
Universal Composition with Global Subroutines:
Capturing Global Setup within plain UC

Christian Badertscher1,?[0000−0002−1353−1922], Ran Canetti2??, Julia Hesse3,
Björn Tackmann4,? ? ?, and Vassilis Zikas1

1 IOHK, Zurich, Switzerland – christian.badertscher@iohk.io
2 Boston University, MA, USA, – canetti@bu.edu

3 IBM Research – Zurich, Switzerland – jhs@zurich.ibm.com
4 DFINITY, Zurich, Switzerland – bjoern@dfinity.org

5 University of Edinburgh, United Kingdom – vzikas@inf.ed.ac.uk

Abstract. The Global and Externalized UC frameworks [Canetti-Dodis-
Pass-Walfish, TCC 07] extend the plain UC framework to additionally
handle protocols that use a “global setup”, namely a mechanism that
is also used by entities outside the protocol. These frameworks have
broad applicability: Examples include public-key infrastructures, common
reference strings, shared synchronization mechanisms, global blockchains,
or even abstractions such as the random oracle. However, the need to work
in a specialized framework has been a source of confusion, incompatibility,
and an impediment to broader use.
We show how security in the presence of a global setup can be cap-
tured within the plain UC framework, thus significantly simplifying the
treatment. This is done as follows:
– We extend UC-emulation to the case where both the emulating

protocol π and the emulated protocol φ make subroutine calls to
protocol γ that is accessible also outside π and φ. As usual, this
notion considers only a single instance of φ or π (alongside γ).

– We extend the UC theorem to hold even with respect to the new
notion of UC emulation. That is, we show that if π UC-emulates φ in
the presence of γ, then ρφ→π UC-emulates ρ for any protocol ρ, even
when ρ uses γ directly, and in addition calls many instances of φ, all
of which use the same instance of γ. We prove this extension using
the existing UC theorem as a black box, thus further simplifying the
treatment.

We also exemplify how our treatment can be used to streamline, within
the plain UC model, proofs of security of systems that involve global
set-up, thus providing greater simplicity and flexibility.

? Work done while author was at the University of Edinburgh, Scotland.
?? Member of the CPIIS. Supported by NSF Awards 1931714, 1801564, 1414119, and

the DARPA DEVE program.
? ? ? Work partly done while author was at IBM Research – Zurich, supported in part by

the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 780477 PRIViLEDGE.

1 Introduction

Modular security analysis of cryptographic protocols calls for an iterative process,
where in each iteration the analyst first partitions the given system into basic
functional components, then separately specifies the security properties of each
component, then demonstrates how the security of the overall system follows
from the security of the components, and then proceeds to further partition each
component. The key attraction here is the potential ability to analyze the security
of each component once, in a simplified “in vitro” setting, and then re-use the
asserted security guarantees in the various contexts in which this component is
used.

A number of analytical frameworks have been devised over the years with
this goal in mind, e.g. [MR91, Bea91, HM97, Can00, PW00, Can01, BPW04,
Mau11, KMT20, HS16, CKKR19]. These frameworks allow representing protocols,
tasks, and attacks, and also offer various composition operations and associated
security-preserving composition theorems that substantiate the above analytical
process. The overarching goal here is to have an analytical framework that is as
expressive as possible, and at the same time allows for a nimble and effective
de-compositional analytical process.

Modularity in these frameworks is obtained as follows. (We use here the
terminology of the UC framework [Can01], but so far the discussion applies to all
these frameworks.) We first define when a protocol π “emulates” another protocol
φ. Ideally, this definition should consider a setting with only a single instance of
π (or φ) and no other protocols. A general composition theorem then guarantees
that if π emulates protocol φ, then for any protocol ρ, that makes “subroutine
calls” to potentially multiple instances of φ, the protocol ρφ→π emulates ρ, where
ρφ→π is the protocol that is essentially identical to ρ except that each subroutine
call to an instance of φ is replaced with a subroutine call to an instance of π.

