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Abstract. We study post-quantum zero-knowledge (classical) protocols
that are sound against quantum resetting attacks. Our model is inspired
by the classical model of resetting provers (Barak-Goldreich-Goldwasser-
Lindell, FOCS ‘01), providing a malicious efficient prover with oracle
access to the verifier’s next-message-function, fixed to some initial random
tape; thereby allowing it to effectively reset (or equivalently, rewind) the
verifier. In our model, the prover has quantum access to the verifier’s
function, and in particular can query it in superposition.
The motivation behind quantum resettable soundness is twofold: First,
ensuring a strong security guarantee in scenarios where quantum resetting
may be possible (e.g., smart cards, or virtual machines). Second, drawing
intuition from the classical setting, we hope to improve our understanding
of basic questions regarding post-quantum zero knowledge. We prove the
following results:
– Black-Box Barriers. Quantum resetting exactly captures the power

of black-box zero knowledge quantum simulators. Accordingly, resettable
soundness cannot be achieved in conjunction with black-box zero
knowledge, except for languages in BQP. Leveraging this, we prove
that constant-round public-coin, or three message, protocols cannot
be black-box post-quantum zero-knowledge. For this, we show how
to transform such protocols into quantumly resettably sound ones.
The transformations are similar to classical ones, but their analysis
is very different due to the essential difference between classical and
quantum resetting.

– A Resettably-Sound Non-Black-Box Zero-Knowledge Protocol.
Under the (quantum) Learning with Errors assumption and quantum
fully-homomorphic encryption, we construct a post-quantum resettably-
sound zero knowledge protocol for NP. We rely on non-black-box
simulation techniques, thus overcoming the black-box barrier for
such protocols.

– From Resettable Soundness to The Impossibility of Quantum
Obfuscation. Assuming one-way functions, we prove that any quantumly-
resettably-sound zero-knowledge protocol for NP implies the impossibility
of quantum obfuscation. Combined with the above result, this gives
an alternative proof to several recent results on quantum unobfuscatability.
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1 Introduction

Zero-knowledge protocols, introduced by Goldwasser, Micali, and Rackoff [GMR89],
are a cornerstone of cryptography. They allow proving the validity of any statement
in NP without revealing anything but its validity [GMW91]. After over three
and a half decades of research, zero knowledge protocols are well understood in
terms of their expressiveness and round complexity, and various enhancements
of zero knowledge have been considered.

In this work, we consider zero knowledge protocols with post-quantum security,
namely, protocols that can be executed by classical parties, but where both
soundness and zero knowledge are guaranteed against efficient quantum adversaries.
Starting from the seminal work of Watrous [Wat09], our understanding of post-
quantum zero knowledge has been gradually improving, and yet it is still far
behind our understanding of classical zero knowledge. Beyond the obvious need
for post-quantum computational assumptions, the design and analysis of post-
quantum zero knowledge protocols is challenged by quantum phenomena such as
the no-cloning theorem [WZ82] and state disturbance [FP96], which often deem
classical techniques insufficient.

Resettable Soundness. We focus on the notion of resettable soundness, introduced
by Barak, Goldreich, Goldwasser, and Lindell [BGGL01] and by Micali and
Reyzin [MR01]. In the classical setting, resettably-sound protocols remain sound
even against a prover that has the ability to reset the honest verifier to its
initial state and random tape, and repeat the interaction in any way it chooses
(equivalent to the ability to rewind the verifier to any previous message). The
threat of reset attacks arises in various settings, when fresh randomness cannot
be generated on the fly and parties are subject to physical resets. Examples
include verifiers that run on smart cards or virtual machines. Accordingly security
against resetting attacks has received much attention [CGGM00,KP01,MR01]
[DGS09,GS09,COSV12,OV12,COPV13,COP+14,BP15,CPS16].

Beyond the protection it provides in the above settings, resettable soundness
has played an important role in understanding a foundational question regarding
(classical) zero knowledge protocols — the gap between black box zero knowledge
and non black box zero knowledge. In the first, the zero knowledge simulator can
only access the verifier as a black box, whereas in the second, it can make explicit
use of the verifier’s code. Indeed, resettably-sound protocols cannot have a black-
box zero knowledge simulator [BGGL01]; roughly speaking, this is because a
resetting prover effectively has the same rewinding power as a zero knowledge
simulator, and can accordingly use any black box simulation strategy in order
to cheat. In fact, several other black-box zero knowledge impossibilities can be
derived by a reduction to the impossibility of resettably sound black-box zero
knowledge [GK96b,BGGL01,PTW11].

This Work: Quantum Resettable Soundness. We investigate resettable
soundness in the quantum setting. That is, we consider classical protocols that
are sound against quantum resetting attacks and (plain) zero knowledge against
quantum malicious verifiers. Our goal is twofold: First, constructing such protocols
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to deal with resetting scenarios in a quantum world. Second, in light of the role
that resettable soundness plays in the classical setting, we expect that in the
quantum setting too, understanding resettable soundness would shed light on
basic questions regarding post-quantum zero knowledge.

1.1 Contributions

We first model resetting attacks in a quantum world and define the corresponding
notion of resettable soundness. We consider a strong definition that provides the
resetting prover quantum access to the honest verifier’s next message function,
for some fixed verifier randomness. In particular, the resetting prover may not
only rewind the verifier, but also do it in superposition. This model aims to
capture the worst possible behavior of an efficient quantum attacker in a setting
where resetting is possible. Furthermore, the model captures the capabilities
of a black box zero knowledge simulator in the quantum setting (the model is
further discussed in the technical overview). Throughout, we restrict attention
to efficient resetting provers and accordingly to arguments [BCC88] (offering
computational soundness) rather than proofs (offering statistical soundness).

We next describe our results regarding the construction and implications of
the above notion of resettable soundness (further discussion of the model and
definition can be found in the technical overview below).

Quantum Black Box Barriers. As intended our definition provides a quantum
resetting prover with the power of a quantum black-box zero knowledge simulator.
This yields a black box barrier analogous to the one in the classical setting.

Observation 1 (Informal) Post-quantum resettably-sound black-box zero knowledge
is impossible, except for languages in BQP.

Building on this fact, we then prove that the Goldreich-Krawczyk black box
zero knowledge barriers from the classical setting [GK96b] translate to the
quantum setting. More generally, we show that under minimal assumptions,
any three-message or constant-round public-coin zero-knowledge protocol can be
converted into a quantum resettably-sound argument, while preserving black-box
zero knowledge.

Theorem 2 (Informal). Assuming post-quantum one-way functions, post-quantum
zero knowledge protocols that are three message or constant-round public-
coin, with a negligible soundness error, can be made resettably sound. Such
protocols cannot be black-box zero knowledge, except for languages in BQP.

