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Abstract. Secret-sharing is one of the most fundamental primitives in
cryptography, and has found several applications. All known construc-
tions of secret sharing (with the exception of those with a pathological
choice of parameters) require access to uniform randomness. However,
in practice it is extremely challenging to generate a source of uniform
randomness. This has led to a large body of research devoted to design-
ing randomized algorithms and cryptographic primitives from imperfect
sources of randomness. Motivated by this, Bosley and Dodis (TCC 2007)
asked whether it is even possible to construct a 2-out-of-2 secret sharing
scheme without access to uniform randomness.

In this work, we make significant progress towards answering this question.
Namely, we resolve this question for secret sharing schemes with important
additional properties: 1-bit leakage-resilience and non-malleability. We
prove that, for not too small secrets, it is impossible to construct any 2-
out-of-2 leakage-resilient or non-malleable secret sharing scheme without
access to uniform randomness.

Given that the problem of whether 2-out-of-2 secret sharing requires
uniform randomness has been open for more than a decade, it is reasonable
to consider intermediate problems towards resolving the open question.
In a spirit similar to NP-completeness, we also study how the existence
of a t-out-of-n secret sharing without access to uniform randomness is
related to the existence of a t'-out-of-n’ secret sharing without access to
uniform randomness for a different choice of the parameters t,n,t',n’.

1 Introduction

Secret sharing, introduced by Blakley [12] and Shamir [47], strikes a meaning-
ful balance between availability and confidentiality of secret information. This
fundamental cryptographic primitive has found a host of applications, most
notably to threshold cryptography and multi-party computation (see [21] for an
extensive discussion). In a secret sharing scheme for n parties, a dealer who holds
a secret s chosen from a domain M can compute a set of n shares by evaluating
a randomized function on s which we write as Share(s) = (Shy,...,Sh,). The
notion of threshold secret sharing is particularly important: A t-out-of-n secret
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sharing scheme ensures that any t shares are sufficient to recover the secret s,
but any ¢t — 1 shares reveal no information about the secret s.

Motivated by practice, several variants of secret sharing have been sug-
gested which guarantee security under stronger adversarial models. The notion
of leakage-resilient secret sharing was put forth in order to model and han-
dle side-channel attacks to secret shared data. In more detail, the adversary,
who holds an unauthorized subset of shares, is furthermore allowed to spec-
ify a leakage function Leak from a restricted family of functions and learn
Leak(Shy,...,Sh,). The goal is that this additional side information reveals
almost no information about the secret. Typically one considers local leakage,
where Leak(Shy,...,Sh,) = (Leak;(Shy),. .., Leak,(Sh,)) for local leakage func-
tions Leak; with bounded output length. This makes sense in a scenario where
shares are stored in physically separated locations. The alternative setting where
adversaries are allowed to corrupt all shares (e.g., by infecting storage devices
with viruses) led to the introduction of non-malleable secret sharing. In this
case, the adversary specifies tampering functions fi, fo,..., fn which act on the
shares, and then the reconstruction algorithm is applied to the tampered shares
f1(Shy), ..., fn(Shy). The requirement, roughly speaking, is that either the orig-
inal secret is reconstructed or it is destroyed, i.e., the reconstruction result is
unrelated to the original secret. Both leakage-resilient and non-malleable secret
sharing have received significant attention in the past few years.

Cryptography with weak randomness. It is well-known that randomness plays
a fundamental role in cryptography and other areas of computer science. In
fact, most cryptographic goals cannot be achieved without access to a source of
randomness. Almost all settings considered in the literature assume that this
source of randomness is perfectly random: It outputs uniformly random and
independent bits. However, in practice it is extremely hard to generate perfect
randomness. The randomness needed for the task at hand is generated from some
physical process, such as electromagnetic noise or user dependent behavior. While
these sources have some inherent randomness, in the sense that they contain
entropy, samples from such sources are not necessarily uniformly distributed.
Additionally, the randomness generation procedure may be partially accessible to
the adversary, in which case the quality of the randomness provided degrades even
further. The difficulty in working with such imperfect randomness sources not
only arises from the fact that they are not uniformly random, but also because
the exact distribution of these sources is unknown. One can at best assume that
they satisfy some minimal property, for example that none of the outcomes is
highly likely as first considered by Chor and Goldreich [19].

The best one can hope for is to deterministically extract a nearly perfect
random string for direct usage in the desired application. While there are source
models which allow for determinisitc randomness extraction, such as von Neumann
sources [42], bit-fixing sources [20], affine sources [15], and other efficiently
generated or recognizable sources |13} 46} 37, 51} |30k |35, 29} |11} 18], all these
models make strong assumptions about the structure of the source. On the
other hand, the most natural, flexible, and well-studied source model where we
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only assume a lower bound on the min-entropy of the sourceﬂ does not allow
deterministic extraction of even 1 almost uniformly random bit [19]. This holds
even in the highly optimistic case where the source is supported on {0,1}¢ and
has min-entropy d — 1. Nevertheless, it has been long known, for example, that
min-entropy sources are sufficient for simulating certain randomized algorithms
and interactive protocols [19)].

This discussion naturally leads us to wonder whether perfect randomness is
essential in different cryptographic primitives, in the sense that the underlying
class of sources of randomness allows deterministic extraction of nearly uniformly
random bits. We call such classes of sources extractable. More concretely, the
following is our main question.

Question 1. Does secret sharing, or any of its useful variants such as leakage-
resilient or non-malleable secret sharing, require access to extractable randomness?

This question was first asked by Bosley and Dodis [14] (for 2-out-of-2 secret
sharing) and it remains open. Bosley and Dodis settled the analogous question for
the case of information-theoretic private-key encryption, motivated by a series of
(im)possibility results for such schemes in more specific source models [41] |26} [24].
More precisely, they showed that encryption schemes using d bits of randomness
and encrypting messages of size b > log d require extractable randomness, while
those encrypting messages of size b < logd — loglogd — 1 do not.

As noted in [25] [14], private-key encryption schemes yield 2-out-of-2 secret
sharing schemes by seeing the uniformly random key as the left share and the
ciphertext as the right share. Therefore, we may interpret the main result of [14]
as settling Question [I] for the artificial and highly restrictive class of secret sharing
schemes where the left share is uniformly random and independent of the secret,
and the right share is a deterministic function of the secret and the left share.
No progress has been made on Question [I] since.

Random-less Reductions for Secret Sharing. Given that the problem of whether
2-out-of-2 secret sharing requires extractable randomness has been open for 15
years, it is reasonable to consider intermediate problems towards resolving the
open question. In a spirit similar to computational complexity, we consider how
the question whether ¢ out of n secret sharing requires extractable randomness is
related to the same question for a different choice of the parameters ¢,n i.e.,

Question 2. Given t,n,t',n’, does the fact that t-out-of-n secret sharing require
extractable randomness imply that ¢'-out-of-n’ secret sharing require extractable
randomness?

A natural approach towards resolving this question is to try to construct a
t-out-of-n secret sharing scheme from a t’-out-of-n’ secret sharing scheme in a
black-box manner without any additional randomness. Intuitively, since we don’t
have access to any additional randomness, it seems that the most obvious strategy

3 A source is said to have min-entropy k if the probability that it takes any fixed value
is upper bounded by 27*.
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to achieve such reductions is to choose n subsets of the set of n’ shares in such
a way that any ¢ out of these n subsets contain at least ¢’ out of the original
n' shares and any ¢ — 1 subsets contain at most ¢’ — 1 of the original n’ shares.
In particular, there is a trivial reduction when ¢ = n = 2 that chooses the first
subset to contain the first of the n’ shares, and the second subset to contain any
t’ — 1 of the remaining shares. This shows the completeness of the extractability
of 2-out-of-2 secret sharing with respect to these reductions. Such reductions can
be formalized via distribution designs [49].

