On Communication-Efficient Asynchronous
MPC with Adaptive Security

Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang*

{achopard,hirt}@ethz.ch, ETH Zurich
cliuzhan@andrew.cmu. edu, Carnegie Mellon University

Abstract. Secure multi-party computation (MPC) allows a set of n
parties to jointly compute an arbitrary computation over their private
inputs. Two main variants have been considered in the literature accord-
ing to the underlying communication model. Synchronous MPC protocols
proceed in rounds, and rely on the fact that the communication network
provides strong delivery guarantees within each round. Asynchronous
MPC protocols achieve security guarantees even when the network delay
is arbitrary.

While the problem of MPC has largely been studied in both variants
with respect to both feasibility and efficiency results, there is still a sub-
stantial gap when it comes to communication complexity of adaptively
secure protocols. Concretely, while adaptively secure synchronous MPC
protocols with linear communication are known for a long time, the best
asynchronous protocol communicates O(nk) bits per multiplication.
In this paper, we make progress towards closing this gap by providing
two protocols. First, we present an adaptively secure asynchronous pro-
tocol with optimal resilience ¢ < n/3 and O(n’k) bits of communication
per multiplication, improving over the state of the art protocols in this
setting by a quadratic factor in the number of parties. The protocol has
cryptographic security and follows the CDN approach [Eurocrypt’01],
based on additive threshold homomorphic encryption.

Second, we show an optimization of the above protocol that tolerates up
to ¢ < (1 — €)n/3 corruptions and communicates O(n - poly(k)) bits per
multiplication under stronger assumptions.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a func-
tion of their private inputs, in such a way that the parties’ inputs remain secret,
and the computed output is correct. This must hold even when an adversary
corrupts a subset of the parties.

The problem of MPC [Yao82, GMW87, BGW88, CCD88, RB89] has been
studied mostly in the so-called synchronous network model, where parties have
access to synchronized clocks and there is an upper bound on the network com-
munication delay. Although this model is theoretically interesting and may be

* This work was partially carried out while the author was at ETH Zurich.

justified in some settings, they fail to model real-world networks such as the
Internet, which is inherently asynchronous. This gave rise to the asynchronous
network model, where protocols do not rely on any timing assumptions, and
messages sent can be arbitrarily delayed.

Asynchronous MPC protocols have received much less attention than their
synchronous counterpart, partly because of their inherent difficulty and the
weaker achievable security guarantees. In particular, one cannot distinguish be-
tween a dishonest party not sending a message, or an honest party that sent a
message that was delayed by the adversary. As a result, parties have to make
progress in the protocol after seeing messages from n — ¢ parties. This also im-
plies that in this setting it is impossible to consider the inputs of all honest
parties, i.e, the inputs of up to t (potentially honest) parties may be ignored.
Moreover, one can show that the optimal achievable corruption tolerance in the
asynchronous setting is ¢ < n/3, even with setup, in both the cryptographic
and information-theoretic setting; and perfect security is possible if and only if
t < n/4.

1.1 Communication Complexity of Asynchronous MPC protocols

The communication complexity in MPC has been the subject of a huge line
of works. While the most communication-efficient synchronous MPC solutions
without the usage of multiplicative-homomorphic encryption primitives achieve
O(nk) bits per multiplication gate (see e.g. [HN0G, DI06, BH0O8, BFO12, GLS19,
GSZ2(]), asynchronous MPC protocols still feature higher communication com-
plexities, most notably when it comes to protocols with adaptive security.

In the adaptive security setting, all protocols are information-theoretic. The
first protocol was provided by Ben-Or et al. [BKR94], and later improved by
Patra et al. [PCR10, PCRO§] to O(n°k) per multiplication, and by Choudhury
[Cho20] to O(n*k) per multiplication.

When considering static security, the most efficient protocols with optimal
resilience t < n/3 provide cryptographic security. The works by Hirt et al.
[HNP05, HNPO&] make use of an additive homomorphic encryption, with the
protocol in [HNPO§] being slightly more efficient and communicating O(n?k)
per multiplication. The work by Choudhury and Patra [CP15] achieves O(nk)
per multiplication at the cost of using somewhat-homomorphic encryption, and
the work by Cohen [Coh16] achieves a communication independent of the circuit
size using fully-homomorphic encryption.

Other efficient solutions have been provided for the ¢ < n/4 setting. No-
table works include the protocols in [SR00, PSR02, CHP13, PCR15], achieving
information-theoretic security.

1.2 Contributions

In this paper, we consider the problem of MPC over an asynchronous network
with adaptive security. Our contributions can be summarized as follows.

First, we present an adaptively secure protocol with optimal resilience ¢t <
n/3 and O(n?k) bits of communication per multiplication, improving over the
state of the art adaptively-secure protocols by a quadratic factor in the number
of parties. Note, however, that in contrast to the protocol in [Cho2(] which is
information-theoretic, our protocol has cryptographic security. The protocol fol-
lows the CDN approach [CDNO01, DN03] and makes use of an additive threshold
homomorphic encryption.

Second, we show a protocol that tolerates up to ¢t < (1 — €)n/3 corruptions
and communicates a O(n - poly(x)) number of bits per multiplication, assuming
secure erasures, non-interactive zero-knowledge proofs, and access to a network
providing atomic send (see e.g. [BKLL2(]), which guarantees that parties are
able to atomically send messages to all other parties, and also guarantees that
messages sent by honest parties cannot be retrieved back, even if the sender
becomes corrupted. Note that a linear protocol with optimal resilience, and
without the usage of any type of multiplicative-homomorphic encryption is not
known even for the case of static security.

2 Preliminaries

We consider protocols among a set of n parties Py, ..., P,. We denote the secu-
rity parameter by s and use the abbreviation ewnp for “except with negligible
probability”. Our protocols are proven in_the model by Canetti [Can00Oa]. A
summary can be found in the full version [CHL21].

2.1 Communication and Adversary Model

Parties have access to a network of point-to-point asynchronous and secure
channels (for details of the asynchronous network model, we refer the reader
to [CR98]). Asynchronous channels guarantee eventual delivery, meaning that
messages sent are eventually delivered, and the scheduling of the messages is
done by the adversary. In particular, the adversary can arbitrarily (but only
finitely) delay all messages sent and deliver them out of order.

We consider a computationally bounded adversary that can actively corrupt
up to t parties in an adaptive manner. That is, as long as the adversary has
corrupted strictly less than ¢ parties, it can corrupt any party at any point in
time based on the information during the protocol execution.

2.2 Zero-Knowledge Proofs of Knowledge

In this subsection, we introduce the notion of patchable zero-knowledge proof of
knowledge. For more details, see [DN03].

! This model has also been referred to as weakly-adaptive corruption, or simply adap-
tive corruption model in the literature.

Definition 1. A 2-party patchable zero-knowledge proof of knowledge for a
predicate @ is a protocol between a prover P and a verifier V where P has as
public input an instance z and as secret input a witness x and V' has public input
the instance z and output in {accept, reject }. The protocol needs to satisfy the
following properties.

— Completeness: On common input z, if P’s secret input x satisfies Q(x,z) =
true, then V' accepts.

— Soundness: There exists an efficient program K (the knowledge extractor)
that can interact with any prover P’ such that if P’ succeeds to make V
accept with non-negligible probability, then K can extract a witness ' from
its interaction with P’ such that Q(x',z) = true.

— Zero-Knowledge: For any efficient verifier V', there exists an efficient sim-
ulator S such that for any common input z, S can simulate a run of the
protocol with V' in a computationally indistinguishable way.

— Patchability: Let z be an arbitrary instance and let t be any step of the
protocol. Let TEVI(Z) be the communication of the simulator (which might
not know a witness to z) with a verifier V' in the simulated run of the
protocol until step t. We require that there exists an efficient algorithm Pat
that takes as input z, t, Ttyl(z) and a witness x such that Q(z, z) = true and
outputs randomness v which satisfies the following: If an honest prover P
executes the protocol with V' up to step t on instance z and witness x using
randomness v, then the communication is identical to Tty'(z). Furthermore,
the randomness v looks uniformly random to V'.

All zero-knowledge proofs used in our protocol will be 2-party patchable zero-
knowledge proofs of knowledge with constant communication complexity.

2.3 Universally Composable Commitments

In this section, we briefly introduce universally composable (UC) commitment
schemes. A detailed exposition is given in the full version [CHL21].

A commitment scheme allows a party P to commit to a value v towards other
parties without revealing information about v. If at any point in time, P wants
to reveal v, then it can open the given commitment to v.

A universally composable (UC) commitment scheme is a commitment scheme
in the UC framework [Can00b]. Like usual commitment schemes, a UC commit-
ment scheme is hiding and binding. Additionally, it is extractable (that is, the
simulator can extract the value a corrupted party committed to from its com-
mitment) and equivocable (that is, the simulator can simulate a commitment
on behalf of an honest party towards a corrupted party without knowing the
committed value and later open the given commitment to any value it wants).
Since in our model we consider an adaptive adversary, we require that when the
adversary corrupts a party, the simulator can patch the internal state of that

party.

In our MPC protocol, we need the following additional property of our com-
mitment scheme. A detailed discussion about the selective decommitment prob-
lem can be found in [DNRSO03].

Selective decommitment security: Consider the following security game with an
integer t € {1,...,n} (representing the corruption threshold) and a message
distribution M over Ry, as parameters.

— The challenger samples a uniform random bit b €5 {0, 1}.

— The adversary sends a set of indices I C {1,...,n} of size t’ € {0,...,t} to
the challenger.

— The challenger samples n messages according to the distribution M, enu-
merates them in the natural way and gives the messages with indices in [
to the adversary. Next, for each message with index not in I, the challenger
commits to it and gives the computed n — ¢’ commitments to the adversary.

— The adversary can adaptively choose up to t — ¢’ of the given commitments
and the challenger gives the underlying messages and the randomness used
to obtain the commitments in question to the adversary. As soon as the
adversary does not want to choose any more commitments, it sends “End-
Corruption” to the challenger.

— Upon receipt of the “EndCorruption”-message or if the adversary has al-
ready chosen ¢t — ¢’ commitments, the challenger does the following. Let
I' C {1,...,n} be the set of indices that are not in I and such that the
adversary did not choose the commitments with indices in I’.

e If b =0, the challenger gives the messages underlying the commitments
with indices in I’ to the adversary.

e Let M be the distribution M conditioned on the components with
indices not in I’ being equal to the messages already given to the ad-
versary. If b = 1, the challenger samples |I’| messages according to the
distribution M, and gives them to the adversary.

