On Secret Sharing, Randomness, and Random-less Reductions for Secret Sharing

Divesh Aggarwal¹[0000-0002-3841-0262], Eldon Chung¹[0000-0002-0048-4610], Maciej Obremski¹[0000-0003-4174-0438], and João Ribeiro²[0000-0002-9870-0501]

Abstract. Secret-sharing is one of the most fundamental primitives in cryptography, and has found several applications. All known constructions of secret sharing (with the exception of those with a pathological choice of parameters) require access to uniform randomness. However, in practice it is extremely challenging to generate a source of uniform randomness. This has led to a large body of research devoted to designing randomized algorithms and cryptographic primitives from imperfect sources of randomness. Motivated by this, Bosley and Dodis (TCC 2007) asked whether it is even possible to construct a 2-out-of-2 secret sharing scheme without access to uniform randomness.

In this work, we make significant progress towards answering this question. Namely, we resolve this question for secret sharing schemes with important additional properties: 1-bit leakage-resilience and non-malleability. We prove that, for not too small secrets, it is impossible to construct any 2-out-of-2 leakage-resilient or non-malleable secret sharing scheme without access to uniform randomness.

Given that the problem of whether 2-out-of-2 secret sharing requires uniform randomness has been open for more than a decade, it is reasonable to consider intermediate problems towards resolving the open question. In a spirit similar to NP-completeness, we also study how the existence of a t-out-of-n secret sharing without access to uniform randomness is related to the existence of a t'-out-of-n' secret sharing without access to uniform randomness for a different choice of the parameters t, n, t', n'.

1 Introduction

Secret sharing, introduced by Blakley [12] and Shamir [47], strikes a meaning-ful balance between availability and confidentiality of secret information. This fundamental cryptographic primitive has found a host of applications, most notably to threshold cryptography and multi-party computation (see [21] for an extensive discussion). In a secret sharing scheme for n parties, a dealer who holds a secret s chosen from a domain \mathcal{M} can compute a set of n shares by evaluating a randomized function on s which we write as $\mathbf{Share}(s) = (\mathsf{Sh}_1, \ldots, \mathsf{Sh}_n)$. The notion of threshold secret sharing is particularly important: A t-out-of-n secret

sharing scheme ensures that any t shares are sufficient to recover the secret s, but any t-1 shares reveal no information about the secret s.

Motivated by practice, several variants of secret sharing have been suggested which guarantee security under stronger adversarial models. The notion of leakage-resilient secret sharing was put forth in order to model and handle side-channel attacks to secret shared data. In more detail, the adversary, who holds an unauthorized subset of shares, is furthermore allowed to specify a leakage function Leak from a restricted family of functions and learn $Leak(Sh_1, ..., Sh_n)$. The goal is that this additional side information reveals almost no information about the secret. Typically one considers local leakage, where $\mathsf{Leak}(\mathsf{Sh}_1,\ldots,\mathsf{Sh}_n) = (\mathsf{Leak}_1(\mathsf{Sh}_1),\ldots,\mathsf{Leak}_n(\mathsf{Sh}_n))$ for local leakage functions Leak_i with bounded output length. This makes sense in a scenario where shares are stored in physically separated locations. The alternative setting where adversaries are allowed to corrupt all shares (e.g., by infecting storage devices with viruses) led to the introduction of non-malleable secret sharing. In this case, the adversary specifies tampering functions f_1, f_2, \ldots, f_n which act on the shares, and then the reconstruction algorithm is applied to the tampered shares $f_1(\mathsf{Sh}_1), \ldots, f_n(\mathsf{Sh}_n)$. The requirement, roughly speaking, is that either the original secret is reconstructed or it is destroyed, i.e., the reconstruction result is unrelated to the original secret. Both leakage-resilient and non-malleable secret sharing have received significant attention in the past few years.

Cryptography with weak randomness. It is well-known that randomness plays a fundamental role in cryptography and other areas of computer science. In fact, most cryptographic goals cannot be achieved without access to a source of randomness. Almost all settings considered in the literature assume that this source of randomness is perfectly random: It outputs uniformly random and independent bits. However, in practice it is extremely hard to generate perfect randomness. The randomness needed for the task at hand is generated from some physical process, such as electromagnetic noise or user dependent behavior. While these sources have some inherent randomness, in the sense that they contain entropy, samples from such sources are not necessarily uniformly distributed. Additionally, the randomness generation procedure may be partially accessible to the adversary, in which case the quality of the randomness provided degrades even further. The difficulty in working with such imperfect randomness sources not only arises from the fact that they are not uniformly random, but also because the exact distribution of these sources is unknown. One can at best assume that they satisfy some minimal property, for example that none of the outcomes is highly likely as first considered by Chor and Goldreich [19].

The best one can hope for is to deterministically extract a nearly perfect random string for direct usage in the desired application. While there are source models which allow for deterministic randomness extraction, such as von Neumann sources [42], bit-fixing sources [20], affine sources [15], and other efficiently generated or recognizable sources [13, 46, 37, 51, 30, 35, 29, 11, 18], all these models make strong assumptions about the structure of the source. On the other hand, the most natural, flexible, and well-studied source model where we

only assume a lower bound on the min-entropy of the source³ does not allow deterministic extraction of even 1 almost uniformly random bit [19]. This holds even in the highly optimistic case where the source is supported on $\{0,1\}^d$ and has min-entropy d-1. Nevertheless, it has been long known, for example, that min-entropy sources are sufficient for simulating certain randomized algorithms and interactive protocols [19].

This discussion naturally leads us to wonder whether perfect randomness is essential in different cryptographic primitives, in the sense that the underlying class of sources of randomness allows deterministic extraction of nearly uniformly random bits. We call such classes of sources *extractable*. More concretely, the following is our main question.

Question 1. Does secret sharing, or any of its useful variants such as leakage-resilient or non-malleable secret sharing, require access to extractable randomness?

This question was first asked by Bosley and Dodis [14] (for 2-out-of-2 secret sharing) and it remains open. Bosley and Dodis settled the analogous question for the case of information-theoretic private-key encryption, motivated by a series of (im)possibility results for such schemes in more specific source models [41, 26, 24]. More precisely, they showed that encryption schemes using d bits of randomness and encrypting messages of size $b > \log d$ require extractable randomness, while those encrypting messages of size $b < \log d - \log \log d - 1$ do not.

As noted in [25, 14], private-key encryption schemes yield 2-out-of-2 secret sharing schemes by seeing the uniformly random key as the left share and the ciphertext as the right share. Therefore, we may interpret the main result of [14] as settling Question 1 for the artificial and highly restrictive class of secret sharing schemes where the left share is uniformly random and independent of the secret, and the right share is a deterministic function of the secret and the left share. No progress has been made on Question 1 since.

Random-less Reductions for Secret Sharing. Given that the problem of whether 2-out-of-2 secret sharing requires extractable randomness has been open for 15 years, it is reasonable to consider intermediate problems towards resolving the open question. In a spirit similar to computational complexity, we consider how the question whether t out of n secret sharing requires extractable randomness is related to the same question for a different choice of the parameters t, n i.e.,

Question 2. Given t, n, t', n', does the fact that t-out-of-n secret sharing require extractable randomness imply that t'-out-of-n' secret sharing require extractable randomness?

A natural approach towards resolving this question is to try to construct a t-out-of-n secret sharing scheme from a t-out-of-n secret sharing scheme in a black-box manner without any additional randomness. Intuitively, since we don't have access to any additional randomness, it seems that the most obvious strategy

³ A source is said to have *min-entropy* k if the probability that it takes any fixed value is upper bounded by 2^{-k} .

to achieve such reductions is to choose n subsets of the set of n' shares in such a way that any t out of these n subsets contain at least t' out of the original n' shares and any t-1 subsets contain at most t'-1 of the original n' shares. In particular, there is a trivial reduction when t=n=2 that chooses the first subset to contain the first of the n' shares, and the second subset to contain any t'-1 of the remaining shares. This shows the completeness of the extractability of 2-out-of-2 secret sharing with respect to these reductions. Such reductions can be formalized via distribution designs [49].

1.1 Our Results

In this work, we make progress on both Question 1 and Question 2. Before we proceed to discuss our results, we formalize the notions of an extractable class of randomness sources and threshold secret sharing.

Definition 1 (Extractable class of sources) We say a class of randomness sources \mathcal{Y} over $\{0,1\}^d$ is (δ,m) -extractable if there exists a deterministic function $\mathsf{Ext}: \{0,1\}^d \to \{0,1\}^m$ such that $\mathsf{Ext}(Y) \approx_{\delta} U_m$ for every $Y \in \mathcal{Y}$, where U_m denotes the uniform distribution over $\{0,1\}^m$.

Note that we may consider the support of all sources in \mathcal{Y} to be contained in some set $\{0,1\}^d$ without loss of generality. Since we will be interested in studying the quality of randomness used by secret sharing schemes, we make the class of randomness sources allowed for a secret sharing scheme explicit in the definition of t-out-of-n threshold secret sharing below.

Definition 2 (Threshold secret sharing scheme) A tuple (**Share**, **Rec**, \mathcal{Y}) with **Share** : $\{0,1\}^b \times \{0,1\}^d \to (\{0,1\}^\ell)^n$ and **Rec** : $\{0,1\}^* \to \{0,1\}^b$ deterministic algorithms and \mathcal{Y} a class of randomness sources over $\{0,1\}^d$ is a (t,n,ε) -secret sharing scheme (for b-bit messages using d bits of randomness) if for every randomness source $Y \in \mathcal{Y}$ the following hold:

1. If $\mathcal{T} \subseteq [n]$ satisfies $|\mathcal{T}| \ge t$ (i.e., \mathcal{T} is authorized), then

$$\Pr_Y[\mathbf{Rec}(\mathbf{Share}(x,Y)_{\mathcal{T}})=x]=1$$

for every $x \in \{0,1\}^b$;

2. If $\mathcal{T} \subseteq [n]$ satisfies $|\mathcal{T}| < t$ (i.e., \mathcal{T} is unauthorized), then for any $x, x' \in \{0,1\}^b$ we have

$$\mathbf{Share}(x,Y)_{\mathcal{T}} \approx_{\varepsilon} \mathbf{Share}(x',Y)_{\mathcal{T}},$$

where $\mathbf{Share}(x,Y)_{\mathcal{T}}$ denotes the shares of parties $i \in \mathcal{T}$.

⁴ We use the notation $X \approx_{\delta} Y$ to denote the fact that $\Delta(X;Y) \leq \delta$, where $\Delta(\cdot;\cdot)$ corresponds to statistical distance (see Definition 8).

Leakage-Resilient 2-out-of-2 Secret Sharing Requires Extractable Randomness. As our first contribution, we settle Question 1 for the important sub-class of *leakage-resilient* 2-out-of-2 secret sharing. Intuitively, we consider 2-out-of-2 secret sharing schemes with the additional property that the adversary learns almost nothing about the message when they obtain bounded information from each share. More formally, we have the following definition.

