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Abstract. Private information retrieval (PIR) lets a client retrieve an
entry from a database without the server learning which entry was re-
trieved. Here we study a weaker variant that we call random-index PIR
(RPIR), where the retrieved index is an output rather than an input of
the protocol, and is chosen at random. RPIR is clearly weaker than PIR,
but it suffices for some interesting applications and may be realized more
efficiently than full-blown PIR.

We report here on two lines of work, both tied to RPIR but otherwise
largely unrelated. The first line of work studies RPIR as a primitive on its
own. Perhaps surprisingly, we show that RPIR is in fact equivalent to PIR
when there are no restrictions on the number of communication rounds.
On the other hand, RPIR can be implemented in a “noninteractive”
setting (with pre-processing), which is clearly impossible for PIR. For
two-server RPIR we even show a truly noninteractive solution, offering
information-theoretic security without any pre-processing.

The other line of work, which was the original motivation for our work,
uses RPIR to improve on the recent work of Benhamouda et al. (TCC’20)
for maintaining secret values on public blockchains. Their solution de-
pends on a method for selecting many random public keys from a PKI
while hiding most of the selected keys from an adversary. However, the
method they proposed is vulnerable to a double-dipping attack, limiting
its resilience. Here we observe that a RPIR protocol, where the client
is implemented via secure MPC, can eliminate that vulnerability. We
thus get a secrets-on-blockchain protocol (and more generally large-scale
MPC) which is resilient to any fraction f < 1/2 of corrupted parties,
resolving the main open problem left from the work of Benhamouda et
al.

As the client in this solution is implemented via secure MPC, it really
brings home the need to make it as efficient as possible. We thus strive to
explore whatever efficiency gains we can get by using RPIR rather than
PIR. We achieve more gains by using batch RPIR where multiple indexes
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are retrieved at once. Lastly, we observe that this application can make
do with a weaker security guarantee than full RPIR, and show that this
weaker variant can be realized even more efficiently. We discuss one pro-
tocol in particular that may be attractive for practical implementations.

Keywords. Private information retrieval, Batch PIR, Random PIR, Large-scale
MPC, Secrets on blockchain, Random ORAM.

1 Introduction

A Private Information Retrieval (PIR) scheme lets a client fetch an entry from a
database held by a server, without the server learning which entry was retrieved.
The database is typically modelled as an n-bit string DB ∈ {0, 1}n, known in
full to the server. The client has an input index i ∈ [n], and its goal is to retrieve
the bit DB[i]. A PIR scheme is secure if the server cannot distinguish between
any two possible input indexes i, i′ for the client, and it is nontrivial if the server
sends to the client less than n bits. PIR was introduced by Chor et al. [6] who
described a solution with multiple non-colluding servers; a single-server solution
was first described by Kushilevitz and Ostrovsky [14].

1.1 Random-Index PIR (RPIR)

In this work we consider a similar setting, but with a twist. Rather than a spe-
cific index, in our setting the client wishes to retrieve a random index from
the database, without the server learning which index was retrieved. Namely, in-
stead of the index i being an input to the protocol, we consider it an output, and
require that it be random. We call such a scheme random-index PIR (RPIR).
While clearly a weaker variant of PIR, we show below that RPIR suffices for
some interesting applications. Of course, RPIR can be easily implemented by
having the client choose i at random and then run a PIR protocol. But being a
weaker variant, we could hope that RPIR is easier and more efficient to imple-
ment than full blown PIR. Such improved efficiency could be critical for some
applications, including our motivating application of large-scale secure MPC
(which is described below).

One measure of efficiency is the number of communication rounds. We show
that, unlike PIR, RPIR can be implemented in a “noninteractive” fashion.
Namely, after a pre-processing stage in which the client sends to the server some
string whose length depends only on the security parameter κ, we only allow
server-to-client communication and we want to perform arbitrarily many RPIR
executions. It is clear that no such nontrivial PIR protocols exist, since there is no
way for such protocols to incorporate the client’s input. However, we show that
some existing interactive PIR protocols can be adapted to yield noninteractive
RPIR protocols. (These can be based on fully homomorphic encryption or one-
way trapdoor permutations.) Moreover, for the two-server setting we show that
a nontrivial noninteractive protocol is possible even without any pre-processing.
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Other examples of settings where RPIR is more efficient than PIR are discussed
in Section 1.3 below.

On the other hand, we show that such efficiency gains are necessarily limited,
since every RPIR protocol can be converted into a PIR protocol with only slightly
more communication and rounds. Specifically, given a r-round RPIR protocol
with server communication m < n, we show how to construct:

– A ((r + 1) log n)-round PIR with server communication 1 +m log n; or
– A (r + 2)-round PIR with server communication O(

√
mn).

We note that the latter transformation relies on a long client-to-server message.
We also describe a simple variant with a short client-to-server message, where
the server communication is m+ n

2 .

1.2 Applications

Computing on Public Blockchains Our initial motivation for studying RPIR
came from a recent work of Benhamouda et al. [2] (BGG+) about maintaining se-
cret values on public blockchains. In that work they construct a scalable evolving-
committee proactive secret-sharing (ECPSS) scheme, that allows dynamically-
changing small committees to maintain a secret over a public blockchain. The
main challenge in that work was to choose a small committee from within a
large population in such a way that (a) everyone can send messages to commit-
tee members, and yet (b) a mobile adversary does not learn who they are and
therefore cannot target them for corruption. Once chosen, such committees can
execute the proactive secret sharing protocol (or more generally any secure-MPC
protocol).

A drawback of the BGG+ scheme is that, in order to guarantee an honest
majority within the committees, it can only tolerate up to about 1/4 corruptions
overall. The reason is that committee-selection is done by individual parties, who
“nominate” members to the new committee by drawing their public keys from
a list and then re-randomizing them. This nomination style enables a double-
dipping adversarial strategy: corrupted parties can always nominate other cor-
rupted parties, while honest parties nominate randomly selected parties (so they
too sometimes nominate corrupted parties by chance).

To do better, we can try to delegate the nomination task to previous com-
mittees, who would emulate an honest nominator via secure MPC. Roughly, the
function computed by the committee-selection procedure of [2] is

Nominate(n public keys, randomness) = k re-randomized keys.

We can let previous committees compute that randomized function, without the
adversary learning anything about who the honest nominees are, hence depriving
it of the double-dipping strategy above. The problem with this solution, however,
is that it scales poorly with the total number of parties: The circuit of the
Nominate function above has input of size linear in n, hence a naive secure-MPC
protocol for it would have complexity more than n.
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This is where RPIR comes in. The only role that the input plays in the
Nominate function is of a database from which we choose k � n random entries.
We therefore employ a variant of MPC-in-the-head, letting previous committees
play the role of the RPIR client while each committee member individually
mentally plays the role of the RPIR server. (The database is the list of n public
keys, which is known to everyone; so, the state of the RPIR server is public.)

The result of the RPIR protocol is the previous committee holding a set of
k random keys, but since we have honest-majority in the committee then the
adversary does not know whose keys were chosen. The committee then runs a
secure-MPC protocol to re-randomize the chosen keys and output the result.
This time, the circuit size depends on the complexity of the RPIR client. For
some RPIR constructions, this depends only on k, not on the total number n of
keys. Putting all these ideas together we get:

Theorem (informal): In the model of [2], there exists a scalable ECPSS scheme
tolerating any fraction f < 1/2 of corrupted parties.

Of course, once we have the committees we can again let them compute on
secrets rather than just pass them along, hence we have:

Theorem (informal): In the model of [2], there exists a scalable secure MPC
scheme tolerating any fraction f < 1/2 of corrupted parties.

PIR with Preprocessing In many applications it is interesting to consider
offline preprocessing before the inputs are known, which can help improve the
efficiency of the on-line computation once all the inputs are available. This ap-
proach is very popular in contemporary secure-MPC work, and was also used
for PIR (e.g., [1,8]).

As it turns out, our PIR-to-RPIR reductions from Section 2.4 can be used
for that purpose. These reductions have the following format: They first run the
underlying RPIR protocol on the original database DB, letting the client learn
a few random bits from it. The client then sends a single message to the server,
from which the server computes a new database DB′ of size n′ < n. The parties
then run a PIR protocol on the new (smaller) database, and the client uses what
it learns to compute the bit that it needs from the original DB.

This format makes it possible to run the RPIR protocol in a pre-processing
phase, before the client knowns what index it wants, and only execute the last
part during the online phase. Using a standard PIR to implement the RPIR in
the pre-processing step, we obtain a black-box method of shifting work from the
online to the offline phase of a PIR protocol. If CC(n, κ) is the server communica-
tion complexity of an underlying PIR protocol (as a function of the database size
n and the security parameter κ), the online server communication complexity of
the resulting protocol with preprocessing will be only CC(n′, κ). Specifically:

– Using the SimplePIR protocol from Section 2.4, we obtain a PIR-with-Preprocessing
protocol with offline communication CC(n, κ), online communication CC(n/2, κ),
and the client sending one more message of log n bits.
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– Using the PartitionPIR protocol from Section 2.4, we get for any t < n a
PIR-with-Preprocessing protocol with offline communication t · CC(n, κ),
online communication CC(O(n/t), κ), and the client sending one more long
message (of more than n bits).

