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Abstract. Secure multiparty computation (MPC) enables n parties, of
which up to ¢ may be corrupted, to perform joint computations on their
private inputs while revealing only the outputs. Optimizing the asymp-
totic and concrete costs of MPC protocols has become an important line
of research. Much of this research focuses on the setting of an honest
majority, where n > 2t + 1, which gives rise to concretely efficient pro-
tocols that are either information-theoretic or make a black-box use of
symmetric cryptography. Efficiency can be further improved in the case

of a strong honest majority, where n > 2t + 1.

Motivated by the goal of minimizing the communication and latency

costs of MPC with a strong honest majority, we make two related con-

tributions.

— Generalized pseudorandom secret sharing (PRSS). Linear cor-
relations serve as an important resource for MPC protocols and be-
yond. PRSS enables secure generation of many pseudorandom in-
stances of such correlations without interaction, given replicated seeds
of a pseudorandom function. We extend the PRSS technique of Cramer
et al. (TCC 2005) for sharing degree-d polynomials to new construc-
tions leveraging a particular class of combinatorial designs. Our con-
structions yield a dramatic efficiency improvement when the degree d
is higher than the security threshold ¢, not only for standard degree-d
correlations but also for several useful generalizations. In particular,
correlations for locally converting between slot configurations in “share
packing” enable us to avoid the concrete overhead of prior works.

— Cheap straggler resilience. In reality, communication is not fully
synchronous: protocol executions suffer from variance in communica-
tion delays and occasional node or message-delivery failures. We ex-
plore the benefits of PRSS-based MPC with a strong honest majority
toward robustness against such failures, in turn yielding improved la-
tency delays. In doing so we develop a novel technique for defending
against a subtle “double-dipping” attack, which applies to the best
existing protocols, with almost no extra cost in communication or
rounds.



Combining the above tools requires further work, including new methods
for batch verification via distributed zero-knowledge proofs (Boneh et al.,
CRYPTO 2019) that apply to packed secret sharing. Overall, our work
demonstrates new advantages of the strong honest majority setting, and
introduces new tools—in particular, generalized PRSS—that we believe
will be of independent use within other cryptographic applications.

1 Introduction

Protocols for secure multiparty computation (MPC) [52,30,5,16] enable a set
of parties with private inputs to compute a joint function of their inputs while
revealing nothing but the output. MPC provides a general-purpose tool for dis-
tributed computation on sensitive data, as well as for eliminating single points of
failure. As a result, a major research effort focused on improving the asymptotic
and concrete efficiency of MPC.

Efficient honest-magority MPC. The most practical MPC protocols rely on an
honest majority assumption, namely security is guaranteed as long as ¢ < n/2
out of the n parties are corrupted, and provide “security with abort” in the pres-
ence of malicious parties. Such protocols can be either information-theoretic, or
alternatively achieve better communication cost by making a black-box use of a
pseudorandom function. The latter is mainly useful for non-interactive genera-
tion of pseudorandom shared secrets via a pseudorandom secret sharing (PRSS)
technique [28,18]. Moreover, the most efficient protocols in this setting follow
the blueprint of Damgard and Nielsen (DN) [22], where each layer of a circuit
is evaluated by having a designated “leader” party send messages to all other
parties and receive a message from each party in return.

In almost all of this line of research, one assumes the weakest honest majority
assumption of n = 2t+1 parties. However, assuming that up to half of the parties
can be corrupted may sometimes be overly pessimistic, and small relaxations of
corruption threshold can be highly preferred in favor of boosting performance.
On the other hand, existing honest-majority protocols are also overly optimistic
in that they assume all messages arrive on time and are not robust to transient
delays or failures. We will revisit this issue later.

The potential for savings in the “strong honest majority” regime of n >
2t 4+ 1 has been asserted within the context of asymptotic efficiency [24,19, 21,
20,4,27,36]. In a sense, existing MPC protocols for n = 2t + 1 parties are
analogous to using a repetition code, which increases the total cost by a factor of
n, whereas the latter protocols are analogous to asymptotically good codes that
provide a constant or near-constant amortized asymptotic overhead. However,
the techniques in these theory-oriented works incur large concrete overheads
placing them quite far from practical efficiency, and their asymptotic efficiency
benefits kick in only for large computations.

In the context of concretely efficient MPC, the potential gains of a strong
honest majority remain relatively untapped—both in the sense that asymptotic
benefits of prior works do not currently translate to concrete wins, and that



potential for concrete gains outside the standard theoretical models or (asymp-
totic) goals have not been well explored. One exception to this is a recent line
of works leveraging a larger number of honest parties for the purpose of clos-
ing the efficiency gap between security against malicious (or active) adversaries
and security against semi-honest (or passive) adversaries [31,26]. However, re-
cent works [8,11,37,12] have successfully closed this gap even given a minimal
honest majority n = 2¢ + 1, in which case this advantage no longer applies.

In this work, we initiate a deeper study of concretely efficient MPC with
strong honest majority n > 2t+ 1. We focus on developing general-purpose prim-
itives and techniques to alleviate the concrete costs of existing theory-oriented
solutions, as well as exploring new directions for improved latency in realistic
networks. Our primary focus is on the case where the corruption threshold ¢
is small. This enables the use of PRSS techniques that give rise to simpler and
more efficient protocols, but incur (an offline) cost that scales exponentially with
t. We are motivated by two main limitations of current techniques.

The overhead of packed secret sharing. A major source of concrete overhead
in the aforementioned theory-oriented works is the use of a “share packing”
technique [24] in which secret-shared values are arranged into blocks, and a set
of shares can simultaneously encode several values at the same per-party cost.
This technique natively supports computing a single circuit on many inputs
in parallel (also known as a “SIMD computation”), by computing operations
simultaneously on all values within a block. However, it requires a costly routing
mechanism for general computations. This overhead applies even in the semi-
honest setting, but introduces additional challenges in the malicious setting.
While the initial O(logn) overhead of the routing-based technique from [20] was
recently improved to a constant [36], this comes at the cost of poor concrete
efficiency.

Extending the ideas of these works, one may observe that existence of certain
useful linear correlations across parties would enable avoiding these routing over-
heads altogether. The desired correlations correspond to sets of packed shares
of secret random values, where different sets include the same random values in
different computation “slot” positions, in line with the routing of wires within
the computation circuit. But, unlocking these savings demands a large number
of different rerouting patterns, whose generation would destroy the optimization
savings in existing works. Much of the effort in previous works [19, 21, 20, 4, 33,
27, 36] was spent on efficient distributed protocols for generating these linear
correlations.

Tolerating stragglers. One advantage of MPC with a strong honest majority,
which serves as a primary motivation for the current work, is the potential for
better robustness, in turn leading to reduced latency in realistic network environ-
ments. Existing MPC protocols with n = 2t+1 parties require at least one of the
parties to wait for messages from all other parties before proceeding to the next
round. In particular, in protocols that follow the DN blueprint, the leader needs



to wait until it hears back from all other parties. But in reality, communica-
tion is not fully synchronous. Even in a semi-honest setting, protocol executions
suffer from variance in communication delays and occasional message-delivery
failures. This is sometimes referred to as the problem of stragglers. To deal with
this problem, practical distributed systems typically employ redundancy to allow
proceeding with the computation as long as “sufficiently many” messages were
received. See [42] for empirical studies of the impact of stragglers on realistic
network.

Interestingly, achieving robustness to stragglers becomes more challenging
when some parties can be malicious. Standard secure protocols with good con-
crete efficiency do not have this feature even when n > 3t. While such protocols
are able to terminate in the face of up to t stragglers, this occurs at the cost
of labeling these parties as corrupt, and their secrets are no longer protected.
Alternatively, attempting to run DN-style protocols in an “optimistic mode,” by
simply having the leader wait for the first 2¢ messages to arrive, gives rise to a
subtle “double-dipping” attack that allows a malicious leader to learn private
information. Previous solutions for this attack(see [26,35]) require significantly
more interaction and are not suitable for efficiently dealing with transient faults;
See Section 5.1 for more details.

1.1 Owur Contributions

Motivated by the above opportunities and challenges, we present new techniques
for MPC within the setting of a strong honest majority, n > 2t + 1, focusing on
the case of small® values of ¢ that enable efficient use of PRSS. We make the
following two main contributions.

Contribution 1: Generalized pseudorandom secret sharing (PRSS). As noted
above, PRSS enables a secure non-interactive generation of (pseudo)random val-
ues that are uniformly distributed over some linear vector space. It relies on a
low-communication setup, where independent pseudorandom function (PRF)
seeds are distributed to different subsets of the parties. The prominent cost met-
ric of a PRSS scheme is the number of such seeds required for the parties to each
compute their entry within the sampled vector. Following a general framework of
Gilboa and Ishai [28], Cramer et al. [18] described PRSS techniques for sharing
degree-d polynomials between n parties using (3) seeds, ("gl) per party, target-
ing the typical use-case where the security threshold ¢ is equal to d. Motivated
by the fact that in MPC with strong honest majority we have ¢t < d, we present
new PRSS constructions exploiting this gap.

Our constructions leverage suitable combinatorial designs, and yield a dra-
matic efficiency improvement when ¢t < d, not only for standard degree-d corre-
lations but also for several useful generalizations. This includes correlations for
locally converting between slot configurations in “share packing,” which enable

5 More precisely, our protocols have storage and (offline) computation costs that grow
exponentially in ¢ but linearly in the number of parties n. Thus, when ¢ is a small
constant, they can be practical even for a large n.



us to avoid the concrete overhead of prior works on MPC based on share pack-
ing [20,33,27]. We remark that our PRSS results are independently motivated
by other applications beyond the context of MPC, including threshold cryptog-
raphy, advanced cryptographic primitives, and targeted multi-party protocols
(e.g., [15,23,6,13,7]).