— The adversary outputs a guess b’ for the value of the bit b.

The idea in the above game is that every party commits to one value and the
adversary can corrupt up to ¢ parties. In doing that, the adversary should not
learn anything about the messages underlying the commitments of honest par-
ties. This game can be generalized in a natural way to the case where each party
P; commits to a fixed number ¢; of values (and this number can be different
for each party). For the sake of simplicity, we do not give the formal descrip-
tion of the more general game. We define the advantage of the adversary in the
generalized game by

1
Mt)
Advtgy,” = [Pr[p) = b] — 5|
We require from our commitment scheme that for all n-tuples {{y,...,¢,} of

integers, all message distributions M and all ¢t < n/3, there does not exist any
adversary that has non-negligible advantage Advtg%;tm o

For all the commitments in our protocols, we will use a UC adaptively secure
(equivocable and extractable) commitment scheme that satisfies the “Selective
decommitment security” property above and has constant communication com-
plexity.

2.4 Threshold Homomorphic Encryption

We briefly discuss threshold homomorphic encryption schemes. For a detailed
exposition, see the full version [CHL21).

A threshold homomorphic encryption scheme is a tuple (KeyGen, Enc, Dec-
Share, Comb) of four algorithms, where

— KeyGen is a probabilistic algorithm that takes a security parameter s, the
number of parties n and the threshold parameter ¢ as input and outputs
a uniformly distributed tuple (pk, ski, ..., sky,) where the public key pk is
given to all parties and the secret key sk; is given to P; for all i € {1,...,n}.

— Enc is an efficient probabilistic non-interactive algorithm that takes as input

a public key pk and a message m from the message ring R, and outputs an
encryption Encyr(m) of m. If we want to specify the randomness r used in
the execution of the algorithm, we write Encyy(m,).
The Enc algorithm is a homomorphism in the sense that there exists an
efficient algorithm that takes as input the public key pk and two encryp-
tions Encpr(ma, 1) and Encpr(ma,r2) of my and mo and that outputs an
encryption Encyi(ma, 1) Spr Encpr(ma, 72) = Encpr(mi +pr meo, 1 Bpg 72)
of my +p; ma, where 4+, and H,; are the group laws in the message space
and the randomness space. Similarly, there exists an efficient algorithm that
takes as input the public key pk, an encryption Enc,i(m,r) and a message
¢ € Ry, and outputs a uniquely determined encryption ¢ ®px Encpr(m,) of
C pk M.

— DecShare is an efficient algorithm that takes as input an index i € {1,...,n},
the public key pk, the secret key sk; and a ciphertext ¢ and outputs a de-
cryption share ¢; and a proof that ¢; is correctly computed using 4, pk, ¢ and

— Comb is an efficient algorithm that takes as input the public key pk, a cipher-
text ¢ and pairs (¢;, p;) where each pair has a different index. The algorithm
outputs a message m or fails.

The scheme is correct (that is, if at least ¢ + 1 distinct decryption shares with
valid proofs for the same ciphertext ¢ are given as input to the Comb algorithm,
then it outputs the message underlying ¢) and threshold semantically secure
(that is, without the help of at least one honest party, an adversary corrupting
at most ¢t parties cannot extract information about the plaintext underlying a
given ciphertext). Furthermore, there exists a patchable zero-knowledge proof of
plaintext knowledge and a patchable zero-knowledge proof of correct multipli-
cation with constant communication complexity.

From the definition of threshold homomorphic encryption scheme, it follows
that there is an algorithm Blind that takes an encryption of a message m and

the public key pk as input and outputs a uniformly random encryption of m
(without knowing m). For details, see the full version [CHL21].

For convenience, we introduce the following functions which we will often
use. For an encryption M in the ciphertext space, we define

Enc%: (z,1) = Enc%(m,r) = (& Opr M) ®pi Encpr(0pr, 7).

We call a preimage with respect to the function Enc% of an encryption y a
“preimage of y under (pk, M)”. If we do not specify the second argument r of the
function, then we implicitly mean that r is uniformly random in the randomness
space. So (by the homomorphic property of the encryption scheme and because
the randomness space is a group) Enc%(x) is a uniformly random encryption of
x -pk, M, where m is the value encrypted by M.

In our MPC protocol, we need the following additional properties of our
encryption scheme.

— Proof of compatible commitment: Let Q%((mﬂ r1,72), (y, B)) be the binary
predicate that is 1 if and only if y = EncpMk (m/,r1) and (m’/,r3) is the open-
ing information for the commitment B. We require that there exist efficient
patchable zero-knowledge proofs of knowledge for Q% with constant com-
munication complexity for all public keys pk and all encryptions M under
pk.

— Lagrange arguments: There exists an n-tuple {ou,...,an} € (Rpe\{Opr})"
of distinct elements such that for all (¢,7) € {1,...,n}? we have that a; — o
is invertible in R,. For these elements, the usual Lagrange polynomials and
Lagrange coeflicients are well-defined.

— Patch: Given a public key pk, two encryptions E = Encpy(0pk,70) and K =
Encpr (Opk, ri) of Opy under key pk and the randomness ry and rx used, there
exists an efficient probabilistic algorithm that given any constant computes
randomness rg such that E = (z Opi K) Spi Encpr(0pk, rE) = Encfk(x,r;;).

— Selective decryption security: This property is similar to the “Selective de-
commitment security” property of our commitment scheme. For a detailed
discussion, we again refer the reader to [DNRS03].

Consider the following security game with a message distribution M over
R}, and a randomness distribution Rd over the n product of the random-
ness space as parameters.

e The challenger samples a uniform random bit b € {0, 1}.

e The adversary sends a set of indices I C {1,...,n} of size t’ € {0,...,t}
to the challenger.

e The challenger samples n messages according to the distribution M and n
randomness elements according to the distribution Rd, enumerates them
in the natural way and gives the messages and randomness elements
with indices in I to the adversary. Next, for each message with index
not in I, the challenger encrypts it using the corresponding randomness
element (i.e. the randomness element with the same index) and gives the
computed n — ¢’ ciphertexts to the adversary.

e The adversary can adaptively choose up to ¢ —t’ of the given ciphertexts
and the challenger gives the underlying messages and the randomness
used to obtain the ciphertexts in question to the adversary. As soon as
the adversary does not want to choose any more ciphertexts, it sends
“EndCorruption” to the challenger.

e Upon receipt of the “EndCorruption”-message or if the adversary has
already chosen ¢t — ¢’ ciphertexts, the challenger does the following. Let
I' C{1,...,n} be the set of indices that are not in I and such that the
adversary did not choose the ciphertexts with indices in I’.

* If b = 0, the challenger gives the messages underlying the ciphertexts
with indices in I’ to the adversary.

x Let M be the distribution M conditioned on the components with
indices not in I’ being equal to the messages already given to the
adversary. If b = 1, the challenger samples |I'| messages according
to the distribution M and gives them to the adversary.

e The adversary outputs a guess b’ for the value of the bit b.

The idea in the above game is that every party encrypts one value and the
adversary can corrupt up to ¢ parties. In doing that, the adversary should
not learn anything about the messages underlying the encryptions of honest
parties. This game can be generalized in a natural way to the case where
each party P; encrypts a fixed number ¢; of values (and this number can
be different for each party). For the sake of simplicity, we do not give the
formal description of the more general game. We define the advantage of the
adversary in the generalized game by

1
Advantgffaen} = |Pr[t) =b] — §|
We require from our encryption scheme that for all n-tuples of integers
{l1,...,£,}, all message distributions M and all randomness distributions
Rd, there does not exist any adversary that has non-negligible advantage
Advant%f_‘i ¢} €ven if it has access to a simulator for zero-knowledge proofs
and the Pat algorithm.

Remark 1. By the homomorphic property of the encryption scheme, in the Patch
property we have that © ©p, K = Encpi(0pk, 70 Bpr 7E). Since multiplication by a
constant is a deterministic algorithm and since the randomness space is a group,
this implies that if ry is uniformly random from the randomness space, then rg
is also uniformly random from the randomness space.

In the full version [CHL21], we present the Paillier threshold encryption
scheme which is an instantiation of the definition above.

3 Subprotocols

This section is devoted to the exposition of the subprotocols that will be used
in the MPC protocol.

3.1 Agreement protocols

Often, parties need to have agreement on certain values or objects. To achieve
this, we use the following primitives in our protocol.

1. Reliable consensus: Reliable consensus is a weaker version of asynchronous
consensus. It allows the parties to agree on one of the honest parties’ input
values without requiring termination if there is no pre-agreement. More pre-
cisely, every party has a (private) input and the primitive guarantees that if
all honest parties have the same input, then all honest parties output their
inputs. Furthermore, if an honest parties outputs a value, then all other hon-
est parties output the same value. In the full version [CHL21)], we discuss
the definition of reliable consensus in more details and we present a reliable
consensus protocol RC for ¢ < n/3. Our protocol is based on Bracha’s A-Cast
protocol [Bra84] and has communication complexity O(n?x), where & is the
size any party’s secret input.

2. A-Cast: A-Cast is an asynchronous broadcast protocol. It allows the par-

ties to agree on the value of a sender without requiring termination if the
sender is corrupted. More precisely, the sender has a private input and the
primitive guarantees that if the sender is honest, then all parties output the
senders message. Furthermore, if an honest party outputs a value, then all
other honest parties output the same value. In the full version [CHL21], we
discuss the definition of reliable broadcast in more details and we present
Bracha’s reliable broadcast protocol RBC for ¢t < n/3 [Bra84]. The protocol
has communication complexity O(n?k), where & is the size of the sender’s
input. Moreover, we show that if the sender has computationally indistin-
guishably distributed input, then the RBC protocol maintains computational
indistinguishability.
In some situations, we use Patra’s Multi-Valued-Acast protocol [Pat11] which
is a reliable broadcast protocol that achieves linear communication complex-
ity for messages of size £2(n®log(n)). This allows us to improve the efficiency
of our MPC protocol.