We note that the classical barriers proven by [GK96b] do not apply here, as
they only consider classical zero-knowledge simulators, rather than the quantum
ones in our setting. The transformation behind the above theorem is in fact
the same as the corresponding classical transformation [BGGL01]. However,
the analysis of the transformation is different and more challenging due to the
essential difference between classical resetting and quantum resetting, which is
superposition resetting attacks (see technical overview).
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The resulting black-box barrier holds for general zero knowledge protocols,
in particular, for arguments. In the case of proofs (with statistical rather than
computational soundness), there is evidence that three-message or constant-
round public-coin zero knowledge (for non-trivial languages) is impossible altogether
(even non-black-box) [BLV06,KRR17,FGJ18]. In the case of black-box zero knowledge,
this barrier for proofs was proven (unconditionally) by Jain, Kolla, Midrijanis,
and Reichardt [JKMR09]. Finally, we note that like in the classical setting,
the resulting barriers, in fact, hold also in a semi-black-box model where the
simulator is allowed to depend on the circuit size of the simulated verifier. In the
fully black-box model, the barriers can be proven without relying on one way
functions.

A Resettably-Sound Protocol via Quantum Non-Black-Box Techniques.
Aiming to constructing post-quantum resettably-sound zero knowledge, we are
faced with the above mentioned black-box impossibility. In the classical setting,
the corresponding black box impossibility of resettably-sound can be circumvented
relying on non-black-box simulation. Indeed, the pioneering work of Barak shows
how to construct constant-round public-coin zero knowledge arguments from
collision-resistant hashing [Bar01], to which one can apply the [BGGL01] transformation
to obtain resettable soundness. In the quantum setting, however, constant-round
public-coin zero knowledge arguments for now remain out of reach.

Nevertheless, under standard assumptions (Quantum Learning with Errors
[Reg05] and Quantum Fully-Homomorphic Encryption [Bra18,Mah18]) we construct
a post-quantum resettably-sound zero knowledge protocol relying on (quantum)
non-black-box simulation.

Theorem 3 (Informal). Assuming the hardness of QLWE and the existence of
QFHE there exists a post-quantum resettably sound zero-knowledge argument for
NP.

Our construction starts from the recent construction of post-quantum constant-
round (non-black-box) zero-knowledge [BS20] and modifies it. While non-black-
box techniques do not seem inherent for constant round zero knowledge with
plain soundness (see [CCY20] in related work), in our setting they become
essential. While the non-black-box technique we use is similar to that of [BS20],
resettable soundness, requires a new proof, which encounters several technical
challenges emerging from quantum resetting.

From Resettable Soundness to Quantumly Unobfuscatable Functions.
In the classical setting, resettably-sound zero knowledge is known to be intimately
related to the impossibility of virtual black box obfuscation [BGI+12]. In particular,
assuming one-way functions any resettably-sound zero knowledge protocol for
NP implies a family of unobfuscatable functions [BP15]. We show that this
result translates also to the quantum setting; specifically there exists classical
function families that cannot be obfuscated as quantum states according to the
quantum virtual black box notion of Alagic and Fefferman [AF16].
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Theorem 4 (Informal). If there exists a post-quantum resettably-sound zero-
knowledge argument for NP and post-quantum one-way functions, then quantum
virtual black-box obfuscation is impossible.

Such an impossibility was recently shown by Ananth and La Placa [AP20b]
and by Alagic, Brakerski, Dulek, and Schaffner [ABDS20]. The combination
of Theorems 3,4 yields an alternative, albeit more complicated, proof of this
result (under similar assumptions). We note that differently from the classical
setting where the impossibility of black box obfuscation is unconditional, in the
quantum setting it relies on QLWE and strongly relies on quantum homomorphic
encryption. Following the above theorem, any advancement in the construction
of quantumly resettably sound protocols, and in particular the construction of
constant-round public-coin or three-message protocols, is likely to also advance
our understanding of quantum unobfuscatability.

2 Technical Overview

In this section, we provide a technical overview of the paper.

2.1 Defining Post-quantum Resettable Soundness

In the classical setting [BGGL01], a resetting attack by a malicious prover rP
is modeled by providing the prover oracle access to the next-message function
of honest verifier V(x, · ; r) for the common input x and randomness r that is
sampled uniformly and fixed once and for all. The prover then has the ability
to query a partial transcript ts, including prover messages up to some round i,
and obtain back the verifier message in round i+ 1. In a successful attack, after
polynomially many queries, the prover manages to output a full transcript ts for
some false statement x, which yet convinces the verifier V(x, ts; r).

Aiming to generalize this to the quantum setting, there are two conceivable
definitions. The first considers quantum provers, which are only given classical
access to V(x, · ; r). The second, which we consider in this work, provides the
prover with quantum access to V(x, · ; r); namely, access to the unitary map
|ts〉|y〉 7→ |ts〉|y ⊕ V(x, ts; r)〉; in particular, it may now query V(x, · ; r) in superposition.
While the first may still provide meaningful security in settings where classical
access can be enforced, the second resists stronger resetting scenarios in which
the attacker can perform quantum resetting and remain secure even in settings
where classical access could be hard to enforce (similar considerations arise
when considering CCA and signatures against quantum adversaries, see for
instance [BZ13]). Finally, our definition captures the abilities of a black-box
zero-knowledge simulator, and will thus be useful for proving black-box barriers
on post-quantum zero knowledge.

Proving that resettably-sound protocols cannot be black box zero knowledge,
except for languages in BQP, now follows a standard argument similar to the
classical one [BGGL01]. Roughly, speaking this is because a quantum resetting
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prover has the ability to run a quantum black-box simulator for the verifier
V(x, · ; r), in order to produce a cheating transcript. Indeed, by zero knowledge
and completeness, for any true statement x, the simulator almost always generates
an accepting transcript, and unless it can decide the underlying language (meaning
that it is in BQP), it must also be able to do so for some false statements.

Variants. A natural strengthening of the above definition allows the prover to
also choose the statements x that it provides the oracle with; namely get access
to V(· , · ; r). In the body, we prove that this stronger notion can be obtained from
the simpler notion assuming subexponentially-secure (post-quantum) pseudorandom
functions. We note that all the implications of resettable soundness shown in this
work, already follow from the simpler notion of resettable soundness.

Also, as already noted we restrict attention to efficient resetting provers,
namely arguments. We note that classically, resettably-sound zero knowledge
proofs, namely against unbounded provers, are only possible for trivial languages
[BGGL01], and this carries over to the quantum setting. Again, all implications
shown in this work already follow from resettably-sound zero knowledge arguments.

2.2 3-Message and Constant-Round-Public-Coin Protocols Can be
Made Resettably Sound

We now explain how 3-message protocols and constant-round public-coin protocols
are made resettably sound. The transformation does not change the honest
prover, and thus preserves black box zero knowledge, and any other privacy
guarantee, such as witness indistinguishability (which we will use later on).
This in turn yields quantum black-box zero-knowledge barriers on 3-message
or constant-round public-coin protocols (with a negligible soundness error).

3-Message Protocols. The transformation for three-message protocols is essentially
identical to the classical one [BGGL01]. Given the original verifier V for the
protocol, we consider a new verifier Ṽ whose randomness consists of a random
seed k for a pseudorandom function secure under quantum access [Zha12]. Given
a statement x and first prover message α, the verifier Ṽ derives randomness r by
applying the PRF and derives the second message β, by applying the original
verifier with corresponding randomness:

r = PRFk(α), β = V(x, α; r) .