We provide a general transformation yielding PRSS schemes from any in-
stance of a so-called “covering design” with appropriate parameters. An (n,m, t)-
cover is a collection of size-m subsets S; C [n], such that every subset of ¢ el-
ements of [n] is covered by some set S;. The goal is to do so with the fewest
number of such sets S;. Construction of covering designs is a topic of combinato-
rial research, where bounds are known for small parameters, and several results
are known in the larger parameter regime (see Section 3.3 for discussion). While
it is not hard to see that the seed replication pattern of a PRSS must induce
a covering design, the converse direction is less obvious. Indeed, our transfor-
mation incurs a small overhead that leaves a (d + 1) multiplicative gap between
the upper and lower bounds on the number of seeds for the case of degree-d
polynomials.

The following theorem summarizes our general transformation from covering
designs to PRSS for degree-d polynomials, as well as some corollaries obtained
by plugging in existing covering designs from the literature (cf. [32]).

Theorem 1.1 (PRSS for degree-d polynomials from covering designs,
informal). Let n,d,t be positive integers such that t < d < n. Given an
(n,d + 1,t)-cover of size k, one can construct a PRSS scheme for sharing ran-
dom degree-d polynomials between n parties with security threshold t, requiring
k(d+ 1)(n — d)/n PRF seeds per party. As a special case, plugging in existing
covering designs for small t, we obtain the following:

Li‘ (d+1)(

- Fort=1, any n: ’Vd+1 n"_d) PRF seeds per party (or just n —d when

(d+1)|n).
— Fort=2, anyn < 3(d+1): 13(d + 1) PRF seeds per party.

We further obtain PRSS for “double Shamir sharing” (i.e. two random polyno-
mials of degrees d and 2d with the same evaluations on given d — t + 1 points)
with roughly twice as many PRF seeds.

In comparison to the parameters above, the naive baseline from [18] is (";1)
seeds per party, which in the case that ¢ < d can be improved to (”;1) seeds per
party (we show the details in the full version of this paper). Plugging in explicit
covering design constructions from the literature, the PRSS solutions obtained
via Theorem 1.1 provide significant savings to even this improved baseline. For

example:

— (n,d,t) = (48,15,4) requires 2,772 seeds per party, versus baseline (*/)
178, 365.
— (n,d,t) = (49,23,4) requires 484 seeds per party, versus baseline (48) =

4
194, 580.



— (n,d,t) = (49,23, 8) requires 57,281 seeds per party, versus baseline (488) ~
3.7-108.

For additional data points, see the full version. Our PRSS constructions go
beyond basic Shamir or double-Shamir shares, to a generalized form of PRSS
that allows local generation of packed pseudorandom secrets with an arbitrary
replication pattern. We achieve this with with additional redundancy of seeds to
parties. However, the resulting complexity still provides significant savings as an
alternative to existing approaches within motivated regimes. We refer the reader
to Section 3.6 for a detailed treatment.

Contribution 2: Cheap straggler resilience. We propose a novel technique for
dealing with the “straggler” problem of delayed messages, allowing the protocol
to continue the execution once sufficiently many messages are received. In doing
so, we need to defend against the subtle “double-dipping” attack mentioned
above. In contrast to alternative approaches for defending against this attack [26,
35], our approach has no extra cost to the round complexity of the protocol and
only a sublinear additive communication overhead. Our protocol makes black-
box use of our PRSS construction to produce the required randomness without
interaction.

Combining the above tools to obtain efficient MPC protocols with security
against malicious parties requires additional ideas. In particular, we need to
adapt the distributed zero-knowledge proof techniques of Boneh et al. [8] to the
setting of MPC based on packed secret sharing. See additional discussion below.

The features of our final protocol are captured by the following theorem.

Theorem 1.2 (Malicious security with straggler resilience, informal).
Let t > 1 be a security threshold, £ > 1 a packing parameter, n > 2t + 20 — 1 a
number of parties, and F be a finite field such that |F| > n +t + 2¢. Then, for
any arithmetic circuit C over F with S multiplication gates and depth D, there
is an n-party protocol for C with the following efficiency and security features:

— The protocol makes a black-box use of any pseudorandom function;

— FEzcluding O(1) rounds of preprocessing and postprocessing, the protocol con-
sists of D epochs, where in each epoch Py sends a message to each other
party P; and receives a message back from each P;;

— It achieves security with abort in presence of t malicious parties even if
T =n—(2t+ 20— 1) messages, chosen by the adversary, are dropped in each
epoch;

— If the parties follow the protocol, it terminates successfully even if T mes-
sages, chosen by the adversary, are dropped in each epoch;

— Communication cost is (% — %) S+ 0(S) elements of F sent per party.

We further discuss the communication, computation, and storage costs in the
following remarks.



Remark 1.1 (Sensitivity to the topology of C.). As in other protocols based on
packed secret sharing, the communication complexity bound in Theorem 1.2
assumes that the circuit C' is “non-pathological” in the sense that its width is
bigger than the packing parameter ¢. (Otherwise there is an extra communication
cost resulting from empty slots.) Since we typically expect ¢ to be much smaller
than the circuit size, this condition is met for almost all natural instances of big
circuits.

Remark 1.2 (On the cost of PRSS.). The generalized PRSS primitive influences
the local storage and computational cost, which can be performed offline and
are practical for small t even for large values of ¢ and n; see the full version of
this paper for concrete numbers. By increasing the degree parameter d of the
generalized PRSS construction beyond the minimum required by ¢ and ¢, we get
better PRSS complexity at the cost of a lower straggler resilience threshold 7.

Remark 1.8 (On communication complexity.). When ¢ = 2, the amortized com-
munication cost in Theorem 1.2 is always less than 1.5 elements per party per
gate, and when ¢ = 3 it goes below 1 element per party. We present concrete
efficiency analysis of our protocol in the full version of the paper, showing that
as we increase n and £, our protocol not only can withstand stragglers, but also
achieves lower total communication than the best known semi-honest protocols
with n = 2t + 1 parties. In particular, whenever £ = (2(n) the total communica-
tion complexity (ignoring lower order additive terms) is O(s).

Technical challenges & contributions. Our final MPC protocol builds on new
solutions for the following main challenges:

— Generalized pseudorandom secret sharing (PRSS) based on combinatorial
designs that take advantage of the gap between the polynomial degree d and
the security threshold ¢ to reduce computation and storage costs.

— Packed secret sharing beyond SIMD, without the asymptotic or concrete
overhead of previous techniques [20,33,27]. Our solution relies on gener-
alized PRSS for cheaper batch generation of useful linear correlations, for
“repacking” secret shared values in different orders.

— Preventing “double-dipping” attacks, identified by [35, 26], which exploit the
redundancy of encoding across parties in a strong honest majority to obtain
related secret values under the same random mask (see below; note that
this attack arises even without share packing). The works of [35, 26] protect
against the attack using methods that require participation from all parties
and increase the round complexity by 2x or more; we do so while supporting
resilience to stragglers, and with essentially no extra online cost.

— Applying sublinear distributed zero knowledge [8] on packed shares, as well as
achieving batched verification with missing shares (due to stragglers). The
former challenge arises again from the non-SIMD structure of general com-
putation, here relating to the statements to be efficiently verified. The latter
issue pertains to verifying consistency of several robustly secret shared val-
ues, when each secret has a different subset of shares missing, corresponding
to different sets of straggling parties.



1.2 Related Work

We mention here specific recent works relating to our second contribution, of
MPC in the strong honest majority setting achieving concrete efficiency and
straggler resilience.

PRSS-based vs. interactive correlated randomness generation. In this work, we
use non-interactive PRSS to generate the double sharing required for the DN
multiplication protocol. While we improve the efficiency of PRSS dramatically
(when the polynomial degree d is higher than the corruption threshold t), the
computational overhead still limits the practical use of this method to a relatively
small number of corrupted parties ¢. See the full version for concrete estimates
of computational cost. An alternative to the PRSS-based approach is using an
interactive protocol, but with computation that scales polynomially with the
number of parties. The state-of-the-art protocol by Goyal et al. [34] shows how
to generate the double sharing with communication of just 0.5 field element sent
per party. This implies that our method requires approximately 25% less overall
communication. More importantly, the method of [34] does not support straggler
resilience and applies only to gate-by-gate evaluations. While it can be easily
extended to SIMD circuits, it does not extend to general non-SIMD circuits
with packed secrets. Finally, the correlated randomness generation procedure
from [34] requires interaction between all parties, which can be prohibitive in
other applications scenarios.

MPC with strong honest majority. Concretely efficient MPC in the strong honest
majority setting has gained recent focus, including the works of Gordon et al. [33]
and Beck et al. [27]. In comparison, their protocols scale to a larger number of
parties, while our approach provides better efficiency for the regime of small
corruptions t. This is due largely to our ability to generate the necessary setup
correlations with minimal interaction via generalized PRSS. In addition, our
protocols provide straggler resilience (yielding savings in settings with latency
variance), whereas [33, 27] assume a fully synchronous network. Finally, in these
works, malicious security comes with a multiplicative overhead, whereas in our
protocol, the overhead is sublinear in the size of the circuit.

A very recent work of Goyal et al. [36] shows how to achieve asymptotic
constant communication cost per party in this setting for general non-SIMD
circuits with information-theoretic security, but with poor concrete efficiency
and without stragglers resilience.