1.1  Our Results

In this work, we make progress on both Question [I] and Question [2] Before we
proceed to discuss our results, we formalize the notions of an extractable class of
randomness sources and threshold secret sharing.

Definition 1 (Extractable class of sources) We say a class of randomness
sources Y over {0,1}% is (8, m)-extractable if there exists a deterministic function
Ext : {0,1}¢ — {0,1}™ such thaﬁ Ext(Y) =5 Up, for every Y € Y, where Uy,
denotes the uniform distribution over {0,1}™.

Note that we may consider the support of all sources in ) to be contained in
some set {0, 1}¢ without loss of generality. Since we will be interested in studying
the quality of randomness used by secret sharing schemes, we make the class of
randomness sources allowed for a secret sharing scheme explicit in the definition
of t-out-of-n threshold secret sharing below.

Definition 2 (Threshold secret sharing scheme) A tuple (Share, Rec,)))
with Share : {0,1}* x {0,1}¢ — ({0,1}*)" and Rec : {0,1}* — {0,1}" de-
terministic algorithms and Y a class of randomness sources over {0,1}% is a
(t,n,e)-secret sharing scheme (for b-bit messages using d bits of randomness) if
for every randomness source Y € Y the following hold:

1. If T C [n] satisfies |T| >t (i.e., T is authorized), then

I;r[Rec(Share(a:,Y)T) =z]=1

for every z € {0,1}°;
2. If T C [n] satisfies |T| <t (i.e., T is unauthorized), then for any z,z’ €
{0,1}* we have

Share(z,Y )7 ~. Share(z’,Y)r,
where Share(z,Y)r denotes the shares of parties i € T.

* We use the notation X ~s Y to denote the fact that A(X;Y) < §, where A(-;-)
corresponds to statistical distance (see Definition .
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Leakage-Resilient 2-out-of-2 Secret Sharing Requires Extractable Ran-
domness. As our first contribution, we settle Question [I| for the important
sub-class of leakage-resilient 2-out-of-2 secret sharing. Intuitively, we consider
2-out-of-2 secret sharing schemes with the additional property that the adversary
learns almost nothing about the message when they obtain bounded information
from each share. More formally, we have the following definition.

Definition 3 (Leakage-resilient secret sharing scheme) We say that a tu-
ple (Share,Rec,)) with Share : {0,1}* x {0,1}¢ — (o0, 1}2)2 and Rec :
{0,1}* — {0,1}® deterministic algorithms and Y a class of randomness sources
over {0,1}¢ is an (g1, e2)-leakage-resilient secret sharing scheme (for b-bit mes-
sages using d bits of randomness) if (Share, Rec,)) is a (t = 2,n = 2,1)-secret
sharing scheme and the following additional property is satisfied: For any two mes-
sages x,z' € {0,1}* and randomness source Y € Y, let (Shy,Shy) = Share(x,Y)
and (Sh’,Shy) = Share(2’,Y). Then, for any leakage functions f,g: {0,1}¢ —
{0,1} it holds that

f(Sh1), g(Sha) =, f(Shi), g(Sh}).

Leakage-resilient secret sharing has received significant attention recently, with
several constructions and leakage models being analyzed |10} |1, 36} [48] |17 (38} |39].
Comparatively, Definition [3] considers a significantly weaker notion of leakage-
resilience than all works just mentioned. In particular, we do not require leakage-
resilience to hold even when the adversary has full access to one of the shares on
top of the leakage. This means that our results are widely applicable. Roughly
speaking, we prove that every leakage-resilient secret sharing scheme for b-bit
messages either requires a huge number of bits of randomness, or we can extract
several bits of perfect randomness with low error from its underlying class of
randomness sources. More formally, we prove the following.

Theorem 1 Let (Share,Rec,)) be an (1, e2)-leakage-resilient secret sharing
scheme for b-bit messages. Then, either:

1. The scheme uses d > min (29", (1/e2)?MW) bits of randomness, or;

2. The class of sources ) is (0, m)-extractable with § < max 2’9@),5?(1) and
m = 2(min(b,log(1/e3))). Moreover, if Share is computable by a poly(b)-
time algorithm, then Y is (8, m)-extractable by a family of poly(b)-size circuits.

An important corollary of Theorem [I] is that every efficient negligible-error
leakage-resilient secret sharing scheme requires extractable randomness with
negligible error.

Corollary 1 If (Share,Rec,)) is an (1, ¢e2)-leakage-resilient secret sharing
scheme for b-bit messages running in time poly(b) with €9 = negl(b)ﬁ it follows
that Y is (6, m)-extractable with § = negl(b) and m = 2(min(b, log(1/e2))).

® By €2 = negl(b), we mean that e2 = o(1/b%) for every constant ¢ > 0 as b — co.
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Split-state non-malleable coding requires extractable randomness. Non-malleable
coding, introduced by Dziembowski, Pietrzak, and Wichs [31], is another recent
notion which has attracted much attention, in particular regarding the split-state
setting (see [3] and references therein). Informally, a split-state non-malleable
code has the guarantee that if an adversary is allowed to split a codeword in
half and tamper with each half arbitrarily but separately, then the tampered
codeword either decodes to the same message, or the output of the decoder is
nearly independent of the original message. More formally, we have the following
definition.

Definition 4 (Split-state non-malleable code [31]) A tuple (Enc, Dec,)))
with Enc : {0,1}* x {0,1}¢ — ({0,1}%)? and Dec : ({0,1}%)?> — {0,1}* U {1}
deterministic algorithms and Y a class of randomness sources is a (split-state)
e-non-malleable code if the following holds for every randomness source Y € Y:

1. Pr[Dec(Enc(x,Y)) =z] =1 for all v € {0,1}%;

2. For tampering functions f,g:{0,1}* — {0,1}, denote by Tampi’g the tam-
pering random experiment which computes (L, R) = Enc(z,Y) and outputs
Dec(f(L),g(R)). Then, for any tampering functions f and g there exists a
distribution D9 over {0,1}* U {1, same*} such that

Tamp/ 9 ~, Sim/»9

forallz € {0,1}°, where Simg’g denotes the random experiment which samples
z according to D9 and outputs z if z # same* and x if z = same*.

The notion of non-malleable code in the split-state model is equivalent to the
notion of a 2-out-of-2 non-malleable secret sharing scheme [3/).

It is known by [2, Lemmas 3 and 4] that every e-non-malleable coding scheme
(Enc, Dec, ) for b-bit messages is also a (2¢, )-leakage-resilient secret sharing
scheme, provided b > 3 and € < 1/20. Combining this observation with Theorem
yields the following corollary, which states that every split-state non-malleable
code either uses a huge number of bits of randomness, or requires extractable
randomness with low error and large output length.

Corollary 2 Let (Enc,Dec,)) be an e-non-malleable code (i.e., 2-out-of-2 e-
non-malleable secret sharing scheme) for b-bit messages with b > 3 and € < 1/20.
Then, either:

1. The scheme uses d > min(29(b), (1/5)9(1)) bits of randomness, or;

2. The class of sources Y is (0, m)-extractable with § < max(Q*Q(b),z-:Q(l)) and
m = 2(min(b,log(1/¢))). Moreover, if Enc is computable by a poly(b)-time
algorithm, then Y is (§, m)-extractable by a family of poly(b)-size circuits.