Definition 3 (Leakage-resilient secret sharing scheme) We say that a tuple (**Share**, **Rec**, \mathcal{Y}) with **Share**: $\{0,1\}^b \times \{0,1\}^d \to (\{0,1\}^\ell)^2$ and **Rec**: $\{0,1\}^* \to \{0,1\}^b$ deterministic algorithms and \mathcal{Y} a class of randomness sources over $\{0,1\}^d$ is an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing scheme (for b-bit messages using d bits of randomness) if (**Share**, **Rec**, \mathcal{Y}) is a $(t=2, n=2, \varepsilon_1)$ -secret sharing scheme and the following additional property is satisfied: For any two messages $x, x' \in \{0,1\}^b$ and randomness source $Y \in \mathcal{Y}$, let ($\mathsf{Sh}_1, \mathsf{Sh}_2$) = $\mathsf{Share}(x, Y)$ and ($\mathsf{Sh}_1', \mathsf{Sh}_2'$) = $\mathsf{Share}(x', Y)$. Then, for any leakage functions $f, g : \{0,1\}^\ell \to \{0,1\}$ it holds that

$$f(\mathsf{Sh}_1), g(\mathsf{Sh}_2) \approx_{\varepsilon_2} f(\mathsf{Sh}_1'), g(\mathsf{Sh}_2').$$

Leakage-resilient secret sharing has received significant attention recently, with several constructions and leakage models being analyzed [10, 1, 36, 48, 17, 38, 39]. Comparatively, Definition 3 considers a significantly weaker notion of leakage-resilience than all works just mentioned. In particular, we do not require leakage-resilience to hold even when the adversary has full access to one of the shares on top of the leakage. This means that our results are widely applicable. Roughly speaking, we prove that every leakage-resilient secret sharing scheme for b-bit messages either requires a huge number of bits of randomness, or we can extract several bits of perfect randomness with low error from its underlying class of randomness sources. More formally, we prove the following.

Theorem 1 Let (**Share**, **Rec**, \mathcal{Y}) be an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing scheme for b-bit messages. Then, either:

- 1. The scheme uses $d \ge \min(2^{\Omega(b)}, (1/\varepsilon_2)^{\Omega(1)})$ bits of randomness, or;
- 2. The class of sources \mathcal{Y} is (δ, m) -extractable with $\delta \leq \max\left(2^{-\Omega(b)}, \varepsilon_2^{\Omega(1)}\right)$ and $m = \Omega(\min(b, \log(1/\varepsilon_2)))$. Moreover, if **Share** is computable by a poly(b)-time algorithm, then \mathcal{Y} is (δ, m) -extractable by a family of poly(b)-size circuits.

An important corollary of Theorem 1 is that every efficient negligible-error leakage-resilient secret sharing scheme requires extractable randomness with negligible error.

Corollary 1 If (Share, Rec, \mathcal{Y}) is an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing scheme for b-bit messages running in time poly(b) with $\varepsilon_2 = \mathsf{negl}(b)$, it follows that \mathcal{Y} is (δ, m) -extractable with $\delta = \mathsf{negl}(b)$ and $m = \Omega(\min(b, \log(1/\varepsilon_2)))$.

⁵ By $\varepsilon_2 = \text{negl}(b)$, we mean that $\varepsilon_2 = o(1/b^c)$ for every constant c > 0 as $b \to \infty$.

Split-state non-malleable coding requires extractable randomness. Non-malleable coding, introduced by Dziembowski, Pietrzak, and Wichs [31], is another recent notion which has attracted much attention, in particular regarding the split-state setting (see [3] and references therein). Informally, a split-state non-malleable code has the guarantee that if an adversary is allowed to split a codeword in half and tamper with each half arbitrarily but separately, then the tampered codeword either decodes to the same message, or the output of the decoder is nearly independent of the original message. More formally, we have the following definition.

Definition 4 (Split-state non-malleable code [31]) A tuple (Enc, Dec, \mathcal{Y}) with $\mathbf{Enc}: \{0,1\}^{b} \times \{0,1\}^{d} \to (\{0,1\}^{\ell})^{2}$ and $\mathbf{Dec}: (\{0,1\}^{\ell})^{2} \to \{0,1\}^{b} \cup \{\bot\}^{d}$ deterministic algorithms and \mathcal{Y} a class of randomness sources is a (split-state) ε -non-malleable code if the following holds for every randomness source $Y \in \mathcal{Y}$:

- 1. $\Pr[\mathbf{Dec}(\mathbf{Enc}(x,Y))=x]=1$ for all $x\in\{0,1\}^b$; 2. For tampering functions $f,g:\{0,1\}^\ell\to\{0,1\}^\ell$, denote by $\mathsf{Tamp}_x^{f,g}$ the tampering random experiment which computes $(L,R) = \mathbf{Enc}(x,Y)$ and outputs $\mathbf{Dec}(f(L), g(R))$. Then, for any tampering functions f and g there exists a distribution $D^{f,g}$ over $\{0,1\}^b \cup \{\bot, \mathsf{same}^*\}$ such that

$$\mathsf{Tamp}_x^{f,g} \approx_{\varepsilon} \mathsf{Sim}_x^{f,g}$$

for all $x \in \{0,1\}^b$, where $\operatorname{Sim}_x^{f,g}$ denotes the random experiment which samples z according to $D^{f,g}$ and outputs z if $z \neq \mathsf{same}^*$ and x if $z = \mathsf{same}^*$.

The notion of non-malleable code in the split-state model is equivalent to the notion of a 2-out-of-2 non-malleable secret sharing scheme [34].

It is known by [2, Lemmas 3 and 4] that every ε -non-malleable coding scheme (**Enc**, **Dec**, \mathcal{Y}) for b-bit messages is also a $(2\varepsilon, \varepsilon)$ -leakage-resilient secret sharing scheme, provided $b \geq 3$ and $\varepsilon < 1/20$. Combining this observation with Theorem 1 yields the following corollary, which states that every split-state non-malleable code either uses a huge number of bits of randomness, or requires extractable randomness with low error and large output length.

Corollary 2 Let (Enc, Dec, \mathcal{Y}) be an ε -non-malleable code (i.e., 2-out-of-2 ε non-malleable secret sharing scheme) for b-bit messages with $b \geq 3$ and $\varepsilon < 1/20$. Then, either:

- 1. The scheme uses $d \ge \min(2^{\Omega(b)}, (1/\varepsilon)^{\Omega(1)})$ bits of randomness, or;
- 2. The class of sources \mathcal{Y} is (δ, m) -extractable with $\delta \leq \max(2^{-\Omega(b)}, \varepsilon^{\Omega(1)})$ and $m = \Omega(\min(b, \log(1/\varepsilon)))$. Moreover, if **Enc** is computable by a poly(b)-time algorithm, then \mathcal{Y} is (δ, m) -extractable by a family of poly(b)-size circuits.

As a result, an analogous version of Corollary 1 also holds for split-state nonmalleable coding. This resolves Question 1 for 2-out-of-2 non-malleable secret sharing.

Random-less Reductions for Secret Sharing. In this section, we discuss our contribution towards resolving Question 2. We focus on the following complementary scenario: Suppose we have proved that all (t, n, ε) -secret sharing schemes for b-bit messages using d bits of randomness require a (δ, m) -extractable class of randomness sources. It is then natural to wonder whether such a result can be bootstrapped to conclude that all (t', n', ε) -secret sharing schemes for the same message length b and number of randomness bits d also require (δ, m) -extractable randomness, for different threshold t' and number of parties n'. A natural approach is to set up general black-box reductions between different types of secret sharing which, crucially, do not use extra randomness. In fact, if we can obtain from a (t', n', ε) -secret sharing scheme (Share', Rec', \mathcal{Y}) another (t, n, ε) -secret sharing scheme (Share, Rec, \mathcal{Y}) for b-bit messages which uses the same class of randomness sources \mathcal{Y} , then our initial assumption would allow us to conclude that \mathcal{Y} is (δ, m) -extractable.

Remarkably, we are able to obtain the desired reductions for a broad range of parameters by exploiting a connection to the construction of combinatorial objects called *distribution designs*, a term coined by Stinson and Wei [49] for the old technique of devising a new secret sharing scheme by giving multiple shares of the original scheme to each party. Surprisingly, although these objects have roots going back to early work on secret sharing [9], they have not been the subject of a general study. In this work, we obtain general and simple constructions of, and bounds for, distribution designs, which are tight in certain parameter regimes. We give two examples of reductions we derive from these results.

Corollary 3 (Informal) If every $(t = 2, n, \varepsilon)$ -secret sharing scheme for b-bit messages using d bits of randomness requires a (δ, m) -extractable class of randomness sources, then so does every (t', n', ε) -secret sharing scheme for b-bit messages using d bits of randomness whenever $n \leq \binom{n'}{t'-1}$. Moreover, this is the best distribution-design-based reduction possible with t = 2.

Corollary 4 (Informal) If every (t, n, ε) -secret sharing scheme for b-bit messages using d bits of randomness requires a (δ, m) -extractable class of randomness sources, then so does every $(t' = n', n', \varepsilon)$ -secret sharing scheme for b-bit messages using d bits of randomness whenever $n' \geq \binom{n}{t-1}$. Moreover, this is the best distribution-design-based reduction possible with t' = n'.

1.2 Related Work

We begin by discussing the results on private-key encryption that led to the work of Bosley and Dodis [14] in more detail. Early work by McInnes and Pinkas [41] showed that min-entropy sources and Santha-Vazirani sources are insufficient for information-theoretic private-key encryption of even 1-bit messages. This negative result was later extended to *computationally* secure private-key encryption by Dodis, Ong, Prabhakaran, and Sahai [24], and was complemented by Dodis and Spencer [26], who showed that, in fact, non-extractable randomness is sufficient for information-theoretic private-key encryption of 1-bit messages. Later, the

picture was completed by the aforementioned groundbreaking work of Bosley and Dodis [14].

Besides the results already discussed above for private-key encryption and secret sharing, the possibility of realizing other cryptographic primitives using certain classes of imperfect randomness sources has also been studied. Non-extractable randomness is known to be sufficient for message authentication [40, 26], signature schemes [24, 5], differential privacy [23, 27, 52], secret-key agreement [5], identification protocols [5], and interactive proofs [24]. On the other hand, Santha-Vazirani sources are insufficient for bit commitment, secret sharing, zero knowledge, and two-party computation [24], and in some cases this negative result even holds for Santha-Vazirani sources with efficient tampering procedures [5].

In other directions, the security loss incurred by replacing uniform randomness by imperfect randomness was studied in [8, 6], and the scenario where a perfect common reference string is replaced by certain types of imperfect randomness has also been considered [16, 4]. The security of keyed cryptographic primitives with non-uniformly random keys has also been studied [28].

1.3 Technical Overview

Leakage-Resilient Secret Sharing Requires Extractable Randomness.

We present a high-level overview of our approach towards proving Theorem 1. Recall that our goal is to show that if (**Share**, **Rec**, \mathcal{Y}) is an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing for b-bit messages using d bits of randomness, then there exists a deterministic function $\mathsf{Ext} : \{0,1\}^d \to \{0,1\}^m$ such that $\mathsf{Ext}(Y) \approx_{\delta} U_m$ for all sources $Y \in \mathcal{Y}$, provided that the number of randomness bits d used is not huge.