As expected Ṽ(x, α, β, γ; k) accepts if the original verifier V(x, α, β, γ; r) accepts.
In the classical setting, resettable soundness is proven by a relatively simple

reduction to the soundness of the original protocol. In the quantum setting,
however, proving security is significantly more challenging. Before we address
these challenges let us start by recalling the classical reduction to develop basic
intuition. We are given a resetting prover rP, which without loss of generality,
never makes the same query twice, and always queries the oracle Ṽ on the
cheating transcript it eventually outputs. Roughly speaking, the reduction, which
aims to cheat V in a single interaction, will aim to embed this interaction
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in a random position in an execution of the resetting rPṼ(x,· ;k) and forward
that execution to the external verifier V. All other executions are internally
simulated by the reduction. By pseudorandomness, the view of the simulated rP
is indistinguishable from its view in a resetting attack and will include some
cheating execution. With noticeable probability (inverse proportional to the
number of queries that rP makes), the reduction hits the cheating execution
and wins.

In the quantum setting, however, it is not a-priori clear how such a reduction
would work. In particular, any query made by rP to Ṽ may now include a
superposition of super-polynomially many transcripts. Furthermore, merely observing
the prover queries disrupts its state and could affect the probability it produces
a cheating transcript. Embedding an execution at a random position is also
tricky. When we forward some message α to the external verifier, and obtain
back a message β, we have to answer consistently with β all oracle queries to
α. However, whereas in the classical case, we could assume that no α is queried
more than once (because queries can be stored), now it may be that α takes part
in all superposition queries that the prover makes.

Similar difficulties arise when trying to prove the soundness of the Fiat-
Shamir transformation [FS86] in the quantum random oracle model [BDF+10],
and were, in fact, successfully circumvented in recent works [LZ19,DFMS19,DFM20].
Indeed, both in the Fiat-Shamir setting and in our setting, we can still hope
to obtain an analog of the classical reduction. Specifically, by measuring a
random query made by rP, forwarding the result α to the external verifier, and
consistently answering with β any future query α by reprogramming the classical
function Ṽ.

The intuition is that for the prover to succeed in outputting a convincing
transcript (α, β, γ), the message α has to appear in one of his superposition
queries with noticeable weight; otherwise, it gains almost no information on the
corresponding verifier message β, and will fail to break soundness. Furthermore,
when measuring such a query we are likely to obtain α, without disturbing the
prover’s state too much (in the extreme case that α occurs with probability one,
the state is not disturbed at all). If the reduction hits the first such query (where
α is significant), then it suffices that it is consistent with α in future queries and
does not have to worry about past queries.

This intuition is elegantly captured and made rigorous by Don, Fehr, Majenz,
and Schaffner [DFMS19,DFM20]. They prove reprogramming and simulation
lemmas that establish the validity of (a slight variant of) the described reduction
in the case of Fiat Shamir, where the message β is chosen uniformly at random.
In our setting, β is an arbitrary message derived by the verifier. Nevertheless,
relying on their reprogramming lemma, we can prove an appropriate simulation
lemma for our setting.

A Useful Generalization: Many-Round Almost Resettable Protocols.We
also show a generalization of the three-message transformation that allows to
take any single-prefix resettably-sound protocol and make it (fully) resettably
sound. Single-prefix resettably sound protocols are almost resettably sound.
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They allow the resetting prover to use a single classical first message and accordingly
obtain a single response to this message from the verifier. Only starting from the
prover’s next message it is allowed to quantumly reset; namely all interactions
(even if in superposition) start with the same classical prover message and verifier
response. A three message protocol is indeed the simplest example of a single-
prefix resettably-sound protocol, since the verifier has a single message, and if
this message is not reset, then there is no resetting whatsoever, and resettable
soundness is synonymous to plain soundness.

This generalization turns out to be useful, and is used later on in our construction
of a resettably sound (non-black-box) zero knowledge protocol for NP. To obtain
this generalization, we first extend the reprogramming lemma from [DFM20] to
the case of reprogramming an entire oracle, specified by some prefix. This allows
us to extend the previously described reduction, which given a fully resetting
prover can turn it into a single prefix resetting prover. The difference is that now
rather than obtaining from the external verifier a response β to the measured
α, it obtains oracle access to an oracle Ṽ(x, α, · ; r) specified by the prefix α
(and implicitly a response β). This oracle effectively allows to perform resetting
attacks, but only starting from the next prover message.

Constant-Round Public-Coin Protocols. Another example where classical
resettable soundness can be achieved is that of constant round public-coin protocols.
Also here we obtain an analogous transformation in the quantum setting, now
based on multi-value reprogramming lemmas from [DFM20], used there to deal
with multi-message Fiat Shamir.

Beyond 3-Message or Constant-Round Public-Coin? We note that we
should not hope to transform arbitrary protocols into resettably-sound ones;
indeed, multi-message post-quantum zero knowledge protocols for NP do exist,
and are even public coin [Wat09]. But what does it take for a protocol to be
(transformable to) resettably sound? Here one bottleneck is the (in)ability of
the reduction to simulate internally the interactions that are not forwarded to
the external verifier. More specifically, the question is whether the reduction
could simulate continuations that start consistently with the external verifier
and then diverge. In general private-coin protocols, this may not be possible
as the private coins of the external verifier are not known to the reduction. In
contrast, in three-message protocols this is not a problem, as there is nothing
to continue (the verifier has a single message). Similarly, also in public coin
protocols, simulating continuations is easy — the reduction samples the random
messages on its own.

This is, however, not the only bottleneck. A second bottleneck is that the
reduction has to hit the cheating execution with noticeable probability, and
since the reduction has to guess on the fly which messages to forward to the
external verifier, this probability may decrease exponentially in the number of
rounds. Hence, even for public coin protocols, the transformation only works for
a constant number of rounds. In fact, this is tight — the round complexity of
Watrous’ zero knowledge public-coin proofs [Wat09] can be reduced to any super
constant function ω(1). (For instance, by starting from Blum’s Hamiltonicity
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protocol [Blu86] that has constant soundness, repeating it in parallel logarithmically
many times, and then sequentially ω(1) times.)

2.3 Constructing a Resettably Sound Non-Black-Box
Zero-Knowledge Protocol

We now outline the main ideas and techniques behind our construction of a
resettably-sound non-black-box zero-knowledge protocol for NP. Our starting
point is the post-quantum zero knowledge protocol of Bitansky and Shmueli
[BS20]. We next describe the main challenges in turning this protocol into a
quantumly resettably sound protocol.

A Bird’s Eye View of the BS Protocol. At a high level (and oversimplifying),
the BS protocol consists of two phases. First, the verifier provides a quantum
extractable commitment to a challenge message. Then the parties execute a
standard zero knowledge sigma protocol to prove the statement x, where the
verifier opens the commitment from the first phase. The extractor for the first-
phase commitment is non-black-box, using the code of a sender (the verifier in
this case), it can extract the underlying message while faithfully simulating the
quantum state of the sender. This gives rise to a corresponding non-black-box
simulation strategy, which first extracts the verifier challenge and can then cheat
in the sigma protocol.