MPC with partial synchrony. A number of works have studied MPC with var-
ious (stronger) flavors of partial synchrony from the perspective of feasibility,
without focus on concrete efficiency. For example, the work of Zikas et al. [53]
provides unconditionally secure protocols in a model where parties can addition-
ally be send-omission or receive-omission corrupted. Guo et al. [38] consider a
model where parties can periodically go offline and return. In Badrinarayanan et
al. [3] parties can turn non-adversarially “lazy.” Both of the latter rely on heavy
cryptographic tools, such as (multi-key) fully homomorphic encryption.



Finally, a handful of works have considered concretely efficient MPC with
forms of partial synchrony, with incomparable conclusions. Hirt and Maurer [41]
consider a mixed model of malicious and fail-stop adversaries, achieve perfect
security, but with larger overall cost (e.g., without the savings of share packing).
The “Fluid MPC” work of Choudhuri et al. [17] builds efficient protocols within
a very different model, designed for long computations, where in each period of
time, a different set of parties carry-out the computation.

2 Preliminaries

Notation. Let Py, ..., P, be the set of parties and let t, ¢, d be integers such that
d>t+/f¢—1and n > 2d + 1. The parameter ¢ bounds the number of parties
that can be corrupted, the parameter ¢ denotes the size of the block of secrets
that are evaluated together, and d will be the degree of the polynomial defined
below. We use [n] to denote the set {1,...,n} and denote by F a finite field.

2.1 Threshold Secret Sharing

Definition 2.1. A d-out-of-n secret sharing scheme is a protocol for a dealer
holding a secret value v and n parties Py,..., P,. The scheme consists of two
interactive algorithms: share(v), which outputs shares (v1,...,v,) and
reconstruct({v; }jer, ), which given the shares vj,j € T C [n] outputs v or L.
The dealer runs share(v) and provides P; with a share v; of the secret v. A
subset of users T run reconstruct({v;};er, ) to reveal the secret to party P;. The
scheme must ensure that no subset of d shares provide any information on v,
while v = reconstruct({v;}jer, ) for T only if |T| > d+1. We say that a sharing
is consistent if reconstruct({v;}er, ) = reconstruct({v; }jer, 1) for any two sets
of honest parties T,T" C{1,...,n}, and |T|,|T'| > d+ 1.

Packed Shamir Secret Sharing In Shamir’s secret sharing scheme [48], the
dealer defines a random polynomial p(x) of degree d over a finite field F such
that the constant term is the secret. Each party is associated with a distinct
non-zero field element o € F and receives p(«) as its share of the secret. Since
the degree of the polynomial is d, any d + 1 points are sufficient to compute the
secret. We use the notation [z], to denote a sharing of z via a polynomial of
degree d.

Two properties of this scheme that are very useful for MPC are: (1) linear
operations on secrets can be computed locally on the shares, since polynomial
interpolation is a linear operation; (2) given shares of x and y, the parties can
locally multiply their shares to obtain a sharing of degree 2d of x - y.

In this work, we use a generalization of Shamir’s sharing scheme where mul-
tiple secrets are being encoded together, introduced by Franklin and Yung [24]
and known as “packed secret sharing”. This is achieved by storing the secrets on
multiple points. Note however that if we pack ¢ secrets together on a polynomial
of degree d, then the corruption threshold is being reduced to t = d — ¢ + 1.
Throughout this paper, we will use the notation [z --- ], to denote a shar-
ing of the block z1,...,x; using a polynomial of degree d, and assume that



x1,...,Te are stored at points 0, —1,..., —¢ + 1 respectively and that the share
of P; is the value at the point i. Observe that the properties mentioned above
apply to packed secert sharing as well. Namely, given a constant o, 8 € F and
two sharings [z1 - - z¢];, [y1-- - ye],, the following are local operations over the
shares: (1) [(ax1 + By1) - (axe + Bye)ly = alzr--zy + By yely; (2)
w1y - zeyelog = [z1 ey - [ya - velo-

We say that a sharing [«] ; or [ - - - 2] ; is inconsistent if all points do not lie
on the same polynomial of degree d. Given all shares, this can be easily checked
by using d + 1 points to reconstruct the polynomial and checking whether the
remaining points lie on this polynomial

2.2 Computation Model: Layered Straight-Line Programs

In this work, we present a multi-party protocol for performing arithmetic com-
putations over a finite field. In the MPC literature, arithmetic computations are
usually represented by a circuit or a straight line program (SLP) with addition
and multiplication gates/operations. We use the notion of SLP, but choose a
slightly different representation, with one instruction, which we call “bi-linear”,
that captures the two operations together. This model will allow us a simple and
more clearer description of our protocols, and in particular, make the trick to
achieve “free-addition” easier to describe.

Definition 2.2 (Layered straight-line program (SLP)). A straight-line
programs (SLP) over F is defined by an arbitrary sequence of the following kinds
of instructions:

— Load an input into memory: R; < x;.
— Bilinear instruction: Rj < (3.0 _, aw - Ry) - (Ot _ by - Ry)
— Output value from memory, as element of F: O; < R;.

Here xq...,x, are inputs, Ry,..., R, are registers and ay,...,0y,b1,...,by
are public constants in F. We define the size of an SLP to be the number of
instructions. A layered SLP is an SLP where the instructions are partitioned into
sets called layers such that the inputs to instructions in layer j were computed
in layer k < j. An L-layered SLP is a layered SLP in which the number of
instructions in each layer is a multiple of £.

For simplicity, we assume in our MPC protocols for SLP that each party holds
one input and receives one output at the end. However, the protocols naturally
extend to the general case of multiple inputs or outputs per party.

Remark 2.1 (Simulating arithmetic circuits by layered SLPs). Every arithmetic
circuit of size S (counting only multiplication gates, inputs, and outputs) can be
converted into an SLP of size S by sorting its gates in an arbitrary topological
order. The “/-layered” notion of SLP intuitively corresponds to a lower bound
on the circuit width. In particular, an SIMD circuit computing k > £ copies of a
size-S circuit C on k distinct inputs can be written as an ¢-layered SLP of size
kS. Any layered SLP can be converted into an ¢-layered one by naively adding



dummy gates if needed, where the latter adds (¢ — 1) times the depth in the
worst case. But almost all “natural” instances of big circuits can be compiled
into f-layered SLPs with no overhead.

3 Generalized Pseudorandom Secret Sharing

An important resource for our main protocol is a packed secret sharing of blocks
of ¢ secrets that are randomly sampled from a given linear subspace. In this
section, we show how the parties can securely generate arbitrarily many such
blocks of secrets without any interaction, assuming a short setup step where
they distribute seeds for a Pseudorandom Function (PRF). Subsequently, shares
are obtained by local computation on the seeds. We refer to this problem as
generalized pseudorandom secret sharing (PRSS). This primitive is useful beyond
the context of this work, and our results are useful even without any share
packing (i.e., when ¢ = 1).

More abstractly, we can view the problem as that of efficiently realizing a
linear correlation, namely an ideal functionality that picks a random vector from
a public linear space and delivers one or more entries of this vector to each party.
To be applicable in an MPC protocol, even with a semi-honest adversary, the
linear correlations must be generated securely. Loosely speaking, an adversary
should not get any information on the shares of honest parties beyond what
follows from the public linear correlation, even given the information that the
adversary holds.

The ideal functionality Fiinranda. We will make security arguments relative
to an ideal functionality F1inrand for sharing instances of linear correlated ran-
domness. More concretely, FLinrand 1S parametrized by some linear subspace,
and in each invocation it picks a random vector from that linear subspace and
distributes one or more entries to each party. Both the linear space and the
assignment of which entry goes to what party are public. It is only the actual
vector sampled from the linear subspace that should remain secret.

Security is defined with respect to a static adversary who may corrupt up to
t parties. Concretely, the real world view of the adversary together with the out-
puts of honest parties should be indistinguishable from an ideal world in which
the adversary chooses the corrupted parties’ shares, and then the honest par-
ties’ shares are sampled from the target correlation conditioned on this choice.
This can be formally viewed as a multiparty instance of a Pseudorandom Cor-
relation Function (PCF), recently defined by Boyle et al. [10], applied to linear
correlations. The notion of PCF naturally extends the notion of a Pseudoran-
dom Correlation Generators (PCG) [9], analogously to the way a standard PRF
extends a standard PRG.

We are interested in t-secure realizations of Fpinrand that have the following
structure: (1) During an offline setup phase, a trusted dealer picks random and
independent PRF seeds, and distributes each seed to a subset of the parties.® (2)
Next, to realize a fresh invocation of Fyizrand With common identifier id, each

5 This setup can alternatively be implemented by a secure MPC protocol.



party locally evaluates the PRF with each seed it owns on one or more inputs
derived from id, and outputs a fized linear combination of the PRF outputs.
(The linear combination is fixed and does not change from one id to the next.)

3.1 Overview

Following prior work, we reduce the goal of secure realization of Fpizrand tO
an information-theoretic problem where the PRF seeds are replaced with true
randomness. Namely, we consider locally generating an instance of the target cor-
relation with perfect t-security given independently random field elements that
are replicated between the parties. In the PRF-based computational realization
of FLinRand, the random field elements will be pseudorandomly sampled using
the PRF. Security under the above PCF-style definition reduces to information-
theoretic security via a standard hybrid argument.