3. Byzantine agreement: Byzantine agreement allows the parties to agree on
one of the honest parties’ input values. It guarantees that all honest par-
ties terminate and that they output the same value. For ¢ < n/3, Byzan-
tine agreement can be achieved with expected communication complexity
O(n?). For a more detailed definition of Byzantine agreement, see the full
version [CHL21].

4. ACS: The agreement on a common subset (ACS) primitive allows the parties
to agree on a set of at least n —¢ parties that satisfy a certain property (a so-
called ACS property). In the full version [CHL21|], we discuss the definitions
of ACS property and ACS protocol in more details and we present an ACS
protocol ACS with communication complexity O(n?).

3.2 Decryption Protocols

To decrypt ciphertexts of our threshold homomorphic encryption scheme, we
use two decryption protocols. The PrivDec protocol is a straightforward private

decryption protocol which takes as input the public key pk, the private keys
ski,...,sky,, a ciphertext ¢ and a party P and correctly decrypts ¢ towards P
even in the presence of an active adaptive adversary corrupting ¢ < n/3 par-
ties. The PubDec protocol is a public decryption protocol which takes as input
pk,ski,...,sky, n — 2t ciphertexts ci,...,cr and uses the PrivDec protocol to
correctly publicly decrypt ci,...,cr even in the presence of an active adaptive
adversary corrupting ¢ < n/3 parties. The PubDec protocol has communication
complexity O(n?k) and thus achieves linear communication complexity per de-
crypted ciphertext. For details about these two protocols and their guarantees,
see Appendix .

Remark 2. Additionally to the properties in the definiton of threshold homomor-
phic encryption scheme, we require the following from our encryption scheme.
Let P be any party and let ¢; and co be two computationally indistinguishably
distributed ciphertexts with computationally indistinguishably distributed un-
derlying plaintexts. An instance of the PrivDec protocol with (pk, ¢1, P) as public
input (and ski, ..., sk, as private inputs) is computationally indistinguishably
distributed to an instance of the PrivDec protocol with (pk, ca, P) as public input
(and sky,..., sk, as private inputs) even in the presence of an active adaptive
adversary corrupting up to ¢ < n/3 parties.

Remark 3. By inspection of the PubDec protocol in Appendix @, it is clear
that the “computational indistinguishable decryption” property also holds for
the PubDec protocol.

3.3 Multiplication

In this section, we briefly discuss the multiplication protocol. A detailed descrip-
tion is given in Appendix .

The main idea for the multiplication protocol is to use circuit randomization
[Bea92]. To make it more efficient, we apply the ideas of [DN07] and [BHOg|,
namely we use the PubDec protocol to process up to T' = L";Qtj independent
multiplication gates simultaneously. Hence, the multiplication protocol takes as
input T independent multiplication gates, their encrypted inputs and their as-
sociated multiplication triples and outputs the encrypted outputs of the given
gates. The protocol guarantees that if the inputs to the processed multiplication
gates are computationally indistinguishably distributed. then the executions of
the multiplication protocol are as well (see Proposition a) Furthermore, it com-
municates O(n?k) bits.

3.4 Triple Generation

This subsection is devoted to the introduction of the Triples protocol which takes
as input an integer £ and outputs £ encrypted multiplication triples. The protocol
is based on the multiplication protocol in [DN03], the KFD-TRIPLES protocol in
[HNOG] and on [CP15]. We first adapted their protocols to the asynchronous

10

setting using the ACS primitive and then improved efficiency by amortizing the
cost of the ACS instances over the number of generated triples and using the
communication efficient Multi-Valued-Acast protocol.

—i Protocol Triples

1: Every party P; independently chooses uniformly random elements aj- in the mes-
sage space Ryi and r; in the randomness space for all ¢ € {1,...,£}. Then, P;
computes A = Encpr(aj, ;) and uses the Multi-Valued-Acast protocol to broad-
cast Aj for all i € {1,...,¢}. Finally, P; proves to P in zero-knowledge that
it knows the plaintext underlying A} using the “proof of plaintext knowledge”
property of the encryption scheme with instance A} and witness (aj,r;) for all
ie{l,...,¢}and all k € {1,...,n}.

2: Let @ be the property such that a party Pk satisfies Q) towards another party
P; if and only if the broadcasts of all A% with i € {1,...,¢} terminated for P,
and P; accepted all proofs of plaintext knowledge for Al with i € {1,...,¢}.
The parties run the ACS protocol with @) and obtain a set S of parties.

3: The parties wait until the broadcasts of all parties in S terminated and set
At = @PkesA}; foralli e {1,...,¢}.

4: Every party P; independently chooses uniformly random elements b; in the
message space Ry, and 77 in the randomness space for all ¢ € {1,...,¢}. Then,
P; computes B} = Encyi (b5, r7) and (C},r}") = Blind(b; ®pr A’) and uses the
Multi-Valued-Acast protocol to broadcast Bj and Cj for alli € {1,...,£}. Finally,
Pj proves to Py in zero-knowledge that C} was computed correctly using the
“proof of correct multiplication” property of the encryption scheme with instance
(Bj, A", C}) and witness (b}, 7}, 77") foralli € {1,...,¢} and all k € {1,...,n}.

5: Let Q" be the property such that a party Py satisfies Q' towards another party
P; if and only if the broadcast of all (Bj,C}) with i € {1,...,£} terminated
for P; and P; accepted all proofs of correct multiplication for (B}, A*, C%) with
i € {1,...,£}. The parties run the ACS protocol with Q" and obtain a set S’ of
parties.

6: The parties wait until the broadcasts of all parties in S’ terminated and set
B' = Dr, s Bj and C* = Ds, s Ciforalliec{1,...,£0}.

7: Each party outputs (A%, B, C%) for all i € {1,...,¢}.

To prove security of the above Triples protocol, we give the simulator Styiples
who does not have access to the secret keys of honest parties.

Simulator Striples

The simulator Striples €xecutes the protocol acting honestly on behalf of the honest
parties. If the adversary decides to corrupt a party P; at any point of the protocol,
Striples gives all the information it holds on behalf of P; about the execution of the
Triples protocol to the adversary.

Lemma 1. The Triples protocol above satisfies the following:

— Termination: All honest parties terminate the protocol and output £ triples.

11

— Consistency: All honest parties output the same triples.

— Correctness: The output triples are correct.

— Secrecy: The plainterts underlying the output triples are unknown to the
adversary. In other words, the adversary has mo more information about
these plaintexts than that the plaintexts underlying the third components are
the product of the plaintexts underlying the corresponding first and second
components.

— Computational Uniform Randomness: The distribution of the plaintexts un-
derlying any output triple is computationally indistinguishable from the uni-
form distribution over the set of all triples (a,b,a -pi b) for a,b € Ryy.

— Independence: The plaintexts underlying any output triple are computation-
ally independent of the plaintexts underlying all other output triples.

— Privacy: The adversary’s views in the simulation and the protocol are perfectly
indistinguishably distributed, i.e. the adversary does not learn anything.

— Communication complexity: The protocol communicates O(n?¢x+nlog(n))
bits.

The proof is given in the full version [CHL21].

Remark 4. If we choose £k = £2(n3log(n)), we obtain that the Triples protocol
communicates O(n’k) bits per triple.

4 Asynchronous Adaptively Secure MPC Protocol

In this section, we present an asynchronous MPC protocol based on the protocols
in [CDNO1, DN03, BHO&]. Then we informally prove that our protocol is secure
against an active adaptive adversary corrupting up to ¢ parties.

4.1 Ideal Functionality

In this subsection, we define the specification that our protocol achieves. The
following exposition is based on [BKR94, CDNO0Q].
Let f: Nx{0,1}*x({0,1}*)™ — ({0,1}*)™ be an efficiently computable function.

/—‘ Functionality N

1: The trusted party receives the security parameter x € {0,1}" and the number
of parties n € N as input.

2: Every party P; gives its input x; to the trusted party. Corrupted parties are
allowed to give wrong input, no input at all or — as long as the adversary has
not specified the core set S in step 3 — change their inputs (for example after
corruption of any party). If the adversary corrupts a party P; at any point in
time during or after this step, then the trusted party gives x; to the adversary.

3: The adversary chooses a set of parties S C P of size at least n — ¢t and gives it
to the trusted party.

12

4: The trusted party evaluates the function f on the given inputs of parties in S
and using a default input d for parties not in S. From this, it obtains output y.

5: The trusted party sends y to all parties.

6: All honest parties output y. Corrupted parties can output whatever they like.

Recall that since we are in the asynchronous setting with at least n — ¢
honest parties, the size of the set S of parties whose inputs are considered for
the evaluation of f is between n — ¢t and n. Note that it is not guaranteed that
all parties in S are honest. However, we require from the adversary that it only
includes corrupted parties in S for whom it gave input to the ideal functionality
in step 2.

4.2 Informal Explanation of the Protocol

To achieve adaptive security in the asynchronous setting, we proceeded as fol-
lows. We started with the statically secure synchronous MPC protocol introduced
by Cramer, Damgard and Nielsen [CDNO1]. Next, we used circuit randomiza-
tion [Bea92] to split the protocol into a preparation phase and a computation
phase. After that, we adapted the protocol to the asynchronous setting using
asynchronous broadcast and agreement on a common subset (ACS). Finally, we
made the protocol adaptively secure by applying the techniques from Damgard
and Nielsen [DN03], namely redefining the way values are encrypted and ran-
domizing the output ciphertext in a specific way before decrypting it. Concretely,
the new rule of encryption is: Given an encryption M and a value v to be en-
crypted, the encryption is set to Enc% (v). Recall that if we denote the value
that M encrypts by m, then by the homomorphic property of the encryption
scheme and by definition of the function EncZZ)V[k, EncZZ,‘/[,,C (v) is a uniformly random
encryption of v -, m. In the protocol, we will mostly choose m = 1,; to have
an encryption of v while in the simulation we will often choose m = 0, which
helps the simulator to provide computationally indistinguishably distributed in-
formation. In detail, the idea of the protocol is the following.