1.3 Batch RPIR

In our first motivating application in Section 1.2, the client needs to fetch not
one but k random entries from the database, so we would like to amortize the
work and implement it in complexity less than that of k independent RPIR
executions. Building such batch PIR protocols from PIR was studied by Ishai,
Kushilevitz, Ostrovsky, and Sahai (IKOS) [13]. However, their solutions require
the underlying protocol to be a full-blown PIR protocol (rather than RPIR). It is
not clear how to build batch-RPIR protocols from an underlying RPIR protocol
any better than either running k independent instances of RPIR, or converting
to full-blown PIR and using the IKOS solutions.

But it turns out that our motivating application can make do with a weaker
security notion than what RPIR provides. What we care about in this applica-
tion is not quite that the indexes look random to the server, but rather that a
server with limited “corruption budget” in the entire population cannot corrupt
too many of the selected indexes (whp). Roughly, we can replace the pseudo-
randomness of the indexes from the server’s perspective by unpredictability.
Defining this property takes some care. In Section 5.1 we provide a definition in
the real/ideal style.

Having lowered the security bar, we take another look at the constructions
from [13] and note that we can use better parameters than are possible for batch-
PIR (or batch-RPIR with strong security). Moreover, we describe in Section 5.2
an even simpler construction that cannot possibly work for batch PIR or strong-
RPIR, but we prove that it meets our weaker security notion of batch RPIR.
The simplicity and efficiency of this construction may be attractive for practical
implementations.

1.4 Multi-Server RPIR

It is known that nontrivial single-server PIR cannot offer information-theoretic
privacy; nontrivial single-server RPIR has the same limitation. It is interesting
to ask whether by involving multiple non-colluding servers (each with the same
database as input) we can build RPIR that is (a) nontrivial, (b) information-
theoretic and (c) noninteractive (meaning that only a single round of communi-
cation — from each server to the client — is required). We answer this question
in the affirmative; we show a two-server nontrivial, information-theoretic non-
interactive RPIR with communication complexity equal to half the size of the
database.

While it seems that multi-server RPIR cannot be used directly in the ap-
plication of secure computation on public blockchains, it can be used for PIR
pre-processing (either for a multi-server PIR execution with the same servers
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that participated in the pre-processing, or perhaps even for a single-server PIR
execution with only one of those servers).

1.5 Organization

In Section 2 we formally define (single-server and multi-server) RPIR, and study
the relationship between RPIR and PIR. In Section 3 we describe some construc-
tions of RPIR in the noninteractive setting. In Section 4 we describe the appli-
cation of batch RPIR with weak security to the architecture of Benhamouda et
al. [2] for large-scale MPC. Motivated by this application, we study in Section 5
more efficient constructions of batch-RPIR.

In Appendix A we describe the notion of a random-index oblivious-RAM
(RORAM), which relates to ORAM in the same way that RPIR relates to PIR. In
particular we show that RORAM can replace RPIR in the same context of large-
scale MPC, offering a somewhat different performance profile. For completeness,
in Appendix B we discuss a third approach for the large-scale MPC context that
uses mix-nets.

2 Random-Index Private Information Retrieval

2.1 Background: Private Information Retrieval

A single-server Private Information Retrieval (PIR) scheme is a two-party proto-
col Π between a server holding a n-bit string DB ∈ {0, 1}n and a client holding
an index i ∈ [n]. In addition, both parties know the security parameter κ.

We assume for simplicity that the server communication complexity, i.e. the
number of bits sent by the server, depends only on n and κ, but not on the specific
values of DB and i (or the protocol randomness), and denote it by CCΠ(n, κ).
The two properties of interest for a PIR protocol Π are its client-privacy (i.e.
the index i is hidden from the server) and its communication complexity.

Definition 1 (Single-server PIR [14]). A two-party protocol Π is a (semi-
honest) single-server PIR if it satisfies:

Correctness. The client’s output is DB[i], except with probability negligible
in κ.

Client privacy. For every n, database DB ∈ {0, 1}n, and indexes i, i′ ∈ [n],
the ensembles serverView(Π(κ, n; i,DB))κ and serverView(Π(κ, n; i′, DB))κ
are indistinguishable.

Nontriviality. For any κ and large enough n, it holds that CCΠ(n, κ) < n.

Batch PIR. In this work we are also interested in amortized protocols in which
the client queries more than a single entry of the database at a time, but rather
k indexes at a time. The definition of batch PIR is identical to the above, except
that the single index i ∈ [n] is replaced with a vector ~i ∈ [n]k. Everything else
remains the same.
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Multi-Server PIR. We additionally explore protocols involving multiple non-
colluding servers. The definition of multi-server PIR is similar to the above,
except that client privacy is defined with respect to each of the servers (individ-
ually).

Ideal functionality. A different approach for defining PIR is via an ideal func-
tionality that gives no output to the server and outputs DB[i] to an honest
client.4 We will use that style of definition for random-PIR below, as it seems
easier to work with than the one above, especially for the weaker-security variant
from Section 5.1.

Nevertheless, defining security of PIR using an ideal functionality can some-
times be problematic. If the server is maliciously corrupted, then the simulator
needs an extra input, the database, from the malicious server. However, the
server communication is too small to even define the database, so this extrac-
tion cannot be performed. In this work we only consider semi-honest corruptions
of the server, thus we do not run into this problem.

2.2 Defining RPIR

A random-index PIR (RPIR) protocol is different from PIR in that the index i
is an output of the client, rather than an input. Namely, RPIR is a two-party
protocol between a server holding a n-entry database DB ∈ {0, 1}n and a client
with no input. At the conclusion of the protocol, the client is supposed to get a
pair (i,DB[i]), with i random in [n].

Just like standard PIR, an RPIR protocol is parametrized by the security
parameter κ and the database size n, both known to the two parties. As above,
we assume that the server communication complexity depends only on n and κ
but not on the specific value of DB or the randomness, and we denote it by
CCΠ(n, κ).

It will later (when we define batch RPIR) be convenient to define client-
privacy by means of an “ideal RPIR functionality”, i.e., via simulation-based
security. We give both simulation-based and game-based definitions of RPIR
below, and show that the two definitions are equivalent. Later we only use the
simulation-based style.

The RPIR functionality. The functionality FRPIR accepts from the server an
input DB ∈ {0, 1}∗. It leaks DB to the adversary, and waits for the client to
ask for an output. When the client does, FRPIR sets n = |DB|, chooses i ← [n]
uniformly at random, and returns (i,DB[i]) to the client (when the adversary
says it’s time to give output).

Definition 2 (Single-server RPIR (simulation-based)). A two-party pro-
tocol Π is a single-server RPIR if it realizes the functionality FRPIR above with

4 Note that standard PIR does not provide any privacy to the server, hence the func-
tionality lets a corrupted client get the entire database.
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semi-honest server and honest client in the UC framework [4]. It is nontrivial if
for any κ and large enough n if it holds that CCΠ(n, κ) < n.

Remarks on the formalization. When defining RPIR we leak the entire database
to the adversary. This models that the database is not required to be kept se-
cret from the client or anyone in the network. (We only require that the client
learns DB[i]; we do not give the database as output to the client as this would
turn it into an implementation requirement.) Since we give the database to the
adversary, the protocol is allowed to leak information on DB to the adversary
even if the server and client are both honest. So, the protocol can run over an
authenticated but unencrypted channel. One could have chosen a more compli-
cated formulation where nothing is leaked to the adversary when both server
and client are honest; this complicates the formulation and is not needed in our
setting, so we opted for the simpler formulation.

It is important to consider a corrupt (semi-honest) server in order to ensure
that such a server cannot learn i. However, we choose not to consider a corrupt
(semi-honest) client, since our main application (where the client is run within an
MPC, and thus honest) does not require this. Considering definitions for corrupt
clients, as well as considering malicious corruptions, is left for future work.

Next, for clarity, we look at the relationship of the simulation-based definition
given above to a game-based definition. We can adopt the definition of [14] to
the case of a random index as follows.

Definition 3 (Single-server RPIR (game-based)). A two-party protocol Π
is a (semi-honest) single-server RPIR if it satisfies:

Correctness. The client’s output is (i,DB[i]), where i is statistically close to
uniform on [n].

Client privacy. For every n, database DB ∈ {0, 1}n and a run of the protocol,
let iReal be the index output to the client and let iRan be a fresh uniform value
from [n]. We require that the ensembles (serverView(Π(κ, n;DB))κ, iReal)
and (serverView(Π(κ, n;DB))κ, iRan) are indistinguishable.

Nontriviality. For any κ and large enough n, it holds that CCΠ(n, κ) < n.