Our candidate extractor Ext works as follows on input some $y \in \{0,1\}^d$:

- 1. Compute $(\mathsf{Sh}_1, \mathsf{Sh}_2) = \mathbf{Share}(0^b, y) \in \{0, 1\}^{\ell} \times \{0, 1\}^{\ell};$
- 2. For appropriate leakage functions $f, g : \{0, 1\}^{\ell} \to \{0, 1\}^{s}$, compute the tuple $(f(\mathsf{Sh}_1), g(\mathsf{Sh}_2));$
- 3. For an appropriate function $h: \{0,1\}^{2s} \to \{0,1\}^m$, output

$$\operatorname{Ext}(y) = h(f(\operatorname{Sh}_1), g(\operatorname{Sh}_2)).$$

The proof of Theorem 1 follows from an analysis of this candidate construction, and we show the existence of appropriate functions f, g, and h via the probabilistic method. Note that the number of sources in \mathcal{Y} may be extremely large. Consequently, our first step, which is similar in spirit to the first step of the related result for private-key encryption in [14], is to exploit the leakage-resilience of the scheme in question to show that it suffices to focus on a restricted family to prove the desired result. More precisely, it suffices to show the existence of functions f, g, and h as above satisfying

$$h(f(Z_1), g(Z_2)) \approx_{\delta'} U_m, \tag{1}$$

with δ' an appropriate error parameter, for all $(Z_1, Z_2) \in \mathcal{Z}$ defined as

$$\mathcal{Z} = \{ \mathbf{Share}(U_b, y) : y \in \{0, 1\}^d \},$$

which contains at most 2^d distributions. Our analysis then proceeds in three steps:

- 1. We show that each $(Z_1, Z_2) \in \mathcal{Z}$ is close in statistical distance to a convex combination of joint distributions $(D_{1,i}, D_{2,i})$ with the property that $\mathbf{H}_{\infty}(D_{1,i}) + \mathbf{H}_{\infty}(D_{2,i})$ is sufficiently large for all i, where $\mathbf{H}_{\infty}(\cdot)$ denotes the min-entropy of a distribution;
- 2. Exploiting the previous step, we prove that if we pick f and g uniformly at random, then with high probability over this choice it holds that the joint distribution $(f(Z_1), g(Z_2))$ is close in statistical distance to a high min-entropy distribution;
- 3. A well known, standard application of the probabilistic method then shows that a uniformly random function h will extract many perfectly random bits from $(f(Z_1), g(Z_2))$ with high probability over the choice of h.

While this proves that there exist functions f, g, and h such that (1) holds for a given $(Z_1, Z_2) \in \mathcal{Z}$, we need (1) to be true simultaneously for all $(Z_1, Z_2) \in \mathcal{Z}$. We resolve this by employing a union bound over the at most 2^d distributions in \mathcal{Z} . Therefore, if d is not extremely large, we succeed in showing the existence of appropriate functions f, g, and h, and the desired result follows. More details can be found in Section 3.

Random-less Reductions for Secret Sharing. In this section, we define distribution designs and briefly discuss how they can be used to provide the desired black-box reductions between different types of threshold secret sharing, in particular Corollaries 3 and 4. Intuitively, a (t, n, t', n')-distribution design distributes shares $(\mathsf{Sh}_1, \mathsf{Sh}_2, \ldots, \mathsf{Sh}_{n'})$ of some (t', n', ε) -secret sharing scheme into subsets of shares $\mathcal{S}_1, \ldots, \mathcal{S}_n$, with the property that $(\mathcal{S}_1, \ldots, \mathcal{S}_n)$ are now shares of a (t, n, ε) -secret sharing scheme. More formally, we have the following definition, which also appears in [49].

Definition 5 (Distribution design) We say a family of sets $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n \subseteq [n']$ is a (t, n, t', n')-distribution design if for every $\mathcal{T} \subseteq [n]$ it holds that

$$\left| \bigcup_{i \in \mathcal{T}} \mathcal{D}_i \right| \ge t'$$

if and only if $|\mathcal{T}| \geq t$.

Given a (t, n, t', n')-distribution design $\mathcal{D}_1, \ldots, \mathcal{D}_n \subseteq [n']$, it is clear how to set up a black-box reduction without extra randomness from (t', n', ε) -secret sharing to (t, n, ε) -secret sharing: If (**Share**', **Rec**', \mathcal{Y}) is an arbitrary (t', n', ε) -secret

sharing scheme for b-bit messages, we can obtain a (t, n, ε) -secret sharing scheme (**Share**, **Rec**, \mathcal{Y}) for b-bit messages by defining

$$\mathbf{Share}(x,y)_i = \mathbf{Share}'(x,y)_{\mathcal{D}_i}$$

for each $i \in [n]$, and

$$\mathbf{Rec}(\mathbf{Share}(x,y)_{\mathcal{T}}) = \mathbf{Rec}'\bigg(\mathbf{Share}'(x,y)_{\bigcup_{i \in \mathcal{T}} \mathcal{D}_i}\bigg)$$

for each $\mathcal{T} \subseteq [n]$. The following lemma is then straightforward from the definitions of threshold secret sharing and distribution designs, and this construction.

Lemma 1 If every (t, n, ε) -secret sharing scheme for b-bit messages using d bits of randomness requires (δ, m) -extractable randomness and there exists a (t, n, t', n')-distribution design, then so does every (t', n', ε) -secret sharing scheme for b-bit messages using d bits of randomness.

Details of our constructions of distribution designs and associated bounds can be found in Section 4. The black-box reductions then follow immediately by combining these constructions with Lemma 1.

1.4 Open Questions

We obtain distribution designs for a wide variety of parameters, but for some of these constructions we could not prove optimality or find a better construction. We leave this as an open question. A naturally related question is whether there is an alternative approach to obtain a random-less reduction for secret sharing that does not use distribution designs.

Finally, we hope this work further motivates research on the main open question of whether 2-out-of-2 secret sharing (or even t-out-of-n secret sharing for any t and n) requires extractable randomness.

2 Preliminaries

2.1 Notation

Random variables are denoted by uppercase letters such as X, Y, and Z, and we write U_m for the uniform distribution over $\{0,1\}^m$. We usually denote sets by uppercase calligraphic letters like S and T, and write [n] for the set $\{1,2,\ldots,n\}$. Given a vector $x \in S^n$ and set $T \subseteq [n]$, we define $x_T = (x_i)_{i \in T}$. We denote the \mathbb{F}_2 -inner product between vectors $x, y \in \{0,1\}^n$ by $\langle x, y \rangle$. All logarithms in this paper are taken with respect to base 2.

2.2 Probability Theory

In this section, we introduce basic notions from probability theory that will be useful throughout this work.

Definition 6 (Min-entropy) The min-entropy of a random variable X on a set \mathcal{X} , denoted by $\mathbf{H}_{\infty}(X)$, is defined as

$$\mathbf{H}_{\infty}(X) = -\log \max_{x \in \mathcal{X}} \Pr[X = x].$$

Definition 7 ((n,k)-source) We say a random variable X supported over $\{0,1\}^n$ is an (n,k)-source if $\mathbf{H}_{\infty}(X) \geq k$. When the support of the random variable is clear from context we may instead say k-source. Moreover, we say X is flat if it is uniformly distributed over a subset of $\{0,1\}^n$.

Definition 8 The statistical distance between random variables X and Y over a set \mathcal{X} , denoted by $\Delta(X,Y)$, is defined as

$$\Delta(X,Y) = \max_{\mathcal{S} \subseteq \mathcal{X}} |\Pr[X \in \mathcal{S}] - \Pr[Y \in \mathcal{S}]| = \frac{1}{2} \sum_{x \in \mathcal{X}} |\Pr[X = x] - \Pr[Y = x]|.$$

Moreover, we say that X and Y are ε -close, denoted by $X \approx_{\varepsilon} Y$, if $\Delta(X,Y) \leq \varepsilon$, and ε -far if this does not hold.

The following lemma is a version of the well-known XOR lemma (see [33] for a detailed exposition of these types of results).

Lemma 2 (XOR Lemma) If X and Y are distributions supported on $\{0,1\}^t$ such that

$$\langle a, X \rangle \approx_{\varepsilon} \langle a, Y \rangle$$

for all non-zero vectors $a \in \{0,1\}^t$, then

$$X \approx_{\varepsilon'} Y$$

for
$$\varepsilon' = 2^{t/2} \varepsilon$$
.

We end this section with a standard lemma stemming from a straightforward application of the probabilistic method, which states that, with high probability, a random function extracts almost perfect randomness from a fixed source with sufficient min-entropy. By a union bound, this result also implies that a random function is a great extractor for all sufficiently small classes of flat sources (and convex combinations thereof), an observation we will exploit later on.

Lemma 3 Fix an (n, k)-source X. Then, for every $\varepsilon > 0$ it holds that a uniformly random function $F: \{0,1\}^n \to \{0,1\}^m$ with $m \le k - 2\log(1/\varepsilon)$ satisfies $F(X) \approx_{\varepsilon} U_m$ with probability at least $1 - 2e^{-\varepsilon^2 2^k}$ over the choice of F.

Proof. See Appendix A.

The following extension of Lemma 3, stating that a random function condenses weak sources with high probability, will also be useful.

Lemma 4 Fix an (n,k)-source X. Then, for every $\varepsilon > 0$ it holds that a uniformly random function $F: \{0,1\}^n \to \{0,1\}^m$ satisfies $F(X) \approx_{\varepsilon} W$ for some W such that $\mathbf{H}_{\infty}(W) \ge \min(m,k-2\log(1/\varepsilon))$ with probability at least $1-2e^{-\varepsilon^2 2^k}$ over the choice of F.

Proof. For $m' = \min(m, k - 2\log(1/\varepsilon))$, let $F' : \{0,1\}^n \to \{0,1\}^{m'}$ be the restriction of F to its first m' bits. Then, Lemma 3 ensures that $F'(X) \approx_{\varepsilon} U_{m'}$ with probability at least $1 - 2e^{-\varepsilon^2 2^k}$ over the choice of F. Via a coupling argument, this implies that $F(X) \approx W$ for some W with $\mathbf{H}_{\infty}(W) \geq m'$.

2.3 Amplifying Leakage-Resilience

Recall the definition of leakage-resilient secret sharing from Definition 3 already discussed in Section 1. The following lemma states that every secret sharing scheme with standing 1 bit of leakage also with stands t > 1 bits of leakage from each share, at the cost of an increase in statistical error.

Lemma 5 Let (**Share**, **Rec**, \mathcal{Y}) be an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing scheme. Then, for all secrets $x, x' \in \{0, 1\}^b$, randomness source $Y \in \mathcal{Y}$, and functions $f, g : \{0, 1\}^{\ell} \to \{0, 1\}^t$ we have

$$f(\mathsf{Sh}_1), g(\mathsf{Sh}_2) \approx_{\varepsilon'} f(\mathsf{Sh}_1'), g(\mathsf{Sh}_2')$$

with $\varepsilon' = 2^t \varepsilon_2$, where $(\mathsf{Sh}_1, \mathsf{Sh}_2) = \mathbf{Share}(x, Y)$ and $(\mathsf{Sh}_1', \mathsf{Sh}_2') = \mathbf{Share}(x', Y)$.