Already at this level, one can see that the protocol is not resettably sound,
even classically, let alone quantumly. A resetting prover can first run the verifier
until the opening phase, obtain the challenge, then reset the verifier, and like the
simulator use the obtained challenge to cheat in the sigma protocol. Indeed, the
reason that the actual simulator in the BS protocol does not follow this black-
box strategy is that it does not work for malicious quantum verifiers, whereas a
resetting prover only has to cheat a classical verifier.

Following the above observation, we change the above high level blueprint.
We rely on the Feige-Lapidot-Shamir [FLS99] trapdoor paradigm. In the first-
phase, the BS extractable commitment is used to set up a trapdoor statement t.
In the second phase, the prover provides a witness-indistinguishable proof that
either x is a true statement or t is a true statement. To guarantee soundness, the
trapdoor statement is set up so that it is indistinguishable from a false statement,
and thus relying on the soundness of the second-phase proof, a convincing proof
must mean that x is a true statement. In contrast, a simulator given the code
of the verifier should be able to efficiently extract a witness for the trapdoor
statement t, and can then use it in the second phase proof indistinguishably
from the prover (who uses the witness for x).

Given that we are interested in quantum resettable soundness, we have
to guarantee that the indistinguishability of the trapdoor statement t from a
false statement, holds even against quantum resetting attacks. Furthermore,
we have to guarantee that the second-phase proof is resettably sound. For the
latter, we can use standard constant-round public-coin witness-indistinguishable
proofs; indeed, we have already shown that such proofs can be made quantumly-
resettably sound, while preserving witness indistinguishability. The more involved
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part is establishing indistinguishability of the trapdoor statement from a false
one under resetting.

A Resettably-Secure Trapdoor Phase. We now dive deeper into the construction
of a resettably-secure trapdoor phase. In terms of extractability (of a trapdoor
witness), we first present a trapdoor phase that is only extractable against a
restricted class of verifiers that are non-aborting and explainable. The notion of
non-aborting explainable verifiers considers verifiers whose messages can always
be explained as a behavior of the honest (classical) verifier with respect to some
randomness (finding this explanation may be inefficient); in particular, they
never abort. This simpler setting will already capture the main challenges we
need to deal with. We will later discuss how this restriction is removed.

Similarly to the BS extractable commitment, we rely on three basic tools:

– Quantum fully-homomorphic encryption (QFHE) — an encryption scheme
that allows to homomorphically apply any polynomial-size quantum circuit
C to an encryption of x to obtain a new encryption of C(x), proportional in
size to the result |C(x)| (the size requirement is known as compactness).

– Compute-and-compare program obfuscation (CCO). A compute-and-compare
program CC[f, v, z] is given by a function f (represented as a classical
circuit) and a target string v in its range; it accepts every input x such that
f(x) = v, and rejects all other inputs. A corresponding obfuscator compiles

any such program into a program C̃C with the same functionality. In terms
of security, provided that the target v has high entropy conditioned on f , the
obfuscated program is computationally indistinguishable from a simulated
dummy program that is independent of f, v, z, and rejects all inputs.

– Secure function evaluation (SFE) that can be thought of as homomorphic
encryption with an additional circuit privacy guarantee, which says that
the result of homomorphic evaluation of a circuit, reveals nothing about
the evaluated circuit to the decryptor, except of course from the result of
evaluation.

We now describe a (still simplified) trapdoor phase, which is essentially the
same as the BS extractable commitment, except for how the randomness of the
verifier is handled. In the trapdoor phase the verifier has two randomized steps;
we denote the randomness used in these rounds by r1 and r2, respectively.

1. The prover P samples a secret key sk for SFE, and sends a commitment cmt
to sk.

2. The verifier V uses randomness r1 to sample:
– two random strings u and v,
– a secret key sk′ for an FHE scheme,
– an FHE encryption ct′u = QFHE.Encsk′(u) of u,

– an obfuscation C̃C of CC[f, v, sk′], where f = QFHE.Decsk′ is the FHE
decryption circuit.

It then sends (ct′u, C̃C) to the prover P.
3. The prover P:
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– sends ctu′ , a string u′ encrypted using SFE (the honest prover sets u′

arbitrarily).
– proves using a resettably-sound witness-indistinguishable argument that

ctu′ is a valid SFE encryption corresponding to the secret key sk underlying
the commitment cmt.

4. The verifier V:

– uses the SFE homomorphic evaluation to compute the function Cu→v
that given input u, returns v (and otherwise ⊥).

– To derive the randomness for this evaluation, V interprets its randomness
r2 as a seed for a pseudorandom function and applies it to the prover
messages (cmt, ctu′).

– V then returns the resulting ciphertext to P.

5. The trapdoor statement t is set to be:

“There exists a ciphertext ct∗ that the program C̃C does not reject.”

Basic Intuition. We start by building basic intuition on how the above protocol
achieves the goal of a trapdoor phase. For starters we will ignore the resetting
attacks, and recall the intuition from BS. Then we will address the main challenges
in proving resettable security, and how they are met. (A reader familiar with BS
may want to skip directly to the resettable security paragraph.)

Let us start by explaining how a non-black-box simulator can use the circuit
of an explainable verifier in order to obtain a witness proving the trapdoor
statement. The simulator acts honestly in the first step, and then obtains the CC

obfuscation C̃C and FHE encryption ct′u of the string u. The main point is that
now the simulator can homomorphically continue the protocol under the FHE
encryption. That is, it will evaluate the (quantum) verifier under the encryption,
where it has the secret u in the clear and can use it in the SFE protocol to obtain
back the secret target value v (the hiding of SFE encryption is used to argue that
such an execution is indistinguishable from a real one where a dummy encryption
is sent). Going back out of the encryption, the simulator now actually holds an

encryption ct∗ of v, and in particular C̃C does not reject ct∗, but rather outputs
the FHE secret key sk′. Thus, the ciphertext ct∗ obtained by the simulator is

a valid trapdoor witness. The reason we require C̃C to output sk′, rather than
an arbitrary accept value, is for the simulator to be able to decrypt the internal
verifier quantum state and faithfully continue the simulation.

We now turn to explain why to a malicious (but for now, non-resetting)
prover, who does not obtain the code of the verifier, the trapdoor statement is
indistinguishable from a false statement. Specifically, we would like to argue that

we can replace the obfuscation C̃C with a simulated one that rejects all inputs.
To see this, we first argue that the prover cannot send an SFE encryption ctu′

such that u′ = u , except with negligible probability. Indeed, given only the first

sender message (ct′u, C̃C), the receiver obtains no information about u. Hence,

we can invoke the CCO security and replace the obfuscation C̃C with a simulated
one, which is independent of the secret FHE key sk. This, in turn, allows us to
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invoke the security of encryption to argue that the first message (ct′u, C̃C) hides
u. While this means that the prover does not obtain u in the clear, we still need
to argue that it cannot send an encryption of u. This is done using a non-uniform
reduction and is exactly the purpose of the prover commitment cmt to the SFE
secret key sk, which allows us to provide the reduction with sk as non-uniform
advice. Having established that no SFE encryption of u is sent we can invoke
the circuit privacy guarantee to completely remove the value v from the prover’s

view and now we also replace C̃C with a simulated one that rejects all inputs.