In the statement of correctness, we ask that i is statistically close to uniform.
We could have asked for only computational indistinguishability, but these are
equivalent when i is on a domain of polynomial size.

Lemma 1. Let Π be a two-party protocol. If it is an RPIR according to Defini-
tion 3 then it is an RPIR according to Definition 2.

Proof (sketch). Assume the protocol Π fulfills the game-based definition. We
construct a simulator for the simulation-based definition. Assume without loss of
generality an environment E and a dummy adversary. This means the simulator
is de facto interacting with E .

Our simulator engages with E in an honest execution Π(κ, n;DB), where
the simulator plays the role of client. As a result of the interaction, E gets
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serverView(Π(κ, n;DB)); the simulator gets iReal. When that happens, the sim-
ulator will instruct FRPIR to deliver output to the client. The effect of this is that
E learns a uniformly random iRan from FRPIR as client output. (It also learns
DB[iRan], but it can compute this value from iRan anyways, since it knows DB.)
So, the view of E is (serverView(Π(κ, n;DB)), iRan).

Consider now a hybrid world with a hacked FRPIR, where we allow the simu-
lator to give iReal to FRPIR when it instructs delivery, and then FRPIR gives iReal

as output to the client instead of a fresh random value. This means that the
view of E becomes (serverView(Π(κ, n;DB)), iReal). We can use a reduction to
client privacy to prove that the simulation and the hybrid are indistinguishable.
Notice that the view of E in the hybrid has the same distribution as the the view
of E in a real protocol execution.

Lemma 2. Let Π be a two-party protocol. If it is an RPIR according to Defini-
tion 2 then it is an RPIR according to Definition 3.

This is clear, since any distinguisher that can break client privacy can be
used to build an environment that can distinguish between the client output in
a real execution and the ideal client output that it sees when interacting with
the simulator.

2.3 Defining Multi-Server RPIR

We also consider a multi-server version of RPIR. An `-server RPIR protocol
involves ` servers Server1, . . . ,Server` each holding the same database DB ∈
{0, 1}n, and a client who wants to retrieve a random index i of the database.
Multi-server RPIR is interesting since, while nontrivial single-server RPIR can-
not provide information-theoretic privacy, nontrivial multi-server RPIR can. We
therefore require perfect correctness and client-privacy for multi-server RPIR.
Since we do not extend multi-server RPIR to the batch setting, we use the
simple definitions of multi-server RPIR that are analogous to those for PIR
(Section 2.1).

Definition 4 (Multi-server RPIR). An (`+ 1)-party protocol Π is a (semi-
honest) `-server RPIR if it satisfies:

Correctness. For every n, every database DB ∈ {0, 1}n, and every index i ∈
[n], the client’s output in Π(n; ⊥, DB, . . . ,DB) is (i,DB[i]) with probability
1
n .

Client privacy. For every n, every database DB ∈ {0, 1}n, and every server
index j ∈ [`], the view serverViewj(Π(n; ⊥, DB, . . . ,DB))κ is independent
of the index i that the client outputs.

Nontriviality. For any κ and large enough n, it holds that CCΠ(n, κ) < n
(where the CCΠ(n, κ) is communication complexity of all the servers).
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2.4 RPIR is equivalent to PIR

In terms of existence, it is obvious that PIR implies RPIR: the client chooses
a random index i ∈ [n] and the parties then run a PIR protocol in which the
client learns DB[i]. The opposite direction is less clear: how can the client get
a specific index in the database using the RPIR tool that only provides random
indexes? Below we show, however, that RPIR does imply PIR with very small
overhead. We begin with a simple PIR protocol that works when n is a power
of two, makes a single RPIR call, and has the server send n/2 additional bits.
This protocol is described in Figure 1.

SimplePIR
[
Client(i ∈ [n]), Server(DB ∈ {0, 1}n)

]
(n is a power of two)

1. Server and client run RPIR
[
Client, Server(DB)

]
, client gets (j,DB[j]);

2. Client sends to server δ = i⊕ j (i, j are viewed as log(n)-bit strings)
3. Server partitions the index-set [n] into n/2 pairs p = {k, k ⊕ δ}, computes for

each pair σp = DB[k]⊕DB[k ⊕ δ], and sends these n/2 bits to the client;
4. Client computes DB[i] = DB[j]⊕ σ{i,j}.

Fig. 1. A simple PIR protocol with one RPIR call and n/2 bits of communication

Lemma 3. For n a power of two, the SimplePIR protocol from Figure 1 is a
nontrivial PIR protocol in the hybrid-RPIR model in which the client sends log n
bits and the server sends n/2 bits.

Proof. Correctness and complexity are obvious. For client privacy, note that in
the hybrid-RPIR model the client gets a uniformly random index j ∈ [n], and
since n is a power of two then j is also a uniformly random log(n)-bit string.
Hence from the server’s perspective, the message δ = i⊕ j from the client is also
a uniformly random log(n)-bit string, and in particular it carries no information
about the client’s input i.

Next, we note that Steps 3-4 in the SimplePIR protocol actually implement
the trivial PIR protocol for a database of size n/2: The server sends all the
n/2 bits and the client looks up the one that it needs. We can do better by
replacing these steps with a recursive call for the same PIR protocol on this
smaller database, as described in Figure 2.

Theorem 1. An r-round RPIR with server-communication m = m(n, κ) and
client-communication k = k(n, κ) can be transformed into a PIR protocol with

(r+1)dlog ne rounds, server communication 1+
∑dlogne
i=1 m(2i, κ) ≤ 1+m(n, κ) ·

dlog ne, and client communication
∑dlogne
i=1 i + k(2i, κ) ≤

(dlog(n)e
2

)
+ k(n, κ) ·

dlog ne.
Proof (sketch). On a size-n database, the server pads it to size the nearest power
of two and then the parties run the RecursivePIR protocol from Figure 2. The
complexity is obvious, and correctness and privacy are argued by induction,
following the same proof as for Lemma 3.
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RecursivePIR
[
Client(i ∈ [n]), Server(DB ∈ {0, 1}n)

]
(n is a power of two)

0. If n = 1 the server sends DB to the client. Else continue to Step 1.
1. The server and client run RPIR

[
Client, Server(DB)

]
, client gets (j,DB[j])

2. Client sends to server δ = i⊕ j (i, j are viewed as log(n)-bit strings)
3. Server partitions the index-set [n] into n/2 pairs p = {k, k⊕ δ} and computes

for each pair the bit σp = DB[k]⊕DB[k ⊕ δ].
4. Let DB′ = (σp)p be the resulting database of size n/2, and let i′ ∈ [n/2] be

the index corresponding to the pair {i, j} in this database.
The parties run RecursivePIR

[
Client(i′), Server(DB′)

]
, client gets σi′ .

5. Client outputs DB[i] = DB[j]⊕ σi′ .

Fig. 2. A recursive PIR protocol with logn calls to RPIR and one bit of communication

PIR from RPIR with Fewer Rounds While the protocol in Figure 2 has
a low communication complexity, it has a large number of rounds. Below we
describe instead a protocol that has the same number of rounds as the SimplePIR
protocol from Figure 1, but lower server communication complexity. The basic
idea is for the client to learn more random indexes DB[j], then partition the bits
in DB into larger sets instead of the pairs {i, i⊕ δ} from SimplePIR. Specifically,
we have a parameter t that tells us how large should these groups be.

PartitionPIR
[
Client(i ∈ [n]), Server(DB ∈ {0, 1}n)

]
(n is divisible by t)

1. Server and client run in parallel t′ executions RPIR
[
Client, Server(DB)

]
,

where t′ is large enough to ensure that the client gets whp at least t − 1
distinct entries (j1, DB[j1]), . . . , (jt−1, DB[jt−1]), all different from i.

2. Client chooses a random partition P of [n] into sets of size t, with one of them
being I = {i, j1, j2, . . . , jt−1}, and sends P to server.

3. For each t-subset J ∈ P, the server computes the bit σJ = ⊕j∈JDB[j], and
sends these n/t bits to the client.

4. Client computes DB[i] = DB[j1]⊕ · · · ⊕DB[jt−1]⊕ σI .

Fig. 3. A partition-based PIR protocol

Exactly the same proof as Lemma 3 shows that this is a secure PIR protocol
in the RPIR-hybrid model, with t′ executions of the RPIR protocol all on the
same database DB, and additional server communication of n/t bits. If we have
a r-round RPIR protocol with server communication m = m(n, κ) < n/2, we can
set t ≈

√
n/m and t′ = t(1 + o(1)), and then we would get a (r + 2)-round PIR

protocol with server communication t′m+n/t = (1+o(1))
√
nm+

√
mn ≈ 2

√
nm.

Theorem 2. Given a r-round RPIR protocol with server-communication m,
there is a PIR protocol with r + 2 rounds and server communication O(

√
mn).
ut
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We note that the client communication in the protocol is large, since describ-
ing a random partition of [n] into t-subsets takes more than n bits. Finding a
protocol with few rounds and small client communication is an open problem.