Proof. Fix arbitrary secrets $x, x' \in \{0, 1\}^b$ and a randomness source $Y \in \mathcal{Y}$, and define $(\mathsf{Sh}_1, \mathsf{Sh}_2) = \mathbf{Share}(x, Y)$ and $(\mathsf{Sh}_1', \mathsf{Sh}_2') = \mathbf{Share}(x', Y)$. Suppose that there exist functions $f, g : \{0, 1\}^\ell \to \{0, 1\}^t$ such that the distributions $(f(\mathsf{Sh}_1), g(\mathsf{Sh}_2))$ and $(f(\mathsf{Sh}_1'), g(\mathsf{Sh}_2'))$ are $(\varepsilon' = 2^t \varepsilon_2)$ -far. Then, the XOR lemma implies that there is a non-zero vector $a \in \{0, 1\}^{2t}$, which we may write as $a = (a^{(1)}, a^{(2)})$ for $a^{(1)}, a^{(2)} \in \{0, 1\}^t$, such that the distributions

$$\langle a, (f(\mathsf{Sh}_1), g(\mathsf{Sh}_2)) \rangle = \langle a^{(1)}, f(\mathsf{Sh}_1) \rangle + \langle a^{(2)}, g(\mathsf{Sh}_2) \rangle$$

and

$$\langle a, (f(\mathsf{Sh}_1'), g(\mathsf{Sh}_2')) \rangle = \langle a^{(1)}, f(\mathsf{Sh}_1') \rangle + \langle a^{(2)}, g(\mathsf{Sh}_2') \rangle$$

are ε_2 -far. Consequently, for $f', g' : \{0, 1\}^{\ell} \to \{0, 1\}$ defined as $f'(z) = \langle a^{(1)}, f(z) \rangle$ and $g'(z) = \langle a^{(2)}, g(z) \rangle$ it holds that

$$f'(\mathsf{Sh}_1), g'(\mathsf{Sh}_2) \not\approx_{\varepsilon_2} f'(\mathsf{Sh}_1'), g'(\mathsf{Sh}_2'),$$

contradicting the fact that (**Share**, **Rec**, \mathcal{Y}) is an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing scheme.

3 Randomness Extraction from Leakage-Resilient Secret Sharing Schemes

In this section, we show that all 2-out-of-2 secret sharing schemes satisfying the weak leakage-resilience requirement from Definition 2 require extractable randomness with good parameters.

Theorem 2 Given any $\gamma \in (0,1)$, there are absolute constants $c_{\gamma}, c'_{\gamma}, c''_{\gamma} > 0$ such that the following holds: Suppose (**Share**, **Rec**, \mathcal{Y}) is an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing scheme for b-bit messages using d bits of randomness. Then, if $b \geq c_{\gamma}$ and $d \leq 2^{c'_{\gamma}b}$ it holds that \mathcal{Y} is (δ, m) -extractable with $\delta \leq 2^b \varepsilon_2 + 2^{-c''_{\gamma}b}$ and $m \geq (1 - \gamma)b$.

We prove Theorem 2 via a sequence of lemmas by showing the existence of an extractor $\operatorname{Ext}:\{0,1\}^d \to \{0,1\}^m$ for the class $\mathcal Y$ with appropriate parameters. Our construction works as follows: On input $y \in \{0,1\}^d$, the extractor Ext computes $(L_y,R_y)=\operatorname{\bf Share}(0^b,y)$, applies special leakage functions $f,g:\{0,1\}^\ell \to \{0,1\}^b$ to be determined in order to obtain local leakage $(f(L_y),g(R_y))$, and finally outputs $\operatorname{Ext}(y)=h(f(L_y),g(R_y))$ for an appropriate function $h:\{0,1\}^{2b}\to \{0,1\}^m$. Our goal is to show that

$$\mathsf{Ext}(Y) \approx_{\delta} U_m \tag{2}$$

for all sources $Y \in \mathcal{Y}$. Similarly in spirit to [14], our first lemma shows that in order to prove (2) we can instead focus on extracting randomness from the family of distributions

$$\mathcal{Z} = \{ \mathbf{Share}(U_b, y) : y \in \{0, 1\}^d \}.$$

Lemma 6 Fix functions $f, g : \{0,1\}^{\ell} \to \{0,1\}^{b}$ and $h : \{0,1\}^{2b} \to \{0,1\}^{m}$, and suppose that

$$\mathsf{Ext}'(Z) = h(f(Z_1), g(Z_2)) \approx_{\delta'} U_m \tag{3}$$

for all $Z = (Z_1, Z_2) \in \mathcal{Z}$. Then, it holds that Ext given by $\mathsf{Ext}(y) = h(f(L_y), g(R_y))$, where $(L_y, R_y) = \mathbf{Share}(0^b, y)$, satisfies

$$\operatorname{Ext}(Y) \approx_{\delta} U_m$$

for all $Y \in \mathcal{Y}$ with $\delta = 2^b \varepsilon_2 + \delta'$.

Proof. Lemma 5 implies that

$$f(L_Y), g(R_Y) \approx_{\varepsilon'} f(L_Y'), g(R_Y'),$$

where $(L'_Y, R'_Y) = \mathbf{Share}(U_b, Y)$ holds with $\varepsilon' = 2^b \varepsilon_2$ for all $Y \in \mathcal{Y}$, and so $\mathsf{Ext}(Y) \approx_{\varepsilon'} h(f(L'_K), g(R'_K))$. Since (3) holds for all $Z \in \mathcal{Z}$ and $\mathbf{Share}(U_b, Y)$ is a convex combination of distributions in \mathcal{Z} , it follows that $h(f(L'_Y), g(R'_Y)) \approx_{\delta'} U_m$. The triangle inequality yields the desired result.

Given Lemma 6, we will focus on proving (3) for appropriate functions f, g, and h and error δ' in the remainder of this section. We show the following lemma, which implies Theorem 2 together with Lemma 6.

Lemma 7 Given any $\gamma \in (0,1)$, there are absolute constants $c_{\gamma}, c'_{\gamma}, c''_{\gamma} > 0$ such that if $b \geq c_{\gamma}$ and $d \leq 2^{c'_{\gamma}b}$, then there exist functions $f, g : \{0,1\}^{\ell} \to \{0,1\}^{b}$ and $h : \{0,1\}^{2b} \to \{0,1\}^{m}$ such that

$$\operatorname{Ext}'(Z) = h(f(Z_1), g(Z_2)) \approx_{\delta'} U_m$$

for all
$$Z = (Z_1, Z_2) \in \mathcal{Z}$$
 with $\delta' \leq 2^{-c''_{\gamma}b}$ and $m \geq (1 - \gamma)b$.

The roadmap for the proof ahead is that we are first going to fix a $Z \in \mathcal{Z}$, and then do the following:

- 1. Justify that $Z = (Z_1, Z_2)$ is statistically close to an appropriate convex combination of distributions with linear min-entropy that suit our purposes. (Lemma 8)
- 2. Show that if we pick f and g uniformly at random, then with high probability over this choice it holds that $(f(Z_1), g(Z_2))$ is statistically close to a distribution with decent min-entropy. (Lemma 9)
- 3. Note that a random function h extracts uniformly random bits from the tuple $(f(Z_1), g(Z_2))$ with high probability, provided that this distribution contains enough min-entropy. A union bound over the 2^d distributions in \mathcal{Z} concludes the argument.

Lemma 8 Fix $\beta \in (0,1)$ and an integer r > 0. Then, for all $(Z_1, Z_2) \in \mathcal{Z}$ it holds that (Z_1, Z_2) is $(r \cdot 2^{-(1-\beta-1/r)b})$ -close to a distribution $D = \sum_{i \in \mathcal{I}} p_i \cdot (D_{1,i}, D_{2,i})$ where for each $i \in \mathcal{I} \subseteq [r]$ it holds that $D_{1,i}, D_{2,i} \in \{0,1\}^{\ell}$, and $\mathbf{H}_{\infty}(D_{1,i}) \geq (\beta - (\frac{i-1}{r}))b$ and $\mathbf{H}_{\infty}(D_{2,i}|D_{1,i} = \mathsf{sh}_1) \geq (\frac{i-1}{r})b$ for every $\mathsf{sh}_1 \in \mathsf{supp}(D_{1,i})$.

Proof. Fix some $y \in \{0,1\}^d$ and set $(Z_1, Z_2) = \mathbf{Share}(U_b, y)$. It will be helpful for us to see $\mathbf{Share}(\cdot, y)$ as a bipartite graph G with left and right vertex sets $\{0,1\}^\ell$ and an edge between sh_1 and sh_2 if $(\mathsf{sh}_1, \mathsf{sh}_2) \in \mathsf{supp}(Z_1, Z_2)$. Then, (Z_1, Z_2) is the uniform distribution on the 2^b edges of G by the correctness of the scheme. For every left vertex $\mathsf{sh}_1 \in \{0,1\}^\ell$, we define its neighborhood

$$A(\mathsf{sh}_1) = \{\mathsf{sh}_2 : (\mathsf{sh}_1, \mathsf{sh}_2) \in \mathsf{supp}(Z_1, Z_2)\}$$

and its degree

$$\mathsf{deg}(\mathsf{sh}_1) = |\mathcal{A}(\mathsf{sh}_1)|.$$

Note that $(Z_2|Z_1 = \mathsf{sh}_1)$ is uniformly distributed over $\mathcal{A}(\mathsf{sh}_1)$, and so

$$\mathbf{H}_{\infty}(Z_2|Z_1 = \mathsf{sh}_1) = \log \mathsf{deg}(\mathsf{sh}_1).$$

Partition $supp(Z_1)$ into sets

$$\mathcal{S}_i = \left\{ \mathsf{sh}_1 : 2^{(\frac{i-1}{r})b} \leq \mathsf{deg}(\mathsf{sh}_1) < 2^{(\frac{i}{r})b} \right\}$$

for $i \in [r]$. With this definition in mind, we can express (Z_1, Z_2) as

$$\sum_{i \in [r]} \Pr[Z_1 \in \mathcal{S}_i](Z_1, Z_2 | Z_1 \in S_i),$$

where $(Z_1, Z_2 | Z_1 \in S_i)$ denotes the distribution (Z_1, Z_2) conditioned on the event that $Z_1 \in \mathcal{S}_i$. Call a non-empty set \mathcal{S}_i good if $\sum_{\mathsf{sh}_1 \in \mathcal{S}_i} \deg(\mathsf{sh}_1) \geq 2^{(\beta+1/r)b}$. Otherwise the set \mathcal{S}_i is bad. Let \mathcal{I} denote the set of indices $i \in [r]$ such that \mathcal{S}_i is good. We proceed to show that we can take the target distribution D in the lemma statement to be $D = \sum_{i \in \mathcal{I}} p_i \cdot (D_{1,i}, D_{2,i})$ for

$$p_i = \frac{\Pr[Z_1 \in \mathcal{S}_i]}{\Pr[Z_1 \text{ lands on good set}]}$$

with $(D_{1,i}, D_{2,i}) = (Z_1, Z_2 | Z_1 \in S_i)$ when $i \in \mathcal{I}$.