Resettable Security. The above argument establishing indistinguishability of
the trapdoor statement from a false statement, does not consider resettable
attackers. We now discuss the difficulties arising from resetting attacks and how
they are dealt with.

Recall that a resetting quantum attacker may perform superposition queries.
Accordingly, now when arguing that it cannot produce an SFE encryption of
u, we would like to argue that SFE encryptions of u have negligible weight in
any query made by rP; in other words, projecting the queries on the space of
non-u queries has little effect on the experiment. Indeed, we can prove this if
the resetting prover is guaranteed to always use the same SFE encryption key,
in which case we can non-uniformly hardwire this key into our reduction like
before. The problem is that a resetting prover may start many executions, each
with a different SFE key; in fact it can run exponentially many such executions
in superposition. This is where we use our reduction to single-prefix resetting
provers (discussed in the previous section). The reduction allows us to obtain
new prover that in all executions sends the same commitment cmt and uses
the same secret key; any resetting attempt is done from the next message and
onward.

Having established that the prover queries do not include encryptions of
the secret u (or rather have a small projection on this space), we would like to
invoke as before the circuit privacy guarantee. However, this should be done with
care. The problem is the prover still has the ability to send many ciphertexts
and receive evaluations on each one of them. This is the reason we invoke a
pseudorandom function to derive randomness in this step, which ensures that
each evaluation uses (pseudo)independent randomness. Proving security, however,
is not straightforward. In the classical setting, this is not an issue — the overall
number of queries is polynomial and thus we can use a standard hybrid argument,
invoking circuit privacy polynomially many times. In the quantum setting, however,
where queries include a superposition over exponentially many ciphertexts, this
is unclear. In fact, there is a basic problem here, which we find interesting
on its own. Assume that for two efficient samplers S0(x) is computationally
indistinguishable from S1(x) for any input x; are the two oracles Fi(x) :=
Si(x;R(x)) indistinguishable (quantumly), whenR is a random function? Zhandry
[Zha12] shows that this is the case if Si(x) = Si(y) for any x, y, but the general
case is unclear.

Fortunately, in our case, we can take a straightforward approach to solve it, by
guaranteeing that circuit privacy is statistical, and ensuring that the statistical
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error is smaller than the total number of ciphertexts in the support, and thus a
naive hybrid argument still works. Doing so again requires care, as the size of SFE
ciphertexts and the statistical security guaranteed may be related. We show how
to deal with this by forcing the prover to also commit to the randomness used
in SFE encryptions so that the number of hybrids only depends (exponentially)
on the fixed length of the encrypted plaintext.

General Verifiers. In the described trapdoor protocol, we have made two
simplifying assumptions regarding the verifier — that it is explainable and that
it is non-aborting. We deal with the first restriction using a common approach
based on witness indistinguishable proofs by the verifier [BKP19,BS20]. This
time however, we need to rely on resettable statistical witness indistinguishability.
Statistically-witness-indistinguishable ZAPs are known under super-polynomial
hardness of QLWE [GJJM20,BFJ+20] and are resettable as they only include
one round. We also give a solution using only polynomial hardness of QLWE,
based on Unruh’s notion of collapse binding statistically-hiding hash functions,
which leads to statistical witness-indistinguishable protocols [Unr16b,Unr16a],
while these protocols are not resettably-witness-indistinguishable as is, we show
how to make them resettably secure.

As for dealing with verifier aborts, we rely on a general approach from [BS20],
which roughly asserts that it is sufficient to be able to construct two separate zero
knowledge simulators, one for verifiers that do not abort and one for verifiers that
do, and which do not affect the probability of aborting (more than negligibly).
They show that two such simulators can always be combined to one full-fledged
simulator using Watrous’ rewinding lemma [Wat09].

2.4 From Resettable Soundness to Quantum Unobfuscatability

Finally, we outline the construction of quantumly unobfuscatable functions from
resettably-sound zero-knowledge protocols for NP and one-way functions. Informally,
an unobfuscatable function family is a family of classical functions {fk} indexed
by a secret k. Given quantum oracle access to a random fk in the family, no
efficient quantum learner should be able to learn some secret function s(k) of
the key. In contrast, given any quantum state ρ and quantum circuit C such that
for some k and and all inputs x, C(ρ, x) computes the classical value fk(x), one
could efficiently extract from C and ρ the corresponding secret s(k).

Our construction closely follows the construction of classically unobfuscatable
functions from classical resettably sound zero knowledge protocols [BP15], while
making some adaptations to the analysis stemming from the difference between
the classical and quantum settings. Roughly speaking, our family of functions
{fr,ϕ,s} is indexed by randomness r and statement ϕ for the (honest) verifier
given by our resettably-sound protocol, and some secret s. The statement ϕ is
taken from some NP language L where random statements ϕ ∈ L are indistinguishable
from statement not in L (for instance pseudorandom strings vs random strings
for a sufficiently stretching pseudorandom generator). The function generally
computes the verifier next message function V(ϕ, ·; r) with two exceptions. For



14 Nir Bitansky, Michael Kellner, and Omri Shmueli

some fixed public input statement, the function will output the statement ϕ.
Also, given any accepting transcript ts, the function outputs its secret s.

To argue unlearnability, we show that any efficient quantum learner L that
given oracle access to a random fr,ϕ,s finds s can be transformed into a prover
that violates quantum resettable soundness. For this, we first show that any
learner that manages find s with noticeable probability, can be translated into a
learner that that given access to V(ϕ, ·; r) finds an accepting transcript ts, still
with noticeable probability. For this we rely on a quantum one-way to hiding
lemma by Ambainis, Hamburg, and Unruh [AHU19]. We then rely on the fact
that ϕ is indistinguishable from a false statement to deduce that the prover will
also succeed for no statements and thus break resettable soundness.

Finally, we show that we can use the non-black-box zero knowledge simulator
to extract an accepting transcript with overwhelming probability. Given a quantum
circuit C and state ρ implementing the function fr,ϕ,s, say perfectly (although
almost perfectly would still do). We can realize a quantum circuit along with
quantum auxiliary input ρ that implement the verifier V(ϕ, ·; r). Here perfect
correctness guarantees that when the constructed verifier computes its next
messages, the state ρ is not disturbed, and thus we can repeatedly compute
next messages. We can now run our non-black-box simulator (which also works
relative to quantum auxiliary input), and by zero knowledge and completeness
obtain an accepting transcript.

2.5 Related Work

We now mention additional related work, elaborate on some of the related works
mentioned earlier, and address concurrent work.