As a result, an analogous version of Corollary [I] also holds for split-state non-
malleable coding. This resolves Question [I] for 2-out-of-2 non-malleable secret
sharing.
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Random-less Reductions for Secret Sharing. In this section, we discuss our
contribution towards resolving Question [2] We focus on the following complemen-
tary scenario: Suppose we have proved that all (¢,n,e)-secret sharing schemes
for b-bit messages using d bits of randomness require a (9, m)-extractable class of
randomness sources. It is then natural to wonder whether such a result can be
bootstrapped to conclude that all (#',n',)-secret sharing schemes for the same
message length b and number of randomness bits d also require (§, m)-extractable
randomness, for different threshold ¢ and number of parties n’. A natural ap-
proach is to set up general black-box reductions between different types of secret
sharing which, crucially, do not use extra randomness. In fact, if we can obtain
from a (t/,n’,€)-secret sharing scheme (Share’, Rec’,)) another (¢,n,€)-secret
sharing scheme (Share, Rec,)) for b-bit messages which uses the same class of
randomness sources ), then our initial assumption would allow us to conclude
that Y is (J, m)-extractable.

Remarkably, we are able to obtain the desired reductions for a broad range
of parameters by exploiting a connection to the construction of combinatorial
objects called distribution designs, a term coined by Stinson and Wei [49] for the
old technique of devising a new secret sharing scheme by giving multiple shares of
the original scheme to each party. Surprisingly, although these objects have roots
going back to early work on secret sharing [9], they have not been the subject of
a general study. In this work, we obtain general and simple constructions of, and
bounds for, distribution designs, which are tight in certain parameter regimes.
We give two examples of reductions we derive from these results.

Corollary 3 (Informal) If every (t = 2,n,¢)-secret sharing scheme for b-bit
messages using d bits of randomness requires a (6, m)-extractable class of ran-
domness sources, then so does every (t',n',e)-secret sharing scheme for b-bit
messages using d bits of randomness whenever n < (t,rill). Moreover, this is the
best distribution-design-based reduction possible with t = 2.

Corollary 4 (Informal) If every (t,n,¢c)-secret sharing scheme for b-bit mes-
sages using d bits of randomness requires a (§, m)-extractable class of randomness
sources, then so does every (' = n',n’ e)-secret sharing scheme for b-bit mes-
sages using d bits of randomness whenever n' > (tfl). Moreover, this is the best
distribution-design-based reduction possible with t' = n’.

1.2 Related Work

We begin by discussing the results on private-key encryption that led to the work
of Bosley and Dodis [14] in more detail. Early work by McInnes and Pinkas [41]
showed that min-entropy sources and Santha-Vazirani sources are insufficient for
information-theoretic private-key encryption of even 1-bit messages. This negative
result was later extended to computationally secure private-key encryption by
Dodis, Ong, Prabhakaran, and Sahai |24], and was complemented by Dodis and
Spencer [26], who showed that, in fact, non-extractable randomness is sufficient
for information-theoretic private-key encryption of 1-bit messages. Later, the
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picture was completed by the aforementioned groundbreaking work of Bosley
and Dodis [14].

Besides the results already discussed above for private-key encryption and
secret sharing, the possibility of realizing other cryptographic primitives us-
ing certain classes of imperfect randomness sources has also been studied.
Non-extractable randomness is known to be sufficient for message authentica-
tion [40} 26|, signature schemes (24} [5], differential privacy (23| [27, 52|, secret-key
agreement [5], identification protocols [5], and interactive proofs [24]. On the
other hand, Santha-Vazirani sources are insufficient for bit commitment, secret
sharing, zero knowledge, and two-party computation |24], and in some cases this
negative result even holds for Santha-Vazirani sources with efficient tampering
procedures [5].

In other directions, the security loss incurred by replacing uniform randomness
by imperfect randomness was studied in [8, 6], and the scenario where a perfect
common reference string is replaced by certain types of imperfect randomness
has also been considered |16, |4]. The security of keyed cryptographic primitives
with non-uniformly random keys has also been studied [28].

1.3 Technical Overview

Leakage-Resilient Secret Sharing Requires Extractable Randomness.
We present a high-level overview of our approach towards proving Theorem
Recall that our goal is to show that if (Share, Rec,)) is an (e1,¢e2)-leakage-
resilient secret sharing for b-bit messages using d bits of randomness, then there
exists a deterministic function Ext : {0,1}¢ — {0,1}™ such that Ext(Y) ~s Uy,
for all sources Y € ), provided that the number of randomness bits d used is not
huge.
Our candidate extractor Ext works as follows on input some y € {0, 1}¢:

1. Compute (Shy,Shy) = Share(0°,y) € {0,1}* x {0,1}%;
2. For appropriate leakage functions f, g : {0,1}* — {0,1}*, compute the tuple

(f(Sh1),9(Sh2));
3. For an appropriate function A : {0,1}2* — {0, 1}™, output

Ext(y) = h(f(Sh1), g(Sh2)).

The proof of Theorem [I] follows from an analysis of this candidate construction,
and we show the existence of appropriate functions f, g, and h via the proba-
bilistic method. Note that the number of sources in )) may be extremely large.
Consequently, our first step, which is similar in spirit to the first step of the
related result for private-key encryption in [14], is to exploit the leakage-resilience
of the scheme in question to show that it suffices to focus on a restricted family
to prove the desired result. More precisely, it suffices to show the existence of
functions f, g, and h as above satisfying

h(f(Z1),9(Z2)) =5 Up, (1)
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with §’ an appropriate error parameter, for all (Z1, Z3) € Z defined as
Z = {Share(Uy,y) : y € {0,1}},

which contains at most 2¢ distributions. Our analysis then proceeds in three
steps:

1. We show that each (Z;,73) € Z is close in statistical distance to a con-
vex combination of joint distributions (D;;, D2 ;) with the property that
Ho(D1,;) + Hoo (D2 ;) is sufficiently large for all ¢, where Ho. () denotes the
min-entropy of a distribution;

2. Exploiting the previous step, we prove that if we pick f and g uniformly
at random, then with high probability over this choice it holds that the
joint distribution (f(Z1),9(Z2)) is close in statistical distance to a high
min-entropy distribution;

3. A well known, standard application of the probabilistic method then shows
that a uniformly random function h will extract many perfectly random bits
from (f(Z1),9(Z2)) with high probability over the choice of h.

While this proves that there exist functions f, g, and h such that (1)) holds for a
given (Z1,Z,) € Z, we need (1]) to be true simultaneously for all (Z;,Z;) € Z.
We resolve this by employing a union bound over the at most 2¢ distributions in
Z. Therefore, if d is not extremely large, we succeed in showing the existence of
appropriate functions f, g, and h, and the desired result follows. More details
can be found in Section [

Random-less Reductions for Secret Sharing. In this section, we define
distribution designs and briefly discuss how they can be used to provide the
desired black-box reductions between different types of threshold secret sharing,
in particular Corollaries [3| and {4} Intuitively, a (¢,n,t’,n')-distribution design
distributes shares (Shy,Sha,...,Sh,/) of some (¢',n',¢)-secret sharing scheme
into subsets of shares Sy,...,S,, with the property that (Si,...,S,) are now
shares of a (¢, n,e)-secret sharing scheme. More formally, we have the following
definition, which also appears in [49)].