Preparation phase:

— Setup phase (steps 1-4): The keys for all the keyed primitives used in our
protocol (namely the encryption scheme, the commitment scheme and the
zero-knowledge proofs) are set up. Each party receives the keys it is entitled
to along with public Lagrange arguments {a;}icq1,...n}. Additionally, two
public encryptions K and R are set up and given to all parties. The encryp-
tion K is a uniformly random encryption of 1,; and the encryption R is a
uniformly random encryption of Op;. In the simulation, the simulator will
cheat by choosing K to be a uniformly random encryption of 0, and R to
be a uniformly random encryption of 1,;. By semantic security of the en-
cryption scheme, this is computationally indistinguishable to the adversary.
Finally, the parties compute the circuit corresponding to the function to be
evaluated and generate multiplication triples that will be used in the Eval-
uation phase to evaluate the multiplication gates of the circuit.

13

Computation phase:

— Input phase (steps 1 and 2): The parties receive their inputs x; needed for
the execution and want to give them to an agreed function f. To do so, every
party reliably broadcasts an encryption of its input applying the new rule of
encryption with M = K. While Encﬁc(xi) is indeed an encryption of x; in
the real world (recall that in the protocol K is an encryption of 1,;), it is
an encryption of Op; in the simulation as there, K is an encryption of Opy.
Hence, in the simulation all encryptions of inputs will be encryptions of 0,y
independently of the inputs of the parties. However, the simulator needs to be
able to extract the inputs of corrupted parties because it has to provide those
inputs to the ideal functionality on behalf of the corrupted parties. This is
why every party commits to its input towards every other party using a UC
commitment scheme. The extraction property of UC commitments allows
the simulator to extract the correct inputs of corrupted parties (ewnp) and
give them to the ideal functionality. To ensure correctness and prevent the
adversary in the real world from having more power than an adversary in the
ideal world, the parties need to prove in zero-knowledge (using the “proof
of compatible commitment” property) that they know a preimage of the
reliably broadcasted encryption Encﬁ.(zi) under (pk, K) and that the first
component of this preimage is the same as the value that they committed to.
This is important because without these proofs a corrupted party could just
wait for the reliable broadcast of another party P; to terminate and then
set its input to the same as the one from P; without knowing it. This is not
possible in the ideal world and therefore, we want to prevent it in the protocol
execution. Furthermore, the simulator extracts the inputs of the corrupted
parties from the commitments whereas for the computation in the protocol
we will use the encryptions. Thus, the simulator needs to ensure that the
value underlying the commitment and the first component of the preimage
under (pk, K) of the encryption are the same so that it does not give wrong
inputs to the ideal functionality on behalf of the corrupted parties. Finally,
the parties run the ACS protocol and obtain a set S of size at least n — ¢
of parties that successfully broadcasted an encryption of their input which
they committed to. The inputs of the parties in .S are the ones that will be
taken into account in the evaluation of f. Thus, the ACS protocol needs to
ensure that S only contains parties that successfully completed the reliable
broadcast of their inputs and all their zero-knowledge proofs towards at least
one honest party (so that everything is correct and the simulator can extract
the correct inputs ewnp as it received at least one valid commitment to every
input of the corrupted parties in S). All inputs of parties that are not in S
are set to a default value. Each party then waits until the reliable broadcast
for every party in S terminated. It is okay for the parties to wait until the
reliable broadcast of the parties in S terminate because we saw that for all
parties Py in S, there exists an honest party for which the reliable broadcast
of Py terminated. By the properties of reliable broadcast this implies that
the reliable broadcast of Pj, eventually terminates for all honest parties.

14

The computation of the encryptions of the inputs, their reliable broadcast,
the zero-knowledge proofs and the run of the ACS protocol are summed up
in the BrACS protocol in Appendix E

Evaluation phase (step 3): The parties evaluate the circuit on the encrypted
inputs of the parties using the “+p,-homomorphic” property, the “Multipli-
cation by constant” property and the multiplication protocol from Appendix

. In the end, the parties get a ciphertext ¢ (called Encyy(s) in the protocol
and Encyx(8) in the simulation).

Randomization phase (steps 4-7): Before the parties jointly decrypt ¢, they
randomize it. This is done so that the simulator can cheat. In fact, as we
saw above, all inputs to the circuit in the simulation are encryptions of 0.
By the correctness of the gates, this implies that all ciphertexts in the cir-
cuit are encryptions of 0,5 (not counting the intermediate ciphertexts in the
multiplication protocol). Hence, ¢ is also an encryption of 0, and therefore,
we cannot simply honestly decrypt ¢ as otherwise the simulator would fail
to provide a computationally indistinguishable simulation with overwhelm-
ing probability. Furthermore, our encryption scheme is not adaptively secure
which is why we cannot decrypt ¢ to anything but 0, either. Thus, the par-
ties randomize the ciphertext before decrypting it honestly.

To randomize the ciphertext ¢, the parties do the following. Each party
chooses a random r; and reliably broadcasts the encryption Encfk(m). Then

the parties agree on a set S of parties of size at least t+1 of successful broad-
casts using the ACS protocol. Denote the indices of the parties in the set S
by I. Next, the parties consider the unique polynomial p of degree |I| — 1
that goes through Encfk(ri) at position «; for all ¢ € I. They interpolate
this polynomial at 0,5 and add this to ¢ using the “4,;-homomorphic” and
the “Multiplication by constant” properties of the encryption scheme. This
gives the new ciphertext ¢’ (denoted by Encp(s)’ in the protocol and the
simulation). In the real execution, R is an encryption of 0, under pk and
therefore, all Enc;f,€ (r;) are encryptions of 0, under pk. Since interpolation
is a linear operation and the encryption scheme is homomorphic, the value
of p at 0, will also be an encryption of 0,; and thus ¢’ will encrypt the
same message as c. In the simulation however, R is an encryption of 1.
This will help the simulator to cheat. Concretely, the simulator will adjust
the 7;’s of honest parties so that at position 0,z, p will have a uniformly
random encryption of the output s (received from the ideal functionality) of
the function f evaluated on the inputs of the parties. This is possible since
|I| = t + 1 and hence, there is at least one honest party whose r; is taken
into account in the randomization and can be chosen by the simulator in the
simulation. Since ¢ is an encryption of 0, in the simulation, we get that ¢’
encrypts s as wanted. But we need to integrate a mechanism that allows the
simulator to choose the r;’s of honest parties according to those of corrupted
parties. This is done in the following way.

Before reliably broadcasting Encfk(ri) and agreeing on a set of successful
broadcasts, the parties commit to their r; and use the BrACS protocol to

15

reliably broadcast Encff,C (r;) and agree on a set S’ of successful broadcasts
(including a successful proof of compatible commitment). By the ACS prop-
erty we will use and by the guarantees of the ACS protocol, we have that
the simulator received at least one valid commitment to r; for every cor-
rupted party P, € S’. Thus, it can extract all 7, from corrupted parties in
S’ ewnp (by the extraction property of UC commitment schemes). Now the
simulator can adjust the r;’s of the honest parties as described above. Then
the parties execute the BrACS for Encgk(ri) (see above) but using the same
commitments in the zero-knowledge proof as in the previous BrACS (with
Encfk(ri)). We obtain a set S” and encryptions Encfk(ri) for all P, € S”.
The ACS property the parties use in the second BrACS is slightly modified
to ensure that the value used to compute the broadcasted encryption in the
first BrACS (the one with Encffk(m)) and the value used to compute the

broadcasted encryption in the second BrACS (the one with Encfk(ri)) is the
same except with negligible probability. Concretely, the property ensures
that for all P; € S” at least one honest party likes P; for both BrACS exe-
cutions. Since those BrACS protocols were run with the same commitments,
we can be sure that the values used to compute the broadcasted encryptions
are the same in both runs of the BrACS protocol. Then we set S = S’ N S”
and observe that S is of size at least n — 2t >t + 1 as wanted.

Note that the simulator has to know the r;’s of corrupted parties in Scys
before the broadcasting of Encfk (r;) because while it can patch the encryp-
tions and proofs of the first BrACS (with Encfk(ri)) due to K being an en-
cryption of 0., it can not do the same for the second BrACS (with Encfk(ri))
because R is an encryption of 1.

— Output phase (steps 8 and 9): The parties decrypt ¢’ and obtain s. Then they
run the reliable consensus protocol on secret input s as termination proce-
dure. The persistency property of reliable consensus ensures that everyone
terminates on the same correct output s.

A detailed description of the protocol can be found in Appendix E

4.3 Main Theorem
Our protocol achieves the following.

Theorem 1. The MPC protocol in Appendi:r@ t-securely realizes the ideal func-
tionality in Subsection ﬁ in the KG-hybrid model for t < n/3. The protocol
communicates O(cymn?k+ Dn?k+n3k+n®log(n)) bits, where cyr is the number
of multiplication gates in the circuit and D is the multiplicative depth of the
circuit.

The simulator and an informal proof of the theorem are given in the full
version [CHL21|.

Remark 5. Tt is straightforward to generalize the above protocol to the case
where the function f takes c; inputs and provides co outputs. If a party P; has

16

multiple inputs, it commits to each one of them, reliably broadcasts a random
encryption of each one of them and proves compatible commitment for each one
of them (in the BrACS). Furthermore, with multiple outputs, the parties execute
steps 4-7 of the protocol for each encrypted output of the circuit and then
reconstruct the randomized outputs towards the entitled parties. This results in
an increase of the communication complexity by a quadratic factor per input
and by a cubic factor per output, which leads to the following theorem.

Theorem 2. There exists_an MPC protocol that t-securely realizes the ideal
Sfunctionality in Subsection @ in the KG-hybrid model for t < n/3. The protocol
communicates O(cpyn?k + Dn?k + cyn?k + con’k + ndk +n’log(n)) bits, where
D is the multiplicative depth of the circuit, cp; is the number of multiplication
gates, cy is the number of input gates and co is the number of (public and private)
output gates in the circuit.

Remark 6. This paper does not focus on round complexity. For information
about round-efficient MPC, we refer the reader to [CGHZ16]. Our protocol has
a round complexity that depends on the circuit depth.

5 Near-Linear MPC in the Atomic Send Model

In this section, we show how to improve the efficiency of our MPC protocol at
the cost of stronger assumptions on the model and a slightly lower corruption
threshold.

Taking a closer look at the communication complexity of the protocol in Ap-
pendix B reveals that the complexity is dominated by the communication in
the Triples protocol. While the number of messages sent between the parties per
produced triple (and hence per multiplication gate of the circuit) in the Triples
protocol is quadratic in the number of parties, the computation phase of the
protocol only needs near-linear communication per evaluated gate assuming a
shallow circuit (except for the input phase which has quadratic communication
complexity per input gate). By considering slightly stronger assumptions on the
model, we can reduce the communication complexity of the triple generation and
obtain a near-linear MPC protocol.