The PRSS problem was first implicitly studied by Gilboa and Ishai [28].
Cramer, Damgard, and Ishai [18] made this notion explicit and described a sim-
ple construction for the case of generating t-out-of-n Shamir sharing of random
values. This construction is a useful building block in many cryptographic ap-
plications. Here we extend the notion and construction of PRSS to more general
settings that are motivated (among other applications) by MPC with strong
honest majority. We show that a gap between the degree d and the security
threshold ¢ can give rise to dramatic efficiency improvements. Concretely:

— We start by extending the standard PRSS problem to the case where the de-
gree of the Shamir-sharing polynomial can be larger than the security thresh-
old ¢, and reduce this problem to a well-studied combinatorial design problem.
This construction can be used for example to implement efficient distribution
of packed Shamir sharing [24] of random values, and can be useful for many
other applications.

— We show how to use the above construction in a black-box fashion to get
efficient implementation of the kind of “double sharing” needed for proto-
cols that follow the approach of Damgard-Nielsen (DN) [22]. Specifically, we
implement the target correlation of two secret-sharing of the same (possibly
packed) random values, one with a degree-d polynomial and the other with a
degree-2d polynomial.

— We show an extension of this technique to the harder case where we have
degree-2d sharings of random values, and degree-d sharings of arbitrary linear
combinations of those random values. This is used to generate random packed
secrets that satisfy given replicated constraints, as needed by efficient MPC
protocols for general circuits based on packed secret sharing [19, 20].

We note that our techniques can be used to improve the efficiency of even more
general forms of linear correlation, but leave systematic study of their application
to future work.

3.2 The Gilboa-Ishai Framework

The functionality that we want to implement distributes linearly correlated ran-
dom variables over some field F to n parties. The functionality is parameterized



by a matrix C' € FN*X whose columns span a linear code (i.e., linear subspace
of FY), and by a mapping p : [N] — [n] saying which party gets what entry
of the output vector. The functionality chooses a random vector v in the code
(by choosing a uniformly random wu < F¥X and setting v := Cu), then privately
sends to each party i’ all the entries indexed by p~*(i').

Implementing this functionality without any interaction (beyond pre-distribution
of PRF seeds) was studied by Gilboa and Ishai [28], in the information-theoretic
setting where the PRF seeds are replaced by true randomness. In their frame-
work, implementation of the linear-correlation functionality consists of:

— Input distribution, where an honest dealer draws zi,zs,...,zr € F uni-
formly at random, and distributes each x; to some subset of parties S; C [n];

— Local output computation, where each party ¢ locally computes and outputs
its entries of v from the z;’s that it received.

The complexity measures of interest for such a solution are:

— The number of distinct subsets S;, corresponding to the number of PRF
seeds to be distributed, and

— The sum Z?Zl |S;|, corresponding to the total number of pseudorandom
field elements to be derived from these PRF seeds, across all the parties.

All the known implementations, including the ones that we describe here, rely
on “small-support codewords” and the Gilboa-Ishai security criteria: A solution
is specified by a “sparse” matrix M € FN** (typically k& > K), whose columns
span the same code as C'. The output is computed by choosing a random vector
x = (21,...,2) and setting v := Mx, and each party gets all the z;’es that
it needs in order to carry out this computation. Specifically, for an entry v]i]
that belongs to party p(i), we give that party the random elements x; for which
MTi, j] # 0, making it possible for this party to compute the inner product
between x and the i’th row of M. Hence the sets Sy, ..., Sk are defined

S;={i" €n]:3ie[N], M[i,j] # 0 and i' = p(i)}, (1)

(For example, if the mapping p assigns entries 1 through 10 in v to Party 1 then
the only x; values that are not given to this party correspond to columns of M
where the top 10 entries are all zero.) Clearly, the sparser the matrix M is, the
fewer x; values that must be distributed and the smaller we can make the sets
S;.

Gilboa and Ishai proved a necessary and sufficient criterion for security within
this framework. Fix a code which is generated by the columns of the matrix C,
and a solution matrix M whose columns span the same code. For a subset of
parties T C [n], let I be all the rows that belong to parties in T, and Jr be all
the indices of x;’s that members of 1" get to see. That is, with the S;’s defined
as in Equation (1), we have

It = U p (i), and Jr={j e [k]: S;NT #0}.
V€T



Denote by Cz the restriction of span(C) to only the codewords that are zero
in all the coordinates I7. Also denote by Mz the submatrix of M consisting of
the rows in the complement I+ = [N]\ Iy and the columns in the complement
Jy = [k] \ Jr (i.e., the ones corresponding to z;’s that none of the parties in T
receives).

Lemma 3.1 ([28]). Let C € FN*E and M € FN** be two matrices with the
same column space (so M describes a solution to the distribution of a codeword
from span(C)).

For a subset of parties T C [n], the solution specified by M is secure against
a corrupted T iff the rank of M% equals the dimension of Cp.

3.3 Technical Tool: Covering Designs

The main technical tool that we use in our construction is the following notion
of covering designs:

Definition 3.1 ((n,m,t)-cover). Fiz integers n > m >t > 0, and let C =
(S1,...,Sk) be a collection of k different subsets S; C [n], all of size |S;| = m.
C is said to be an (n,m,t)-cover if for every size-t subset T C [n],|T| =t, there
is a set S; € C that covers it, T C S;. We will refer to an (n,m,t)-cover as a
t-cover when n,m are clear from the context.

This notion is equivalent to the notion of ¢-immunity of Alon et al. [2], in
which for every subset 7" there is a set S; in the collection such that 7' S; = 0.
The collection C is an (n,m,t)-cover iff the complement sets [n] \ S; form an
(n,n —m,t)-immune collection. The smallest number of subsets in an (n,m,t)-
cover is also known as the hypergraph Turdn number 7 (n,n —¢,n—m) in honor
of Paul Turdn who initiated the study of these objects in [50,51].

The parameters of covering designs have been studied extensively, e.g. see
[49, 25] for surveys, but the exact value is still an open problem in the general
case. The best known analytical bounds for small values of ¢ are summarized
in a Handbook of Combinatorial Designs chapter by Gordon and Stinson [32].
A good online resource that collects the best known bounds for concrete values
of n,m,t with ¢ < 8, including ones found via computer search, is Gordon’s
covering designs web page [1].

For general values of ¢, Micali and Sidney [44] proposed to construct an
(n,m, t)-cover by randomly choosing (7)/("})In (’}) subsets of size m from [n]
and used a probabilistic argument to show that with good probability this col-
lection is an (n, m,t)-cover. Pieprzyk and Wang [39] construct a deterministic,
greedy algorithm that achieves the same bound on the size of the collection.
Both works were motivated by variants of the PRSS problem where the seeds
are stored in a replicated form, without the compressing share conversion step
from [28, 18]

A range of parameters which is especially appealing for our MPC protocol is
constant ¢, and m which is a linear fraction of n, e.g., m = n/3. In this case, the



protocol can cope with a large number of stragglers and reduce communication
by packing. When ¢ is constant, the constructions in [44, 39] have collections of
size O(logn).

We next describe a simple construction that achieves a constant-sized collec-
tion for t = O(1) and m = 2(n), when ¢ divides m and m divides n. Denote

¢ = n/m and partition [n] into ct subsets Ry, ..., Rq of equal size. Let the collec-
tion Si,..., Sk be all the possible choices of ¢ subsets R;, U---U R;,. Obviously,
each |S;| = t(n/ct) = m and for every T C [n],|T| = t there exists some S,

such that T C S;. The size of the collection is (‘f), which for constant ¢ and c is
constant, improving over the construction of [44, 39].

Taking for each parameter set (n,m,t) the minimal cover size between the
simple construction and the construction in [39] provides a baseline construction
for t-covers. This baseline achieves an upper bound for the cover size, which is
bigger than the minimal possible size by a factor of at most O(logn), due to a
simple lower bound of (7)/("}) on this size (see, e.g., Theorem 11.19 in [32]).
Both the upper bound of the baseline construction and the simple lower bound
are generally not tight. Improved bounds for certain parameter ranges can be

found in [1].

3.4 Generalized PRSS for Degree-d Polynomials

It is easy to see (see Theorem 3.2) that t-covers are necessary for ¢-secure dis-
tribution in the Gilboa-Ishai framework, since any corrupted subset must miss
at least some of the x;’s. Here we observe that the other direction is also useful,
establishing a close connection between the size of the best (n,d+1,t)-cover and
the complexity of PRSS for distributing random degree-d polynomials between
n parties with security against ¢-collusions.

Theorem 3.1 (Generalized PRSS for degree-d polynomials). Fiz inte-
gersn > d >t > 0. A size-k’ (n,d + 1,t)-cover can be used to construct a
generalized PRSS solution for t-secure distribution of degree-d polynomials, with
the following complexity measures:

— The number of distinct subsets (or PRSS seeds) is k = k'(d + 1), and
— The total subset size (storage) is ), |S;| = k'(d +1)(n — d) and
— The total number of PRF calls is k'(d + 1)(n — d).

Proof: Let C' = (S1,...,5)},) be a size-k’ (n,d + 1,t)-cover, i.e. it consists of
k' subsets, each of size d + 1, that cover all the ¢-subsets. We then consider all
the subsets that are obtained by removing one element from any of the S;’s,

C={\{j}: SeC jes}

Clearly, there are at most k < k'(d + 1) distinct subsets in C, each of size d.
Let us denote the subsets in C by S;, Ss, ..., Sk, and we use these subsets in the
CDI construction to distribute a random degree-d polynomial. We let ng be the
unique polynomial of degree d interpolated from



Py (X) = {0 if X €5
J 1 ifX=0
As before, Pg is a nonzero degree-d polynomial, whose zeros are exactly all
the parties in S;. A random vector = € F* therefore defines the polynomial
Qz(X) =3,z - Pg,(X), and each party i € [n] gets the z;’s corresponding to
the S'j’s that do not include i, and can compute Qg(¢) from these x;’s. Thus,
there are k'(d + 1) distinct subsets, each of cardinality n — d. This implies that
the total stroage is k'(d+1)(n —d) as the theorem states. Since each seed is used
once, the total number of PRF calls is also the same.