3 RPIR Protocols

3.1 Noninteractive RPIR

While equivalent in terms of existence, RPIR can still be cheaper to implement
than PIR by some measures. In particular, the fact that the client has no input in
RPIR means that it can be (almost) noninteractive, something that is obviously
impossible for PIR. Many interactive PIR protocols can be converted to nonin-
teractive RPIR protocols; below we sketch two such protocols. One is based on
FHE, and the other on trapdoor permutations (similar to Kushilevitz-Ostrovsky
[15]). We suspect that many other PIR protocols can be similarly modified to
obtain noninteractive RPIR; we leave it to future work to explore whether those
other protocols can give better parameters.

In both of the protocols described in this section, the client sends a short
“pre-processing message” to the server, and then the server can succinctly send
to the client arbitrarily many random entries from the database, without learning
what they are and without any more messages from the client. (These proto-
cols can be upgraded to handle a malicious server by adding succinct proofs of
correct behavior; however, we only need semi-honest security for our primary
application, described in Section 4.)

Noninteractive RPIR from FHE. It is fairly easy to implement noninterac-
tive RPIR from FHE. For example, the client sends to the server “once and for
all” an encryption of a seed s for a PRF fs(·) with range [n]. Then the server can
run many instances of a protocol, where it chooses a random x, and homomor-
phically computes i = fs(x) and y = DB[i]. The server sends the ciphertexts
encrypting (i, y) to the client, who can decrypt them.

Noninteractive RPIR from One-way Trapdoor Permutations. This con-
struction is based on the Kushilevitz-Ostrovsky PIR protocol from [15]. In this
protocol the client sends the description of a permutation to the server, and
then the server can send as many random indexes to the client as we want. As
in the original Kushilevitz-Ostrovsky protocol, each random index costs just a
little less than n bits of communication for an n-bit database.

Background: UOWHFs from one-way permutations. Recall that Naor and Yung
described in [16] a construction for 2-to-1 universal one-way hash functions
(UOWHF) based on one-way permutations. Namely, given a one-way permu-
tation π over {0, 1}k (and some other public randomness that we ignore here)
they define a 2-to-1 function hπ : {0, 1}k → {0, 1}k−1, such that given π and a
random x ∈ {0, 1}k, it is hard to find the second pre-image x′ 6= x such that
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hπ(x′) = hπ(x). However given a trapdoor π−1, it is easy to compute the two
pre-images of any y ∈ {0, 1}k−1. Finally, applying the Goldreich-Levin hard-
core predicate [12], we also know that given the permutation π and random
x, r ∈ {0, 1}k, the inner product 〈r, x′〉 mod 2 is pseudorandom, where x′ is the
second pre-image of hπ(x).

A noninteractive variant of the Kushilevitz-Ostrovsky construction. In a pre-
processing phase, the client chooses a one-way permutation π over {0, 1}k to-
gether with its trapdoor π−1, and sends π to the server. Let hπ(x) be a Naor-
Yung UOWHF based on π, that has input length k and output length k − 1.

The server partitions the database into pairs of k-bit blocks (x0i , x
1
i ), i =

1, 2, . . .. For simplicity, we assume below that x0i 6= x1i for all i (we mention at
the end how to change the protocol when this is not the case). The server also
chooses a random r ∈ {0, 1}k that defines a Goldreich-Levin hard-core predicate
[12] ρr(x) = 〈x, r〉 mod 2. The server sends to the client the k-bit string r, and
also for each pair (x0i , x

1
i ) it sends a tuple(
hπ(x0i ), hπ(x1i ), ρr(x

0
i )⊕ ρr(x1i )).

Note that each tuple is only (2k − 1)-bits long, whereas the pair itself has 2k
bits, so this is a nontrivial protocol (as long as there are more than k pairs).

For each received tuple (y0i , y
1
i , σi), the client uses its trapdoor to invert

the hash function, computing the two possible pre-images u0i , v
0
i ∈ h−1π (y0i ) and

u1i , v
1
i ∈ h−1π (y1i ). By construction, x0i = u0i or x0i = v0i and similarly x1i = u1i or

x1i = v1i . Next, the client finds an index i such that,

(a) either ρr(u
0
i ) = ρr(v

0
i ) and ρr(u

1
i ) 6= ρr(v

1
i ), or

(b) ρr(u
0
i ) 6= ρr(v

0
i ) and ρr(u

1
i ) = ρr(v

1
i ).

As r was chosen at random and x0i 6= x1i for all i, there is at least one such index
whp. If there are more than one then the client chooses one of them at random.
Moreover it can be shown that the index used by the client is uniform in [n].

In case (a) the client knows that ρr(x
0
i ) = ρr(u

0
i ) = ρr(v

0
i ), and so it can

use σ = ρr(x
0
i ) ⊕ ρr(x1i ) to determine the value of ρr(x

1
i ), and therefore decide

whether x1i = u1i or x1i = v1i . Similarly in case (b) the client knows that ρr(x
1
i ) =

ρr(u
1
i ) = ρr(v

1
i ), so it can use σ to decide if x0i = u0i or x0i = v0i . In either case,

the client learns a single k-bit block of the database.
The security of this protocol follows from the OWUHF property and the

Goldreich-Levin hard-core predicate, in exactly the same way as in [15].

Theorem 3. If trapdoor one-way permutations exist, then there exists a non-
trivial noninteractive random-PIR protocol. ut

Remark: To deal with generic databases where we could have x0i = x1i for some i,
the server can choose another k-bit string w ∈ {0, 1}n which is also sent to the

client, and use x′
1
i = x1i ⊕ w instead of x1i for all i. This ensures that x0i 6= x′

1
i

except with exponentially small probability, and the client can mask-out w at
the end of the protocol if needed.

13



3.2 Multi-Server RPIR Protocols

It is well known that nontrivial single-server PIR cannot offer information-
theoretic security, and RPIR is no different. To get nontrivial information-
theoretic security we need to look at multi-server solutions, where two or more
non-colluding servers are used. In this section, we describe two non-interactive
multi-server solutions. The first one (Section 3.2) is an information-theoretic two-
server RPIR; the second one (Section 3.2) uses some symmetric cryptography,
and is based on Reed-Muller PIR.

Note that converting existing multi-server PIR schemes to noninteractive
multi-server RPIR schemes is only possible under very specific conditions. Multi-
server PIR schemes always have a message from the client to the servers, to
encode the query; to convert multi-server PIR to noninteractive multi-server
RPIR, we need the servers to generate these messages locally on their own.
However, in many PIR schemes (such as the Reed-Muller and matching-vector
PIR schemes), these messages need to be highly correlated, making local gener-
ation by the servers (instead of coordinated generation by the client) difficult.
In Section 3.2, we describe a construction where the servers don’t need any
correlated messages; in Section 3.2, we adapt the Reed-Muller construction —
which does require correlated messages — by giving the servers some correlated
information as setup, which they are able to expand to support an arbitrary
number of RPIR executions. (Note that not all forms of correlated messages are
amenable to this kind of expansion from efficient cryptographic primitives. The
randomness required for the matching vectors PIR construction does not appear
to be, given the state of the art in non-interactive randomness expansion.)

Non-Interactive Information-Theoretic Two-Server RPIR In Figure 4
below we describe a nontrivial two-server solution that offers information-theoretic
security and in addition is completely noninteractive. Differently than the pro-
tocols from Section 3.1, this protocol does not even have a pre-processing phase.
All it has are two messages, one from each server, from which the client can de-
duce DB[i] for a random index i, with i independent of the view of each server
(separately). In this protocol, one server sends a single database record, while
the other sends n/2 values each of which correspond to the XOR of two database
records. The client is able to use the record sent by the first server to recover
another record from one of the values sent by the second server. (Reducing the
communication complexity in this noninteractive multi-server setting below n/2
for a a size-n database remains an interesting open problem.)

Lemma 4. For even n, the SimpleMSPIR protocol from Figure 4 is a noninter-
active, nontrivial two-server RPIR protocol with information theoretic security
in which the servers send n/2 + log(n) + 1 bits.

Proof. Correctness and complexity are obvious. For client privacy, we separately
consider privacy against Server1 and Server2. Server1, who chooses j, learns
nothing about i since the random and uniform δ is unknown to Server1, and
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SimpleMSPIR
[
Client, Server1(DB),Server2(DB) where DB ∈ {0, 1}n)

]
1. Server1 chooses a random index j ∈ [n] and sends DB[j] to Client.
2. Server2 chooses a random mask δ ∈ [n] (viewed as a log(n)-bit string).

(a) If δ = 0, Server2 sets DB′ = ⊥.
(b) Otherwise, let p1, . . . , pn/2 be the list of pairs of indices pk = (jk,1, jk,2)

such that jk,1 ⊕ jk,2 = δ (ordered e.g. by increasing smallest value in
the pair). These pairs are publicly computable given δ. Server2 obtains
the database DB′ as DB′[k] = DB[jk,1] ⊕ DB[jk,2]. (DB′ contains n/2
records.)