This composition theorem is indeed a powerful tool: It allows analyzing a
protocol in a highly simplified setting that involves only a single instance of
the protocol and no other components, and then deducing security in general
multi-component systems. However, the general composition theorem can only
be applied when protocols π and φ do not share any “module” with the calling
protocol, ρ. That is, the theorem applies only when there is no module, or
protocol, γ, such that γ is a subroutine of π or φ, and at the same time γ is used
directly as a subroutine of ρ. Furthermore, when ρ calls multiple instances of φ,
no module γ can be a subroutine of two different instances of φ.

This limitation has proven to be a considerable impediment when coming
to analyze realistic systems, and in particular when trying to de-compose such
system to smaller components as per the above methodology. Indeed, realistic
systems often include some basic components that require trust in external entities
or are expensive to operate. It then makes sense to minimize the number of such
components and have them shared by as many other components as possible.
Examples for such shared components include public-key infrastructure, long-
lived signing modules, shared synchronization and timing mechanisms, common

2

reference strings, and even more complex constructs such as blockchains and
public repositories.

Overcoming this limitation turns out to take quite different forms, depending
on the underlying model of computation. When the model of computation is static,
namely the identities, programs, and connectivity graph of computing elements
are fixed throughout the computation, extending the basic composition theorem
to account for shared (or, “global”) subroutines is relatively straightforward.
(Examples include the restricted model of [Can20, Section 2], as well as [BPW07,
KMT20].) However, restricting ourselves to a static model greatly limits the
applicability of the framework, and more importantly the power of the composition
theorem. Indeed, static models are not conducive to capturing prevalent situations
where multiple instances of a simple protocol are invoked concurrently and
dynamically, and where all sessions share some global infrastructure; examples
include secure communication sessions, payment protocols, cryptocurrencies,
automated contracts.

In order to be able to benefit from compositional analysis with shared modules
even when the analyzed protocols are dynamic in nature, new composition
theorems and frameworks were formulated, such as the Joint-State UC (JUC)
theorem [CR03] and later the Generalized UC (GUC) and Extended UC (EUC)
models [CDPW07].

However the GUC modeling is significantly more complex than the plain
UC model. Furthermore, the extended model needs to be used throughout the
analysis, even in parts that are unrelated to the global subroutine. In particular,
working in the GUC model requires directly analyzing a protocol in a setting
where it runs alongside other protocols. This stands in contrast to the plain
UC model of protocol execution, which consists only of a single instance of the
analyzed protocol, and no other “moving parts.” Additionally, while the basic
UC framework has been updated and expanded several times in recent years, the
GUC model has not been updated since its inception. Furthermore, the claimed
relationship between statements made in the EUC framework and statements
made in the GUC framework has some apparent inaccuracies.6

Our contribution. We simplify the treatment of universal composition with global
subroutines for fully dynamic protocols. Specifically, We show how to capture
GUC-emulation with respect to global subroutines, and provide a theorem akin to
the GUC theorem, all within the plain UC modeling. This theorem, which we call
the Universal Composition with Global Subroutines (UCGS) theorem, allows for fully
reaping all the (de-)compositional benefits of the GUC modeling, while keeping
the model simple, minimizing the formalism, and enabling smooth transition
between components.

We present our results in two steps. First, we present the modeling and theorem
within the restricted model of computation of [Can20, Section 2]. Indeed, here the
6 Indeed, there is at the moment no completely consistent composition theorem for
EUC protocols. For instance, the notion of a challenge protocol is not sufficiently
well specified. Also the treatment of external identities is lacking. This is discussed
further in [BCH+20].

3

GUC and UCGS modeling is significantly less expressive - but it introduces the
basic approach, and is almost trivial to formulate and prove. Next we explain the
challenges involved in applying this approach to the full-fledged UC framework,
and describe how we handle them. This is where most of the difficulty - and
benefit - of this work lies.

Let us first briefly recall UC security within that restricted model. The model
postulates a static system where the basic computing elements (called machines)
send information to each other via fixed channels (or, ports). That is, machines
have unique identities, and each machine has a set of machine identities with
which it can communicate. Within each machine, each channel is labeled as either
input or output. A system is a collection of machines where the communication sets
are globally consistent, namely if machine M can send information to machine
M ′ with channel labeled input (resp., output) then the system contains a machine
M ′ that can send information labeled output (resp., input) to M . In this case
we say that M ′ is a subroutine (resp., caller) of M .