In the language of the Gilboa-Ishai framework, the matrix M € F"** is
defined by M[i, j] = Pg, (i), and the distribution sets are exactly the comple-
menting sets S; = [n] \ S; (namely we distribute each x; to the complement of
some S’ € (', together with one more element). The complexity measures are
obvious.

It remains therefore to show security against a collusion of ¢ parties, which for
degree-d polynomials means showing that for every t-subset T', the submatrix M’T
has rank at least d+1—t. Fix a t-subset T C [n], so there is a subset S’ € C’ that
covers it. Consider now the sub-matrix corresponding to the subsets S that were
obtained by removing from S’ one element which is not in T (hence those sets S
still all cover T'). That is, we consider the sub-matrix Mr s of M[i, j] = Pg, (i),
consisting of the rows for [n]\ 7" and the columns for S; = ([n]\ S")U{j’} for all
j' € S"\T. Clearly Mz s/ is a sub-matrix of M%, it has n —¢ rows and d + 1 —¢
columns (since S” covers T'), and it has the form

% Xk *
MT,S’: % )
*

where the *’s are non-zero and everywhere else there are zeros. The top rows
-+ % correspond to [n] \ S’ and the bottom rows correspond to S"\ 7. The last
d + 1 — t rows of this matrix are linearly independent, hence the rank of My g
is d + 1 —t, as needed for the Gilboa-Ishai condition. W

Corollary 3.1. Fiz integers n > d > 1. Then, the following holds for gen-
eralized PRSS solutions for t-secure distribution of degree-d polynomials with
t=1,2:

1. There exists a solution fort =1 with {#—‘ (d+1) total seeds, [#—‘ Wbﬂ

seeds stored by each party and {#i‘ W calls to the PRF made by

each party.



2. If n < 3(d+ 1) then there exists a solution for t = 2 with 13(d + 1) total
seeds, 13(d + 1)(n — d)/n seeds stored by each party and 13(d + 1)(n —d)/n
calls to the PRF made by each party.

We can also prove a nearly-matching lower bound Theorem 3.1 on the so-
lution complexity for ¢-secure distribution of degree-d polynomials, in terms of
the achievable size for (n,d + 1,t)-covers. This naturally generalizes a similar
negative result for standard PRSS from [18]. The proof is in the full version.

Theorem 3.2 (Necessity of cover designs). Any generalized PRSS solu-
tion for t-secure distribution of degree-d polynomials that has k distinct subsets
implies an (n,d + 1,t)-cover of size k' < k.

The combination of Theorems 3.1 and 3.2 prove that the best (n,d + 1,t)-
cover implies a nearly optimal number of distinct subsets, up to a factor of at
most d + 1.

3.5 Double Shamir Sharing

A useful resource for efficient honest-majority MPC protocols is a so-called “dou-
ble Shamir sharing” of a random secret, where the parties are given two random
polynomials of degrees d and 2d that share the same random secrets. Here we
consider the case of packed secret sharing. Letting £ = d — t + 1 be the packing
parameter, we want to generate a random degree-d polynomial P;, and another
polynomial P, of degree-2d which is random subject to P;(z) = Py(z) for all
x € {0,—1,-2,...,—¢+1}. Tt is easy to see that this task reduces to generating
two independent random polynomials P;(X) of degree d and R(X) of degree
2d — /£, then setting P(X) =P (X)+ R(X) - X(X +1)(X +2)-- - (X +{—1).

Indeed, the polynomial on the right side is a random degree-2d polynomial,
under the constraint that its values at the points {0, —1,...,¢+ 1} are 0. Since
Py (z) and R(x) are random independent polynomials, we can use the construc-
tion from the previous section in a black-box way. Specifically, we can generate
Py (z) using a (n,d+1, t)-cover and generate R(x) using an (n, 2d—£+1, t)-cover.

Theorem 3.3 (Generalized PRSS for packed double sharing). Fiz in-
tegers d >t >0 andn > 2d and let { =d —t+ 1. A size-k’ (n,d + 1,t)-cover
and a size-k"” (n,2d — ¢ + 1,t)-cover can be used to construct a solution for t-
secure distribution of double-Sharing of degree-d and degree-2d polynomials, both
packing the same € elements, with the following complexity measures:

— The number of distinct subsets (seeds) is at most k < k'(d+ 1) + k" (2d —
0+ 1) <K(2d+t+1);

— The total subset size (storage) is 3, |S;| < k'(d+1)(n—d) + k" (d+t)(n —
d—t+1).

— The total number of PRF calls is K'(d+1)(n —d)+ k" (d+t)(n —d—t+1).

The proof is in the full version. This construction is already strong enough to
support DN-type secure computation protocols, even while packing ¢ elements



in each polynomial. (Hence it can be used to compute the same circuit on ¢
different inputs at once, in a SIMD fashion.)

As an alternative to the above, we can use an (n,d + 1,t)-cover to construct
both polynomials, by increasing the number of pseudorandom elements derived
from each seed. This will reduce the number of seeds stored by the parties (by
some factor smaller than two), but will increase the number of pseudorandom
elements that must be derived from these seeds. We provide the construction in
the full version of this paper. We use a similar idea in the construction in the
next section.

3.6 Beyond Double Sharing

In some applications, including the protocol that we describe in Section 4, we
must generate double-Shamir-sharing of linearly correlated packed values (rather
than the same values twice). While we don’t know how to use the random-
polynomial construction in a black-box manner to achieve this, we show here
how to modify that construction in order to distribute this more general linear
correlation in a t-secure manner.

This extension, however, comes with some loss of efficiency. Specifically, we
need to start from covers with smaller subsets, and moreover we no longer dis-
tribute only a single random element to each subset. Fix n > d > ¢t > 0 and
¢ < d—t (allowing £ < d — t is useful to mitigate the parameter loss). The goal
in this section is to share two types of polynomials:

— m polynomials Ry, ..., R, of degree 2d, each packing ¢ “free variables” (i.e.
unconstrained) in positions 0, —1,..., —¢ + 1.
— m’ additional polynomials Us,...,U,, of degree d, each packing ¢ con-

strained variables, which are set as some fixed linear combinations of the
free variables.

Denote the positions where these values are packed by L = {0,—1,...,—¢ +
1}, and also denote the linear correlation above by L[n,d, ¢, m,m’]. In the full
version, we show the following:

Theorem 3.4 (Generalized PRSS for replicated packed secrets). Fiz
integersn>d>t>0,L<d—t, m,m >1. A size-k' (n,d—{+1,t)-cover can
be used to construct a solution for t-secure distribution of the linear correlation
Ln,d, ¢, m,m'] above. The complexity is at most:

— The number of distinct subsets (seeds) is at most k < k'(d — ¢+ 1);
— The total subset size (storage) is 32 S| < K'(d— L+ 1)(n —d+£);
— The total number of PRF calls is at most k(n —d +£)(m(d+ ¢+ 1) +m').

Parameters. We remark that the parameters of this construction behave dif-
ferently than those of the previous constructions. For the constructions from
Sections 3.4 and 3.5, increasing ¢ (and d) was a double-win, not so for the cur-
rent construction. Here we need to start from a (n,d — £ + 1,t)-cover, so setting
¢ = d —t we hardly get any slackness in the size of the sets in our t-cover (they



will be of size only ¢ + 1). To improve parameters (the cover size in particular),
it is better to choose a smaller value of ¢, thereby working with larger subsets
and hence being able to find smaller covers. It is likely that setting £ ~ (d —t)/2
will be a sweet spot for this construction in terms of complexity.

4 Constructions for Semi-Honest Security

In this section, we present protocols to compute a layered straight-line program
over a finite field I, that is secure in the presence of a semi-honest adversary who
controls t parties, and with straggler-resilience. Recall that we have n > 2d + 1
parties, where d >t + /¢ — 1.

The starting point of our constructions is the DN protocol [22], which is
the fastest protocol known to this date for n > 3 parties. We begin in Sec-
tion 4.1 with recalling the baseline DN protocol. In Section 4.2, we introduce
straggler resilience and show how to adapt the DN protocol accordingly. Then
in Section 4.3 we provide our solutions for improving the communication and
computation requirements of the protocol.

4.1 Baseline Protocol (with £ =1)

Recall that in the DN protocol [22], the parties compute linear operations with-
out any interaction and compute multiplication operations with small constant
communication cost per party. Given shares [z], and [y],, the parties compute
[« - y], in the following way. The parties prepare random sharings [r]; and [r],,
in an offline step which are consumed as follows. First, the parties locally com-
pute [ -y — 1]y = [x], - [¥l,; — [7],, and send their shares to P;. Then, party
P, computes z - y — r and shares the result to the parties as [zy — r],. Finally,
the parties locally compute [z - y], = [r], + [zy — r],-

As the random sharings can be generated non-interactively (in the way de-
scribed in Section 3), the communication cost is derived from parties sending
one field element to P, and P; secret sharing xy — r to the parties. Note that 2d
shares are sufficient for P; to reconstruct zy — r (together with its own share).
Also, it is possible to reduce communication in the second round by setting the
shares of d parties to be 0, and having P; define its own share and the remaining
n — d parties’ shares, given the value of zy — r and the d zero shares. This is
possible since xy — r is not secret (P; could send it in the clear to the parties)
and since [zy — 7], is shared via a polynomial of degree d, and so d+1 points are
sufficient to define it. Overall, we have that the communication cost per party
per bilinear gate is W =1+ % field elements. When n > 2d + 1, it
is possible to improve this by having the parties secret sharing their inputs to
2d + 1 parties who perform the computation. In this case, the communication
cost per party per bilinear gate reduces to an—”l = 3—7? elements.

