OT sender message and outputs (m0,m1)
as the output.

– OTR(stR, ot3) : The receiver computes mγ = Rsk and outputs mγ .

Correctness. The sender outputs (m0,m1). The receiver outputs mγ = Rsk =
grsk = pkrγ corresponding to bit γ.

Lemma 5. The above protocol satisfies perfect receiver’s elementary security.

Proof. The distribution of pk0 is randomly distributed over G irrespective of the
value of γ. ⊓⊔

Lemma 6. The above protocol satisfies computational sender’s elementary se-
curity based on the CDH assumption.

Proof. Let A be an adversary breaking sender privacy of the above OT protocol,
then we build an adversary B breaking the CDH assumption. Recall that A
receives Q = gq from the sender (for an uniformly sampled q ← Zq), sends
pk0 to the sender, receives R = gr from the sender (for an uniformly sampled
r ← Zq) and wins if it outputs m0 = pkr0 and m1 = pkr1. The CDH adversary B
(acting as the sender) receives (g,X = gx, Y = gy) as the CDH challenge. B sets
Q = X and sends it to A. Upon receiving pk0 from A, B sends R = Y to A. If
A succeeds then it outputs m0 = pky0 and m1 = pky1. B outputs m0 · m1 to the
CDH challenger. Recall that pk0 · pk1 = Q = X. If A succeeds then B breaks
CDH since the following holds:

m0 ·m1 = pky0 · pk
y
1 = (pk0 · pk1)

y
= Xy

⊓⊔
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BD18. Zvika Brakerski and Nico Döttling. Two-message statistically sender-
private OT from LWE. In Amos Beimel and Stefan Dziembowski, edi-
tors, TCC 2018, Part II, volume 11240 of LNCS, pages 370–390. Springer,
Heidelberg, November 2018.

BF22. Nir Bitansky and Sapir Freizeit. Statistically sender-private ot from lpn
and derandomization. Cryptology ePrint Archive, Report 2022/185, 2022.
https://ia.cr/2022/185.

BFJ+20. Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khu-
rana, and Amit Sahai. Statistical ZAP arguments. In Vincent Rijmen and
Yuval Ishai, editors, EUROCRYPT 2020, Part III, LNCS, pages 642–667.
Springer, Heidelberg, May 2020.

BGJ+18. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman
Kalai, Dakshita Khurana, and Amit Sahai. Promise zero knowledge and
its applications to round optimal MPC. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
459–487. Springer, Heidelberg, August 2018.

BHP17. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round
secure computation without setup. In Yael Kalai and Leonid Reyzin, edi-
tors, TCC 2017, Part I, volume 10677 of LNCS, pages 645–677. Springer,
Heidelberg, November 2017.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 784–796. ACM Press, October 2012.

BJY97. Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-
knowledge arguments based on any one-way function. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 280–305. Springer,
Heidelberg, May 1997.

Blu81. Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor,
CRYPTO’81, volume ECE Report 82-04, pages 11–15. U.C. Santa Bar-
bara, Dept. of Elec. and Computer Eng., 1981.

BPS22. Saikrishna Badrinarayanan, Sikhar Patranabis, and Pratik Sarkar. Statisti-
cal security in two-party computation revisited. Cryptology ePrint Archive,
Paper 2022/1190, 2022. https://eprint.iacr.org/2022/1190.

CCG+20. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and
Rafail Ostrovsky. Round optimal secure multiparty computation from min-
imal assumptions. In TCC 2020, Part II, LNCS, pages 291–319. Springer,
Heidelberg, March 2020.

CCG+21. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and
Rafail Ostrovsky. Oblivious transfer from trapdoor permutations in min-
imal rounds. In Theory of Cryptography - 19th International Conference,
TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part
II, volume 13043 of Lecture Notes in Computer Science, pages 518–549.
Springer, 2021.

CO17. Wutichai Chongchitmate and Rafail Ostrovsky. Circuit-private multi-key
FHE. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS,
pages 241–270. Springer, Heidelberg, March 2017.

28

https://ia.cr/2022/185
https://eprint.iacr.org/2022/1190


COSV17. Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti.
Round-optimal secure two-party computation from trapdoor permutations.
In Theory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I, volume
10677 of Lecture Notes in Computer Science, pages 678–710. Springer, 2017.
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