Classical Resettable Security. The notion of resetting attacks was first considered
by Canetti, Goldreich, Goldwasser, and Micali [CGGM00]. They defined and
constructed protocols that are zero knowledge against resetting attacks. Resettable
soundness was then introduced and achieved by Barak, Goldreich, Goldwasser,
and Lindell [BGGL01]. Deng, Sahai, and Goyal showed how to construct a
simultaneously resettable zero knowledge protocol [DGS09], this result was later
followed by Goyal [Goy13] who gave a public coin protocol, by Chung, Ostrovsky,
Pass and Visconti [COP+14] who gave a protocol based on one-way functions,
and by Chongchitmate, Ostrovsky, and Visconti [COV17] who gave a constant
round protocol, based on various standard assumptions. Goyal and Sahai [GS09]
and Goyal and Maji [GM11] defined and constructed varioues forms of resettable
secure computation. Bitansky and Paneth [BP12,BP13,BP15] constructed resettably-
sound protocols with various improved features based on unobfuscatability. Chung,
Pass, and Seth [CPS13] constructed resettably-sound zero knowledge based on
one-way functions. Finally, Chung, Ostrovsky, Pass, and Venkitasubramaniam
[COP+14] presented a 4-round resettably sound zero-knowledge based on one-
way functions.

Post-Quantum Zero-Knowledge for NP. The study of post-quantum zero-
knowledge (QZK) protocols was initiated by Van De Graaf [VDGC97], who
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first observed that traditional zero-knowledge simulation techniques, based on
rewinding, fail against quantum verifiers. Subsequent work has further explored
different flavors of zero knowledge and their limitations [Wat02], and also demonstrated
that relaxed notions such as zero-knowledge with a trusted common reference
string can be achieved [Kob03,DFS04]. Watrous [Wat09] was the first to show
that the barriers of quantum information theory can be crossed, demonstrating
a post-quantum zero-knowledge protocol for NP (in a polynomial number of
rounds). A constant round non-black-box zero knowledge protocol was constructed
by Bitansky and Shmueli [BS20] based on QLWE and quantum fully homomorphic
encryption. Similar techniques for non black-box extraction were also developed
by [AP20a]. Subsequently, Agarwal, Bartusek, Goyal, Khurana, and Malavolta
[ABG+20] extended the BS construction to obtain parallel zero knowledge based
on spooky encryptions for relations computable by quantum circuits.

Very recently Chia, Chung and Yamakawa [CCY20] showed that the Goldreich-
Kahan protocol [GK96a] satisfies a relaxed notion called (post-quantum) ε-zero
knowledge; the protocol is based on collapse binding hash functions in the case
of proofs, and on one-way functions in the case of arguments.

Barriers for 3-Message and Constant-Round Public-Coin Proofs. Classically,
3-message and constant-round public-coin zero knowledge arguments are subject
to black-box barriers [GK96b], but can in fact be classically achieved using non-
black-box simulation (under appropriate computational assumptions) [Bar01,BKP18].
In the case of proofs, there is evidence that they are unlikely to exists altogether
(including non-black-box zero knowledge). Specifically, constant-round public-
coin proofs do not exist assuming appropriate Fiat-Shamir hash functions
[FS86,DNRS03,BLV06]. Kalai and the Rothblums [KRR17] gave such an instantiation
of a Fiat Shamir hash assuming subepxoenential indistinguishability obfuscation,
and strong forms of point obfuscation. Jain, Fleischhacker, and Goyal [FGJ18]
extended their impossibility to also rule out three-message proofs. The mentioned
implications also hold in the quantum setting, assuming post-quantum analogs of
the corresponding assumptions. Jain, Kolla, Midrijanis and Reichardt [JKMR09]
showed that for black-box zero knowledge, proofs can be ruled out unconditionally.

Simulating Quantum Oracles. Quantum oracles have been a fundamental
aspect of quantum computation from the start. Querying the oracle in superposition
created the need to develop new proof techniques. Specifically when proving
security of quantum protocols in the Quantum Random Oracle Model ([BDF+10]).
The main issue is the lack of ability to record the queries asked by the adversaries
and to easily reprogram the answers. Nevertheless, many results were achieved
even without these abilities [Zha12,Unr14,Zha15,ES15,Unr15,TU16,ABB+17,KLS18].
Following Zhandry’s work [Zha18] on recording random oracles, many other
results were proven such as the Fiat-Shamir transform [LZ19,DFMS19,DFM20],
the Micali CS Proofs [CMS19], 4-round Luby-Rackoff construction [HI19] and
more.

Quantum Obfuscation. Quantum obfuscation was first proposed by [AF16].
It’s impossibility is not implied by the impossibility proved in [BGI+12]. In recent
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work, [ABDS20] showed the impossibility of such schemes based on the hardness
of QLWE. A related stronger notion called Secure Software Leasing was dealt in
[AP20b] and [KNY20], showing the impossibility of such generic scheme (based
on QLWE and the existence of QFHE), and the possibility of such schemes for
restricted classes of functions (pseudo-random functions and evasive functions)
under sub-exponential QLWE.

Concurrent Work. In a concurrent and independent work, Chia, Chung, Liu
and Yamakawa [CCLY21], prove new black-box barriers on post-quantum zero
knowledge. They show that black-box ε-zero-knowledge is impossible for three-
message and constant-round public-coin protocols, and that black-box zero knowledge
is impossible for general constant round protocols (also private coin). The barriers
on ε-zero-knowledge for public-coin and three-message also follow directly from
our resettable-soundness transformations, but the barrier for general constant-
round protocols does not. The other results in this paper (the construction of
a resettably-sound protocol and the connection to unobfuscatability) do not
overlap with their work.

Technically, while Chia et al. do not explicitly consider resettable soundness,
the barriers on three-message and public-coin protocols are proven similarly
(using measure-and-reprogram techniques). To achieve the result on general
constant-round, they first extend a classical result by Barak and Lindell [BL04]
on the impossibility of a strict polynomial-time black-box simulator. This is
again done using similar measure-and-reprogram techniques. Then, they further
extend the result to expected-time simulators. This requires novel ideas and
strongly relies on quantum entanglement; in particular, in the classical setting,
such a barrier does not exist.

3 Defining Post-Quantum Resettable Soundness

In this section, we present our definition of resettable soundness, and show and
immediate implication of this definition, regarding the triviality of black-box
zero-knowledge arguments with resettable soundness.

3.1 Post-Quantum Resettable Soundness

We present our definition for post-quantum resettable soundness. Our definition
deals with giving oracle access to fixed verifier. We shall use V (x, ·; r) to denote
the interaction of algorithm V on instance x fixed randomness r (where the
input is a partial transcript). Also, to denote the application of V’s predicate on
a transcript ts we shall write V (x, ts; r). The definition of resettable soundness
is as follows,

Definition 1 (Post-Quantum Resettable Soundness). A classical interactive
protocol 〈P,V〉 for language L has resettable soundness against quantum provers,
if for any malicious qpt resetting prover rP = {rPλ, |ψλ〉}λ∈N there exists a
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negligible function µ (·) such for any security parameter λ ∈ N and any x ∈
{0, 1}λ \ L it holds that,

Pr
r

[
V (x, ts; r) = 1

∣∣∣ ts← rP
V(x,·;r)
λ (|ψλ〉)

]
≤ negl (λ) ,

where ts is a transcript of a possible interaction between P,V. V (x, ·; r) is the
function that computes V’s next message, on instance x and some fixed randomness
r, given as input a transcript of a partial interaction.