5.1 Model

In this subsection, we present the model which will be used to achieve better
efficiency in the generation of multiplication triples. The subsection is based on
[BKLL24].

As before (see Subsection EI), we consider multiparty computation among
a set of n parties Py,..., P,, where every pair of parties is connected by a se-
cure asynchronous communication channel. A protocol in our setting comprises
a number of atomic steps.
The adversary in the new setting is computationally bounded and can actively
corrupt up to t parties in an atomic send adaptive manner. That is, as long as

17

the adversary has corrupted strictly less than ¢ parties, it can corrupt any party
at any point in time considering all the information it has seen so far and make
this party behave as it wishes for the remaining steps of the protocol. However,
if in some step a party needs to send several messages simultaneously, then the
adversary is only allowed to corrupt this party before or after it sent all the
messages (that is, the adversary cannot corrupt the party in the midst of the
sending). Furthermore, messages sent by any honest party P; are guaranteed to
arrive eventually, even if P; is later corrupted. Once a party is corrupted, the
adversary learns its internal state and the party remains corrupted until the end
of the protocol.

We assume the existence of non-interactive zero-knowledge (NIZK) proofs and
secure erasure. Moreover, we assume the existence of a trusted party that pro-
vides the parties with public and private setup information before the execution
of a protocol, more details below. The size of the setup is defined to be the sum
of the size of the total private setup information and the size of the public setup
information (hence, we count the private information of each party separately,
but the public information only once for all parties).

5.2 VACS

This subsection is devoted to the introduction of the VACS primitive. We follow
the exposition in [BKLL20)].

In the efficient WeakTriples protocol, we need a primitive that allows the par-
ties to agree on a sufficiently large subset of their inputs satisfying a specific
predicate. This can be achieved by the VACS primitive.

Definition 2. Consider a predicate Q and an n-party protocol w, where every
party P; has a secret input m; and outputs a multiset S of size at most n. FEvery
honest party’s input satisfies Q@ and every party terminates upon generating
output. We say that w is a t-secure Q-validated ACS protocol (VACS) with ¢-
output quality if for all adversaries corrupting up to t parties and for all inputs
the following is satisfied:

— @-Validity: Let S be the output of an honest party. Then for every m € S,
we have Q(m) = 1.

— Consistency: All honest parties agree on S.

— ¢-Output Quality: The output multiset S of every honest party is of size at
least q and contains the inputs of at least ¢ — t parties that were honest at
the beginning of the protocol.

Theorem 3. Let 0 <e<1/3,t < (1—2¢)-n/3 and ¢ < (1+¢€/2)-2n/3. There
exists a t-secure Q-validated ACS protocol H\%/f():s with q-output quality, expected
setup size O(qk*) and expected communication complezity O((Z + k3) - qrn),
where T is the size of any party’s secret input. In addition to the properties
of t-secure Q-validated ACS protocols, the H\%AQCS protocol guarantees that the

output multiset S contains the inputs of at least 1 parties that were honest at
2

the beginning of the protocol except with probability smaller than Beneol

18

The construction of H\%?:S and the proof of the first part of the theorem
can be found in [BKLL20]. The second part of the theorem can be proven using
Lemma 24 of [BKLL2(].

5.3 Triple Generation

To obtain an efficient protocol for the triple generation in the atomic send model,
we start with our Triples protocol from Subsection and make it more efficient
using the VACS primitive, NIZK proofs and erasures. The following protocol is
inspired by the protocols in [BKLL2(]. It takes as input an integer ¢ and outputs
{ encrypted multiplication triples.

—[Protocol Wea kTripIes}

Let ¢ be the number of triples we want to generate . We assume that the parties
have access to the setup for two runs of the VACS protocol with output quality .

1: Each party P; independently chooses uniformly random messages af € Ry, and
uniformly random elements rf in the randomness space for all k € {1,...,/¢}.

Then, P; computes A? = Encpk(aﬁ,rf) and an NIZK proof p’fyj of plaintext
knowledge with instance A¥ and witness (a¥,r¥) for all k € {1,...,¢}. Finally,
P;j erases (af,r¥) for all k € {1,...,¢}.

2: The parties run an instance of the HCACCJS protocol with output quality x, where
every party P; has input {(A;?yplf,j)}keu,”.,z} and Q({(A;?yPllc,j)}ke{l,m,z}) =1
if and only if p’fyj is a correct NIZK proof of plaintext knowledge with instance
A? for all k € {1,...,£}. The parties obtain a multiset S of size at least k and
define A' = P Al forallie {1,...,0}.

3: Each party P; independently chooses uniformly random messages bf € Rpr and
uniformly random elements ff in the randomness space for all k € {1,...,/¢}.

Then, P; computes B} = Enc,,(b%,75) and (C},7) = Blind(b¥ ®pi A*), where

Blind is the blinding algorithm of the encryption scheme. Furthermore, P; com-
putes an NIZK proof p’j,j of correct multiplication with instance (B¥, A*, Cjk)
and witness (b?,f?,?*f) for all k € {1,...,¢}. Finally, P; erases (b?,f;g), F;-“ and
the information used in the blinding algorithm for all k € {1,...,¢}.

J: {(Afvplfyj)}keu

.....

4: The parties run an instance of the VACS protocol H{Z@S’ with output qual-
ity k, where every party P; has input {(B;-“,Cf,pgj)}ke{l ,,,,, ¢ and Q' is de-
fined such that Q’({(Bf,C’]’?,pg’j)}ke{lwﬂ) = 1 if and only if péyj is a cor-
rect NIZK proof of correct multiplication with instance (B}, A*,CF) for all
k€ {1,...,£}. The parties obtain a multiset S’ of size at least x and define B* =

B; and C* =) C; for

,,,,,,,,,,

E {(B;?,C;-Cypgyj)}ke{l
alli e {1,...,¢}. o
5: Every party outputs (A°*, B*,C") for all i € {1,...,¢}.

J: {(B;Y»nypg,j)}ke{l

Remark 7. Because we want to ensure that all parties who contribute to the
triples know the plaintexts underlying their contributions and because the VACS
protocol requires @ and Q' (defined in steps 2 and 4) to be predicates on the
inputs of the parties to the VACS protocol, we need to use NIZK proofs.

19

To prove security of the above WeakTriples protocol, we give the simulator
SweakTriples Who does not have access to the secret keys of honest parties.

Simulator SWeakTripIes}

The simulator SweakTriples €xecutes the protocol acting honestly on behalf of the
honest parties. If the adversary decides to corrupt a party P; at any point of the
protocol, SweakTriples gives all the information it holds on behalf of P; about the
execution of the WeakTriples protocol to the adversary.

Lemma 2. For 0 < e < 1/3 and t < (1 — 2¢) - n/3, the WeakTriples protocol
above satisfies the following:

— Termination: All honest parties terminate the protocol and output £ triples.

— Consistency: All honest parties output the same triples.

— Correctness: The output triples are correct.

— Secrecy: The plaintexts underlying the output triples are unknown to the
adversary. In other words, the adversary has mo more information about
these plaintexts than that the plaintexts underlying the third components are
the product of the plaintexts underlying the corresponding first and second
components.

— Computational Uniform Randomness: The distribution of the plaintexts un-
derlying any output triple is computationally indistinguishable from the uni-
form distribution over the set of all triples (a,b,a -pi b) for a,b € Ryk.

— Independence: The plaintexts underlying any output triple are computation-
ally independent of the plaintexts underlying all other output triples.

— Privacy: The adversary’s views in the simulation and the protocol are perfectly
indistinguishably distributed, i.e. the adversary does not learn anything.

— Communication complexity: The protocol has expected communication com-
plezity O((*n + K°n).

The proof is given in the full version [CHL21].

5.4 Main Theorem for the Atomic Send Model

By replacing the instance of the Triples protocol in step 4 of the Preparation
Phase of the MPC protocol in Appendix B by the WeakTriples protocol above,
we can improve the communication complexity of our MPC protocol and achieve
O(n - poly(k)) bits per multiplication. Furthermore, using the reliable broadcast
protocol presented in [BKLL20] in our BrACS protocol, we can reduce the com-
munication complexity per input and obtain the following theorem.

Theorem 4. Let 0 < € < 1/3 and t < (1 — 2¢) - n/3. There exists_an MPC
protocol that t-securely realizes the ideal functionality in Subsection in the
KG-hybrid atomic send model and that has expected communication complexity
O(epni® + Dnk + eynk? + con®k + n3k + nk®), where D is the multiplicative
depth of the circuit, cp; is the number of multiplication gates, cy is the number
of input gates and co is the number of (public and private) output gates in the
circust.

20

References

[Bea92]

[BFO12]

[BGWSS]

[BHOS]

[BKLL20]

[BKR94]

[Bra84]

[Can00a)

[Can00b]

[CCDS8S]

[CDNOO]

[CDNO1]

[CGHZ16]

Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 420-432, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg. doi:https://doi.org/10.
1007/3-540-46766-1_34.

Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest minor-
ity. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 663—-680. Springer, Heidelberg, August 2012.
d0i:10.1007/978-3-642-32009-5_38.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1-10. ACM Press, May
1988. do0i:10.1145/62212.62213.

Zuzana Beerliova-Trubiniovd and Martin Hirt. Perfectly-secure MPC with
linear communication complexity. In Ran Canetti, editor, TCC 2008,
volume 4948 of LNCS, pages 213-230. Springer, Heidelberg, March 2008.
do0i:10.1007/978-3-540-78524-8_13.

Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asyn-
chronous Byzantine agreement with subquadratic communication. Cryp-
tology ePrint Archive, Report 2020/851, 2020. https://eprint.iacr.
org/2020/851.

Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure com-
putations with optimal resilience (extended abstract). In Jim Anderson
and Sam Toueg, editors, 13th ACM PODC, pages 183-192. ACM, August
1994. doi:10.1145/197917.198088.

Gabriel Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol.
In Proceedings of the third annual ACM symposium on Principles of dis-
tributed computing, PODC 84, page 154-162, New York, NY, USA, 1984.
Association for Computing Machinery. doi:10.1145/800222.806743.
Ran Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology, 13:143-202, 2000. doi:10.1007/
s001459910006.

Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
https://eprint.iacr.org/2000/067.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC, pages
11-19. ACM Press, May 1988. doi:10.1145/62212.62214.

Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Multiparty
computation from threshold homomorphic encryption. Cryptology ePrint
Archive, Report 2000/055, 10 2000. https://eprint.iacr.org/2000/055.
Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In Birgit Pfitzmann, ed-
itor, FEUROCRYPT 2001, volume 2045 of LNCS, pages 280-299. Springer,
Heidelberg, May 2001. doi:10.1007/3-540-44987-6_18.

Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. Constant-
round asynchronous multi-party computation based on one-way func-
tions. In J.H. Cheon and T. Takagi, editors, Advances in Cryptology

21

https://doi.org/https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-540-78524-8_13
https://eprint.iacr.org/2020/851
https://eprint.iacr.org/2020/851
https://doi.org/10.1145/197917.198088
https://doi.org/10.1145/800222.806743
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://eprint.iacr.org/2000/067
https://doi.org/10.1145/62212.62214
https://eprint.iacr.org/2000/055
https://doi.org/10.1007/3-540-44987-6_18

[CHL21]

[Cho20]

[CHP12]

[CHP13]

[Coh16]

[CP15]

[CROS]

[DI06]

[DN03]

[DN07]

[DNRS03]

[GLS19]

— ASIACRYPT 2016, volume 10032 of LNCS. Springer-Verlag, 2016.
doi:10.1007/978-3-662-53890-6_33.

Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On
communication-efficient asynchronous MPC with adaptive security. Cryp-
tology ePrint Archive, Report 2021/1174, 2021. https://ia.cr/2021/
1174.

Ashish Choudhury. Optimally-resilient unconditionally-secure asyn-
chronous multi-party computation revisited. Cryptology ePrint Archive,
Report 2020/906, 2020. https://eprint.iacr.org/2020/906.

Ashish Choudhury, Martin Hirt, and Arpita Patra. Unconditionally se-
cure asynchronous multiparty computation with linear communication
complexity. Cryptology ePrint Archive, Report 2012/517, 2012. https:
//eprint.iacr.org/2012/517.

Ashish Choudhury, Martin Hirt, and Arpita Patra. Asynchronous multi-
party computation with linear communication complexity. In International
Symposium on Distributed Computing, pages 388—402. Springer, 2013.
Ran Cohen. Asynchronous secure multiparty computation in con-
stant time. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Per-
siano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of
LNCS, pages 183-207. Springer, Heidelberg, March 2016. doi:10.1007/
978-3-662-49387-8_8.

Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous
MPC with linear communication complexity. In Proc. Intl. Conference on
Distributed Computing and Networking (ICDCN), pages 1-10, 2015.

Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with
optimal resilience, 1998. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.8.8120.

Ivan Damgard and Yuval Ishai. Scalable secure multiparty computation.
In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
501-520. Springer, Heidelberg, August 2006. doi:10.1007/11818175_30.
Ivan Damgard and Jesper Buus Nielsen. Universally composable efficient
multiparty computation from threshold homomorphic encryption. In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 247-264.
Springer, Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_15.
Ivan Damgard and Jesper Buus Nielsen. Scalable and uncondition-
ally secure multiparty computation. In Advances in Cryptology -
CRYPTO 2007, 27th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of
Lecture Notes in Computer Science, pages 572-590. Springer, 2007.
URL: https://iacr.org/archive/crypto2007/46220565/46220565.pdf,
d0i:10.1007/978-3-540-74143-5_32.

Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic
functions: In memoriam: Bernard m. dwork 1923-1998. J. ACM, 50(6):852—
921, November 2003. doi:10.1145/950620.950623.

Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient uncon-
ditional MPC with guaranteed output delivery. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of
LNCS, pages 85—114. Springer, Heidelberg, August 2019. doi:10.1007/
978-3-030-26951-7_4.

22

https://doi.org/10.1007/978-3-662-53890-6_33
https://ia.cr/2021/1174
https://ia.cr/2021/1174
https://eprint.iacr.org/2020/906
https://eprint.iacr.org/2012/517
https://eprint.iacr.org/2012/517
https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/978-3-662-49387-8_8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.8120
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.8120
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-540-45146-4_15
https://iacr.org/archive/crypto2007/46220565/46220565.pdf
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1145/950620.950623
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4

[GMW8T]

[GSZ20]

[HN06]

[HNPO5]

[HNPOS]

[Pat11]

[PCROS]

[PCR10]

[PCR15]

[PSRO2]

[RB8Y]

[SROO]

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218-229. ACM Press, May
1987. doi:10.1145/28395.28420.

Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output deliv-
ery comes free in honest majority MPC. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of
LNCS, pages 618—646. Springer, Heidelberg, August 2020. doi:10.1007/
978-3-030-56880-1_22.

Martin Hirt and Jesper Buus Nielsen. Robust multiparty computa-
tion with linear communication complexity. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 463-482. Springer, Heidel-
berg, August 2006. doi:10.1007/11818175_28.

Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic
asynchronous multi-party computation with optimal resilience (extended
abstract). In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 322—-340. Springer, Heidelberg, May 2005. doi:10.1007/
11426639_19.

Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous
multi-party computation with quadratic communication. In Luca Aceto,
Ivan Damgard, Leslie Ann Goldberg, Magnis M. Halld6rsson, Anna In-
gblfsdottir, and Igor Walukiewicz, editors, ICALP 2008, Part II, vol-
ume 5126 of LNCS, pages 473-485. Springer, Heidelberg, July 2008.
doi:10.1007/978-3-540-70583-3_39.

Arpita Patra. Error-free multi-valued broadcast and Byzantine agreement
with optimal communication complexity. In Antonio Fernandez Anta,
Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed Sys-
tems, pages 34—49, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient asyn-
chronous multiparty computation with optimal resilience. Cryptology
ePrint Archive, Report 2008/425, 2008. https://eprint.iacr.org/2008/
425.

Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Efficient statisti-
cal asynchronous verifiable secret sharing with optimal resilience. In Kaoru
Kurosawa, editor, ICITS 09, volume 5973 of LNCS, pages 74-92. Springer,
Heidelberg, December 2010. doi:10.1007/978-3-642-14496-7_7.

Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient
asynchronous verifiable secret sharing and multiparty computation.
Journal of Cryptology, 28(1):49-109, January 2015. doi:10.1007/
s00145-013-9172-7.

B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asynchronous uncondi-
tionally secure computation: An efficiency improvement. In Alfred Menezes
and Palash Sarkar, editors, INDOCRYPT 2002, volume 2551 of LNCS,
pages 93-107. Springer, Heidelberg, December 2002.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In 21st ACM STOC,
pages 73-85. ACM Press, May 1989. doi:10.1145/73007.73014.

K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multi-
party distributed computation. In Bimal K. Roy and Eiji Okamoto, edi-
tors, INDOCRYPT 2000, volume 1977 of LNCS, pages 117-129. Springer,
Heidelberg, December 2000.

23

https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/11818175_28
https://doi.org/10.1007/11426639_19
https://doi.org/10.1007/11426639_19
https://doi.org/10.1007/978-3-540-70583-3_39
https://eprint.iacr.org/2008/425
https://eprint.iacr.org/2008/425
https://doi.org/10.1007/978-3-642-14496-7_7
https://doi.org/10.1007/s00145-013-9172-7
https://doi.org/10.1007/s00145-013-9172-7
https://doi.org/10.1145/73007.73014

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In 23rd FOCS, pages 80-91. IEEE Computer Society
Press, November 1982. doi:10.1109/SFCS.1982.45.

24

https://doi.org/10.1109/SFCS.1982.45

Appendix
A Details of the Subprotocols

A.1 Decryption protocols

Private Decryption The private decryption protocol PrivDec takes the pub-
lic key pk, a ciphertext ¢ and a party P as public input and the secret keys
ski,...,sk, as private inputs. The protocol has no public nor private output for
all parties except for P, who privately outputs the plaintext underlying c. This
section is along the lines of [BH0§, CHP12, CP15].

—[Protocol PrivDec}

1: Every party P; computes (c;,p{) = DecShare(i, pk, sk;, c), sends (¢, p§) to P
and terminates.

2: As soon as P has received at least t + 1 pairs (cg, pj;) from distinct parties Py
such that pj, is a valid proof for ¢; from Py, P uses the Comb algorithm to
compute m = Comb(pk, ¢, {(ck, %) }keq1,...,n}), Where P sets all the values that
is has not received to L. Then P outputs m.

Lemma 3. Every party that remains uncorrupted until the end of the execution
terminates the PrivDec protocol. Furthermore, if P is honest at the end of the
protocol, then its output m is the correct decryption of ¢ even in the presence
of an adaptive adversary actively corrupting up to t < n/3 parties. The protocol
has communication complezity O(nk).

Proof. In this whole proof, an honest party is a party that is never corrupted by
the adversary and remains honest during the whole execution of the protocol.
Termination: Clearly all honest parties apart from P terminate as they only
need to compute a decryption share and send it to P. Furthermore, if P is hon-
est, then it terminates since all honest parties send correct decryption shares.
Hence, P eventually receives at least n—t > t+ 1 correct decryption shares from
distinct parties, runs Comb and obtains and outputs a message m.

Correctness: As we saw above, P eventually receives at least t+1 correct decryp-
tion shares from distinct parties. Hence, thanks to correctness of the threshold
homomorphic encryption scheme, we can deduce that P can compute the correct
decryption m of c. If P is honest, then it computes and outputs m.

It is easy to see that the communication complexity is indeed O(nk).

The proof works for an adaptive adversary corrupting at most ¢ parties because
the reasoning above is independent of which parties the adversary corrupts at
what point in time (we only talk about parties that remain honest during the
whole execution of the protocol).

Amortized Public Decryption The public reconstruction protocol PubDec
takes the public key pk and T = n — 2t ciphertexts cy,...,cr as public inputs

25

and the secret keys sk1, ..., sk, as private inputs. The protocol publicly outputs
the plaintexts my,....mp underlying the ciphertexts ci,...,cr. This section is
along the lines of [DNO07, CHP12, BH0g, CP15].

—[Protocol PubDec}

1: Every party defines the polynomial g(z) = Zle 237! Opk ¢; and computes
v; = g(ou) for all i € {1,...,n}.