We denote by ME%¢ the base protocol, which thus works as follows:

Protocol I'Its’aé'e:
The parties hold a description of a layered SLP over F. Denote by S the set
of parties Pi,..., Pagy1



— Pre-processing: The parties call F1inrand to obtain a pair of random shar-
ings [r], and [r],, for each bilinear instruction.

— The protocol:
1. Input sharing: for each instruction R; < x;, party P; run [;], < share(x;)

and sends the resulting shares to the parties in S.

2. Evaluating the jth bilinear instruction R; < (3" au,Ry) - (3 BuRw): Let

[r];[7]54 be the next unused pair of random sharings. Then:

(a) The parties in S locally compute [z], = >0_, o - [Ru], and [y], =
> by [Ru],, where [R,],; denotes sharing of the w-index memory
value R, (stored from previous operations).

(b) The parties in S locally compute [zy —r],, = [z], - [v],; — [],, and
send the result to P;.

(c) P locally reconstructs zy — r and then computes a sharing [zy — 7],
such that the shares of P ..., Py;1 are 0. Then, it sends the non-zero
shares to parties Pyio,..., Pogy1.

(d) The parties in S set [2], « [r], + [zy — r],, and define [z], as their
share of the output.

3. Output reconstruction: For each instruction O; <— R;, the parties in S send
their shares of the value in R; to P;, who uses them to reconstruct the

output O;.

Security of M2%%° against a semi-honest adversary A controlling d parties

follows from the fact that A’s view consists of d random shares in the input
sharing step, and masked intermediate values when performing multiplication
operations.

4.2 Straggler Resilience

The classical communication model for secure multi-party computation considers
parties who advance in the same pace in a fully synchronous manner. However,
in real world scenarios, it is unreasonable to assume that all messages arrive at
the same time. A protocol which can proceed without having to wait for all the
parties’ messages to arrive in each round, has thus the potential to reduce the
overall latency of the execution.

We consider a model of straggler resilience, to account for the fact that com-
munication channels exhibit a distribution over latency times, each of which may
incur long delays with small probability. Instead of requiring parties to block and
wait in every communication round until the last messages arrive, we build into
the protocol design that the computation may proceed even in the absence of a
small number of messages per round, which have not yet successfully been deliv-
ered. We say that a protocol that terminates successfully even when 7 messages
are dropped in each round, is resilient to 7 stragglers. As for privacy, following
the standard definition of multi-party computation [29], we consider an adver-
sary who controls t parties and, in addition, is allowed to choose 7 messages to
be dropped in each round.

Definition 4.1 (Straggler resilience, semi-honest security). Let f be an
n-party functionality. We say that protocol II computes f with t-semi-honest-
security and T-straggler-resilience if it satisfies the following properties:



— STRAGGLER-ROBUST CORRECTNESS: [T terminates successfully (i.e. each
party receives its prescribed output f;(x)), even if in each communication
round, T messages, chosen adaptively by the adversary, are not delivered.

— SEMI-HONEST SECURITY WITH STRAGGLERS: For every real-world semi-honest
adversary A controlling a set I of parties with |I| < t and, in addition, can
choose adaptively T messages to drop in each communication round, there ex-
ists an ideal-world simulator S such that for every vector of inputs x it holds:
{8, z;, fi(x))} = {view(x)}, where x; is the inputs of the parties in I,
fi(x) is the output intended to the parties in I, and view’y(x) is A’s view in
a real execution of .

Remark 4.1 (Straggler resilience).

1. Round ws. epoch. Our protocol constructions have a very specific structure,
common to concretely efficient n-party computation protocols (& la DN [22]),
where execution is divided into phases, or “epochs.” In each epoch, a fixed
designated party sends messages to the other parties, and then receives back
messages from the parties. Within such structure, a somewhat more natural
notion of straggler resilience will correspond to a given number of dropped
messages per epoch (i.e., 2 rounds). However, our notion of 7 dropped mes-
sages per round is more generally applicable, while still capturing the setting
of bounded number of messages dropped per epoch (in this case 27, for the
two rounds).

2. Message vs. node drop. We choose to model latency behavior as embodied

by failure of delivery of individual messages. This captures settings where
delays are caused by network channels, each exhibiting some distribution of
latency. This further shares similarities to the “message omission” model,
where messages sent to/from affected parties may never be delivered, as
considered in, e.g., [40, 46, 45].
An alternative approach is to consider temporary node failures per epoch
(as considered in, e.g., [47,43,53]). This models settings where delays are
caused centrally by the node itself. On one hand, our model can be more
fine-grained; on the other hand, failure of a node corresponds to failure of
potentially many incoming/outgoing communication messages. We remark
that achieving straggler resilience against node failures poses a challenge
within protocols following a star-topology communication structure as in
DN and successors since failure of the designated “central” party prevents
forward progression of the protocol. Seeing as this protocol structure lies
at the core of concretely efficient n-party protocols to date, it remains an
interesting open direction to explore whether such node-straggler resilience
notion can additionally be achieved with good concrete efficiency.

Observe that the DN protocol I'Igéﬁe from the previous section is not resilient
to any straggler. Since it chooses a set S of 2d+ 1 parties in advance to carry-out
the computation, and then the server cannot proceed without all 2d messages
arriving to him in each multiplication, then an adversary who chooses to drop



the messages of even one party in the set .S will cause the execution to get stuck.
Note that choosing a different set S in each step will not solve the problem, since
the adversary is allowed to adaptively choose a different set in each epoch (not
to mention the communication cost incurred by resharing intermediate values to
the new set of parties).

Next, consider a protocol, where we let all the parties participate in the
execution and send their 2d-degree shares of xy — r to P, who then uses the
first 2d shares it receives (together with its own share) to compute zy —r. Then,
P; shares xy — r to the parties, with the optimization outlined above, which
allows him to send shares to n —d — 1 parties only (d shares are always 0).

Note that now the cost is %’HI% =2— % field elements sent per party.
We denote by I'I‘gI"{gle a protocol that is identical to 5%, with the difference that
the input is shared to all the parties and multiplication operations are carried-
out in the way described above. While the communication cost of ﬂgﬁgle is higher
than of ﬂg"ﬁe, it does allow (n — 2d — 1) messages in each epoch to be dropped,
since P needs only 2d shares in order to compute its message to the parties. For
the input sharing and output reconstruction steps, note that d+ 1 shares suffices
to compute shared secrets, and so even if (n — 2d — 1) messages are dropped,
there are enough shares to proceed. We thus have:

Theorem 4.1. Let f be a n-ary functionality over a finite field F represented
by a layered SLP, let t be a security threshold, let d be a parameter such that
d>t,n>2d+1 and |F| > n+d+ 1. Then, Protocol ﬂg;{gle computes f in
the FLinRana-hybrid model, with t-semi-honest-security, (n — 1 — 2d)-stragglers-
resilience and communication of 2 — % field elements sent per party for each
bilinear instruction.

Observe that setting the d parameter gives rise to trade-offs between com-
munication cost, stragglers-resilience and storage cost. Specifically, increasing d
reduces communication and also the amount of PRSS keys needed for producing
the correlated randomness (see Section 3). In contrast, keeping d small (e.g.,
setting d = t) provides more room for stragglers.

4.3 Reducing Communication and Computation

In this section, we show how to reduce communication and computation cost
while still providing resilience to stragglers. This is achieved by taking the ap-
proach of packed secret sharing: encoding ¢ secrets over the same polynomial and
evaluating ¢ bilinear instructions together, at the cost of a single instruction. We
begin with a construction that is designed for SIMD programs, and then show
how to extend our techniques to general programs.

Computing SIMD Programs A program which evaluates the same sub-
program many times in parallel is called a SIMD (“same-instruction-multiple-
data”) straight-line program. Note that a program P which consists of ¢ copies
of the same sub-program can be viewed as a program which evaluates each time
a bundle of ¢ identical instructions. Following works in this area, our idea is
to store the ¢ inputs to each bundle on the same polynomial, reducing both



communication and computation by a factor of . Details can be found in the
full version.

Computing General Layered Straight-Line Programs We next show how
use packing to reduce cost when computing any straight-line program. In the
protocol, the parties will process in each round ¢ instructions together at the cost
of evaluating a single instruction. For a general-structured program this clearly
raises several difficulties. Recall that an instruction in our program consists of
taking a linear combination of two sets of inputs and multiply them together.
The goal is to carry-out this by packing the “left” inputs on one polynomial and
the “right” inputs on a second polynomial and multiply them together, to obtain
a polynomial encoding the outputs of £ instructions. However, it is now not clear
how to proceed to the next batch of £ instructions. In particular, when we move
from one batch of instructions to the next, the outputs should be reorganized
into new blocks of inputs corresponding to the ordering of the inputs in the next
¢ instructions. Moreover, it is possible that an output is used as an input to more
than one instruction in the next batch. In this case, we need to ensure that the
same value appears in several blocks and possibly in different positions. We call
this ordering the “repetition pattern” induced by the program. To overcome this
challenge, we leverage the fact that in the semi-honest multiplication protocol,
party P; sees all outputs in the clear, masked using random values. Thus, we
can ask P; to reshare all values according the ordering of the next batch of
instructions. Moreover, to achieve free-addition, we will ask P; to first compute
the linear combinations over the masked outputs and only then reshare it to the
other parties in blocks. The parties, who receive block of masked values, will
unmask these values, using correlated randomness they hold, and proceed to the
multiplication operation.