A protocol is a set π of machines with consistent labeling as above, except
that some machines in π may have output channels to machines which are not
part of π. These channels are the external channels of π. The machines in π that
have external channels are called the top level machines of π.

An execution of a protocol π with an environment machine Z and an adversary
machine A is an execution of the system that consists of (π ∪ {Z,A}), where the
external channels of π are connected to Z, and A is connected to all machines in
the system via a channel (port) named backdoor. The execution starts with an
activation of Z and continues via a sequence of activations until Z halts with
some binary decision value. Let execπ,A,Z denote the random variable describing
the decision bit of Z following an execution with π and A. We say that protocol
π UC-emulates protocol φ if for any polytime adversary A there exists a polytime
adversary S such that for any polytime Z we have execπ,A,Z ≈ execφ,S,Z .

The universal composition operation in this model is a simple machine re-
placement operation: Let ρ be a protocol, let φ be a subset of the machines in ρ
that is a protocol in and of itself, and let π be a protocol that has the same set
of external identities as φ, and where π and ρ \ φ are identity-disjoint, i.e. the
identities of the machines in π are disjoint from the identities of the machines
in ρ \ φ. Then the composed protocol ρφ→π is defined as (ρ \ φ) ∪ π. The UC
theorem states that if π UC-emulates φ, then for any ρ such that π and ρ \ φ
are identity-disjoint we have that ρφ→π UC-emulates ρ. (Notice that here the
UC operation replaces only a single “protocol instance”. Indeed, here there is no
natural concept of “multiple instances” of a protocol.)

In this restricted model, protocol γ is a global subroutine of a protocol π′ if
γ is a subroutine of π′, and at the same time some of the top level machines of
π′ are actually in γ. Said otherwise, π′ consists of two parts, γ and π = π′ \ γ,
where both π and γ include machines that take inputs directly from outside π′,
and in addition some machines in γ take inputs also from machines in π. Observe
that this structure allows γ to be a subroutine also of protocols other than π.

4

The Universal Composition with Global Subroutines (UCGS) theorem for
such protocols takes the following form: Let ρ, π, φ and γ be such that π′ = π∪γ
and φ′ = φ∪γ are protocols where π′ UC-emulates φ′ (and in addition π and ρ\φ
are identity-disjoint). Then the protocol ((ρ \ φ′) ∪ π′) UC-emulates ρ. Observe,
however, that in this model the UCGS theorem follows immediately from the
standard UC theorem: Indeed, (ρ \ φ′)∪ π′ = (ρ \ φ)∪ π = ρφ→π. See illustration
in Figure 1.

π

γ
π′

UC-emulates=⇒

φ

γ
φ′

⇓

π

γ((ρ\φ)∪π)

= ρφ→π

UC-emulates=⇒

φ

γ
ρ

Fig. 1: UC with Global Subroutines (UCGS) in the restricted setting of [Can20,
Section 2]: Protocol γ is a global subroutine of protocol π′ if γ takes input from
π = π′ \ γ and also from outside π′. Then plain UC theorem already guarantees
that if π′ UC-realizes protocol φ′, where φ′ = φ ∪ γ, then for any ρ that calls φ
and γ, the protocol ((ρ \ φ) ∪ π) = ρφ→π UC-emulates ρ.

Extending the treatment to the full-fledged UC framework. While formulating UC
with global subroutines within the above basic model is indeed simple, it is also
of limited applicability: While it is in principle possible to use security in this
model to infer security in systems that involve multiple instances of the analyzed
protocol, inference is still limited to static systems where all identities and
connectivity is fixed beforehand. The formalism breaks down when attempting
to express systems where connectivity is more dynamic in nature, as prevalent in
reality. In order to handle such situations, the full-fledged UC framework has a
very different underlying model of distributed computation, allowing machines
to form communication patterns and generate other machines in a dynamic way
throughout the computation. Crucially, even in dynamic and evolving systems,
the framework allows delineating those sets of processes that make up “protocol

5

instances,” and then allows using single-instance-security of protocols to deduce
security of the entire system.