Definition 5 (Distribution design) We say a family of sets D1,Da, ..., D, C
[n'] is a (t,m,t',n')-distribution design if for every T C [n] it holds that

Ui =7
i€T
if and only if | T| > t.
Given a (t,n,t',n')-distribution design Dy, ..., D,, C [n], it is clear how to set

up a black-box reduction without extra randomness from (¢',n’, €)-secret sharing
to (t,n,e)-secret sharing: If (Share’,Rec’,)) is an arbitrary (¢',n’,¢)-secret
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sharing scheme for b-bit messages, we can obtain a (t,n, £)-secret sharing scheme
(Share, Rec, )) for b-bit messages by defining

Share(z,y); = Share'(z, y)p,

for each i € [n], and

Rec(Share(z, y)7) = Rec’ (Share’(gc7 y)U D )
ieT Tt

for each T C [n]. The following lemma is then straightforward from the definitions
of threshold secret sharing and distribution designs, and this construction.

Lemma 1 If every (t,n,e)-secret sharing scheme for b-bit messages using d
bits of randomness requires (0, m)-extractable randomness and there exists a
(t,n,t',n')-distribution design, then so does every (t',n’,€)-secret sharing scheme
for b-bit messages using d bits of randomness.

Details of our constructions of distribution designs and associated bounds can
be found in Section @] The black-box reductions then follow immediately by
combining these constructions with Lemma [T}

1.4 Open Questions

We obtain distribution designs for a wide variety of parameters, but for some of
these constructions we could not prove optimality or find a better construction.
We leave this as an open question. A naturally related question is whether there
is an alternative approach to obtain a random-less reduction for secret sharing
that does not use distribution designs.

Finally, we hope this work further motivates research on the main open
question of whether 2-out-of-2 secret sharing (or even t-out-of-n secret sharing
for any ¢t and n) requires extractable randomness.

2 Preliminaries

2.1 Notation

Random variables are denoted by uppercase letters such as X, Y, and Z, and we
write U, for the uniform distribution over {0,1}™. We usually denote sets by
uppercase calligraphic letters like S and T, and write [n] for the set {1,2,...,n}.
Given a vector x € 8™ and set 7 C [n], we define 7 = (x;);c7. We denote the
Fy-inner product between vectors x,y € {0,1}™ by (z,y). All logarithms in this
paper are taken with respect to base 2.
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2.2 Probability Theory

In this section, we introduce basic notions from probability theory that will be
useful throughout this work.

Definition 6 (Min-entropy) The min-entropy of a random variable X on a
set X, denoted by Hoo(X), is defined as

(X) ogmax Pr[X = g]
Definition 7 ((n, k)-source) We say a random variable X supported over {0,1}"
is an (n,k)-source if Hoo(X) > k. When the support of the random variable is
clear from context we may instead say k-source. Moreover, we say X is flat if it
is uniformly distributed over a subset of {0,1}".

Definition 8 The statistical distance between random variables X and Y over
a set X, denoted by A(X,Y), is defined as

A(X,Y) = max | Pr[X € S| - Pr[y € 8| = % > [Pr[X = a] - Pr[Y = 2]|.
- reX

Moreover, we say that X and Y are e-close, denoted by X ~. Y, if A(X,Y) <e¢,
and e-far if this does not hold.

The following lemma is a version of the well-known XOR lemma (see [33] for a
detailed exposition of these types of results).

Lemma 2 (XOR Lemma) If X and Y are distributions supported on {0,1}
such that
(a, X) = (a,Y)

for all non-zero vectors a € {0,1}", then
X e Y
for &' = 21/%¢.

We end this section with a standard lemma stemming from a straightforward
application of the probabilistic method, which states that, with high probability,
a random function extracts almost perfect randomness from a fixed source with
sufficient min-entropy. By a union bound, this result also implies that a random
function is a great extractor for all sufficiently small classes of flat sources (and
convex combinations thereof), an observation we will exploit later on.

Lemma 3 Fix an (n, k)-source X. Then, for everye > 0 it holds that a uniformly
random function F : {0,1}" — {0, 1} with m < k—2log(1/¢e) satisfies F(X) ~.
U, with probability at least 1 — 2e=<"2" over the choice of F.

Proof. See Appendix [A] 0

11
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The following extension of Lemma[3] stating that a random function condenses
weak sources with high probability, will also be useful.

Lemma 4 Fix an (n, k)-source X. Then, for every e > 0 it holds that a uniformly
random function F : {0,1}" — {0,1}™ satisfies F(X) ~. W for some W such
that Hoo (W) > min(m, k — 2log(1/¢e)) with probability at least 1 — 2¢=="2" over
the choice of F'.

Proof. For m’ = min(m, k — 2log(1/¢)), let F’ : {0,1}* — {0,1}™ be the
restriction of F' to its first m’ bits. Then, Lemma [3| ensures that F'(X) ~. Uy
with probability at least 1— 2¢=<"2" over the choice of F. Via a coupling argument,
this implies that F(X) ~ W for some W with H, (W) > m/. O

2.3 Amplifying Leakage-Resilience

Recall the definition of leakage-resilient secret sharing from Definition [3] already
discussed in Section [I] The following lemma states that every secret sharing
scheme withstanding 1 bit of leakage also withstands ¢ > 1 bits of leakage from
each share, at the cost of an increase in statistical error.

Lemma 5 Let (Share,Rec,)) be an (e1,e2)-leakage-resilient secret sharing
scheme. Then, for all secrets x,z' € {0,1}°, randomness source Y € ), and
functions f,g: {0,1}* — {0,1}* we have

f(Sh1), g(Shz) ~cr f(Sh}), g(Shs)
with €' = 2'ey, where (Shy,Shy) = Share(z,Y) and (Sh},Shy) = Share(z',Y).

Proof. Fix arbitrary secrets z,2’ € {0,1}* and a randomness source Y € Y,
and define (Shy,Shy) = Share(z,Y) and (Sh},Sh}) = Share(z’,Y). Suppose
that there exist functions f,g : {0,1}* — {0,1}* such that the distributions
(f(Shy),g(Shs)) and (f(Sh}), g(Sh})) are (¢’ = 2ep)-far. Then, the XOR lemma
implies that there is a non-zero vector a € {0,1}?*", which we may write as
a=(aM,a®) for aV a? € {0,1}*, such that the distributions

(a, (f(Sh1),g(Sh2))) = (a™), f(Sh1)) + (a®, g(Sha))

and

(a, (f(Shy),g(Shy))) = (M), F(Sh1)) + (a®), g(Sh))
are eo-far. Consequently, for f/, ¢’ : {0,1}¢ — {0,1} defined as f'(z) = (aV), f(2))
and ¢'(z) = (a®, g(z)) it holds that

f'(Shi), g'(Sh2) ., f'(Shy), g’ (Shy),

contradicting the fact that (Share, Rec,)) is an (g1, €2)-leakage-resilient secret
sharing scheme. a
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3 Randomness Extraction from Leakage-Resilient Secret
Sharing Schemes

In this section, we show that all 2-out-of-2 secret sharing schemes satisfying
the weak leakage-resilience requirement from Definition 2| require extractable
randomness with good parameters.

Theorem 2 Given anyy € (0, 1), there are absolute constants c., c.,, c)j > 0 such
that the following holds: Suppose (Share, Rec,)) is an (g1, e2)-leakage-resilient
secret sharing scheme for b-bit messages using d bits of randomness. Then, if
b>cy andd < 2¢,% it holds that Y is (0, m)-extractable with § < 2bey + 9—cyb
and m > (1 —~)b.