In our protocol, the parties hold a sharing of two blocks of £ inputs: [z - - - z¢] ;
and [y ---ye] ;- As in the DN protocol, they locally multiply their shares and
add shares of a random block [ry - - -7¢],, to obtain a sharing
[(@1-y1+71) - (ze-ye +7¢)]54 Then, the parties send their shares to P; who
reconstructs x1-y1 +7r1,...,Te ye+ 1. However, instead of sending these back to
the parties, we let P; proceed to the next batch of instructions and compute the
linear combinations of the inputs over the masked secrets. Only then P; shares
the left block of masked inputs and right block of masked inputs to the par-
ties, to perform the next multiplication operation. Once the shares of the blocks
of masked inputs are received from P;, the parties unmask these by adding a
block of shared random secret that correspond to the repetition pattern. That
is, if we have in the kth position of, say, the left input, a linear combination
(XY _, akw - R,) and the value in R,, was masked using r,, then the parties
need here a sharing [r‘y --- 7], where r', = (ZZZI Ak - Tw). Fortunately, our
pre-processing protocol from Section 3 can produce these types of random blocks.
As before, P; proceed once 2d shares have been received, which means that, as
before, the protocol is resilient to n — 1 — 2d stragglers. We stress that our trick
to let P, compute the linear operations over the masked inputs and only then



reshare it back to parties, is crucial for achieving addition for free - a property
that is not trivial to achieve for non-SIMD circuits.

We formally describe our semi-honest protocol in the full version. Note that
for each batch of ¢ bilinear instruction, n — 1 parties send an element to P,

whereas P; need to share the inputs of the two inputs blocks, thus sending 2(n —
n—1+42(n—1—d) _

1—d) elements. Overall, per a single instruction, each party sends ey,

% — % field elements, where d >t + ¢ — 1.

Theorem 4.2. Let f be a n-party functionality over a finite field F represented
by a {-layered SLP, let t be a security threshold parameter and let d be a param-
eter such thatd > t+£€—1,n>2d+1 and |[F| > n+d+ £+ 1. Then, our
protocol computes f in the FrinRand-hybrid model with t-semi-honest-security,
(n — (2d + 1))-stragglers-resilience and communication of 3 — 2‘233 field elements
sent per party for each bilinear instruction.

The proof in the full version. Observe that when ¢ > 3 (i.e., packing at least
3 secrets on each polynomial), we have % - 2‘5—'*;' < 1, which means that each
party sends less than one field element for each bilinear instruction. When £ = 2,
then the cost is less than 1.5 elements sent per party. We thus obtain a protocol
which provide the best of both worlds: it achieves both minimal communication
and stragglers resilience. This is in contrast to M5%¢ which achieves minimal
communication without any resilience to stragglers, and I'If’si;‘{gle which can handle
stragglers but at the cost of (at least) doubling the communication cost. We

provide exact cost analysis with concrete numbers in the full version.

5 From Semi-Honest to Malicious Security

In this section, we show how to augment our protocol from the previous section
to malicious security (with abort). Our goal is to achieve malicious security
without increasing the amortized communication cost per instruction, and while
maintaining the resilience to stragglers.

We begin by defining the meaning of security and resilience to stragglers
in the presence of malicious adversaries. Note that unlike the definition with
semi-honest adversaries, we no longer guarantee a successful termination of the
protocol, but rather provide security with abort. The straggler-robust correct-
ness, however, will still require that the protocol ends successfully if the parties
act honestly, even if in each round 7 messages, chosen by the adversary, are
dropped. In addition to this requirement, we also need the protocol to be secure
in the presence of an adversary who controls ¢ parties and, in addition, can drop
any 7 messages in each round of communication.

Following the standard ideal-world vs. real-world paradigm of MPC [29, 14],
let A be an adversary who chooses a set of parties before the beginning of the
execution and corrupts them. We assume that the adversary is rushing, meaning
that it first receives the messages sent by the honest parties in each round,
and only then determines the corrupted parties’ messages in this round. Let
REAL{L 4.7(1%, @) be a random variable that consists of the view of the adversary



A controlling a set of parties I, and the honest parties’ outputs, following an
execution of IT over a vector of inputs & to compute f with security parameter
k. Similarly, we define an ideal-world execution with an ideal-world adversary S,
where S and the honest parties interact with a trusted party who computes f
for them. We consider secure computation with abort, meaning that S is allowed
to send the trusted party computing f a special command abort. Specifically,
S can send an abort command instead of handing the corrupted parties’ inputs
to the trusted party (causing all parties to abort the execution), or, hand the
inputs and then, after receiving the corrupted parties’ outputs from the trusted
party, send the abort command, and prevent them from receiving their outputs.
We denote by IDEALf s (17, ), the random variable that consists of the output
of § and the honest parties in an ideal execution to compute f, over a vector of
inputs ®, where S controls a set of parties I. The security definition states that
a protocol IT securely computes f with statistical error €, if for every real-world
adversary there exists an ideal-world adversary, such that the statistical distance
between the two random variables is less than e.

Definition 5.1 (Straggler resilience, malicious security). Let f be an n-
party functionality and let € = (k) be a statistical error bound. We say that
IT computes f with t-malicious-security-with-abort and T-straggler-resilience with
statistical error € if it satisfies the following properties:

— STRAGGLER-ROBUST CORRECTNESS: If all parties act honestly, then II ter-
minates successfully (i.e. each party receives its prescribed output f;(x)) even
if in each communication round, T messages, chosen adaptively by the adver-
sary, are not delivered.

— SECURITY WITH STRAGGLERS: For every real-world malicious adversary A
who controls a set of parties I with |I| < t and, in addition, can choose
adaptively any T messages to drop in each round of communication, there
exists an ideal-world simulator S, such that for every k and every vector of

inputs x it holds that SD (REAL{IA’I(IN,:;ULIDEALfyg,I(l”,:c)) < € where
SD(X,Y) is the statistical distance between X and Y.

To construct a protocol that satisfies the definition, we work in two steps.
First, we present a protocol to compute the program until (and not including)
the output-revealing stage, that provides privacy in the presence of malicious ad-
versaries. As we will see, maybe somewhat contrary to intuition, our semi-honest
protocol from the previous section may leak private data to a malicious adver-
sary. We thus show how to fix this without changing the communication cost or
the round complexity and whilst providing the same resilience to stragglers.

Then, we add a step, before the revealing of the output, in which the parties
verify the correctness of the computation, and abort with high probability if
cheating took place. The properties of this step are: (i) it has sublinear commu-
nication (in the size of the program) and so the overall amortized communication

" Note that we prove statistical security of our protocol in a hybrid model where
parties hold correlated randomness. The resulting combined protocol provides com-
putational security when this setup is instantiated using PRSS.



cost per instruction remains the same, (ii) it requires a small constant number
of rounds and so does not increase the round complexity of our protocol.

We note that although the protocol we describe only guarantees security
with selective abort, it can be easily augmented to unanimous abort as required
by the definition above with small constant cost, by running a single Byzantine
agreement before the end of the execution. For simplicity, we omit this step from
the description.

Before proceeding, we briefly describe two building blocks required by our
protocol:

The Feoin tdeal functionality. In our protocol, the parties will sometimes need to
produce fresh random coins. The F_;, functionality, when called by the parties,
hands them such coins. To compute Fco;y with abort, the parties can simply
generate a random sharing [r], and open it. In the honest majority setting, there
is nothing the adversary can do here beyond causing an abort. We note that to
generate any number of coins with constant communication cost, it suffices to
call F.oin once to obtain a seed, and expand it to many pseudo-random coins.

Consistency check. To check that m sharings {[z;1---z;],}7L, are consistent,
we use the well-known method of taking a random linear combination of these
sharings, mask the result by adding a random sharing [r; - - -7¢];, and open it.
For the random linear combination, the parties call F.un to obtain the random
coefficients.

5.1 Privacy in the Presence of Malicious Adversaries

In this section, we show how to compute a straight-line program with privacy in
the presence of a malicious adversary. We begin by showing that DN-style semi-
honest protocols which we consider in this work, may leak private information
to a malicious adversary in the strong honest majority setting. Recall that in
the semi-honest protocol, to carry-out a multiplication between shared inputs
[«], and [y],, the parties send [z -y —r],, to Pi, who reconstruct x -y —r
and shares it as [« - y — r], to the parties. Then, the parties compute [z - y], =
[z -y —r],+ [r], and obtain a sharing of the output.