To gain this level of expressiveness, the framework introduces a number of
constructs. One such construct is the introduction of the session identifier (SID)
field, that allows identifying the machines (processes) in a protocol instance.
Specifically, an instance (or, session) of a protocol π with SID s, at a given point
during an execution of a system is the set of machines that have program π and
SID s. The extended session of π with SID s consists of the machines of this
session, their subroutines, and the transitive closure of all the machines that were
created by the these subroutines during the execution so far. Another added
construct is the concept of subroutine respecting protocols. Informally, protocol π
is subroutine respecting if, in any extended session s of π, the only machines, that
provide output to, or responds to inputs from, machines outside this extended
instance, are the actual “main” machines of this instance (namely the machines
with code π and SID s). Machines in the extended session, which are not the
main machines, only take input from and provide output to other machines of
this extended instance.

While the SIDs and the restriction to subroutine respecting protocols are key
to the ability of the UC framework to model prevalent dynamic situations, they
appear to get in the way of the ability to prove UC with global subroutines. In
particular, simply applying the UC theorem as in the basic model is no longer
possible. Indeed (referring to Figure 1), neither π nor φ are subroutine respecting,
and the constructs π′ and φ′, which were legitimate protocols in the basic model,
are not legitimate protocols in the full-fledged model, since they don’t have the
same program or SID. Note that this is not just a technicality: In a dynamically
evolving system with multiple instances of π and γ there can be many possible
ways of delineating protocol instances, and so the composition theorem may not
even be well-defined!

We get around this barrier by providing a mechanism for encapsulating an
instance of φ and one (or more) instances of γ within a single “transparent
envelope protocol” M[φ, γ] such that a single instance of M[φ, γ] has the same
effect as the union of the instance of φ and the instances of γ used by this
instance of φ. To accomplish that, we extend the shell and body mechanism
that’s already used in the UC framework to enforce subroutine respecting behavior
and to implement the UC operation. A similar encapsulation is done for π and γ.
Furthermore, the transformation guarantees that both M[φ, γ] and M[π, γ] are
now subroutine respecting, even though neither φ nor π are. This enables us to
invoke the UC theorem (this time in the full-fledged UC model) to obtain our
main result:

Main Theorem (informal). Assume π, φ, γ are such that M[π, γ] UC-emulates
M[φ, γ]. Then for (essentially) any protocol ρ we have that ρφ→π UC-emulates ρ.

Our result follows the spirit of the UC theorem: It allows using the security of
a single instance of π (in the presence of γ) to deduce security of a system that
involves multiple instances of π (again, in the presence of γ). Said otherwise, the

6

theorem allows dissecting a complex, dynamic, multi-instance system into simple,
individual components, analyze the security of a single instance of a component,
and deduce security of the overall system - even in the prevalent cases where
multiple (or even all) of the individual components are using the same global
subroutines. See depiction in Figure 2.

We prove the new composition theorem in a modular way. That is, our proof
makes black-box use of the plain UC theorem, thus avoiding the need to re-prove
it from scratch, as in the GUC and EUC modeling.

π

γ

M[π, γ]

UC-emulates=⇒

φ

γ

M[φ, γ]

⇓

ρ

πn

γ

π1

UC-emulates=⇒

ρ

φn

γ

φ1

Fig. 2: UC with global subroutines in the full-fledged UC framework: We encapsu-
late a single instance of π plus one or more instances of γ within a single instance
of a protocol M[π, γ] that remains transparent to π and γ and is in addition
subroutine respecting. We then show that if M[π, γ] UC-emulates M[π, φ] then
the protocol ρφ→π UC-emulates ρ for essentially any ρ — even when ρ and all
the instances of φ (resp., π) use the same global instances of γ.

Demonstrating the use of our treatment. We showcase our UCGS theorem in
two settings. A first setting is that of analyzing the security of signature-based
authentication and key exchange protocols in a setting where the signature module
is global and in particular shared by multiple instances of the authentication
module, as well as by arbitrary other protocols. This setting was studied in
[CSV16] within the GUC framework. We demonstrate how our formalism and
results can be used to cast the treatment of [CSV16] within the plain UC
framework. The resulting treatment is clearer, simpler, and more general. For
instance, in our treatment, the Generalized Functionality Composition theorem
from [CSV16] turns out to be a direct implication of the standard UC composition
theorem.