2: The parties use their secret keys to run PrivDec(P;,v;) for all i € {1,...,n}. Let
u; be P;’s private output from PrivDec(P;,v;) for all i € {1,...,n}.

3: Every party P; € P sends u; to all other parties.

4: Every party P; € P locally defines a set P; of parties and adds party Pi to P;
as soon as it receives uﬁc from Pi.
For j = 0,1,...t, as soon as |P;| > T + t + j, P; applies an efficient al-
gorithm PolyFind (for example the Berlekamp-Welch decoder) on the points
{(aw,up)} p, epy to check whether there exists a polynomial p of degree at most
T —1 such that at least T+t of the input points lie on p. If this is the case, then

PolyFind outputs this polynomial and P; outputs mi1 = p1,...,mr = pr, where
p(x) = Z],T:I i1 -pk Pj, and terminates. Otherwise, P; proceeds with iteration
j+ 1.

Lemma 4. Every party that remains uncorrupted until the end of the execution
terminates the PubDec protocol and outputs the correct decryptions of c1,...,cr
even in the presence of an adaptive adversary actively corrupting up to t < n/3
parties. The protocol has communication complexity O(n’k).

Proof. In this whole proof, an honest party is a party that is never corrupted by
the adversary and remains honest during the whole execution of the protocol.

Termination: (taken from [CHP12]) Since all honest parties participate in the
PrivDec(P;, v;) protocols for all i € {1,...,n}, termination of the PrivDec pro-
tocol implies that all honest parties terminate steps 1-3. Next, define the poly-
nomial ¢'(z) = Z};l xI=1 .k m;. Since ¢; is an encryption of m; under pk for
all j € {1,...,T}, the homomorphic property of the encryption scheme implies
that g(x) is an encryption of ¢'(z) under pk for all x € R,. In particular, this
holds for = ay, for all k € {1,...,n}. Hence, by the correctness of the PrivDec
protocol and by definition of ug, we have ug = ¢'(ay) for all honest parties P.
Now, let P; be an arbitrary honest party and let 5 be the first iteration when
all honest parties are in P; (note that every honest party eventually includes all
honest parties in P; and since there are at most n = T + 2¢ parties, we have
3 t). Then, either PolyFind already found a polynomlal in iteration j for j <]
and P; terminated before iteration j or in iteration], P! is of size T +t+j and
contains n—t = T+t honest parties. Hence, since ¢’ is a polynomial of degree at
most T'—1 and at least T+t input points (namely the points from honest parties)
lie on ¢’, we can be sure that the PolyFind algorithm finds a polynomial and P;
terminates in step] Hence, after at most j < ¢ iterations, P; terminates. Note
that if in an iteration j the PolyFind algorithm fails to find a polynomial that
passes the checks, then P; has not received all the uj, = uy’s from honest parties

26

as otherwise the PolyFind algorithm would have succeeded (see above). Hence,
if in an iteration the PolyFind algorithm fails to compute a suitable polynomial,
then it is ok for P; to proceed with the next iteration because it is guaranteed
that P; can eventually add at least one party to P; and as soon as P; has all the
ug’s from honest parties (i.e all honest parties are in P;), it can terminate (and
this will happen before the tth iteration ended).

Correctness: Let P; be any honest party. As P; terminates, it found a polynomial
p of degree at most T'— 1 and a set of parties P’ of size at least T + ¢ such that
P; received a message uj, from all P, € P/’ and u) = p(oy,) for all P, € P/ . Since
there are at most ¢ corrupted parties, at least T' of the parties in P}’ are honest.
In the proof for termination, we saw that for honest parties, uj, = ur = ¢'(o)-
Therefore, there exist T distinct elements «j with p(ax) = ¢'(ag). Since T
points uniquely define a polynomial of degree at most T — 1 and both p and
g’ are polynomials of degree at most T'— 1, we can conclude that p = ¢’ and
P; can correctly compute and output the messages myq, ..., mp underlying the
ciphertexts cq,...,cp.

The claim about the communication complexity follows directly from the com-
munication complexity of the PrivDec protocol.

Again, the proof works for an adaptive adversary corrupting at most ¢ parties
because the reasoning above is independent of which parties the adversary cor-
rupts at what point in time (we only talk about parties that remain honest
during the whole execution of the protocol).

Remark 8. In every instance of the PubDec protocol, each party executes the
PolyFind algorithm up to ¢ + 1 times. By using local player elimination, we
can reduce the number of runs of the PolyFind algorithm in m instances of the
PubDec protocol to ¢ +m per party (instead of m(t + 1)). More precisely, if in
iteration j the run of the PolyFind algorithm of an honest party fails to output
a polynomial that passes the checks, then at least j + 1 of the inputs must be
wrong (otherwise the PolyFind algorithm would have succeeded). Since every
party outputs a polynomial satisfying all the checks at latest in round ¢, each
party can then detect which inputs were wrong and can locally eliminate the
parties that sent those wrong values. In any future run of the PolyFind algorithm
in the PubDec protocol, the party ignores the values sent from parties it locally
eliminated (respectively, it does not include parties it locally eliminated in P;).

Remark 9. By reduction and by Remark 57 we can deduce that for ci,..., clT
and c?,...,c% two computationally indistinguishably distributed sets of 1" ci-
phertexts with computationally indistinguishably distributed sets of underlying
plaintexts, an instance of the PubDec protocol with (pk,ci,... ck) as public
input (and sk, ..., sk, as private inputs) is computationally indistinguishably
distributed to an instance of the PubDec protocol with (pk,c3,...,c2) as pub-
lic input (and ski,...,sk, as private inputs) even in the presence of an active
adaptive adversary corrupting up to ¢ < n/3 parties.

27

A.2 Multiplication

This subsection presents the multiplication protocol which is based on [DNO07|
and the MULTIPLICATION GATE in the Computation Phase protocol of [BHO§].
The protocol uses circuit randomization which was originally introduced in
[Bea92].

Let T = L”_T%J Our multiplication protocol processes up to T independent
multiplication gates at the same time. To ensure independence of the gates, ev-
ery run of the multiplication protocol only considers multiplication gates with a
specific multiplicative depth.

The multiplication protocol takes as input T multiplication gates mq,...,mp
with the same multiplicative depth, the 27" inputs {(X;,Y;)}iequ,....7y (encrypt-
ing the values {(%;,¥:)}ieq1,...,7}) to the given multiplication gates and the
T encrypted multiplication triples {(As, B, Cy)}icqa,...,ry (encrypting the val-
ues {(as,bs,a; -pr bi) bieqa,..7y) associated with the given multiplication gates
mi,...,mp. We require that the multiplication triples underlying the encrypted
triples {(A;, B, Ci)}iequ,...,ry are unknown to the adversary and computation-
ally uniformly and independently distributed over the space of all multiplication
triples (the latter is equivalent to the plaintexts underlying the first and second
components of the triples being computationally uniformly and independently
distributed and the third component being the product of the first two). The
protocol publicly outputs 7" encryptions {Z;}ieq1,... .73, where the underlying
plaintexts z; are equal to x; i y; for all 4 € {1,...,T}.

—[Protocol Multiplication}

1: Every party locally computes X; ©pr A; encrypting x; —pi a; and Y; Opr By
encrypting y; —pib; for all i € {1,..., T} using the “+,x-homomorphic” property
of the encryption scheme.

2: The parties use their secret keys to run PubDec({X; ©pr Aiticta,..., 73, {Yi Opr
Bi}ieq,...,ry) and obtain x; —pk a; and y; —pr b; for all ¢ € {1,...,T}.

3: Each party locally computes E; = Encpr((zi —pk ai) pk (Yi —pk i), €) for all
i € {1,...,T}, where e is the neutral element of the randomness space. Then,
it computes Z; = E; ®pk (i —pk i) Opk Bi] ®pk [(Yi —pk bi) Opr As] ®pi Ci for
alli e {1,...,T}.

4: Every party outputs {Z:}ic(1,....1}-

Remark 10. 1. If n—2t is odd, then the parties only input n—2¢—1 ciphertexts
to the PubDec protocol in step 2. In that case, the parties additionally give
Encpr(Opk, €) as input to the PubDec protocol, where e is again the neutral
element of the randomness space, obtain the plaintext O, as one of the
outputs of PubDec and simply disregard it in all further steps.

2. If only T" < T multiplication gates are input to the multiplication protocol
(for example when there are less than 7" multiplication gates with the same
multiplicative depth in a given circuit), then the parties execute the protocol
normally doing all the computations for indices in {1,...,7"} instead of
in {1,...,7T} and adding the encryption Ency,(0pk,€) to the inputs of the

28

PubDec protocol n — 2t — 2T times (where e is again the neutral element of
the randomness space).

The multiplication protocol achieves the following.

Proposition 1. Let mq,...,mp be T multiplication gates with the same mul-
tiplicative depth and let {(As, By, C;)}icqa,..., 7y be the encrypted multiplication
triples associated with the given gates. Furthermore, let {(X},)/;1)}7;6{1,“‘7’1“} and
{(X2, Y?)}ie{l,_“’T} be two computationally indistinguishably distributed sets of
2T ciphertexts. Then, even in the presence of an active adaptive adversary
corrupting up to t < n/3 parties, an execution of the multiplication protocol
with {(X},Y;l)}ie{lw’T} as inputs to the given gates is computationally indis-
tinguishably distributed from an execution of the multiplication protocol with
{(X2,Y?)}ieqr,.... 1y as inputs to the given gates.

Proof. Using reduction it is easy to see that step 1 is computationally indistin-
guishably distributed in both executions (even if the adversary corrupts a party
during step 1).

For step 2, we know by reduction that the ciphertexts ({X} ©px Aitiei,... T
{Y}! ©pk Bitieqr,..,my) and ({X7? ©pp Aitieqn,... 1y, {Y? Opk Bitieqr,...1y) are
computationally indistinguishably distributed. Furthermore, we know that the
plaintexts underlying {A;};ie(1,..., 7y and the plaintexts underlying {B; }ieq1,.... 1)
are unknown to the adversary and computationally uniformly and indepen-
dently distributed. Therefore, the plaintexts underlying {X} &, Aitiei,.. T
(V' ©pk Biticqr,...my)s {X7 Spr Aiticqr,...my and {Y? Sp Biticqu,.. 1}) are
all unknown to the adversary and computationally uniformly and independently
distributed and thus, they are computationally indistinguishably distributed. By
Remark [, we can conclude that step 2 of the multiplication protocol is compu-
tationally indistinguishably distributed in both executions, even if the adversary
corrupts a party.