3. Server2 sends (δ,DB′) to Client.
4. If δ = 0, Client returns DB[j].
5. Otherwise, Client finds the pair pk such that j ∈ pk. Let i be the other index

in pk. Client returns (i,DB′[k]⊕DB[j]).

Fig. 4. A simple multi-server RPIR protocol with n/2 bits of communication

each choice of δ leads to a different choice of i. Similarly, Server2, who chooses
δ, also learns nothing about i since the random and uniform index j is unknown
to Server2, and each choice of j leads to a different choice of i.

Non-Interactive Computational Multi-Server RPIR with a Better Rate
We can use Reed-Muller codes and ideas from pseudo-random secret sharing
to get a non-interactive multi-server scheme based on the existence of pseudo-
random generators. (Note that, since this scheme relies on computational as-
sumptions, it meets only a weaker — computational — version of Definition 4.)
The construction follows the usual roadmap to get PIR from Reed-Muller codes,
and then uses pseudo-random secret sharing (PRSS) to generate the line of
points usually sent to the servers by the client.

We will encode DB as a multivariate polynomial. Let v be the number of
formal variables. Let d be the maximal degree of the polynomial. Let q > d be a
prime. We consider multivariate polynomials f(x) ∈ Zq[x1, . . . , xv] of degree at

most d. It is easy to see that there are K =
(
v+d
v

)
unique monomials of degree

at most d,5 so we can use f(x) to encode an element from ZKq . This will allow
us to encode at least K(log2(q) − 1) bits of the database by encoding bits into
positions in the binary representation of the field elements in Zq. Note that this
is a locally-decodable encoding: To decode a bit we only need the field element
it sits in. The codewode will be f(Zvq), i.e., we evaluate f on all points in Zvq .
There are N = qv such points. We can encode by placing the K elements DB[i]
in K evaluation points f(a) and then use interpolation to compute f(Zvq). This

5 Consider an array of length v + d. Consider placing a 0 in v positions and a 1
in the remaining d positions. Let the degree of xi be the number of 1’s between
the i’th occurrence of a 0 and the (i + 1)’th occurrence of a 0 (or the end of the
array when i = v). Clearly this gives total degree at most d and there is a one-to-one
correspondence between such assignments and monomials of degree at most d. There
are k =

(
v+d
v

)
ways to place the v entries which are 0.
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gives a linear code

Enc : ZKq → ZNq .

Let fDB(x) be the polynomial used to encode DB. Below we call a point a encod-
ing entries DB[j] a database point. We assume that each database point encodes
the same number of bits.

We let d = q − 2. This means that the rate is

K

N
=

(
v+q−2
v

)
qv

.

For a constant v we have that(
v + q − 2

v

)
= Θq(q

v) ,

which gives us a constant rate.

Interactive Information-Theoretic Multi-Server RPIR. We can use the local de-
codability of Reed-Muller to get a multi-server RPIR for c = q − 1 servers
S1, . . . ,Sc as follows.

1. Each server Si forms the polynomial fDB(x).

2. The client picks a uniformly random a ∈ Zvq and b ∈ Zvq and for λ = 1, . . . , q−
1 it lets cλ = a+ λb. It queries Si for fDB(ci).

6

3. Let y be a formal variable over Zq and consider the univariate polynomial
g(y) = fDB(a+yb). Since f(x) has degree at most d, so does g(y). The client
knows q − 1 points on g(y) as g(i) = fDB(ci). Since d+ 1 = q − 1 the client
can use interpolation to learn g(0) = fDB(a).

4. If a happens to be a database point, then let j be uniform among the encoded
entries j and output (j,DB[j]). Otherwise, output ⊥.

Privacy follows from a+ ib perfectly hiding a when i 6= 0. So a single server
gets no information on a. Therefore, if a hits a database point j, then it hits
a uniformly random database point in the view of the all servers. And each
database point contains the same number of bits, so the position i will be uni-
form. The schemes has constant correctness. Namely, since the rate is constant it
happens with constant probability that a hits a database point. This correctness
can be amplified to any constant by a constant number of parallel repetitions
and taking (j,DB[j]) from the first correct instance. It can be amplified to neg-
ligible probability of error by repeating a linear number of times in the security
parameter. For a batch scheme one can run O(m) instances in parallel to get m
correct instances except with negligible probability.

6 For the reader familiar with Reed-Muller based PIR it looks odd to pick a at random.
However, this leads up to the non-interactive versions, as detailed below.
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Achieving Noninteractivity. In the above scheme the client can of course choose
a to be a database point, yielding the well known Reed-Muller based multi-
server PIR. Before showing how to derive a non-interactive version using pseudo-
random secret sharing, we review the notion of pseudo-random secret sharing
[9].

Consider servers S1, . . . ,Sc for c = q− 1. For each i we can pick a seed si for
a pseudo-random generator and give si to all servers except Si. By stretching
the seed this will allow the servers to create any number of instances of pseudo-
random α1, . . . , αc ∈ Zq where αi is known to all servers Sj 6= Si and where αi is
indistinguishable from uniform in the view of Si. Below we assume for simplicity
that the elements are truly uniform.

Let gi(y) ∈ Zq[y] be a polynomial of degree 1 such that gi(0) = 1 and
gi(i) = 0. Let gα(y) =

∑c
i=1 αigi(y). Note that gα(0) =

∑c
i=1 αi. This is an

element uniformly random in the view of all servers. We can therefore take this
to be one coordinate in our evaluation point a ∈ Zvq . We can repeat v times
in parallel to get all of a. Note also that Si can compute gα(i) =

∑c
j=1 αjgj(i)

as it knows αj for j 6= i and gj(i) = 0 for j = i. This gives us the following
non-interactive version.

1. The setup consists of seeds s1, . . . , sc for a PRG where si is given to all
servers but Si.

2. Each server Si forms the polynomial fDB(x).

3. The servers use v parallel instances of PRSS of lines (with t = 1) to implicitly
generate uniformly random a ∈ Zv and b ∈ Zv such that for λ = 1, . . . , q− 1
server Sλ knows cλ = a+ λb. Then Si sends (ci, fDB(ci)) to C.

4. Let y ∈ Zq and consider the univariate polynomial g(y) = fDB(a+ yb). The
client uses interpolation to learn g(0) = fDB(a).

5. If a happens to be a point where fDB encodes a database entries, then let
j be uniform among the encoded entries and output (j,DB[j]). Otherwise,
output ⊥.

Again we can use parallel repetition to amplify correctness.

We now consider the communication complexity of the protocol. We can
make the optimization that only S1 and S2 send c1 and c2, as c3, . . . , cq−1 can
be computed by interpolation: the evaluation points are on a line. This is 2v
elements from Zq. All q − 1 servers have to send fDB(ci), which is an element
from Zq. This is, all in all, less than q + 2v elements from Zq. For constant
v the communication is therefore Θq(q) elements from Zq. We have that K =
Θq(q

v) so for constant v and growing K we have that the communication is
ΘK(K1/v log(K)) bits. The database has size K log2(K). The constant rate of
the Reed-Muller code will deteriorate with growing constant v. Therefore the
number of times to iterate the RPIR in parallel to get a given correctness level
will grow with v. The communication for each iteration drops with growing v.
This means that in practice for a fixed K there is a tradeoff to be found for v.
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4 Applications to Large-Scale DoS-Resistant
Computation

As described in the introduction, a strong motivation for RPIR is setting up com-
munication channels to random parties who should remain anonymous. Below
we call these target-anonymous communication channels. Imagine a very large
number of parties (perhaps millions), that want to securely perform some com-
putation in the presence of a powerful denial of service (DoS) adversary. While
distributed computation requires sending and receiving messages, in this setting
the parties run the risk of being knocked offline by a targeted DoS attack as soon
as the adversary learns that they play an important role in the computation.

If the adversary is limited to attacking at most some fraction f of the parties,
then one solution is to run a secure MPC protocol among all the parties. If the
MPC protocol is resilient to f fraction of misbehaving participants, the DoS
adversary will not be able to disable sufficiently many participants to thwart
the computation. But this resilience comes at a steep price, as MPC protocols
typically requires communication between all pairs of parties, which is completely
infeasible at the scales that we consider.

Another approach entails assigning special roles to a small number of parties,
and relying on them to carry out the computation. This could be much more
efficient, but security is a challenge: as soon as the adversary discovers what
parties are playing the special roles, it can target those parties and knock them
offline. Hence, realizing these potential efficiency gains requires that the parties
playing special roles remain anonymous up until they speak, and moreover they
can only speak once before their special role is concluded, else the adversary
can identify and target them. The parties playing special roles can be thought
of in terms of a sequence of committees, where parties in committee i speak
simultaneously in the i’th round.