We prove Theorem [2] via a sequence of lemmas by showing the existence of an
extractor Ext : {0,1}% — {0,1}™ for the class ) with appropriate parameters. Our
construction works as follows: On input y € {0,1}%, the extractor Ext computes
(Ly, R,) = Share(0%,y), applies special leakage functions f,g: {0,1}* — {0,1}®
to be determined in order to obtain local leakage (f(Ly),g(R,)), and finally
outputs Ext(y) = h(f(Ly),g(R,)) for an appropriate function h : {0,1}?* —
{0,1}™. Our goal is to show that

Ext(Y) ~s Uy, (2)

for all sources Y € Y. Similarly in spirit to [14], our first lemma shows that in
order to prove ([2]) we can instead focus on extracting randomness from the family
of distributions

Z = {Share(Uy,y) : y € {0,1}9}.

Lemma 6 Fiz functions f,g:{0,1}* — {0,1}* and h : {0,1}** — {0,1}™, and
suppose that
Ext'(Z) = h(f(21), 9(22)) s Um (3)

forall Z = (Zy,Z>) € Z. Then, it holds that Ext given by Ext(y) = h(f(Ly), 9(Ry)),
where (L, R,) = Share(0°,y), satisfies

Ext(Y) ~5 Un,
forallY € Y with 6 = 2%y + §'.
Proof. Lemma [5] implies that
f(Ly),9(Ry) == f(Ly),9(Ry),
where (LY, R},) = Share(U,,Y) holds with & = 2%, for all Y € Y, and so
Ext(Y) = h(f(L%),g(R%)). Since (3)) holds for all Z € Z and Share(U,,Y) is a

convex combination of distributions in Z, it follows that h(f (L5 ), g(RS)) =5 Un,.
The triangle inequality yields the desired result. a
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Given Lemma, @ we will focus on proving (3)) for appropriate functions f, g, and
h and error ¢’ in the remainder of this section. We show the following lemma,
which implies Theorem [2] together with Lemma [f]

Lemma 7 Given any v € (0,1), there are absolute constants c-, cfy,ciy’ > 0 such
that if b > ¢y and d < 240 then there exist functions f, g : {0,1}* — {0,1}* and
h:{0,1}2* — {0,1}™ such that

EXt/(Z) = h(f(Zl)ag(ZQ)) ~g5 Un
Jor all Z = (Zy,Z5) € Z with & < 24" and m > (1 —)b.

The roadmap for the proof ahead is that we are first going to fix a Z € Z|
and then do the following;:

1. Justify that Z = (Z1,Z) is statistically close to an appropriate convex
combination of distributions with linear min-entropy that suit our purposes.
(Lemma

2. Show that if we pick f and g uniformly at random, then with high proba-
bility over this choice it holds that (f(Z1),9(Z2)) is statistically close to a
distribution with decent min-entropy. (Lemma

3. Note that a random function h extracts uniformly random bits from the
tuple (f(Z1),9(Z2)) with high probability, provided that this distribution
contains enough min-entropy. A union bound over the 2¢ distributions in Z
concludes the argument.

Lemma 8 Fiz 8 € (0,1) and an integerr > 0. Then, for all (Z1, Z) € Z it holds
that (Z1, Zs) is (T . 2_(1_/3_1/’“)}’)-01056 to a distribution D =3, 7 pi- (D14, Da;)
where for each i € T C [r] it holds that Dy ;,Da; € {0,1}¢, and Hoo(D1,;) >
(B = (=1))b and Hoo (D2 ;| Dy,; = sh1) = (52)b for every shy € supp(Dy;).

Proof. Fix some y € {0,1}¢ and set (Z1, Z3) = Share(Uy, y). It will be helpful for
us to see Share(-,y) as a bipartite graph G with left and right vertex sets {0, 1}*
and an edge between shy and shy if (shy,shs) € supp(Z7, Z2). Then, (21, Z2) is
the uniform distribution on the 2 edges of G by the correctness of the scheme.
For every left vertex sh; € {0,1}¢, we define its neighborhood

A(shy) = {sha : (shi,sha) € supp(Z1, Z3)}

and its degree
deg(shy) = |A(sh1)].

Note that (Z3|Z; = shy) is uniformly distributed over A(sh;), and so
HOO(ZQ|Z1 = Shl) = log deg(shl).
Partition supp(Z7) into sets

S, = {shl 950 < deg(shy) < 2(%”’}
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for ¢ € [r]. With this definition in mind, we can express (71, Z2) as

> Pr(Zy € Si)(Z1, 2|7y € ),

1€[r]

where (71,7371 € S;) denotes the distribution (7, Z2) conditioned on the

event that Z; € S;. Call a non-empty set S; good if Y- s deg(shy) > 2(A+1/m)b.

Otherwise the set S; is bad. Let Z denote the set of indices i € [r] such that S;
is good. We proceed to show that we can take the target distribution D in the
lemma statement to be D =3, 7 p; - (D15, Do) for

Pr[Zl S Si]
Pr[Z; lands on good set]

i =

with (Dl,i7D2,i) = (Zl, ZQ|Z1 S Sz) when 7 € 7.
To see this, consider the case where S; is good, i.e., we have > s deg(shy) >
2(B+1/mb For each shy € S;, we have

deg(shy)

> ses, deg(s)
270

= @b

— o= (B-(59)),

PI"[Zl = Sh1|Zl € Sz] =

Furthermore, for any sh; € S; and sho we know that

PI‘[ZQ = Sh2|Z1 = Shl] < 2_(i:1)b.

Combining these two observations shows that in this case we have H.(Z1]|Z; €

Si) > (ﬁ — (%))b and Hoo (23|21 = shy) > (%)b for all valid fixings sh; € S;.

To conclude the proof, consider D as above, which we have shown satisfies
the properties described in the lemma statement. Noting that D corresponds
exactly to (Z1, Z2) conditioned on Z; landing on a good set, we have

A((Z1,Z3); D) < Pr[Z; lands in a bad set].

It remains to bound this probability on the right-hand side. Assuming the set S;
is bad, it holds that Yy, g, deg(shy) < 2(8F1/"% Therefore, since (Z1, Zs) takes
on any edge with probability 27°, it holds that Z; lands in S; with probability at
most 270 . 20841/ — 9=(1=F=1/1b_ There are at most r bad sets, so by a union
bound we have Pr[Z; lands in a bad set] < - 2-(1=#=1/mb, 0

Lemma 9 Fiz o, € (0,1) and an integer r. Then, with probability at least
1— 3. bma®2™ TV er the choice of uniformly random functions f, g :
{0,1} — {0,1}" it holds that (f(Z1),9(Z)) is (2o + 1 - 27 A=B=1/M8) _close to

a (2b, (B —1/r)b —4log(1/a))-source.

15



16 Divesh Aggarwal, Eldon Chung, Maciej Obremski, and Jodo Ribeiro

Proof. Suppose we pick functions f, g : {0,1}¢ — {0,1}* uniformly at random.
We begin by expressing (f(Z1),9(Z2)) as

Z Pr[Z, € Si|(f(Z1),9(Z2)|Z1 € S;),

i€[r]

which by Lemma |8 is (r . 2_(1_'8_1/T)b)—01056 to

ZPY[Zl € Sil(f(D1,i), 9(D2,i)).
ieT
We proceed by cases:
1. &1 > B3 —1/r: We know from Lemma |8 that Hoo(D2;|D1; = shy) >

s

(B —1/r)b for all shy € supp(D1,;). By Lemma [d we have
(g(DQ,i)|D1,i = Shl) S V

for some V' with Hoo (V) > (8 — 1/r)b — 2log(1/a) with probability at least
1—2e="2"""7" qyer the choice of g. Since this holds for any valid fixing
D ; = shy, we conclude via a union bound over the at most 2b possible
fixings that

f(D1,i),9(D2;) =a Wi

for some W; with Hoo (W) > (8 —1/r)b—2log(1/«) with probability at least

1 — 2e0=0*27Y7" ver the choice of f and g.