4 Transforming Protocols to Achieve Quantum
Resettable Soundness

In this section we show that classical three-message protocols as well as constant-
round public-coin protocols can be made resettably sound assuming one-way
functions. The transformation is simple and similar to the one from the classical
setting [BGGL01], however, having to deal with quantum resetting attacks, the
analysis is significantly different. The transformation preserves black-box zero-
knowledge; accordingly, we deduce as a corollary that post-quantum black-box
zero-knowledge protocols cannot be 3-message or constant-round public-coin,
except for trivial languages.

4.1 Quantum Oracle Notations

We rely on a couple of lemmas proved in [DFM20]. We restate them here again,
while augmenting some of the notation, to fit with our conventions. Let AH

be a quantum oracle-aided algorithm. For a q-query algorithm, without loss of
generality, A can be described as having the following registers, query registers
on which we apply the unitary OH computing |x〉|y〉 → |x〉|y ⊕H (x)〉, X,Z
which are output registers, and E holds any other internal qubits used by A.
More so, the operation of A on its initial state can be described as,

AH = AqOH . . .A1OH ,

where Ai is a sequence of unitaries. Like [DFM20] we use the following notation
for i < j ∈ [q]

AHi→j = AjOH . . .Ai+1OH .

We also denote AHi→j = Id for i ≥ j ∈ [q]. Assuming A gets as initial input a pure
state |φ0〉, we denote,

|φHi 〉 = AH0→i|φ0〉 .

For a function H we denote by Hx→θ the same function where x is remapped to
θ:

Hx→θ (x′) =

{
H (x′) x′ 6= x

θ x′ = x
.
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4.2 Transforming 3 Message Private Coin Protocols

We show that any 3 message interactive protocol 〈P,V〉 can be transformed to a
quantum resettably sound one, assuming the existence of quantum secure PRFs.
More formally we show the following,

Proposition 1 (Compiler For 3 Message Protocols). Assuming quantum-
secure one-way functions, any 3 message protocol 〈P,V〉 with negligible soundness
for a language L, can be transformed to into a post-quantum resettably sound

protocol
〈
P, Ṽ

〉
. More so, if 〈P,V〉 is (black-box) zero-knowledge then so is〈

P, Ṽ
〉

.

Combining proposition 1 with observation 1 immediately implies the following
corollary,

Corollary 1. If L has a 3 message post-quantum black-box zero-knowledge protocol,
then L ∈ BQP.

Single Value Reprogramming To prove our construction presented in 4.2,
we shall rely on a lemma by [DFM20].

Lemma 1 (Single Value Reprogramming Lemma ([DFM20])). Let A be
a q-query oracle quantum algorithm. Then, for any function H : X → Y, any
x ∈ X and θ ∈ Y, and any projection Πx,θ acting on the Z register (which may
depend on x, θ), it holds that

E
i,b

[∥∥∥(|x〉〈x| ⊗Πx,θ)
(
AHx→θ

i+b→q

) (
AHi→i+b

)
(|x〉〈x|) |φHi 〉

∥∥∥2

2

]
≥∥∥(|x〉〈x| ⊗Πx,θ) |φHx→θ

q 〉
∥∥2

2

(2q + 1)2
,

where the expectation is over uniform (i, b) ∈ {0, . . . , q − 1} × {0, 1} ∪ {(q, 0)}.
We emphasize that first |x〉〈x| acts on query register, while the second acts on
the X register.

Remark 1. We state here the technical lemma and not the existence of a simulator,
as done in the multiple values reprogramming in the public-coin case, since unlike
[DFM20] we use this lemma to reprogram a non-uniform output function, in our
private-coin transform.

Construction Fix some language L with a three-message protocol 〈P,V〉 whose
message we denote by (α, β, γ). Assume V uses m (λ) bits of randomness. We

present the protocol
〈
P, Ṽ

〉
. P is exactly the same, where as Ṽ is described in 1.

The fact that the protocol preserves completeness and zero-knowledge follows
readily, we focus on proving resettable soundness. To show resettable soundness,
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Algorithm 1: Ṽ (x; k)

1 Use k as a key for PRFk (·), a pseudo-random function.
2 Given α compute β = V (x, α;PRFk (α)).
3 Given a transcript α, β, γ compute V (x, (α, β, γ) ;PRFk (α)) and output it.

we show an efficient reduction from a resetting prover rP to a prover P̃ for the
original protocol, which preserves the cheating probability up to a polynomial
loss.

Fix a malicious quantum resetting prover rP for a false instance x. Assume
that rP makes at most q oracle queries, and has non-uniform advice |ψ0〉. Assume
rP has registers A,Z,E and query registers. The query registers are for querying
a first message α and receiving the corresponding second message β. A,Z will
hold the outputted first and third message, and E holds any internal qubits used.
Then, P̃ will perform as follows,

Algorithm 2: P̃ (x) - Malicious Quantum Prover for 〈P,V〉
1 Sample (i, b)← {0, . . . , q − 1} × {0, 1} ∪ {(q, 0)}.
2 Sample k ← {0, 1}λ.

3 Run rP
Ṽ(x,·;k)
0→i |ψ0〉 and denote the resulting state |ψṼ(x,·;k)

i 〉.
4 Measure the query register to obtain a value α and send it as the first

message. Denote the state after measurement by |φṼ(x,·;k)
i (α)〉.

5 Upon receiving the second message β, run(
rP

Ṽ(x,·;k)α→β

i+b→q

)(
rP

Ṽ(x,·;k)
i→i+b

)
|φṼ(x,·;k)
i (α)〉.

6 Measure A,Z to obtain (α′, γ) if α′ = α output γ as the third message,
otherwise abort.

We show that,

Claim.

Pr
[〈

P̃,V
〉

(x) = 1
]
≥ 1

(2q + 1)
2 Pr
k

[〈
rP, Ṽ (x, ·; k)

〉
(x) = 1

]
− negl (λ) .

Proof. We denote by ṼR a version of Ṽ such that Ṽ uses a truly random function
R to derive its randomness (i.e it runs V (x, ·, R (α)) for a first message α). From
the pseudo-randomness of the PRF it holds that,

Pr
k

[〈
rP, Ṽ (x, ·; k)

〉
(x) = 1

]
− negl (λ) ≤ E

R

[
Pr
[〈

rP, ṼR
〉

(x) = 1
]]

(1)

We also denote P̃R to be the malicious prover that uses Ṽ R (where R is
a truly random function) instead of V (x, ·; k) as the oracle for rP. Again by
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pseudo-randomness of the PRF it holds that,

Pr
[〈

P̃,V
〉

(x) = 1
]
≥ E

R

[
Pr
[〈

P̃R,V
〉

(x) = 1
]]
− negl (λ) (2)

We define the event W (i, b, α, r, R) to be the event where after sampling an
external verifier’s randomness r, sampling i, b by P̃R and measuring α as the
first message in stage 4, P̃R succeeds in convincing the external verifier. Then it
holds that,

E
R

[
Pr
[〈

P̃R,V
〉

(x) = 1
]]

= E
r,R

[
Pr
[〈

P̃R,V (x; r)
〉

(x) = 1
]]

=
∑
α

E
r,R

[
E
i,b

[Pr [W (i, b, α, r, R)]]

]
.