Secure-MPC protocols where parties only need to speak once were described
in several recent works [2,3,7,11]. But using these protocols in the presence of
that powerful DoS adversary requires solving a delicate problem: How can you
send messages to these parties, in order to provide them with the state that they
need to carry out their task? This is where we want to use target-anonymous
channels. We need to continuously establish communication channels to random
parties, while preventing the adversary from learning who are the recipients, so
that it cannot target them for attacks.

Benhamouda et al. (BGG+) proposed in [2] one approach using a “nomina-
tion” process. First, a nominating committee is established using standard tools
(such as VRFs, or by solving moderately hard puzzles). Then, every (honest)
nominator p chooses another random party q, looks up its public key, and broad-
casts a re-randomized version of that key. This lets everyone send messages to q,
without the adversary knowing who the recipient is. As pointed out in the intro-
duction, a side-effect of this nomination technique is that the adversary knows
the identity of the nominee if either the nominator or the nominee is corrupt. So,
if overall only some fraction f of the parties are corrupt, the adversary will know
the identities of around f + (1− f)f of the committee members. This doubling
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is unfortunate; it implies that honest majority among the nominees (which is
crucial for secure computation with guaranteed output delivery), requires that
the overall fraction is bounded by some f < 0.29. In the following, we outline
an approach that does not have this adversarial doubling effect.

4.1 Target Anonymous Communication Channels from RPIR

Rather than let individual parties establish target anonymous channels to future
committee members, our solution leverage past committees to do this job.

That is, past committees will run a secure-MPC protocol to choose a ran-
dom small subset of the public keys, re-randomize them, and then broadcast
the result. Since past committees are ensured (by induction) to have honest
majority, we no longer allow corrupt nominators to choose corrupt nominees.
We are ensured that all future committee members are chosen at random, and
the adversary does not know who they are (unless it happened to corrupt them
independently).

The only issue with this solution, is that the circuit describing the nomina-
tor’s function is large: The input consists of everyone’s keys (which could number
in the millions), hence a naive MPC protocol will be too expensive. This is where
we use RPIR, we let past committees simulate the RPIR client, while the state
of the RPIR server remains completely public (and so can be simulated locally
by each committee member). Specifically, the server state in our protocol con-
sists of the list of public keys belonging to all the parties, as well as some public
randomness (e.g., derived from a beacon). Since the client’s work and communi-
cation is much smaller than the database size, we obtain a secure-MPC protocol
that scales well with the total number of parties.

To simplify the presentation we describe this solution in terms of a noninter-
active RPIR protocol, but of course it can be adapted to handle arbitrary RPIR
protocols. Let Π = (Setup,Client,Server) be a noninteractive RPIR protocol,
where:

– Setup(1κ)→ (sk, pk) is the client’s setup function;
– Server(pk, DB, ρ) → m is the server’s processing function (where ρ is ran-

domness); and
– Client(sk,m)→ (i,DB[i]) is the client’s output function.

For simplicity, assume that we have a one-time trusted setup, which is used to
run the Setup procedure, makes pk publicly known by anyone, and shares sk
among the members of an initial committee. Let d be the number of rounds
required to run Client together with a re-randomization of the obtained key.
Assume we are given a public source of randomness, and target anonymous
communication channels to d committees, each guaranteed to have an honest
majority, and the first of which has secret shares of the RPIR secret key sk. Then,
we can generate communication channels to an arbitrary additional number of
committees by using our existing committees to run the RPIR protocol (followed
by key randomization).
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Server: All committee members locally obtain the randomness ρ (from a public
source of randomness), and evaluate Server(pk, DB, ρ)→ m. Note that, be-
cause the client secret state is secret shared, this message is not enough to
reveal the output to any individual committee member. Note also that, since
this computation was entirely local, no committee member needs to speak
during this computation.

Output: The members of the d committees run Client(sk,m) → (i,DB[i]), fol-
lowed by a re-randomization of the retrieved public key, using techniques
from [2,3,7,11] so that each committee only needs to speak once. Then
they publicly reveal the output, thus establishing as many target-anonymous
channels as needed to keep the process going.

This process consumes d committees, but can be used to make any desired
number of key-selections and rerandomizations. In particular we can use it to
establish d more committees that would handle the next selection, in addition to
however many are needed to an external application. We can even let the same
committee handle different steps of different RPIR instances: The last step in
the protocol for the next committee, the second-to-last step in the protocol for
the committee after that, et cetera. To conclude, we state the following informal
theorem.

Theorem 4. (informal) In the model of Benhamouda et al. [2] with a broadcast
channel and mobile adversary, given anonymous PKE (for the target-anonymous
channels) and a nontrivial weak RPIR protocol satisfying Definition 6, there
exists a scalable evolving-committee proactive secret sharing scheme (ECPSS) as
per [2, Def 2.3], tolerating any fraction f < 1/2 of corrupt parties.

We note that the construction from [2] required other components (such as
NIZK), but in our honest-majority setting those can be replaced by information-
theoretic counterparts. We also comment that while the description above used
public randomness, this can be replaced by the client generating the required
randomness via a secure-MPC protocol. Also, we can use the same commit-
tees and the same techniques to get scalable secure-MPC for realizing arbitrary
functions.

Theorem 5. (informal) In the model of Benhamouda et al. [2] with a broadcast
channel and mobile adversary, given anonymous PKE (for the target-anonymous
channels) and a nontrivial weak RPIR protocol satisfying Definition 6, there ex-
ists scalable secure-MPC protocols for realizing any poly-time function, tolerating
any fraction f < 1/2 of corrupt parties.

5 Batch RPIR

We consider the application to large-scale secure-MPC as a “stress test” for
RPIR efficiency. Not only do we need to run the RPIR client inside a secure-
MPC protocol, but this protocol must use the only-speak-once pattern [11] which
makes things hard, and we need to run very many copies of it to generate enough
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target-anonymous channels for it to sustain itself. It is therefore crucial to get
the basic RPIR construction as efficient as can be for this application, which
is what we do in this section. In particular, we consider a batch protocol that
can choose multiple random indexes cheaper than choosing them one at a time,
and also observe that the application can use a weaker security property than
Definition 2, making it possible to do even better.

5.1 Definitions

Definition 2 can be easily adapted to amortized protocols in which the client
gets more than a single entry of the database — say k entries at a time. The
functionality for this case, denoted FkRPIR , is almost identical to the one from
Section 2.2, except that the random single index i ∈ [n] is replaced with a vector
~i ∈ [n]k. Everything else remains the same.

As we mentioned, it turns out that Definition 2 can sometimes be an overkill
for applications of batch RPIR. In particular our motivating application uses
RPIR to choose a random subset of indexes, where some subsets are “bad”
(since they include too many corrupted parties), but they are very rare. In such
an application, we may not really care about the chosen subset being random.
Rather all we care about is that the odds of hitting a “bad subset” remains
small. We thus weaken the security condition to only say that every collection of
subsets that has negligible probability-mass by the uniform distribution, remains
with a negligible probability-mass also in the RPIR output.

Formalizing this requirement using a game-based approach seems rather awk-
ward, since the distribution of indexes that we care about is the a-posteriori
distribution as seen by a computationally-bounded server. Fortunately it is easy
to formulate it using the real/ideal approach of Definition 2. All we need to do
is change the FkRPIR functionality, so that instead of the uniform distribution,
it chooses the indexes from some other distribution D which is “not too differ-
ent” than uniform. Let us first define the statistical property of being not too
different.

Definition 5 ((f, α)-domination). Let D1, D2 be two distributions with X be-
ing the union of their support sets, and let f, α ∈ R+ be positive numbers. We
say that D1 is (f, α)-dominated by D2 if for any subset S ⊆ X it holds that
D1(S) ≤ f ·D2(S) + α.

An ensemble D1 = {D1,k}k is polynomially dominated by another ensemble
D2 = {D2,k}k if each D1,i is (fi, αi)-dominated by D2,i, where {fk}k is polyno-
mially bounded and {αk}k is negligible.

It is clear that if D1 is polynomially dominated by D2, and some collection
S has negligible probability in D2, then it also has negligible probability in D1.

The parametrized RPIR functionality FDRPIR. The functionality is similar to the
standard batch functionality FkRPIR, except that it is also parametrized by a
distribution ensemble D = {Dn}n (with Dn being a distribution over [n]k).
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When the client is honest and the server input is some DB ∈ {0, 1}n, the
functionality draws an index set ~i ← Dn (rather than uniform in [n]k) and
returns to the client (~i,DB[~i]).

Definition 6 (Single-server batch weak RPIR). A two-party protocol Π is
a (semi-honest) single-server batch weak RPIR if it UC realizes the functionality
FDRPIR with semi-honest server and honest client for some D which is polynomially
dominated by the uniform distribution over [n]κ (with κ the security parameter).
It is nontrivial if the server sends less than n bits.