To see this, consider the case where S_i is good, i.e., we have $\sum_{\mathsf{sh}_1 \in S_i} \deg(\mathsf{sh}_1) \ge 2^{(\beta+1/r)b}$. For each $\mathsf{sh}_1 \in S_i$, we have

$$egin{aligned} \Pr[Z_1 = \mathsf{sh}_1 | Z_1 \in \mathcal{S}_i] &= rac{\mathsf{deg}(\mathsf{sh}_1)}{\sum_{s \in \mathcal{S}_i} \mathsf{deg}(s)} \ &\leq rac{2^{rac{i}{r}b}}{2^{(eta+1/r)b}} \ &= 2^{-\left(eta-(rac{i-1}{r})
ight)b}. \end{aligned}$$

Furthermore, for any $\mathsf{sh}_1 \in \mathcal{S}_i$ and sh_2 we know that

$$\Pr[Z_2 = \mathsf{sh}_2 | Z_1 = \mathsf{sh}_1] \le 2^{-\left(\frac{i-1}{r}\right)b}.$$

Combining these two observations shows that in this case we have $\mathbf{H}_{\infty}(Z_1|Z_1 \in \mathcal{S}_i) \geq (\beta - (\frac{i-1}{r}))b$ and $\mathbf{H}_{\infty}(Z_2|Z_1 = \mathsf{sh}_1) \geq (\frac{i-1}{r})b$ for all valid fixings $\mathsf{sh}_1 \in \mathcal{S}_i$. To conclude the proof, consider D as above, which we have shown satisfies the properties described in the lemma statement. Noting that D corresponds exactly to (Z_1, Z_2) conditioned on Z_1 landing on a good set, we have

$$\Delta((Z_1, Z_2); D) \leq \Pr[Z_1 \text{ lands in a bad set}].$$

It remains to bound this probability on the right-hand side. Assuming the set S_i is bad, it holds that $\sum_{\mathsf{sh}_1 \in S_i} \deg(\mathsf{sh}_1) < 2^{(\beta+1/r)b}$. Therefore, since (Z_1, Z_2) takes on any edge with probability 2^{-b} , it holds that Z_1 lands in S_i with probability at most $2^{-b} \cdot 2^{(\beta+1/r)b} = 2^{-(1-\beta-1/r)b}$. There are at most r bad sets, so by a union bound we have $\Pr[Z_1 \text{ lands in a bad set}] \leq r \cdot 2^{-(1-\beta-1/r)b}$.

Lemma 9 Fix $\alpha, \beta \in (0,1)$ and an integer r. Then, with probability at least $1-3r \cdot e^{b-\alpha^2 2^{\min(b/r,(\beta-1/r)b)}}$ over the choice of uniformly random functions $f,g:\{0,1\}^\ell \to \{0,1\}^b$ it holds that $(f(Z_1),g(Z_2))$ is $(2\alpha+r\cdot 2^{-(1-\beta-1/r)b})$ -close to a $(2b,(\beta-1/r)b-4\log(1/\alpha))$ -source.

Proof. Suppose we pick functions $f, g : \{0,1\}^{\ell} \to \{0,1\}^{b}$ uniformly at random. We begin by expressing $(f(Z_1), g(Z_2))$ as

$$\sum_{i \in [r]} \Pr[Z_1 \in \mathcal{S}_i](f(Z_1), g(Z_2) | Z_1 \in S_i),$$

which by Lemma 8 is $(r \cdot 2^{-(1-\beta-1/r)b})$ -close to

$$\sum_{i\in\mathcal{I}} \Pr[Z_1 \in \mathcal{S}_i](f(D_{1,i}), g(D_{2,i})).$$

We proceed by cases:

1. $\frac{i-1}{r} \ge \beta - 1/r$: We know from Lemma 8 that $\mathbf{H}_{\infty}(D_{2,i}|D_{1,i} = \mathsf{sh}_1) \ge (\beta - 1/r)b$ for all $\mathsf{sh}_1 \in \mathsf{supp}(D_{1,i})$. By Lemma 4, we have

$$(g(D_{2,i})|D_{1,i} = \mathsf{sh}_1) \approx_{\alpha} V$$

for some V with $\mathbf{H}_{\infty}(V) \geq (\beta - 1/r)b - 2\log(1/\alpha)$ with probability at least $1 - 2e^{-\alpha^2 2^{(\beta - 1/r)b}}$ over the choice of g. Since this holds for any valid fixing $D_{1,i} = \mathsf{sh}_1$, we conclude via a union bound over the at most 2^b possible fixings that

$$f(D_{1,i}), g(D_{2,i}) \approx_{\alpha} W_i$$

for some W_i with $\mathbf{H}_{\infty}(W_i) \geq (\beta - 1/r)b - 2\log(1/\alpha)$ with probability at least $1 - 2e^{b - \alpha^2 2^{(\beta - 1/r)b}}$ over the choice of f and g.

2. $1/r \le \frac{i-1}{r} < \beta - 1/r$: We know from Lemma 8 that $\mathbf{H}_{\infty}(D_{1,i}) \ge (\beta - \frac{i-1}{r})b$ and $\mathbf{H}_{\infty}(D_{2,i}|D_{1,i} = \mathsf{sh}_1) \ge (\frac{i-1}{r})b$ for all $\mathsf{sh}_1 \in \mathsf{supp}(D_{1,i})$. First, by Lemma 4 we conclude that with probability at least

$$1 - 2e^{-\alpha^2 2^{\left(\beta - \frac{i-1}{r}\right)b}} \ge 1 - 2e^{-\alpha^2 2^{b/r}}$$

over the choice of f it holds that

$$f(D_{1,i}) \approx_{\alpha} V_1 \tag{4}$$

for some V_1 with $\mathbf{H}_{\infty}(V_1) \geq (\beta - \frac{i-1}{r})b - 2\log(1/\alpha)$. Analogously, for every $\mathsf{sh}_1 \in \mathsf{supp}(D_{1,i})$, we can again invoke Lemma 4 to see that with probability at least

$$1 - 2e^{-\alpha^2 2^{\left(\frac{i-1}{r}\right)b}} > 1 - 2e^{-\alpha^2 2^{b/r}}$$

over the choice of g, for any $\mathsf{sh}_1 \in \mathsf{supp}(D_{1,i})$ it holds that

$$(g(D_{2,i})|D_{1,i} = \mathsf{sh}_1) \approx_{\alpha} V_{2,\mathsf{sh}_1}$$
 (5)

for some V_{2,sh_1} with $\mathbf{H}_\infty(V_{2,\mathsf{sh}_1}) \geq \left(\frac{i-1}{r}\right)b-2\log(1/\alpha)$. By a union bound over the at most 2^b possible fixings sh_1 , we conclude that (5) holds simultaneously for all $\mathsf{sh}_1 \in \mathsf{supp}(D_{1,i})$ with probability at least $1-2e^{b-\alpha^22^{b/r}}$ over the

choice of g. An additional union bound shows that this holds simultaneously along (4) with probability at least $1-3e^{b-\alpha^22^{b/r}}$ over the choice of f and g, which implies that

$$f(D_{1,i}), g(D_{2,i}) \approx_{2\alpha} W_i$$

for some W_i with

$$\mathbf{H}_{\infty}(W_i) \ge \left(\beta - \frac{i-1}{r}\right)b - 2\log(1/\alpha) + \left(\frac{i-1}{r}\right)b - 2\log(1/\alpha)$$
$$= \beta b - 4\log(1/\alpha).$$

3. i = 1: In this case, by Lemma 8 we know that $\mathbf{H}_{\infty}(D_{1,i}) \geq \beta b$. Therefore, Lemma 4 implies that $f(D_{1,i}) \approx_{\alpha} V_1$ for some V_1 such that $\mathbf{H}_{\infty}(V_1) \geq \beta b - 2\log(1/\alpha)$ with probability at least $1 - 2e^{-\alpha^2 2^{\beta b}} \geq 1 - 2e^{-\alpha^2 2^{b/r}}$. This implies that $f(D_{1,i}), g(D_{2,i}) \approx_{\alpha} W_i$ for some W_i with $\mathbf{H}_{\infty}(W_i) \geq \beta b - 2\log(1/\alpha)$.

Finally, a union bound over the at most r indices $i \in \mathcal{I}$ yields the desired statement.

We are now ready to prove Lemma 7 with the help of Lemma 9.

Proof (Proof of Lemma 7). Fix some $\gamma \in (0,1)$. Then, we set $\beta = 1 - \gamma/2 > 1 - \gamma$, $\alpha = 2^{-cb}$ for a sufficiently small constant c > 0, and r > 0 a sufficiently large integer so that

$$1 - \gamma \le \beta - 1/r - 6c \tag{6}$$

and

$$1/r + 6c \le \frac{\min(\beta, 1 - \beta)}{100}. (7)$$

According to Lemma 9, we know that for any given $Z=(Z_1,Z_2)\in\mathcal{Z}$ it holds that $(f(Z_1),g(Z_2))$ is $(2\alpha+r\cdot 2^{-(1-\beta-1/r)b})$ -close to some $(2b,(\beta-1/r)b-4\log(1/\alpha))$ -source W with probability at least $1-3r\cdot e^{b-\alpha^2 2^{\min(b/r,(\beta-1/r)b)}}$ over the choice of f and g.

Let $m = (1 - \gamma)b$ and pick a uniformly random function $h : \{0, 1\}^{2b} \to \{0, 1\}^m$. Then, since $m \leq \mathbf{H}_{\infty}(W) - 2\log(1/\alpha)$ by (6), Lemma 3 implies that $h(W) \approx_{\alpha} U_m$, and hence

$$h(f(Z_1), g(Z_2)) \approx_{3\alpha + r \cdot 2^{-(1-\beta - 1/r)b}} U_m,$$
 (8)

with probability at least

$$\begin{split} 1 - 2e^{-\alpha^2 2^{(\beta - 1/r)b - 4\log(1/\alpha)}} - 3r \cdot e^{b - \alpha^2 2^{\min(b/r, (\beta - 1/r)b)}} \\ > 1 - 5r \cdot e^{b - \alpha^2 2^{\min(b/r, (\beta - 1/r)b) - 4\log(1/\alpha)}} \end{split}$$

over the choice of f, g, and h, via a union bound.

Now, observe that from (7), if $b \ge c_{\gamma}$ for a sufficiently large constant $c_{\gamma} > 0$, it follows that

$$5r \cdot e^{b - \alpha^2 2^{\min(b/r, (\beta - 1/r)b) - 4\log(1/\alpha)}} \le 2^{-2^{2c'_{\gamma}b}}$$

for some constant $c'_{\gamma} > 0$. Moreover, under (7) we also have that

$$\delta' := 3\alpha + r \cdot 2^{-(1-\beta-1/r)b} \le 2^{-c_{\gamma}''b}$$

for some constant $c_{\gamma}^{\prime\prime}>0$. Finally, a union bound over the 2^d distributions in $\mathcal Z$ shows that (8) holds simultaneously for all $Z\in\mathcal Z$ with probability at least $1-2^{d-2^{2c_{\gamma}^{\prime}b}}$. Consequently, if $d\leq 2^{c_{\gamma}^{\prime}b}$ it follows that there exist functions f,g, and h such that (8) holds for all $Z\in\mathcal Z$ with the appropriate error δ' and output length m.

3.1 The Main Result

We now use Theorem 2 to obtain the main result of this section.

Theorem 3 (First part of Theorem 1, restated) Suppose (Share, Rec, \mathcal{Y}) is an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing scheme for b-bit messages. Then, either:

- The scheme uses $d \ge \min(2^{\Omega(b)}, (1/\varepsilon_2)^{\Omega(1)})$ bits of randomness, or;
- The class of sources \mathcal{Y} is (δ, m) -extractable with $\delta \leq \max\left(2^{-\Omega(b)}, \varepsilon_2^{\Omega(1)}\right)$ and $m = \Omega(\min(b, \log(1/\varepsilon_2)))$.