Also, we note that,

Pr [W (i, b, α, r, R)] =

∥∥∥∥|α〉〈α| ⊗Πα
V(x,·;r)

(
rP

ṼRα→V(x,α;r)

i+b→q

)(
rPṼR

i→i+b

)
|α〉〈α||ψṼR

i 〉
∥∥∥∥2

,

where

Πα
f =

∑
c:f(α,f(α),c)=1

|c〉〈c| ,

the first |α〉〈α| is applied to the query register, the second |α〉〈α| is applied to
the A register, and Πα

V (x,·;r) is applied to the Z register. Hence, it holds,

E
R

[
Pr
[〈

P̃R,V
〉

(x) = 1
]]

=

∑
α

E
r,R

[
E
i,b

[∥∥∥∥|α〉〈α| ⊗Πα
V(x,·;r)

(
rP

ṼRα→V(x,α;r)

i+b→q

)(
rPṼR

i→i+b

)
|α〉〈α||ψṼR

i 〉
∥∥∥∥2
]]

.

For any fixed α, r,R by the single value reprogramming lemma (1), it holds that,

E
i,b

[∥∥∥∥|α〉〈α| ⊗Πα
V(x,·;r)

(
rP

ṼRα→V(x,α;r)

i+b→q

)(
rPṼR

i→i+b

)
|α〉〈α||ψṼR

i 〉
∥∥∥∥2
]
≥∥∥∥∥(|α〉〈α|)⊗Πα

V(x,·;r)|ψ
ṼRα→V(x,α;r)
q 〉

∥∥∥∥2

(2q + 1)
2 .

Above, |ψṼRα→V(x,α;r)
q 〉 = rPṼ

R
α→V(x,α;r) |ψ0〉 . Hence it holds that,
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E
R

[
Pr
[〈

P̃R,V
〉

(x) = 1
]]
≥
∑
α

E
r,R


∥∥∥∥(|α〉〈α|)⊗Πα

V(x,·;r)|ψ
ṼRα→V(x,α;r)
q 〉

∥∥∥∥2

(2q + 1)
2



=
∑
α

E
r,R


∥∥∥∥(|α〉〈α|)⊗Πα

ṼR
α→V(x,α;r)

|ψṼRα→V(x,α;r)
q 〉

∥∥∥∥2

(2q + 1)
2


=
(∗)

∑
α

E
r,R


∥∥∥(|α〉〈α|)⊗Πα

ṼR
|ψṼR

q 〉
∥∥∥2

(2q + 1)
2


=E
R

Pr
[〈

rP, ṼR
〉

(x) = 1
]

(2q + 1)
2

 ,

where (∗) follows for any x, α and uniformly sampled r,R the oracles Ṽ R and
Ṽ Rα→(x,α;r) are perfectly indistinguishable. Thus, it holds

E
R

[
Pr
[〈

P̃R,V
〉

(x) = 1
]]
≥ E

R

Pr
[〈

rP, ṼR
〉

(x) = 1
]

(2q + 1)
2

 .

Hence, by combining equations 1,2 with the equation above, the claim follows.

4.3 Deterministic-Prefix Resetting Provers

5 A Post-Quantum Resettably Sound Zero Knowledge
Protocol

In this section we present a post-quantum resettably-sound zero-knowledge
protocol. The protocol is also constant-round.

Ingredients and Notation:

– A post-quantum pseudorandom function PRF.
– A post-quantum non-interactive commitment scheme Com.
– A post-quantum compute and compare obfuscator Obf.
– A quantum fully-homomorphic encryption scheme

(QFHE.Gen,QFHE.Enc,QFHE.QEnc,QFHE.Dec,
QFHE.QDec,QFHE.Eval).

– A delayed-input 3-message post-quantum WI proof (WI.P,WI.V) for NP.
– A delayed-input 4-message sub-exponential statistical WI argument system

(sWI.P, sWI.V) for NP.
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– A 2-message post-quantum input hiding, sub-exponentially statistically
function hiding secure function evaluation scheme (SFE.Gen, SFE.Enc,
SFE.Eval, SFE.Dec).

– Denote by ε ∈ (0, 1) a constant such that both the 4-message WI and SFE
have sub-exponential statistical security with respect to (in the statistical
indistinguishability guarantee in both primitives, the statistical distance is
bounded by O(2−λ

ε

)).

The protocol is described in subsection 5.1.

5.1 Protocol Construction

The protocol is as follows,

Common Input: An instance x ∈ L, security parameter λ := |x|. Below we
denote λ̄ = λ2/ε.

P’s private input: A classical witness w ∈ RL(x) for x.

1. Prover Commitment: P sends the following,
– Non-interactive commitments to the witness, and two strings of zeros of

length λ̄:

cmt1 ← Com(1λ, w), cmt2 ← Com(1λ, 0λ̄), cmt3 ← Com(1λ, 0λ̄) .

– Two independent first messages α1, α2 for two independent executions
of 3-message, delayed-input WI proofs (WI.P,WI.V).

– First message h of a 4-message delayed-input statistical WI argument
(sWI.P, sWI.V), with security parameter λ̄.

2. Extractable Commitment to Verifier Secret: V samples a PRF seed
s ← {0, 1}λ. V’s randomness for the first message is generated by applying
PRFs(·) to the first prover message.
(a) V computes u← {0, 1}λ, v ← {0, 1}λ, (pk, sk)← QFHE.Gen(1λ). V sends

pk, ctV ← QFHE.Encpk(u), C̃C← Obf
(
CC

[
QFHE.Decsk(·), v, sk

])
.

V also sends β1, β2 following α1, α2, and αs following h.
(b) P sends,

– ctP ← SFE.Enc(1λ̄; 0λ) an encryption of 0λ encrypted with security
parameter λ̄.

– βs for h, αs as the last message of sWI.V in the 4-message WI protocol.
– A WI proof γ1, following α1 and β1, that x ∈ L or, (1) the randomness

used to generate ctP is the content of cmt2
1, and (2) the randomness

for h, βs is the content of cmt3.
(c) V applies PRFs(·) to (ctP, βs, Prover’s first message) to generate randomness

for its current message. It sends,

1 Formally, there are strings r1, r2, r3 such that ctP = SFE.Enc(r3; r2), cmt2 =
Com(1λ, r2; r1).
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– ĉt← SFE.Eval
(
CC

[
Id(·), u, v

]
, ctP

)
executed with security parameter

λ̄, where Id(·) is the identity function.
– γs, for h, αs, βs, proving that the transcript of the verifier so far is

explainable or, cmt1 is a commitment to a non-witness z /∈ RL(x).
The witness that V uses for the proof is its randomness, that proves
that the transcript is explainable.

3. Final WI by the Prover: P sends γ2 which proves that x ∈ L or, that

cmt1 is a valid commitment and there exists a string c such that C̃C(c) 6= ⊥.
The witness that P uses for its proofs γ1, γ2 is w, which proves x ∈ L.

4. Acceptance: V accepts if the WI statements by the prover are verified.
5. Aborts: During the protocol, if either party does not respond, sends a

message of an incorrect form or provides a non-convincing WI proof it
considered as an abort, and the other party terminates the interaction.
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