2. 1/r <=1 < B —1/r: We know from Lemmathat H.(D1;) > (8- =)
and He(D2;|Dy; = shy) > (%)b for all shy € supp(D;,). First, by
Lemma [ we conclude that with probability at least

(550

2 __25b/T
1—2e 2 >1-—2 2

over the choice of f it holds that
f(D1:) =a Vi (4)

for some V; with Hoo (V1) > (8 — =1)b — 2log(1/a). Analogously, for every
shy € supp(Dy;), we can again invoke Lemma [4] to see that with probability
at least ,

(=)

a2 __25b/T
1—2e 2 >1—2"2

over the choice of g, for any shy € supp(D; ;) it holds that
(9(D2,4)|D1,i = sh1) = Vash, (5)

for some Vg, with Hoo (Vo gh,) > (%)be log(1/c). By a union bound over
the at most 2° possible fixings sh;, we conclude that (5] holds simultaneously
for all shy € supp(D;,;) with probability at least 1 — 2e0=9°2""" Gyer the
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choice of ¢g. An additional union bound shows that this holds simultaneously

along (4)) with probability at least 1 — 3eb=2"2"" oyer the choice of f and g,
which implies that

f(D1,i), 9(D2;) =20 Wi
for some W; with

-1

1 1—1
T

Hoo (W;) > (5— )b—210g(1/a) + ( )b—2log(1/a)

= b —4log(1l/a).

3. ¢ = 1: In this case, by Lemma [8| we know that Ho, (D1 ;) > 8b. Therefore,
Lemma implies that f(D; ;) =4 V1 for some Vi such that Ho (V1) > 8b —
2log(1/a) with probability at least 1 —2e=*"2"" > 1—2¢=2"2"" This implies
that f(D1,),9(D2,i) ~a W; for some W; with Heo (W;) > b — 2log(1/a).

Finally, a union bound over the at most r indices i € Z yields the desired
statement. O

We are now ready to prove Lemma [7] with the help of Lemma [9]

Proof (Proof of Lemma@, Fix some v € (0,1). Then, weset § =1—7v/2 > 1—~,
a = 27 for a sufficiently small constant ¢ > 0, and r > 0 a sufficiently large
integer so that

1—y<B8-1/r—6¢ (6)
and )
1/r+6cgw. ™)

According to Lemmal[9] we know that for any given Z = (Zy, Z») € Z it holds that
(f(Z1),9(Z5)) is (2ac+1-2-(A=B=1/1b)_close to some (2b, (5 —1/7)b—4log(1/a))-

_ o 2omin(b/r,(B—1/7)b) .
b—a”2 over the choice

source W with probability at least 1 — 3r - e
of f and g.

Let m = (1—+)b and pick a uniformly random function h : {0, 1}2* — {0,1}™.
Then, since m < Hoo (W) —2log(1/a) by (6), Lemma 3 implies that h(W) ~q U,
and hence

h(f(Zl)vg(ZQ)) N3qtr-2-1=B-1/r)b Um, (8)

with probability at least

_a29(B—1/m)b—4log(1/a) . ebia22min(b/r,([3—l/r)b)

1-—2e —3r

_25min(b/r,(B—1/r)b)—4log(1/a)
>1—5r-etm?2

over the choice of f, g, and h, via a union bound.
Now, observe that from , if b > ¢, for a sufficiently large constant ¢, > 0,
it follows that

b_a22min(b/r,(B—l/r)b)lelog(l/a) 2¢l b
- €

5r <9272
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for some constant C/v > 0. Moreover, under we also have that
§ =347 - 27 (IA-/Mb < 9=eib

for some constant cg > 0. Finally, a union bound over the 2¢ distributions in
Z shows that holds simultaneously for all Z € Z with probability at least

1 9d=2"7" Consequently, if d < 2% it follows that there exist functions fs9,

and h such that (8] holds for all Z € Z with the appropriate error 4’ and output
length m. a

3.1 The Main Result
We now use Theorem [2] to obtain the main result of this section.

Theorem 3 (First part of Theorem (1} restated) Suppose (Share, Rec,))
is an (e1,€2)-leakage-resilient secret sharing scheme for b-bit messages. Then,
either:
— The scheme uses d > min (29", (1/22)?MW) bits of randomness, or;
— The class of sources Y is (6, m)-extractable with 6 < max(Z_Q(b),Eg(l)> and
m = 2(min(b, log(1/e2))).

Proof. Given the scheme (Share, Rec,)) from the theorem statement, let b’ =
min (b, {%D and consider the modified scheme (Share’, Rec’, Y) for v'-bit
messages obtained by appending 0°=" to every b'-bit message and running the

original scheme (Share, Rec,))). Applying Theorem [2| to (Share’, Rec’,)) we
conclude that either Share’, and hence Share, uses at least

22(") = min (29(b)7 (1/62)9(1)>
bits of randomness, or Y is (d, m)-extractable with
§< 290 — max (2_9(5)’53(1)>

and m = (V) = 2(min(b, log(1/e2))). O

3.2 Efficient Leakage-Resilient Secret Sharing Requires Efficiently
Extractable Randomness

In this section, we prove the remaining part of Theorem We show that
every low-error leakage-resilient secret sharing scheme (Share, Rec,)) for b-bit
messages where Share is computed by a poly(b)-time algorithm admits a low-
error extractor for ) computable by a family of poly(b)-size circuits. Similarly
to |14 Section 3.1], this is done by replacing the uniformly random functions
f, g, and h in the proof of Theorem [2| by t-wise independent functions, for an
appropriate parameter t.
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We say that a family of functions F; from {0,1}? to {0,1}? is t-wise inde-
pendent if for F' sampled uniformly at random from F; it holds that the random
variables F'(x1), F(x2), ..., F(x;) are independent and uniformly distributed over
{0, 1} for any distinct 1, ..., 2 € {0,1}P. There exist ¢t-wise independent fami-
lies of functions F; such that every f € F; can be computed in time poly(b) and
can be described by poly(b) bits whenever p, ¢, and ¢ are poly(b) |22} 51} [14].
Therefore, since Share admits a poly(b)-time algorithm, it suffices to show the ex-
istence of functions f, g, and h belonging to appropriate poly(b)-wise independent
families of functions such that Ext(Y") = h(f(Sh1), g(Shg)) is statistically close to
uniform, where (Shy, Shy) = Share(0%,Y), for every source Y € ) (the advice
required to compute Ext would be the description of f, g, and h). We accomplish
this with the help of some auxiliary lemmas. The first lemma states a standard
concentration bound for the sum of ¢-wise independent random variables.

Lemma 10 (|22, Theorem 5], see also |7, Lemma 2.2]) Fiz an even inte-
ger t > 2 and suppose that X1, ..., XN are t-wise independent random variables
in [0,1]. Let X = Zf\il X; and p = E[X]. Then, it holds that

PN
Pr{|X —p|>e-p] < 3(2>
e
for every e < 1.

We can use Lemma [I0] to derive analogues of Lemmas [3 and [4] for t-wise indepen-
dent functions.