Proof. Given the scheme (**Share**, **Rec**, \mathcal{Y}) from the theorem statement, let $b' = \min\left(b, \left\lceil \frac{\log(1/\varepsilon_2)}{100} \right\rceil\right)$ and consider the modified scheme (**Share**', **Rec**', \mathcal{Y}) for b'-bit messages obtained by appending $0^{b-b'}$ to every b'-bit message and running the original scheme (**Share**, **Rec**, \mathcal{Y}). Applying Theorem 2 to (**Share**', **Rec**', \mathcal{Y}) we conclude that either **Share**', and hence **Share**, uses at least

$$2^{\varOmega(b')} = \min\Bigl(2^{\varOmega(b)}, (1/\varepsilon_2)^{\varOmega(1)}\Bigr)$$

bits of randomness, or \mathcal{Y} is (δ, m) -extractable with

$$\delta \leq 2^{-\varOmega(b')} = \max\Bigl(2^{-\varOmega(b)}, \varepsilon_2^{\varOmega(1)}\Bigr)$$

and $m = \Omega(b') = \Omega(\min(b, \log(1/\varepsilon_2))).$

3.2 Efficient Leakage-Resilient Secret Sharing Requires Efficiently Extractable Randomness

In this section, we prove the remaining part of Theorem 1. We show that every low-error leakage-resilient secret sharing scheme (**Share**, **Rec**, \mathcal{Y}) for b-bit messages where **Share** is computed by a poly(b)-time algorithm admits a low-error extractor for \mathcal{Y} computable by a family of poly(b)-size circuits. Similarly to [14, Section 3.1], this is done by replacing the uniformly random functions f, g, and h in the proof of Theorem 2 by t-wise independent functions, for an appropriate parameter t.

We say that a family of functions \mathcal{F}_t from $\{0,1\}^p$ to $\{0,1\}^q$ is t-wise independent if for F sampled uniformly at random from \mathcal{F}_t it holds that the random variables $F(x_1), F(x_2), \ldots, F(x_t)$ are independent and uniformly distributed over $\{0,1\}^q$ for any distinct $x_1, \ldots, x_t \in \{0,1\}^p$. There exist t-wise independent families of functions \mathcal{F}_t such that every $f \in \mathcal{F}_t$ can be computed in time poly(b) and can be described by poly(b) bits whenever p, q, and t are poly(b) [22, 51, 14]. Therefore, since **Share** admits a poly(b)-time algorithm, it suffices to show the existence of functions f, g, and h belonging to appropriate poly(b)-wise independent families of functions such that $\text{Ext}(Y) = h(f(\mathsf{Sh}_1), g(\mathsf{Sh}_2))$ is statistically close to uniform, where $(\mathsf{Sh}_1, \mathsf{Sh}_2) = \mathbf{Share}(0^b, Y)$, for every source $Y \in \mathcal{Y}$ (the advice required to compute Ext would be the description of f, g, and h). We accomplish this with the help of some auxiliary lemmas. The first lemma states a standard concentration bound for the sum of t-wise independent random variables.

Lemma 10 ([22, Theorem 5], see also [7, Lemma 2.2]) Fix an even integer $t \geq 2$ and suppose that X_1, \ldots, X_N are t-wise independent random variables in [0,1]. Let $X = \sum_{i=1}^{N} X_i$ and $\mu = \mathbb{E}[X]$. Then, it holds that

$$\Pr[|X - \mu| \ge \varepsilon \cdot \mu] \le 3 \left(\frac{t}{\varepsilon^2 \mu}\right)^{t/2}$$

for every $\varepsilon < 1$.

We can use Lemma 10 to derive analogues of Lemmas 3 and 4 for t-wise independent functions.

Lemma 11 Suppose $f: \{0,1\}^p \to \{0,1\}^q$ is sampled uniformly at random from a 2t-wise independent family of functions with $q \le k - \log t - 2\log(1/\varepsilon) - 5$ and $t \ge q$, and let Y be a (p,k)-source. Then, it follows that

$$f(Y) \approx_{\varepsilon} U_a$$

with probability at least $1 - 2^{-t}$ over the choice of f.

Proof. Fix a (p,k)-source Y and suppose $f:\{0,1\}^p \to \{0,1\}^q$ is sampled from a family of 2t-wise independent functions. Note that

$$\Delta(f(Y); U_q) = \frac{1}{2} \sum_{z \in \{0,1\}^q} |\Pr[f(Y) = z] - 2^{-q}|.$$

For each $y \in \{0,1\}^p$ and $z \in \{0,1\}^q$, consider the random variable $W_{y,z} = \Pr[Y=y] \cdot \mathbf{1}_{\{f(y)=z\}}$. Then, we may write

$$\Delta(f(Y); U_q) = \frac{1}{2} \sum_{z \in \{0,1\}^q} \left| \sum_{y \in \{0,1\}^p} W_{y,z} - 2^{-q} \right|.$$

Note that the $W_{y,z}$'s are 2t-wise independent, $\mathbb{E}[\sum_{y\in\{0,1\}^n}W_{y,z}]=2^{-q}$, and that $2^k\cdot W_{y,z}\in[0,1]$. Therefore, an application of Lemma 10 with the random variables $(2^k\cdot W_{y,z})_{y\in\{0,1\}^p,z\in\{0,1\}^q}$ shows that

$$\Pr\left[\left|\sum_{y\in\{0,1\}^p} W_{y,z} - 2^{-q}\right| > 2\varepsilon \cdot 2^{-q}\right] \le 3\left(\frac{t\cdot 2^q}{2\varepsilon^2 2^k}\right)^t.$$

Therefore, a union bound over all $z \in \{0,1\}^q$ shows that $f(Y) \approx_{\varepsilon} U_q$ fails to hold with probability at most $3 \cdot 2^q \cdot 2^{-t} \left(\frac{t \cdot 2^q}{\varepsilon^2 \cdot 2^k}\right)^t \leq 2^{-t}$ over the choice of f, where the inequality follows by the upper bound on q.

The proof of the following lemma is analogous to the proof of Lemma 4, but using Lemma 11 instead of Lemma 3.

Lemma 12 Suppose $f: \{0,1\}^p \to \{0,1\}^q$ is sampled uniformly at random from a 2t-wise independent family of functions with $t \geq q$, and let Y be a (p,k)-source. Then, it follows that $f(Y) \approx_{\varepsilon} W$ for some W such that $\mathbf{H}_{\infty}(W) \geq \min(q, k - \log t - 2\log(1/\varepsilon) - 5)$ with probability at least $1 - 2^{-t}$ over the choice of f.

Following the reasoning used in the proof of Theorem 2 but sampling $f,g:\{0,1\}^\ell \to \{0,1\}^b$ and $h:\{0,1\}^b \to \{0,1\}^m$ from 2t-wise independent families of functions with $t=100\max(b,d)=\mathrm{poly}(b)$, and using Lemmas 11 and 12 in place of Lemmas 3 and 4, respectively, yields the following result analogous to Theorem 2. Informally, it states that efficient low-error leakage-resilient secret sharing schemes require low-complexity extractors for the associated class of randomness sources.

Theorem 4 There exist absolute constants c, c' > 0 such that the following holds for b large enough: Suppose (**Share**, **Rec**, \mathcal{Y}) is an $(\varepsilon_1, \varepsilon_2)$ -leakage-resilient secret sharing for b-bit messages using d bits of randomness such that **Share** is computable by a poly(b)-time algorithm. Then, there exists a deterministic extractor $\mathsf{Ext} : \{0,1\}^d \to \{0,1\}^m$ computable by a family of poly(b)-size circuits with output length $m \geq c \cdot b$ such that

$$\operatorname{Ext}(Y) \approx_{\delta} U_m$$

with $\delta = 2^b \varepsilon_2 + 2^{-c' \cdot b}$ for every $Y \in \mathcal{Y}$.

Finally, replacing Theorem 2 by Theorem 4 in the reasoning from Section 3.1 yields the remaining part of Theorem 1.

3.3 An Extension to the Setting of Computational Security

In this work we focus on secret sharing schemes with information-theoretic security. However, it is also natural to wonder whether our result extends to secret sharing schemes satisfying a reasonable notion of computational security.

Indeed, a slight modification to the argument used to prove Theorem 1 also shows that computationally-secure efficient leakage-resilient secret sharing schemes require randomness sources from which one can efficiently extract bits which are pseudorandom (i.e., computationally indistinguishable from the uniform distribution). We briefly discuss the required modifications in this section. For the sake of exposition, we refrain from presenting fully formal definitions and theorem statements.

First, we introduce a computational analogue of Definition 3. We say that (**Share**, **Rec**, \mathcal{Y}) is a computationally secure leakage-resilient secret sharing scheme (for b-bit messages) if the scheme satisfies Definition 3 except that the leakage-resilience property is replaced by the following computational analogue: "For any leakage functions $f, g : \{0, 1\}^{\ell} \to \{0, 1\}$ computed by poly(b)-sized circuits and any two secrets $x, x' \in \{0, 1\}^b$, it holds that any adversary computable by poly(b)-sized circuits cannot distinguish between the distributions $(f(\mathsf{Sh}_1), g(\mathsf{Sh}_2))$ and $(f(\mathsf{Sh}'_1), g(\mathsf{Sh}'_2))$ with non-negligible advantage (in some security parameter λ), where $(\mathsf{Sh}_1, \mathsf{Sh}_2) = \mathbf{Share}(x)$ and $(\mathsf{Sh}'_1, \mathsf{Sh}'_2) = \mathbf{Share}(x')$."

Using this definition, the exact argument we used to prove Theorem 1 combined with a modified version of Lemma 6 then shows that we can extract bits which are computationally indistinguishable from the uniform distribution using the class of randomness sources used to implement such a computationally-secure leakage-resilient secret sharing scheme. In fact, the proof of Theorem 1 only uses the leakage-resilience property of the secret sharing scheme in the proof of Lemma 6. The remaining lemmas only make use of the correctness property of the scheme, which remains unchanged in the computational analogue of Definition 3. Crucially, as shown in Section 3.2, we can construct the functions f, g, and h so that they are computed by poly(b)-sized circuits assuming that the sharing procedure is itself computable by poly(b)-sized circuits. Therefore, the following computational analogue of Lemma 6, which suffices to conclude the proof of the computational analogue of Theorem 1, holds: "Suppose that there are functions f, g: $\{0,1\}^{\ell} \to \{0,1\}$ and a function h: $\{0,1\}^{2b} \to \{0,1\}^m$ computable by poly(b)-sized circuits such that

$$h(f(Z_1), g(Z_1)) \approx_{\delta} U_m$$

for $\delta = \mathsf{negl}(\lambda)$ and for all (Z_1, Z_2) in \mathcal{Z} . Then, it holds that no adversary computable by $\mathsf{poly}(b)$ -sized circuits can distinguish $\mathsf{Ext}(Y)$ from a uniformly random string with $Y \in \mathcal{Y}$, where $\mathsf{Ext}(Y) = h(f(L_Y), g(R_Y))$ and $(L_y, R_y) = \mathsf{Share}(0^b, Y)$."