5.2 Constructions

Ishai, Kushilevitz, Ostrovsky, and Sahai (IKOS) described in [13] several con-
structions for batch PIR from standard PIR protocols. Unfortunately, even if we
wanted to use those constructions to fetch random indexes (rather than specific
ones), the underlying protocol must still be full-blown PIR (rather than RPIR).
Luckily, it turns out that we can use similar approaches with an underlying RPIR
protocol if we are willing to settle for the weaker security from Definition 6, and
we can even get must better parameters than what the IKOS constructions give.

Specifically, below we describe how to modify the IKOS “expander-based”
construction from [13]. The original construction, used to fetch k entries out of
an n-entry database, is parameterized by two more integers m > d ≥ 2. Using
public randomness which is shared by the server and client, the construction
uses m bins and puts every database entry into d random bins. This created a
degree-d bipartite expander, with the n database entries on one side and the m
bins on the other. Then for every k-subset of entries that the client wants to
fetch, it finds a perfect matching in that expander graph, with the k requested
entries on one side and a k-subset of the bins on the other. The client then uses
standard PIR to fetch these items from their bins (and dummy items from the
other bins).

As we mentioned above, even if we wanted to use that construction to fetch
k random items, we would still need to fetch specific items from selected bins,
so the underlying protocol must be a PIR protocol, rather than RPIR. In terms
of parameters, that construction has “rate” of ρ = 1/d ≤ 1/2 (meaning the
total space taken by all the bins is d times larger than the database size), and it
requires m = Ω(k(nk)1/(d−1)), which is optimal for replication-based construc-
tions. We can apply this construction with much better parameters, however, if
we are willing to settle for the weak security notion (but the underlying protocol
must still be PIR rather than RPIR).

Lemma 5. There exists a weak-RPIR scheme as per Definition 6 based on the
IKOS expander-based construction [13], with parameters (k, d,m) such that m =
(1 +O(e−d))k.

Proof (sketch). When running the expander-based scheme above with a much
smaller m, there will necessarily be some k-subsets of indexes that cannot be
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retrieved. The RPIR protocol will therefore have the client resample its indexes
until it arrives at a subset that can be retrieved one per bin.

It is easy to see that the fraction of k-subsets that cannot be retrieved with
some parameters d,m, corresponds exactly to the failure probability of inserting
k random elements into a Cuckoo hash table [17] with d hash functions and
table-size m. It is known that for d = 2 it is enough to use m = (2 + ε)k to get
failure probability o(1), and for larger d we get the same guarantee with m =
(1 + O(e−d))k (see e.g., Fountoulakis-Panagiotou-Steger [10]). The probability
mass of each of the achievable subsets is therefore increased only by a 1 + o(1)
factor, which means that any negligible-probability collection of subsets remain
negligible. ut

A Practically Appealing Weak Batch-RPIR While the construction above
has good parameters, the work that the client has to perform is far from simple,
as it needs to resample indexes until some perfect matching can be found in the
construction graph. In our motivating application this would have to be done
via secure MPC, requiring a complex and costly protocol. One could attempt
to simplify this construction by having the client simply choose k random bins
and retrieve a random item from each bin, but analyzing this variant is very
challenging. Instead, we describe and analyze below an even simpler and more
efficient construction.

The construction. In addition to n (the number of entries) and k (the number
of indexes to fetch), the construction is also parametrized by m (the number of
bins). We assume that both n and k are divisible by m, and note that k/m is
playing a somewhat similar role to d in the expander-based construction. We
deterministically partition the indexes in [n] into m bins of size n/m each, for
example {0, . . . , nm − 1}, { nm , . . . ,

2n
m − 1}, . . .. Then we just fetch k/m random

indexes from each bin using an underlying RPIR protocol. See Figure 5.

Simple Batch-RPIR (parameters m < k < n, m divides k, n)

1. Partition DB into m “bins”, Bi = {DB[ i·n
m

], . . . , DB[ (i+1)n
m
− 1]}

2. Client, Server run k copies of RPIR to retrieve k/m entries from each Bi.

Fig. 5. A simple batch-RPIR protocol.

Note that by replicating each bin k/m times and fetching one item from each
replica, we can view this construction as a very specific instance of the IKOS
construction from [13] with exactly k bins, where instead of putting each item
in d = k/m random bins we put the first n/m items in bins 0, . . . km − 1, then

the next n/m items in bins k
m , . . .

2k
m − 1, and so on. Note that we may end

up fetching the same item more than once in this protocol, but this is quite
acceptable for our application for large-scale MPC.
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Analysis of the Simple Batch-RPIR Protocol. Clearly, if the underlying
RPIR protocol has work w(κ, n) and communication c(κ, n) on databases of
size n, then this protocol has work k·w(κ, n/m) and communication k·c(κ, n/m).
In particular if the work is w(κ, n) = p(κ) · n then the work in this protocol is
p(κ) · kn/m, which is m times better than the naive solution of just running k
RPIR instances against the entire database.

Theorem 6. The simple batch-RPIR protocol from Figure 5 is a weak-RPIR
protocol as per Definition 6, provided that the underlying RPIR protocol satisfies
Definition 2 and that m = O(log κ/ log log κ) (and k = poly(κ)).

We show that when drawing k elements at random from a universe of size n
which is split evenly between m bins, the probability drawing exactly k/m el-
ements from each bin is only exponentially small in m, regardless of n. Since
m = O(log κ/ log log κ), it means a noticeable probability in κ. We state the
following lemma.

Lemma 6.
(
n
k

)
/
(
n/m
k/m

)m
= Θ( 1√

k
(C · k/m)m/2) for some constant C.

Proof. We use Stirling’s approximation (cf. [19]) – namely, there are constants
C1 =

√
2π, and C2 = e, such that for all positive t

C1

√
t · (t/e)t < t! < C2

√
t · (t/e)t.

Using these bounds we have:(
n

k

)
/

(
n/m

k/m

)m
=
n!(k/m)!m(n/m− k/m)!m

k!(n− k)!(n/m)!m

<
C

(1+2m)
2 · nn+ 1

2 · (k/m)k+
m
2 · ((n− k)/m)n−k+

m
2

C
(2+m)
1 · kk+ 1

2 · (n− k)n−k+
1
2 · (n/m)n+

m
2

=
C

(1+2m)
2 · k(m−1)/2 · (n− k)(m−1)/2

C
(2+m)
1 · n(m−1)/2 ·mm/2

<
C2

C2
1 ·
√
k
·
(
C4

2

C2
1

· k
m

)m/2
<

1

2
√
k
·
(
9k/m

)m/2
. (1)

Lemma 6 implies that drawing k/m elements from each of the m bins (rather
than drawing k elements uniformly from the entire universe) increases the prob-
ability of each k-subset by at most a factor of Θ( 1√

k
(C · k/m)m/2) for some

C < 9. For k = poly(κ) and m = O(log κ/ log log κ), this factor is polynomial in
the security parameter. Finally, the underlying RPIR protocol satisfying Defini-
tion 2 implies that the server cannot distinguish the output of the protocol from
drawing exactly k/m random elements from each bin. This concludes the proof
of Theorem 6. ut
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f m k

0.2 10 440

0.2 40 640

0.25 10 680

0.25 40 1000

f m k

0.3 10 1080

0.3 40 1560

0.35 10 1850

0.40 10 3500

Table 1. Some parameters for batch-RPIR with n = 10000 and security level=128.

Setting the Parameters. While the general Theorem 6 only holds for very
small m = O(log κ/ log log κ), in the context of our motivating application we
can choose much large values, linear in κ. The reason is that the probability mass
of the “bad subsets” in this case is exponentially small, not just negligible. As we
show below we can choose the committee-size k as a small multiple of the security
parameter. Hence, we not only get much better resilience than Benhamouda et
al. [2], but also much smaller committees, and the secure-MPC cost can be kept
small by increasing the number of bins m.

In the application from Section 4 we have an adversary A that watches an
execution of the batch-RPIR protocols (for choosing k parties from a universe
of size n in m bins). Then A adaptively corrupts up to f · n parties (for some
f < 1/2). For each corrupted party, A learns if that party was chosen or not,
and its goal is to corrupt k/2 (or more) of the parties that were chosen by the
protocol.

To get concrete parameters, we can start by analyzing the naive RPIR pro-
tocol with one bin, and then view Lemma 6 as quantifying the security loss
by going to the more efficient protocol with m bins. By that lemma, the min-
entropy of D (and hence the security level) decreases by roughly m

2 log(9k/m)
bits when switching from one to m bins. Analyzing the naive protocol is rather
straightforward. For example, we can use the Chernoff bound, which says that
for any f � 1/2 we can set k = c · κ for some c = Θ(f( 1

2 − f)2) to get security
level of (say) 2κ. We can then set m = κ/Θ(log c) = k/θ(c log c) and lose only κ
bits, obtaining security κ while selecting only a constant Θ(c log c) parties from
each bin.