As for step 1, a reduction argument shows that steps 3 and 4 maintain compu-
tational indistinguishability (even if the adversary corrupts a party during these
steps).

Proposition 2. The multiplication protocol communicates O(nk) bits.

B Protocol

The protocol we present uses a key generation oracle (KG) which sets up all
the public and private keys used in our protocol, gives the keys to the entitled
parties and provides public Lagrange arguments for all parties. We assume that
the simulator has access to an efficient key generation algorithm (KGA) that
computes a computationally indistinguishably distributed set of public and pri-
vate keys and Lagrange arguments. Furthermore, we assume that the parties
have access to an encoder and a decoder algorithm that transform values from
the message space of the encryption scheme to {0,1}* and vice versa. We do

29

not explicitly mention when the parties use the encoder and decoder algorithms.
They are implicitly used whenever a transformation is necessary.

The description of the protocol follows the structure of the FuncEvaly Algorithm
in [CDNOQ].

—i Protocol

Preparation Phase:

1: Every party P; receives a security parameter x, the number of parties n, a secret
input x; € {0,1}" and a random string b; € {0,1}" as input. The adversary is
given the inputs k, n, a random string b € {0,1}* and an auxiliary string
a€{0,1}".

2: The parties call the key generation oracle KG. Each party P; gets the common
inputs pk, K, R, {K,}.,{ai}ie(1,....n} and the secret inputs ski,{K;}X, where
(pk, sk1, ..., skn) is a uniformly random threshold encryption key, K is a uni-
formly random encryption of 1, under pk, R is a uniformly random encryption
of Opr under pk, {K,}, are the public keys used for the zero-knowledge proofs
and the commitment scheme, { K.}, are the private keys of P; used for the zero-
knowledge proofs and the commitment scheme and {a;}ic(1,...,n} are Lagrange
arguments.

3: On input pk, every party computes the arithmetic circuit over Ry, corresponding
to the function f evaluated on n inputs. We denote the gates in the circuit by
Hly, ... Hp.

4: Let cpr be the number of multiplication gates in the circuit. The parties execute
the Triples protocol with input ¢y and obtain a set of triples {(A;, Bi, Ci) }iez,
where Z is the set of all indices of multiplication gates in the circuit.

Computation Phase:

1: Each party P; commits to its secret input z; towards every party P; for all j €
{1,...,n} under the corresponding commitment key. For all (¢,) € {1,...,n},
let C;—; be the commitment to z; from P; towards P; and let (z;,c¢;;) be the
opening information for C;_;.

2: BEach party P; chooses a uniformly random value 7, from the randomness space.
The parties run the BrACS protocol from Appendix E with public input (pk, K)
and secret input (x:,7xz;, {¢ij}ieq1,...n}, {Cimsitiefn,...n}ys 1Cimitjeqa,...,ny) for
every party P; and obtain as output a set S and encryptions {Encffk(xi)}i; Pes-

3: Evaluate the circuit as in [CDNOC]: While there are gates that have not been
evaluated yet, let J C {1,...,1} be the set of non-evaluated gates that are ready
to be evaluated. Evaluate all gates in J in parallel by doing for every j € J:

a) If Hgk is an input gate for a party P; € S, then every party sets Encpr(h;) =
Encffk(mi). If Hgk is an input gate for a party P; ¢ S, then every party
computes d Opr K using the “Multiplication by constant” property of the
encryption scheme and sets Encpr(h;) = d ©pr K, where d is a default value.

b) If Hgk is a constant input gate for a constant c, then every party sets
Encpi(hj) = ¢ Opr K by using the “Multiplication by constant” property
of the encryption scheme.

30

c) If Hgk is an addition gate for Encyk(h;,) and Encpr(hj,), every party sets
Encpr(h;) = Encpr(hy,) ®pk Encpr(hj,) using the “+4pr-homomorphic” prop-
erty of the encryption scheme.

d) If Hgk is a multiplication by a constant gate for values ¢ and Encyi(hj,),
every party sets Encpr(hj) = ¢ Opr Encpr(hj,) using the “Multiplication by
constant” property of the encryption scheme.

e) If sz is a multiplication gate, the parties wait until all the multiplication
gates with the same multiplicative depth as H Zk are ready to be evaluated.
As soon as this is the case, the parties split these multiplication gates into
blocks of L”‘ij gates. For each block, the parties use the multiplication
protocol from Appendix with the following input: the gates in the block,
their input ciphertexts and the encrypted multiplication triples associated
with the gates in the considered block. From this, the parties obtain the
encrypted outputs of all the multiplication gates with the same multiplicative
depth as H: Zk'

Let Encpr(s) be the output of the evaluated circuit.

4: Every party P; generates a uniformly random r; from the message space Rpy.
Each P; commits to r; towards every party P; for all 5 € {1,...,n} under
the corresponding commitment key. For all (¢,5) € {1,...,n}, let B;—,; be the
commitment to r; from P; towards P; and let (7, b;;) be the opening information
fOl" Biﬁj.

5: Every party P; chooses a uniformly random value 7”5 from the randomness space.
Parties run the BrACS protocol (see Appendix E) with public input (pk, K) and
secret input (ri,rfi, {bij}ieq1,..ny> {Bisitje(n,...n}> {Bisitjeqr,...n}) for every
party P;. The parties get as output a set S’ and encryptions {Encffk (ri)}i: pesr-

6: Every party P; chooses a uniformly random value r{‘; from the randomness space.
Then, the parties run the BrACS protocol with public input (pk, R) and secret
input (rs, 770, {bij Yieqr,...n}» {Bimsitieqr,...ny {Bjmi}jeqr,...my) for every party
P;. In this execution of the BrACS, we take a slightly modified ACS property
@, namely to all the conditions described in the BrACS protocol, we add that
a party P; only likes another party P; if P; likes P; for the ACS property of the
BrACS execution in step 5 (it is okay if P; only likes P; after the BrACS from
step 5 terminated and input 0 to BA; in the ACS of step 5). The parties obtain
as output a set S” and encryptions {Enclf (r:i)}i: pes -

7: Let S = 8'NS”. Let I be the set of indices of the parties in S and let {Ai}ier be
the Lagrange coefficients of degree |I| —1 over Rpx such that for any polynomial
g of degree at most [I| — 1 we have g(Opr) = >, ; Ai -pr (i) (precisely Ai =
[Ticr(0pk — @) p (i — ;)" for all i € I). Every party P; locally computes

7

Ji#
Encpr(s)’ = Encpr(s) @ pi (A Opr Encfk(ri)).
iel

8: The parties use their secret keys to run PrivDec(P;, Encyi(s)’) for all ¢ €
{1,...,n} and all parties obtain s.

9: The parties run the reliable consensus protocol RC taking as secret input the
value s decrypted in the previous step (as soon as they obtain it).

BrACS In this subsection, we discuss the BrACS protocol used in our MPC
protocol. The subprotocol takes as public input the public key pk of the en-
cryption scheme and an encryption M (in our protocol and simulation this is

31

sometimes an encryption of 1,; and other times an encryption of 0,). The mes-
sage encrypted by M is denoted by m. For each party P; the protocol takes as
secret input a message a;, a randomness 7,,, n values ¢;; and 2n commitments
Cj; and Ci,; for j € {1...,n}. The C;_;’s represent commitments from P;
towards P;. If P; and P; are both honest, (a;, ¢;;) is the opening information for
the commitment C_,; that P; holds. The protocol publicly outputs a set S of
parties and for each party P; € S it publicly outputs an encryption of a; -p; m.

—[Protocol BrACS}

1:

2:

: Let @ be the property such that a party Py satisfies () towards another party

Every party P; generates an encryption of a; -pr m by computing Enc% (asyTa;)
and reliably broadcasts Enc% (as,7a;) using the RBC protocol.

Every P; uses the “proof of compatible commitment” property in Subsection @
and proves to all P; for j € {1,...,n} with instance (Encp(ai,7q,), Cis;) and
witness (ai, Ta;, Cij)-

P; if and only if the reliable broadcast of Py in step 1 terminated for P; and
the proof in step 2 was accepted by P;. The parties run the ACS protocol with
property @ and obtain a set S C P. Every P; waits until the reliable broadcast
of all parties P € S terminated. Then each party outputs S and for each P, € S
the value received from the terminated reliable broadcast.

Proposition 3. The BrACS protocol achieves the following properties.

a)
)
)
a)

The protocol terminates for all honest parties.

All parties agree on the set S and the encryptions of parties in S.

The set S is of size at least n —t.

Every honest party P; in S succeeds to reliably broadcast a correct encryption

Encpj\/,ﬂ(ai) of a; -pk m. This means that the reliable broadcast of Encpj\i(ai)

terminates for all honest parties and that at least one honest party P; accepts

the proof given by P; in step 2, namely that P; knows a preimage of Enc% (a;)

under (pk, M) and that the first component of this preimage is equal to the

value P; committed to with C;_, ;.

Furthermore, for every corrupted party P; in S, the reliable broadcast of y

of P; in step 1 terminates for all honest parties and at least one honest

party P; accepts the proof (see above) given by P; in step 2. Hence, with high
!/ ! /) Z'S

probability, P; knows values (a;, c;;) such that y = Enc%(ai) and (a;, ci;

the opening information to C;_,;.

The proof is straightforward and therefore omitted.

32

	On Communication-Efficient Asynchronous MPC with Adaptive Security
	Introduction
	Communication Complexity of Asynchronous MPC protocols
	Contributions

	Preliminaries
	Communication and Adversary Model
	Zero-Knowledge Proofs of Knowledge
	Universally Composable Commitments
	Threshold Homomorphic Encryption

	Subprotocols
	Agreement protocols
	Decryption Protocols
	Multiplication
	Triple Generation

	Asynchronous Adaptively Secure MPC Protocol
	Ideal Functionality
	Informal Explanation of the Protocol
	Main Theorem

	Near-Linear MPC in the Atomic Send Model
	Model
	VACS
	Triple Generation
	Main Theorem for the Atomic Send Model

	Details of the Subprotocols
	Decryption protocols
	Multiplication

	Protocol