4 Random-less Reductions for Secret Sharing

In this section, we study black-box deterministic reductions between different types of threshold secret sharing. Such reductions from (t', n', ε) -secret sharing schemes to (t, n, ε) -secret sharing schemes (for the same message length b and number of randomness bits d) would allow us to conclude that if all these (t, n, ε) -secret sharing schemes require a (δ, m) -extractable class of randomness sources,

then so do all (t', n', ε) -secret sharing schemes. We provide reductions which work over a large range of parameters and prove complementary results showcasing the limits of such reductions. As already discussed in Section 1, our starting point for devising black-box reductions is the notion of a distribution design as formalized by Stinson and Wei [49] (with roots going back to early work on secret sharing [9]), which we defined in Definition 5. As stated in Lemma 1, the existence of a (t, n, t', n')-distribution design yields the desired reduction from (t', n', ε) -secret sharing to (t, n, ε) -secret sharing. Therefore, we focus directly on the study of distribution designs in this section.

We begin with a naive construction.

Theorem 5 There exists a (t, n, t', n')-distribution design whenever $t' \ge t$ and $n' \ge n + (t' - t)$. In particular, if every (t, n, ε) -secret sharing scheme for b-bit messages and using d bits of randomness requires a (δ, m) -extractable class of randomness sources, then so does every (t', n', ε) -secret sharing scheme for b-bit messages using d bits of randomness whenever $t' \ge t$ and $n' \ge n + (t' - t)$.

Proof. Consider the (t, n, t', n')-distribution design $\mathcal{D}_1, \ldots, \mathcal{D}_n$ obtained by setting $\mathcal{D}_i = \{i\} \cup \{n' - (t' - t) + 1, n' - (t' - t) + 2, \ldots, n'\}$, which is valid exactly when the conditions of the theorem are satisfied.

The following result shows the limits of distribution designs, and will be used to show the optimality of our constructions when t = 2 or t' = n'.

Theorem 6 A (t, n, t', n')-distribution design exists only if $\binom{n'}{t'-1} \ge \binom{n}{t-1}$ and $t' \ge t$.

Proof. Consider an arbitrary (t, n, t', n')-distribution design $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$. First, note that it must be the case that all the \mathcal{D}_i 's are non-empty. This implies that we must have $t' \geq t$. Second, to see that $\binom{n'}{t'-1} \geq \binom{n}{t-1}$, consider all $\binom{n}{t-1}$ distinct subsets $\mathcal{T} \subseteq [n]$ of size t-1, and denote $\mathcal{D}_{\mathcal{T}} = \bigcup_{i \in \mathcal{T}} \mathcal{D}_i$. By the definition of distribution design, it must hold that

$$|\mathcal{D}_{\mathcal{T}}| \le t' - 1.$$

Consider now modified sets $\widehat{\mathcal{D}_{\mathcal{T}}}$ obtained by adding arbitrary elements to $\mathcal{D}_{\mathcal{T}}$ so that $|\widehat{\mathcal{D}_{\mathcal{T}}}| = t' - 1$. Then, from the definition of distribution design, for any two distinct subsets $\mathcal{T}, \mathcal{T}' \subseteq [n]$ of size t - 1 it must be the case that

$$\left|\widehat{\mathcal{D}_{\mathcal{T}}} \cup \widehat{\mathcal{D}_{\mathcal{T}'}}\right| \geq t'.$$

This implies that $\widehat{\mathcal{D}_{\mathcal{T}}} \neq \widehat{\mathcal{D}_{\mathcal{T}'}}$ for all distinct subsets $\mathcal{T}, \mathcal{T}' \subseteq [n]$ of size t-1, which can only hold if $\binom{n'}{t'-1} \geq \binom{n}{t-1}$.

We now show that Theorem 6 is tight for a broad range of parameters. In particular, when t = 2 or t' = n' we are able to characterize exactly under which parameters a (t, n, t', n')-distribution design exists.

Theorem 7 There exists a (t = 2, n, t', n')-distribution design if and only if $n \leq \binom{n'}{t'-1}$. In particular, if every $(t = 2, n, \varepsilon)$ -secret sharing scheme for b-bit messages using d bits of randomness requires (δ, m) -extractable randomness, then so does every (t', n', ε) -secret sharing scheme for b-bit messages using d bits of randomness whenever $n \leq \binom{n'}{t'-1}$.

Proof. Note that the condition $n \leq \binom{n'}{t'-1}$ implies that we can take $\mathcal{D}_1, \ldots, \mathcal{D}_n$ to be distinct subsets of [n'] of size t'-1, and so $|\mathcal{D}_i \cup \mathcal{D}_j| \geq t'$ for any distinct indices i and j. The reverse implication follows from Theorem 6.

Theorem 8 There exists a (t, n, t' = n', n')-distribution design if and only if $n' \geq \binom{n}{t-1}$. In particular, if every (t, n, ε) -secret sharing scheme for b-bit messages using d bits of randomness requires (δ, m) -extractable randomness, then so does every (n', n', ε) -secret sharing scheme for b-bit messages using d bits of randomness whenever $n' \geq \binom{n}{t-1}$.

Proof. We show that a (t, n, n', n')-distribution design exists whenever $n' = \binom{n}{t-1}$, which implies the desired result. Let \mathcal{P} denote the family of all subsets of [n] of size t-1, and set $n' = |\mathcal{P}| = \binom{n}{t-1}$ (we may use any correspondence between elements of \mathcal{P} and integers in [n']). Then, we define the set $\mathcal{D}_i \subseteq \mathcal{P}$ for $i \in [n]$ to contain all elements of \mathcal{P} except the subsets of [n] which contain i. We argue that $\mathcal{D}_1, \ldots, \mathcal{D}_n$ is a distribution design with the desired parameters. First, observe that for any distinct indices $i_1, i_2, \ldots, i_{t-1} \in [n]$ it holds that

$$\bigcup_{j=1}^{t-1} \mathcal{D}_{i_j} = \mathcal{P} \setminus \{\{i_1, i_2, \dots, i_{t-1}\}\}.$$

On the other hand, since $\{i_1, \ldots, i_{t-1}\} \in \mathcal{D}_{i_t}$ for any index $i_t \neq i_1, \ldots, i_{t-1}$, it follows that $\bigcup_{j=1}^t \mathcal{D}_{i_j} = \mathcal{P}$, as desired.

The reverse implication follows from Theorem 6.

4.1 Distribution Designs from Partial Steiner Systems

In this section, we show that every partial Steiner system is also a distribution design which beats the naive construction from Theorem 5 for certain parameter regimes. Such set systems have been previously used in seminal constructions of pseudorandom generators and extractors [43, 50], and are also called combinatorial designs.

Definition 9 (Partial Steiner system) We say a family of sets $\mathcal{D}_1, \ldots, \mathcal{D}_n \subseteq [n']$ is an (n, n', ℓ, a) -partial Steiner system if it holds that $|\mathcal{D}_i| = \ell$ for every $i \in [n]$ and $|\mathcal{D}_i \cap \mathcal{D}_j| \leq a$ for all distinct $i, j \in [n]$.

The conditions required for the existence of a partial Steiner system are well-understood, as showcased in the following result from [32, 43, 50], which is nearly optimal [45, 44].

Lemma 13 ([32, 43, 50]) Fix positive integers n, ℓ , and $a \leq \ell$. Then, there exists an (n, n', ℓ, a) -partial Steiner system for every integer $n' \geq e \cdot n^{1/a} \cdot \frac{\ell^2}{a}$.

Noting that every partial Steiner system with appropriate parameters is also a distribution design, we obtain the following theorem.

Theorem 9 Fix an integer $a \ge 1$. Then, there exists a (t, n, t', n')-distribution design whenever $t' \ge t^2 + \frac{at(t-1)^2}{2}$ and $n' \ge \frac{en^{1/a}}{a} \cdot \left(1 + \frac{t'}{t} + \frac{a(t-1)}{2}\right)^2$.

Proof. Fix an integer $a \geq 1$ and an (n, n', ℓ, a) -partial Steiner system $\mathcal{D}_1, \ldots, \mathcal{D}_n \subseteq [n']$ with $\ell = \left\lceil \frac{t'}{t} + \frac{a(t-1)}{2} \right\rceil$. By Lemma 13 and the choice of ℓ , such a partial Steiner system is guaranteed to exist whenever n' satisfies the condition in the theorem statement. We proceed to argue that this partial Steiner system is also a (t, n, t', n')-distribution design. First, fix an arbitrary set $\mathcal{T} \subseteq [n]$ of size t-1. Then, we have

$$|\mathcal{D}_{\mathcal{T}}| \le \ell(t-1) \le t' - 1,$$

where the rightmost inequality holds by our choice of ℓ and the condition on t' and t in the theorem statement. Second, fix an arbitrary set $\mathcal{T} \subseteq [n]$ of size t. Then, it holds that

$$|\mathcal{D}_{\mathcal{T}}| \ge \ell + (\ell - a) + (\ell - 2a) + \dots + (\ell - a(t - 1))$$

= $\ell \cdot t - \frac{at(t - 1)}{2}$
> t' ,

where the last equality follows again from our choice of ℓ and the condition on t' and t in the theorem statement.

When n is sufficiently larger than t and t' and t' is sufficiently larger than t, the parameters in Theorem 9 cannot be attained by the naive construction from Theorem 5, which always requires choosing $t' \geq t$ and $n' \geq n$. For example, if $t^3 \leq t' \leq Ct^3$ for some constant $C \geq 1$ then we can choose a = 2, in which case we have

$$t^2 + \frac{at(t-1)^2}{2} \le t^3 \le t'. \tag{9}$$

Moreover, it holds that

$$\frac{en^{1/a}}{a} \cdot \left(1 + \frac{t'}{t} + \frac{a(t-1)}{2}\right)^2 \le \frac{e\sqrt{n}}{2} \cdot \left(Ct^2 + t\right)^2 \\
\le 2eC^2\sqrt{n}t^4. \tag{10}$$

Combining (9) and (10) with Theorem 9, we obtain the following example result showing it is possible to improve on Theorem 5 in some parameter regimes.

Corollary 5 Suppose $t^3 \le t' \le Ct^3$ for some constant $C \ge 1$. Then, there exists a (t, n, t', n')-distribution design for any $n' \ge 2eC^2\sqrt{n}t^4$. In particular, if $t \le n^{1/9}$ and n is large enough, we may choose n' significantly smaller than n.

Acknowledgments

JR was supported in part by the NSF grants CCF-1814603 and CCF-2107347 and by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding award.

The work in CQT was supported in part by the Singapore National Research Foundation through National Research Foundation Research Fellowship (NRF RF) under Award NRF-NRFF2013-13; and in part by the Ministry of Education, Singapore, through the Research Centres of Excellence Programme by the Tier-3 Grant "Random numbers from quantum processes" under Grant MOE2012-T3-1-009. The work of Maciej Obremski was supported by the Foundations of Quantum-Safe Cryptography under Grant MOE2019-T2-1-145.

The authors would like to thank Daniele Venturi for insightful comments.