It turns out that for our parameter regime the Chernoff bound is rather
loose, and we get much better concrete parameters using an exact calculation.
Specifically, for the one-bin protocol we need to compute the probability that a
random f -subset of [n] contains more than 1/2 of the elements in [k]. The exact
expression for this probability is

k∑
i=k/2

(
fn

i

)(
(1− f)n

k − i

)
/

(
n

k

)
,

which is easy to compute for specific n, f, k values. Accounting for the “penalty”
from Lemma 6 we therefore get:
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Lemma 7. For a specific setting of the parameters f, n, k,m, κ, if the underlying
RPIR protocol satisfies Definition 2 then for any poly-time adversary A it holds
that,

Pr[A corrupts k/2 or more selected parties]

≤
∑k
i=k/2

(
fn
i

)(
(1−f)n
k−i

)(
n
k

) · 1

2
√
k
·
(

9k

m

)m/2
+ negligible(κ).

ut
In Table 1 we list a few example parameters for n = 10000 parties, corrupt

fractions f ∈ [0.2, 0.4], and various k,m values that achieve security level κ =
128.
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A Random-Index Oblivious-RAM

In this section we note that a random-index ORAM (RORAM) can be used in
our motivating application instead of RPIR, resulting is a somewhat different
performance profile. We begin by defining RORAM.

A Random-Index ORAM (RORAM) is a two party protocol between a client
and a server similar to Oblivious RAM (ORAM), except that the client does not
choose the indexes to read from memory. Instead, these indexes are chosen at
random (by the protocol), with the client getting (i,Memi) while hiding them
from the server. Similarly to ORAM, we have procedures for Init, Read, and
Write, except that the index to be read is not an input to Read but an output
of it.

Definition 7 (RORAM Syntax). A Random-Index ORAM protocol (RO-
RAM) consists of the following components:

– Init(1κ,Mem) → (cst;SST): The initialization algorithm takes as input the
security parameter and initial memory Mem ∈ {0, 1}∗ (that could be empty),
and generates an initial secret client state cst and a public server state SST.
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– Read(cst,SST) → (i, x,SST′): The client fetches (i,Memi) (presumably for
a random index i ∈ |Mem|), and the server state is updated to SST′.7

– Write(cst, i, x, SST) → SST′: The content of the memory is modified by set-
ting Mem[i] := x and the server state is updated to SST′.

A RORAM protocol is nontrivial if the communication in each of Read and Write
operations is o(|Mem|).

Desired properties: The security notion for (computational) ORAM from [18]
intuitively says that the server should not learn anything about which data and
in what order it is being accessed. (We may also require that the server cannot
learn if the operation is read or write.) As for RPIR, here too it is convenient to
define security by means of an ideal functionality.

RORAM Functionality. The functionality FRORAM takes as input a (possibly
empty) initial Mem ∈ {0, 1}∗ from the client. It stores Mem internally and gives
the size of the memory |Mem| to the server.

Thereafter, on input Read from the client it sets n := |Mem|, chooses at
random an index i← [n], returns (i,Mem[i]) to the client, and outputs n to the
server. On input Write(i, x) from the client (i in unary) it modifies Mem[i] := x
(extending the memory if needed), and outputs the new |Mem| to the server.

Definition 8 (RORAM). A two-party protocol Π is a Random ORAM if it
realizes the functionality FRORAM above.

A.1 Target Anonymous Channels from RORAM

One can use (batch) RORAM as an almost “drop-in” replacement for (batch)
RPIR to establish target-anonymous channels. Here too we have previous com-
mittees playing the part of the RORAM client, where the server state is publicly
known so every committee member can simulate the server in its head. However,
there are a few differences.

In the RPIR-based solution, the server state only changes when the database
contents change; that is, when public keys are added or removed due to a party
joining or leaving the pool of participants (or parties changing their keys). When
this happens, no additional communication is needed to run the RPIR server,
since all parties can update the server state locally. In contrast, the RORAM
server state is evolving dynamically with each read/write operation, and the
state depends on the client secret. This has several consequences. First, setting
up the server state takes O(n) communication (where n is the number of parties
in the pool of participants), since communication with the client (played by
the committees) is necessary for every write. Second, every party in the pool
of participants must continuously update the server state and keep a local copy
of it, so that it can simulate the server for itself if it gets selected to one of
these committees. Namely, whenever a client-simulating committee broadcasts

7 We can assume wlog that the client state does not change throughout the protocol.
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an RORAM-client message, every party in the universe must update its local
copy of the RORAM-server state accordingly.

The rest of the construction works just like the RPIR-based solution, with
the committees implementing the RORAM client and any secrets that the client
requires passed from committee to committee using the proactive secret sharing
technique of Benhamouda et al. [2]. The result is summarized by the following
informal theorem:

Theorem 7. In the model of Benhamouda et al. [2] with a broadcast channel
and mobile adversary, given anonymous PKE (for the target-anonymous chan-
nels) and a nontrivial RORAM protocol satisfying Definition 8, there exists a
scalable ECPSS scheme as per [2, Def 2.3], tolerating any fraction f < 1/2 of
corrupt parties.

We remark that there is an interesting trade-off between the RPIR-based and
the RORAM-based solutions: While both tools can provide a scalable solution
(in that the amount of communication in each step is independent of the universe
size n), they differ in how many parties need to perform local computation, and
how much local computation each of them must do.

– When using RPIR, the only parties that need to perform local computations
in each step are the current committee members (so only O(κ) of them).
However, each one of them must play the RPIR server, so it must do at least
Ω(n) operations.

– When using RORAM, every party in the universe must keep up to date
with the evolving server state, so every party must perform some compu-
tation in every step.8 On the other hand, the computational complexity of
one server-step is typically just polylog(n) (depending on the underlying
RORAM protocol).

Hence we have a choice between O(κ) parties performing Ω(n) operations each
for RPIR, or all n parties performing only polylog(n) operations each for RO-
RAM. It is an interesting open problem to find a solution where both the number
of computing parties and the complexity of operations is sublinear in n (possibly
using some combination of RPIR and RORAM).

B Target Anonymous Channels from Mix-Nets

A different approach to setting up target anonymous communication channels is
using Mix-Nets [5], i.e., by repeatedly shuffling and re-randomizing all the keys.
This solution can be implemented simply by having individual parties self-select
to shuffle and re-randomize all parties’ public keys, then proves in zero knowledge
that they did so correctly. Since the shuffling parties do not need any secret state,

8 Parties can perform these computations lazily, only when they are selected to a
committee, but this does not change the total number of operations that they must
perform.
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they can self-select using VRFs or by solving moderately-hard puzzles. There is
no need to establish target-anonymous channels with these parties as recipients.

Notice that this setting is slightly different than traditional use of Mix-Nets,
in that the shuffled and re-randomized entities are themselves public keys, with
the corresponding secret keys held by individual parties. This means in particular
that the adversary can always recognize its own keys in the shuffled list; only the
honest parties’ keys are hidden. Therefore, even after all the shuffling is done,
we still require fresh public randomness — unpredictable by the adversary — to
select the rerandomized keys from the shuffled database. (Otherwise a malicious
last shuffler can plant keys belonging to corrupt parties in the positions from
which keys are to be selected.)

This solution uses κ (security parameter) shuffles, so that at least one of the
shufflers will be honest with overwhelming probability. As usual with Mix-Nets,
all we need is one honest shuffler, as biased shuffles do no harm as long as at
least one shuffle along the way is uniform. Also, we assume a synchronous model,
so if one or more shufflers do not show up to play their roles, we simply skip
their turns.

The major drawback here is communication; each of the κ shufflers needs to
broadcast n public keys, or O(nκ) bits. This gives us a total communication com-
plexity of O(nκ2). On the other hand, this solution is very simple and requires
no evolving secret state to be passed among the parties, making it appealing in
some practical settings where the number of parties is not so large.

The solution can be optimized further, along somewhat similar lines to the
batch-RPIR construction from Section 5.2: We divide the database of public keys
into m bins each containing n

m public keys. We then run the Mix-Net solution
above on each bin separately, using independently-chosen set of shufflers for each
bin. Finally we use fresh public randomness to select k/m committee members
from each bin. Note that we can now use only s � κ shuffling steps, maybe as
little as s = Θ(1). Each bin has 2−s probability of having all corrupt shufflers,
hence starting from an f -fraction of corrupt parties the expected fraction of
corrupt committee members per bin is f ′ = 2−s + f(1 − 2−s), and setting m
large enough we can ensure that the actual fraction is very close to f ′ whp.

The total communication complexity of this modified scheme becomesO(nκs).
For comparison, the FHE-based batch RPIR approach (Section 3) in combina-
tion with YOSO MPC gives total communication complexity of Õ(κ3), where
both the size of a YOSO MPC committee and the number of keys being selected
(for communication channels to the next committee) is O(κ), and the length of
an FHE decryption share is Õ(κ). While the dependence of the communication
complexity on n in the Mix-Nets solution may appear crippling, in practice the
term Õ(κ3) may dwarf the number of participants n.
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