The “double-dipping” attack [35]. We now describe an attack that can be carried
out by a malicious P, when n > 2d + 1. This attack was shown in [35] for
the setting of d < n/3 and works over two multiplication gates/instructions as
follows. Assume that the parties multiply [z], with [y],. Thus, after receiving
the masked shares from the parties, P, reconstructs xy — r and computes a
random sharing [z -y —r],. Then, P; sends the correct shares to all parties
except for P,, to whom it adds 1 to the intended share. Thus, all the parties,
except for P,, can compute the correct share of = -y by adding [r],. Denote the
share of z-y held by P; by «;. This means that P, will hold «,, +1. Next, assume
that the parties proceed to the next multiplication, where they need to multiply
[zy], with [z],, and denote the share of z held by P; by z;. Note that once P,
receives 2d shares, it can not only reconstruct xyz — r’, where 7’ is the random



masking for this multiplication, but also can compute the remaining n — 1 — 2d
shares that should be sent. In particular, after receiving shares from any subset
of 2d parties that does not contain P,, it can compute the correct share that
should be sent by P,, i.e., o, - 2z, — 7., where !, is P,’s share of r'. However,
P, will send the share (o, + 1) - z, — r},, which means that P; can compute
(an + 2n — 1) — ((ay + 1) + 2, — 7)) = zp, Obtaining the secret share z, of P,.
Previous solutions. The main reason for the above attack is that in the strong
honest majority setting, there is redundancy in the masking. Indeed, the solu-
tion suggested in [35] is to use as masking the sharing [r], ;, which means that
x -y — r can be reconstructed only given the shares of all parties. A different
solution was given in [26], where a consistency check was carried-out between
each two layers of the program. This prevents the above attack, since by sending
an incorrect share to P,, the resulting sharing of = - y becomes inconsistent.
Thus, a consistency check will detect this type of cheating and prevents P; from
proceeding with the attack to the multiplication in the next layer. However,
these solutions are not sufficient in our case, since either they require all par-
ties to participate, preventing any resilience to stragglers, or, double the round
complexity of the protocol.

A new solution with straggler resilience. We thus need a new solution that
achieves privacy, while allowing P; to proceed without requiring all parties’
shares of x - y — 7. Our idea is to have a different independent masking value
for each subset of 2d + 1 parties. In particular, for each subset T of 2d + 1 par-
ties, we want the parties to hold a pair ([rr],, [rr],,) which can be used in the
multiplication protocol. This however raises a question. If each subset of parties
have a different masking, then which masking share should a party use when it
sends its message to P;? To overcome this, we add an additional constraint: the
parties should hold a pair ([rr],, [r7]s,) for each subset 7" under the constraint
that each P;’s share in [rr],, will be identical for all subsets. If this holds, then
only one possible message exists for each P; to send to Py (i.e., x; - y; — r; where
r; is the random share used by P; as a mask). We will see later how to generate
such correlated randomness in an efficient way (without requiring the parties to
store (2 d’_ﬁ_l) different polynomials). Assuming the parties have a way to generate
such random sharings, our private protocol to multiply [z], and [y], is:

I—Ipriv .

mult *

— Inputs: Each P; holds two inputs shares ;,y; and a random share ;.
For each subset T' C {P,...,P,} such that |[T| = 2d + 1, the parties hold
a sharing [rr],, where rp = Z Aj -4, with A; being the corresponding

j|P;eT

Lagrange coefficient for the 2d-polynomial gy defined such that ¢r(j) = r;,
for each j for which P; € T

— The protocol:
1. Each party P; locally computes e; = x; - y; — ; and sends it to P;.
2. Lete;,,...,e4,, be the first 2d messages received by P, and let T" be a subset

of parties defined as T'= {P1, P;,,..., P;,, }. Then, Py view e1,¢;,,...,€i,,



as points on a polynomial p of 2d-degree such that p(1) = e; and Vj €
[2d] : p(ij) = e;; and uses them to compute (via Lagrange interpolation)
the value ey = p(0).

3. P; chooses a new random sharing [eq] ;, under the constraint that d shares
equal to 0, and sends each party P;, with a non-zero share, its share. In
addition, it sends T to all parties.

4. The parties locally compute [z - y],;, = [eo]; + [r7],-

It is easy to see that if the parties follow the protocol, then they will obtain
[« - y],. Privacy is achieved since now there is no redundancy in the secret shar-
ing of the masking random element, and each random share held by each party
is independent from the other parties’ random shares. We show this formally in
the full version.

Efficient generation of the correlated randommness. Recall that our protocol re-
quires that for each multiplication, each P; will hold a random independent
r; and a sharing [rr], for each subset of parties 7" of size 2d + 1, such that
T = Z Aj - rj. A simple way to achieve this, is to let each P; choose a ran-
jlP;eT
dom 7; and share it to the other parties as [r;],. Upon holding [r;], for each
i € [n], the parties can locally compute [rr], = Z A;j - [rj], for each subset
JjIP;eT

T of size 2d + 1. We note that in order to save cost, the parties can defer the
last step of computing [rr], until they receive the subset 7" from P;. This is
significant since now the parties need to compute just a single sharing of degree
d and not (2d7:-1)'

To generate any number of such correlated randomness without any inter-
action but a short setup step, each party P; can distribute a set of seeds to
the other parties. As explained in Section 3, it is possible to non-interactively
generate any number of Shamir’s secret sharings [r;], from these seeds and then
continue as above. Note that since P; knows all seeds, it can locally compute r;
and use it as its mask in the multiplication operation as required.

In the full version of this paper we show how to extend the solution when
multiple secrets are packed together.

5.2 Verifying Correctness of the Computation
In the previous section, we showed how to prevent leakage of private data during
the computation of the program. However, nothing prevents a malicious adver-
sary from cheating by sending false messages, causing the output to be incorrect.
To achieve correctness, we add a step to our protocol, before the output is re-
vealed, where the parties verify the correctness of the computation, and abort if
cheating is detected. This additional step satisfies two desired properties: (i) it is
a short constant-round protocol; (ii) it has sublinear communication in the size of
the program, which means that amortized over the program, the communication
cost remains the same.

We define the ideal functionality Fiw to verify that multiplications were
carried out correctly. F.s receives from the honest parties their shares of all



inputs, the inputs to multiplications operations and all outputs of the program.
Then, it reconstructs the secrets and check for each value, that it is correct given
the values held by the parties as inputs for the multiplications that precede it.
We stress that it suffices for only the honest parties to send their shares, since
they fully define the secrets (as we will see, a consistency check is carried out
before calling F,.¢ in our main protocol and so we are guaranteed at this stage
that all sharings are consistent).

The formal description appears in the full version of the paper. We show how
to realize F,¢, using distributed zero-knowledge proofs from [8], adapted to our
setting, in the full version.

5.3 Putting It All Together - The Main Protocol

We are now ready the present our main protocol with security against malicious
adversaries. The protocol works by having the parties run the private protocol
to compute the program, and then, before revealing the output, call the ideal
functionality Fyr, to verify that the sharings they obtained throughout the exe-
cution, are correct. Since Fr, requires the sharings it receives to be consistent,
then the parties run a batch consistency check before calling Fsy.
STRAGGLERS RESILIENCE. We show what resilience our protocol guarantees:

— Input sharing step: In this step, we require the parties to send a masked input
Z; = x;+r to all parties and not only to P;. Looking on an epoch that consists
of parties sending their masked input to the other parties, and then sending
messages to P; in the first layer of bi-linear instructions, it is easy to see that
even if n — (2d + 1) messages are lost, party P; will receive 2d messages and
will be able to proceed to the next epoch.

— Private computation of the program: Our new protocol in Section 5.1 can
handle n — (2d 4+ 1) dropped messages in each epoch.

— Verification step: A subtle issue that arises here is the effect of stragglers exis-
tence in the private protocol, on the consistency check and F,.. Specifically,
if different subset of parties participate in each epoch, then the sharings used
in the consistency check and F., are held by different subset of parties, which
seems problematic. Nevertheless, we observe that the number of such subsets
is bounded by the depth of the program. Hence, we have three possible solu-
tions. If the depth of the program is low, then the parties can run these two
steps for each subset separately (recall that each such subset is of size 2d + 1
and so an honest majority required by the protocols is guaranteed). Since the
cost in these final steps is anyway low and sublinear in the size of the program,
we can afford running them several times. If the depth is larger than the num-
ber of possible subsets (") (with 7 being the number of stragglers), then we
can simply go over all possible subsets. Alternatively, if the program is very
deep, then one can simply assume that all messages that were delayed during
the computation, arrive by the time the parties reach the final steps. While
this seems as a slight weakening of our stragglers-resilience model, note that
even with this assumption, our protocol has a huge advantage over protocols
with no resilience to stragglers, where the parties need to wait for all messages



to arrive when computing each layer, and not only at the end of the entire
computation.

Note that in the former solution we need to assume that no messages are
dropped inside this step, since in each subset of 2d + 1 parties, if a message
is lost, we might lose the honest majority and hence the security guaran-
tees. Since this step is a short constant-round protocol, this seems as a mild
assumption.

— Output Reconstruction: If 2d + 1 shares arrive to each party, then at least
d + 1 shares are sent by honest parties and so are correct. This implies that
the party can either reconstruct its correct output or abort if cheating took
place. Thus, this step can also withstand n — (2d + 1) stragglers.

The formal description appears in the full version of the paper. We thus
obtain a maliciously-secured protocol, with the same (amortized) communica-
tion cost and same stragglers resilience as for semi-honest adversaries (with a
small caveat for the short verification step). This is summarized in the following
Theorem (the proof can be found in the full version):

Theorem 5.1. Let T be a finite field, let f be a n-party functionality represented
by a C-layered straight-line program over F with S bilinear instructions, let t
be a security threshold parameter and let d be a parameter such that d > t +
{—1,n>2d+4+1 and |[F| > n+d+ €+ 1. Then, our protocol computes f
in the (]—'LinRand,fcoin,fvrfy)-hybrid model with t-malicious-security-with-abort,
(n — (2d + 1))-stragglers-resilience, with statistical error \Tll’ and communication

cost of (% — 22—"?) S + o(S) field elements sent per party.

The protocol has statistical error of % due to the consistency check that
may fail. For small fields the error can be reduced by repeating the check with
independent randomness.
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