References

- Aggarwal, D., Damgård, I., Nielsen, J.B., Obremski, M., Purwanto, E., Ribeiro, J., Simkin, M.: Stronger leakage-resilient and non-malleable secret sharing schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019. pp. 510–539. Springer International Publishing, Cham (2019)
- Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes stronger. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. pp. 319–343. Springer International Publishing, Cham (2017)
- 3. Aggarwal, D., Obremski, M.: A constant rate non-malleable code in the split-state model. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). pp. 1285–1294 (2020). https://doi.org/10.1109/FOCS46700.2020.00122
- Aggarwal, D., Obremski, M., Ribeiro, J., Siniscalchi, L., Visconti, I.: How to extract useful randomness from unreliable sources. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020. pp. 343–372. Springer International Publishing, Cham (2020)
- Austrin, P., Chung, K.M., Mahmoody, M., Pass, R., Seth, K.: On the impossibility of cryptography with tamperable randomness. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014. pp. 462–479. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)
- 6. Backes, M., Kate, A., Meiser, S., Ruffing, T.: Secrecy without perfect randomness: Cryptography with (bounded) weak sources. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) Applied Cryptography and Network Security. pp. 675–695. Springer International Publishing, Cham (2015)
- 7. Bellare, M., Rompel, J.: Randomness-efficient oblivious sampling. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. pp. 276–287 (1994). https://doi.org/10.1109/SFCS.1994.365687
- 8. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged public-key encryption: How to protect against bad randomness. In: Matsui, M. (ed.) Advances in Cryptology ASIACRYPT 2009. pp. 232–249. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

- 9. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) Advances in Cryptology CRYPTO '88, 8th Annual International Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceedings. Lecture Notes in Computer Science, vol. 403, pp. 27–35. Springer (1988). https://doi.org/10.1007/0-387-34799-2_3
- Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage resilience of linear secret sharing schemes. J. Cryptol. 34(2), 10 (2021). https://doi.org/10. 1007/s00145-021-09375-2
- Bhowmick, A., Gabizon, A., Lê, T.H., Zuckerman, D.: Deterministic extractors for additive sources: Extended abstract. In: Roughgarden, T. (ed.) Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015. pp. 277–286. ACM (2015). https: //doi.org/10.1145/2688073.2688090
- Blakley, G.R.: Safeguarding cryptographic keys. In: 1979 International Workshop on Managing Requirements Knowledge (MARK). pp. 313–318 (1979). https://doi. org/10.1109/MARK.1979.8817296
- 13. Blum, M.: Independent unbiased coin flips from a correlated biased source—a finite state Markov chain. Combinatorica **6**(2), 97–108 (1986)
- Bosley, C., Dodis, Y.: Does privacy require true randomness? In: Vadhan, S.P. (ed.) Theory of Cryptography. pp. 1–20. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)
- 15. Bourgain, J.: On the construction of affine extractors. GAFA Geometric And Functional Analysis 17(1), 33–57 (2007)
- Canetti, R., Pass, R., shelat, a.: Cryptography from sunspots: How to use an imperfect reference string. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07). pp. 249–259 (2007). https://doi.org/10.1109/FOCS. 2007.70
- 17. Chattopadhyay, E., Goodman, J., Goyal, V., Kumar, A., Li, X., Meka, R., Zuckerman, D.: Extractors and secret sharing against bounded collusion protocols. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). pp. 1226–1242 (2020). https://doi.org/10.1109/FOCS46700.2020.00117
- Chattopadhyay, E., Li, X.: Extractors for sumset sources. In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. pp. 299–311. ACM (2016)
- 19. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM Journal on Computing 17(2), 230–261 (1988). https://doi.org/10.1137/0217015
- Chor, B., Goldreich, O., Håstad, J., Friedman, J., Rudich, S., Smolensky, R.: The bit extraction problem or t-resilient functions. In: Proceedings of the 26th IEEE Symposium on Foundation of Computer Science. pp. 396–407 (1985)
- Cramer, R., Damgård, I.B., Nielsen, J.B.: Secure Multiparty Computation and Secret Sharing. Cambridge University Press (2015). https://doi.org/10.1017/ CBO9781107337756
- 22. Dodis, Y.: Exposure-resilient cryptography. Ph.D. thesis, Massachusetts Institute of Technology (2000)
- 23. Dodis, Y., López-Alt, A., Mironov, I., Vadhan, S.: Differential privacy with imperfect randomness. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology CRYPTO 2012. pp. 497–516. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
- 24. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryptography with imperfect randomness. In: 45th Annual IEEE Symposium on Foundations of Computer Science. pp. 196–205 (2004). https://doi.org/10.1109/FOCS.2004.44

- 25. Dodis, Y., Pietrzak, K., Przydatek, B.: Separating sources for encryption and secret sharing. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography. pp. 601–616. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)
- 26. Dodis, Y., Spencer, J.: On the (non)universality of the one-time pad. In: 43rd Annual IEEE Symposium on Foundations of Computer Science. pp. 376–385 (2002). https://doi.org/10.1109/SFCS.2002.1181962
- Dodis, Y., Yao, Y.: Privacy with imperfect randomness. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015. pp. 463–482. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)
- 28. Dodis, Y., Yu, Y.: Overcoming weak expectations. In: Sahai, A. (ed.) Theory of Cryptography. pp. 1–22. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)
- 29. Dvir, Z.: Extractors for varieties. Comput. Complex. **21**(4), 515–572 (2012). https://doi.org/10.1007/s00037-011-0023-3
- Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polynomial sources. Comput. Complex. 18(1), 1–58 (2009). https://doi.org/10.1007/s00037-009-0258-4
- Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4) (Apr 2018). https://doi.org/10.1145/3178432
- 32. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of r others. Israel Journal of Mathematics 51(1-2), 79-89 (1985)
- 33. Goldreich, O.: Three XOR-lemmas An exposition. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pp. 248–272. Springer Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0_22
- Goyal, V., Kumar, A.: Non-malleable secret sharing. In: STOC 2018. pp. 685–698 (2018). https://doi.org/10.1145/3188745.3188872
- 35. Kamp, J., Rao, A., Vadhan, S.P., Zuckerman, D.: Deterministic extractors for small-space sources. J. Comput. Syst. Sci. 77(1), 191–220 (2011). https://doi.org/10.1016/j.jcss.2010.06.014
- 36. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding parties. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). pp. 636–660 (2019). https://doi.org/10.1109/FOCS.2019.00045
- 37. Lichtenstein, D., Linial, N., Saks, M.: Some extremal problems arising from discrete control processes. Combinatorica 9(3), 269–287 (1989)
- 38. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Leakage-resilient secret sharing in non-compartmentalized models. In: Kalai, Y.T., Smith, A.D., Wichs, D. (eds.) 1st Conference on Information-Theoretic Cryptography (ITC 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 163, pp. 7:1–7:24. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ITC.2020.7
- 39. Maji, H., Paskin-Cherniavsky, A., Suad, T., Wang, M.: On leakage-resilient secret sharing. Cryptology ePrint Archive, Report 2020/1517 (2020), https://eprint.iacr.org/2020/1517
- 40. Maurer, U., Wolf, S.: Privacy amplification secure against active adversaries. In: Kaliski, B.S. (ed.) Advances in Cryptology CRYPTO '97. pp. 307–321. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)
- 41. McInnes, J.L., Pinkas, B.: On the impossibility of private key cryptography with weakly random keys. In: Menezes, A.J., Vanstone, S.A. (eds.) Advances in Cryptology-CRYPTO' 90. pp. 421–435. Springer Berlin Heidelberg, Berlin, Heidelberg (1991)

- 42. von Neumann, J.: Various techniques used in connection with random digits. Monte Carlo Method, U.S. National Bureau of Standards, Applied Mathematics Series 12, 36–38 (1951)
- 43. Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994). https://doi.org/10.1016/S0022-0000(05)80043-1
- 44. Raz, R., Reingold, O., Vadhan, S.: Extracting all the randomness and reducing the error in Trevisan's extractors. Journal of Computer and System Sciences **65**(1), 97–128 (2002). https://doi.org/10.1006/jcss.2002.1824
- 45. Rödl, V.: On a packing and covering problem. European Journal of Combinatorics **6**(1), 69–78 (1985). https://doi.org/10.1016/S0195-6698(85)80023-8
- 46. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random sources. Journal of Computer and System Sciences 33(1), 75–87 (1986). https://doi.org/10.1016/0022-0000(86)90044-9
- Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (Nov 1979). https://doi.org/10.1145/359168.359176
- 48. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology CRYPTO 2019. pp. 480–509. Springer International Publishing, Cham (2019)
- Stinson, D.R., Wei, R.: Combinatorial repairability for threshold schemes. Des. Codes Cryptogr. 86(1), 195–210 (2018). https://doi.org/10.1007/s10623-017-0336-6
- Trevisan, L.: Extractors and pseudorandom generators. J. ACM 48(4), 860–879 (Jul 2001). https://doi.org/10.1145/502090.502099
- 51. Trevisan, L., Vadhan, S.: Extracting randomness from samplable distributions. In: 41st Annual Symposium on Foundations of Computer Science. pp. 32–42. IEEE, Redondo Beach, California (Nov 2000)
- 52. Yao, Y., Li, Z.: Differential privacy with bias-control limited sources. IEEE Transactions on Information Forensics and Security **13**(5), 1230–1241 (2018). https://doi.org/10.1109/TIFS.2017.2780802

A Proof of Lemma 3

Fix an (n,k)-source X and pick a function $F: \{0,1\}^n \to \{0,1\}^m$ with $m \le k - 2\log(1/\varepsilon)$ uniformly at random. It suffices to bound the probability that

$$|\Pr[F(X) \in \mathcal{T}] - \mu(\mathcal{T})| \le \varepsilon$$

holds for every set $\mathcal{T} \subseteq \{0,1\}^m$, where $\mu(\mathcal{T}) = |\mathcal{T}|/2^m$ denotes the density of \mathcal{T} . Fix such a set \mathcal{T} , and let $Z_x = \Pr[X = x] \cdot \mathbf{1}_{F(x) \in \mathcal{T}}$. Then, we have $\Pr[F(X) \in \mathcal{T}] = \sum_{x \in \{0,1\}^n} Z_x$ and $\mathbb{E}\left[\sum_{x \in \{0,1\}^n} Z_x\right] = \mu(\mathcal{T})$. As a result, since $Z_x \in [0, \Pr[X = x]]$ for all $x \in \{0,1\}^n$, Hoeffding's inequality implies that

$$\Pr\left[\left|\sum_{x\in\{0,1\}^n} Z_x - \mu(\mathcal{T})\right| > \varepsilon\right] \le 2 \cdot \exp\left(-\frac{2\varepsilon^2}{\sum_{x\in\{0,1\}^n} \Pr[X=x]^2}\right)$$

$$2 \cdot \exp \Biggl(-\frac{2\varepsilon^2}{\sum_{i=1}^N (M_i - m_i)^2} \Biggr), \text{ where } \mu = \mathbb{E} \bigl[\sum_{i=1}^N X_i \bigr].$$

⁶ The version of Hoeffding's inequality we use here states that if X_1, \ldots, X_N are independent random variables and $X_i \in [m_i, M_i]$ for each i, then $\Pr\left[\left|\sum_{i=1}^N X_i - \mu\right| > \varepsilon\right] \le 1$

$$\leq 2 \cdot e^{-2\varepsilon^2 2^k}.$$

The last inequality follows from the fact that

$$\sum_{x \in \{0,1\}^n} \Pr[X = x]^2 \le \max_{x \in \{0,1\}^n} \Pr[X = x] \le 2^{-k},$$

since X is an (n,k)-source. Finally, a union bound over all 2^{2^m} sets $\mathcal{T}\subseteq\{0,1\}^m$ shows that the event in question holds with probability at least

$$1 - 2 \cdot 2^{2^m} \cdot e^{-2\varepsilon^2 2^k} \ge 1 - 2e^{-\varepsilon^2 2^k}$$

over the choice of F, given the upper bound on m.