Lemma 11 Suppose f:{0,1}? — {0,1}7 is sampled uniformly at random from
a 2t-wise independent family of functions with ¢ < k —logt — 2log(1/e) — 5 and
t>q, and let Y be a (p,k)-source. Then, it follows that

fY) = Uy
with probability at least 1 — 2~ over the choice of f.

Proof. Fix a (p, k)-source Y and suppose f : {0,1}? — {0,1}7 is sampled from a
family of 2¢-wise independent functions. Note that

AYORT) =5 S IPIY) =4 - 271

z€{0,1}4

For each y € {0,1}? and z € {0,1}9, consider the random variable W, , =
Pr[Y = y] - 1{#(;)=z}- Then, we may write

AFOUY =5 3 | W)

z€{0,1}7|y€{0,1}»

19
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Note that the W), .’s are 2t-wise independent, B[} (o y. Wy,:] = 277, and

that 2 - W, . € [0,1]. Therefore, an application of Lemma [10{ with the random
variables (2% - W, 2)ye (0,117 2¢{0,1}+ shows that

_ _ t-29\°
Pr Z Wy,z—Z g >2e-2 g §3<2622k) .
yef{o,1}r

Therefore, a union bound over all z € {0, 1}? shows that f(Y) ~. U, fails to hold
with probability at most 3 -27 - 27( t-27 )t < 27t over the choice of f, where the

2.2k

inequality follows by the upper bound on q. a

The proof of the following lemma is analogous to the proof of Lemma [] but
using Lemma [I1] instead of Lemma

Lemma 12 Suppose f : {0,1}? — {0,1} is sampled uniformly at random from
a 2t-wise independent family of functions with t > q, and let Y be a (p,k)-
source. Then, it follows that f(Y) ~. W for some W such that Heo (W) >
min(g, k —logt — 2log(1/e) — 5) with probability at least 1 — 2~ over the choice
of f.

Following the reasoning used in the proof of Theorem [2| but sampling f, g :
{0,1}* — {0,1}* and h : {0,1}* — {0,1}™ from 2t-wise independent families
of functions with ¢ = 100 max (b, d) = poly(b), and using Lemmas [11| and [12]in
place of Lemmas [3] and [4] respectively, yields the following result analogous to
Theorem [2] Informally, it states that efficient low-error leakage-resilient secret
sharing schemes require low-complexity extractors for the associated class of
randomness sources.

Theorem 4 There exist absolute constants c,c¢’ > 0 such that the following
holds for b large enough: Suppose (Share, Rec,)) is an (g1,e2)-leakage-resilient
secret sharing for b-bit messages using d bits of randomness such that Share
is computable by a poly(b)-time algorithm. Then, there exists a deterministic
extractor Ext : {0,1}¢ — {0,1}™ computable by a family of poly(b)-size circuits
with output length m > ¢ - b such that

EXt(Y) ~s Un
with § = 2bgy +27¢0 for everyY € ).

Finally, replacing Theorem [2] by Theorem [4] in the reasoning from Section [3.1
yields the remaining part of Theorem

3.3 An Extension to the Setting of Computational Security

In this work we focus on secret sharing schemes with information-theoretic
security. However, it is also natural to wonder whether our result extends to
secret sharing schemes satisfying a reasonable notion of computational security.
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Indeed, a slight modification to the argument used to prove Theorem [I|also shows
that computationally-secure efficient leakage-resilient secret sharing schemes
require randomness sources from which one can efficiently extract bits which
are pseudorandom (i.e., computationally indistinguishable from the uniform
distribution). We briefly discuss the required modifications in this section. For
the sake of exposition, we refrain from presenting fully formal definitions and
theorem statements.

First, we introduce a computational analogue of Definition [3] We say that
(Share, Rec, ) is a computationally secure leakage-resilient secret sharing scheme
(for b-bit messages) if the scheme satisfies Definition |3| except that the leakage-
resilience property is replaced by the following computational analogue: “For any
leakage functions f, g : {0,1}* — {0,1} computed by poly(b)-sized circuits and
any two secrets x, ' € {0,1}?, it holds that any adversary computable by poly(b)-
sized circuits cannot distinguish between the distributions (f(Shy), g(Shs)) and
(f(Sh}), g(Shy)) with non-negligible advantage (in some security parameter \),
where (Shy, Shy) = Share(x) and (Sh’, Sh}) = Share(2’).”

Using this definition, the exact argument we used to prove Theorem [1| com-
bined with a modified version of Lemma [0l then shows that we can extract bits
which are computationally indistinguishable from the uniform distribution using
the class of randomness sources used to implement such a computationally-secure
leakage-resilient secret sharing scheme. In fact, the proof of Theorem [1] only
uses the leakage-resilience property of the secret sharing scheme in the proof of
Lemma|[6] The remaining lemmas only make use of the correctness property of the
scheme, which remains unchanged in the computational analogue of Definition [3]
Crucially, as shown in Section we can construct the functions f, g, and h
so that they are computed by poly(b)-sized circuits assuming that the sharing
procedure is itself computable by poly(b)-sized circuits. Therefore, the following
computational analogue of Lemma [6] which suffices to conclude the proof of the
computational analogue of Theorem (1 holds: “Suppose that there are functions
f,g : {0,1}* — {0,1} and a function h : {0,1}?** — {0,1}™ computable by
poly(b)-sized circuits such that

Wf(21),9(21)) =5 U

for § = negl(A) and for all (Z;,Z5) in Z. Then, it holds that no adversary
computable by poly(b)-sized circuits can distinguish Ext(Y") from a uniformly
random string with Y € Y, where Ext(Y') = h(f(Ly),9(Ry)) and (L, R,) =
Share(0°,Y).”

4 Random-less Reductions for Secret Sharing

In this section, we study black-box deterministic reductions between different
types of threshold secret sharing. Such reductions from (¢',n’, €)-secret sharing
schemes to (t,n,e)-secret sharing schemes (for the same message length b and
number of randomness bits d) would allow us to conclude that if all these (¢, n,e)-
secret sharing schemes require a (§, m)-extractable class of randomness sources,

21
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then so do all (#',n/, )-secret sharing schemes. We provide reductions which work
over a large range of parameters and prove complementary results showcasing
the limits of such reductions. As already discussed in Section [I] our starting
point for devising black-box reductions is the notion of a distribution design
as formalized by Stinson and Wei [49] (with roots going back to early work on
secret sharing [9]), which we defined in Definition [5] As stated in Lemmall] the
existence of a (t,n,t’,n’)-distribution design yields the desired reduction from
(t',n’,e)-secret sharing to (t,n,e)-secret sharing. Therefore, we focus directly on
the study of distribution designs in this section.
We begin with a naive construction.

Theorem 5 There exists a (t,n,t',n’)-distribution design whenever t' >t and
n' >n+ (t' —t). In particular, if every (t,n,e)-secret sharing scheme for b-bit
messages and using d bits of randomness requires a (§, m)-extractable class of
randomness sources, then so does every (t',n’,e)-secret sharing scheme for b-bit
messages using d bits of randomness whenever t' >t and n’ > n+ (t' — t).

Proof. Consider the (t,n,t',n’)-distribution design D, ..., D, obtained by set-
ting D; = {ifu{n’ — (' —¢t)+1,n — (t' —t) +2,...,n'}, which is valid exactly
when the conditions of the theorem are satisfied. ad

The following result shows the limits of distribution designs, and will be used
to show the optimality of our constructions when t =2 or ¢/ = n/.

’I/‘l;eorem 6 A (t,n,t',n')-distribution design exists only if (t,”_/l) > (,",) and
t>t.

Proof. Consider an arbitrary (¢,n,t',n')-distribution design D1, Da, ..., D,. First,
note that it must be the case that all the D;’s are non-empty. This implies that
we must have ¢’ > t. Second, to see that (t,"_/l) > (tfl), consider all (tfl) distinct
subsets T C [n] of size t — 1, and denote D1 = J,.+ D;. By the definition of

distribution design, it must hold that
|Dy| <t —1.

Consider now modified sets 5; obtained by adding arbitrary elements to Dy so
that |Dy| =t — 1. Then, from the definition of distribution design, for any two
distinct subsets T, T’ C [n] of size t — 1 it must be the case that

‘T)?uﬁf; >,

This implies that 5; * 57: for all distinct subsets 7,7’ C [n] of size t — 1,

which can only hold if (")) > (,",)- 0

We now show that Theorem [f] is tight for a broad range of parameters. In
particular, when ¢t = 2 or ¢/ = n’ we are able to characterize exactly under which
parameters a (t,n,t’,n')-distribution design exists.
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Theorem 7 There exists a (t = 2,n,t',n’)-distribution design if and only if
n < (tfil). In particular, if every (t = 2,n,e)-secret sharing scheme for b-bit
messages using d bits of randomness requires (9, m)-extractable randomness, then
so does every (t',n',e)-secret sharing scheme for b-bit messages using d bits of

!
randomness whenever n < (t,”_l).

Proof. Note that the condition n < ( t,"; ) implies that we can take Dq,...,D,
to be distinct subsets of [n'] of size ¢’ — 1, and so |D; UD;| > t’ for any distinct

indices 7 and j. The reverse implication follows from Theorem [f] a

Theorem 8 There exists a (t,n,t’ = n',n')-distribution design if and only
if n' > (tfl), In particular, if every (t,n,e)-secret sharing scheme for b-bit
messages using d bits of randomness requires (0, m)-extractable randomness, then
so does every (n',n',)-secret sharing scheme for b-bit messages using d bits of
randommness whenever n' > (tfl).

Proof. We show that a (t,n,n’,n’)-distribution design exists whenever n’ = (tfl),
which implies the desired result. Let P denote the family of all subsets of [n] of
size t — 1, and set n’ = |P| = (,";) (we may use any correspondence between
elements of P and integers in [n’]). Then, we define the set D; C P for ¢ € [n] to
contain all elements of P except the subsets of [n] which contain i. We argue that
Dy, ..., D, is a distribution design with the desired parameters. First, observe

that for any distinct indices 41,42, ...,4;—1 € [n] it holds that
t—1
U DZ']. = P \ {{il,ig, e ,Z.tfl}}.
j=1

On the other hand, since {i1,...,i;—1} € D;, for any index iy # i1,...,%—1, it
follows that U;Zl D;, =P, as desired.
The reverse implication follows from Theorem [6] O

4.1 Distribution Designs from Partial Steiner Systems

In this section, we show that every partial Steiner system is also a distribution
design which beats the naive construction from Theorem [5| for certain parameter
regimes. Such set systems have been previously used in seminal constructions of
pseudorandom generators and extractors [43, 50|, and are also called combinatorial
designs.

Definition 9 (Partial Steiner system) We say a family of sets D1, ..., D, C
[n] is an (n,n', £, a)-partial Steiner system if it holds that |D;| = £ for every
i € [n] and |D; ND;| < a for all distinct 1,5 € [n].

The conditions required for the existence of a partial Steiner system are well-
understood, as showcased in the following result from [32} 43}, [50], which is nearly
optimal [45] |44].
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Lemma 13 ([32, 43}, 50]) Fiz positive integers n, £, and a < €. Then, there
exists an (n,n’, £, a)-partial Steiner system for every integer n' > e - nl/e. %.
Noting that every partial Steiner system with appropriate parameters is also a
distribution design, we obtain the following theorem.

Theorem 9 Fiz an integer a > 1. Then, there exists a (t,n,t',n')-distribution

2 a / —_ 2
design whenever t' > % + % and n' > % : (1 + 5+ L(tz 1)) :

Proof. Fix aninteger a > 1 and an (n,n’, ¢, a)-partial Steiner system Dy, ..., D,, C

[n'] with £ = [% + @—‘ By Lemma 13| and the choice of ¢, such a partial
Steiner system is guaranteed to exist whenever n’ satisfies the condition in the
theorem statement. We proceed to argue that this partial Steiner system is also
a (t,n,t',n')-distribution design. First, fix an arbitrary set T C [n] of size ¢t — 1.
Then, we have

IDr| <0(t—1) <t —1,
where the rightmost inequality holds by our choice of £ and the condition on #’

and ¢ in the theorem statement. Second, fix an arbitrary set 7 C [n] of size ¢.
Then, it holds that

IDr| >0+ (¢ —a)+ ({—2a)+- -+ (£ —a(t—1))

at(t — 1)

:g.t_T
>t

where the last equality follows again from our choice of £ and the condition on #’
and ¢ in the theorem statement. a

When n is sufficiently larger than t and ¢’ and ¢’ is sufficiently larger than ¢,
the parameters in Theorem [9] cannot be attained by the naive construction from
Theorem |5, which always requires choosing ¢’ > ¢ and n’ > n. For example, if
t3 <t < Ct? for some constant C' > 1 then we can choose a = 2, in which case
we have
at(t —1)?

£2
+ 2

<t <t. (9)
Moreover, it holds that
enl/® ¢ alt—1)\> _ eyn 2
e 2 ) <« . 2
- (+t+ 2)_2(Ct+t)
< 2eC?\/ntt. (10)

Combining @[) and with Theorem |§|, we obtain the following example result
showing it is possible to improve on Theorem [5|in some parameter regimes.

Corollary 5 Suppose t3 < t' < Ct3 for some constant C > 1. Then, there exists
a (t,n,t',n')-distribution design for anyn' > 2eC%\/nt*. In particular, ift < n'/°
and n is large enough, we may choose n' significantly smaller than n.
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A Proof of Lemma [3

Fix an (n,k)-source X and pick a function F' : {0,1}" — {0,1}" with m <
k — 2log(1/¢) uniformly at random. It suffices to bound the probability that

| Pr[F(X) e T] = (T)[ < e
holds for every set 7 C {0,1}™, where u(7) = |T]/2™ denotes the density
of 7. Fix such a set 7, and let Z, = Pr[X = x| - 1p)e7. Then, we have
Pr[F(X) € T] = >, (0,1} Z» and E[Zme{o,l}" Zx] = u(T). As a result, since
Z, € [0,Pr[X = z]] for all z € {0,1}", Hoeffding’s inequality{’] implies that

2¢?
Pr E Zy —u(T)| > ¢ <2-exp<— )
ze{0,1}n 2seqoayn PrIX = 2]

5 The version of Hoeffding’s inequality we use here states that if X1, ..., X are indepen-
dent random variables and X; € [mi7 MZ] for each i, then Per:f.V:1 X; — ,u’ > s] <

2-exp (—2262>, where p = E[Zf\jzl Xi].

N (My—my)?
i=1
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The last inequality follows from the fact that

Z Pr[X =z]> < max Pr[X =a] <27
ze{0,1}m

since X is an (n, k)-source. Finally, a union bound over all 22" sets 7 C {0,1}™
shows that the event in question holds with probability at least

1-2.22" . ¢72°2" 5 _ 92"

over the choice of F', given the upper bound on m.
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