7

The other setting is that of composable analysis of blockchains, where assuming
global subroutines is essential and permeates all the works in the literature. In a
nutshell, in [BMTZ17], a generic ledger was described which, as proved there, is
GUC-emulated by (a GUC version of) the Bitcoin backbone protocol [GKL15] in
the presence of a global clock functionality used to allow the parties to remain
synchronized. This ledger was, in turn, used within another protocol, also having
access to the global clock, in order to implement a cryptocurrency-style ledger,
which, for example, prevents double spending. [BMTZ17] then argues that using
the GUC composition theorem one can replace, in the latter construction, the
generic ledger by the backbone protocol. As we demonstrate here, such a generic
replacement faces several issues due to inaccuracies in GUC. Instead, we show
how to apply our theorem to directly derive the above statement in the UC
framework.

Composition with global subroutines in other general frameworks. Several other
general frameworks for defining security of protocols use a static machine model
akin to the restricted variant of the UC model described above, where machines
communicate only via connections (“ports”) that are fixed ahead of time, and the
only way to compose systems is by way of connecting them using a pre-defined
set of ports. (Examples include the reactive simulatability of [PW00, BPW07],
the IITM framework of Küsters and Thuengertal [KMT20], the abstract cryptog-
raphy of of Maurer and Renner [MR11], the iUC framework of Camenisch et al.
[CKKR19].) In these frameworks, the single-instance global-state composition
theorem immediately follows from plain secure composition, in very much the
same way as the single-instance UCGS theorem follows immediately from the
plain UC theorem in the restricted UC model (see Figure 1).

However, these frameworks do not provide mechanisms for modular analysis
of systems where the de-composition of the system to individual modules is
determined dynamically during the course of the computation. In particular,
composition with global state in these frameworks does not address this important
case either. In contrast, as described above, this fully dynamic, multi-instance
case is the focus of this work. So far, this case has been addressed only in the
GUC and EUC frameworks, as well as in the work of Hofheinz and Shoup [HS16]
which proposes an extension of their model to accommodate certain specific ideal
functionalities as distinguished machines.

We note that the IITM framework of Küsters and Thuengertal [KMT20]
(as well as the recent iUC model [CKKR19] that builds on top of the IITM
framework) does contain an additional construct that allows machines to interact
in a somewhat dynamically determined way: While each machine has a fixed set
of other machines that it can interact with, and protocols are defined as fixed sets
of machines that have globally consistent “communication sets”, the framework
additionally allows unboundedly many instances of each machine, where all
instances have the same identity, code, and “communication set”. Furthermore, if
the communication sets of machines M,M ′ allows them to communicate, then
each instance of M can communicate with each instance of M ′. Indeed, this

8

additional feature enables the IITM framework to express systems where the
communication is arbitrarily dynamic.

However, this extra feature appears to fall short of enabling fully modular
analysis of such dynamic systems. Indeed, the IITM framework still can only
compose systems along the static, a-priori fixed boundaries of machine ports.
This means that systems that include multiple instances of some protocol, where
the boundaries of the individual instances are dynamically determined, cannot
be analyzed in a modular way — rather, the framework only allows for direct
analysis of all protocol instances at once, en bloc. This of course holds even
in the presence of global subroutines. Example of such systems include secure
pairwise communication systems where the communicating parties are determined
dynamically, block-chain applications where different quorums of participants join
to make decisions at different times, etc. See e.g. [BCL+11, CSV16, GHM+17].

In contrast, the goal of this work is to allow de-composing such systems to
individual instances, deducing the security of the overall composite system from
the security of an individual instance — and carrying this through even when
many (or all) instances use the same global subroutines (see Figure 2).

A related work by Camenisch et al. [CDT19] introduces a new UC variant
that they call multi-protocol UC (MUC) and that allows the environment to
instantiate multiple challenge protocols that can interact with each other. It is an
interesting future research direction to formulate this more general type of UC
execution following the approach taken in this work, i.e., to model it following
standard UC and making black-box use of the UC composition theorem to derive
a composition theorem for this type of protocol.

2 Formulating and proving the UCGS theorem

In this section, we formulate and prove the main result of this work. In Section 2.1
we present the transformation that takes protocols π and γ and constructs a
single, transparent encapsulation protocol M[π, γ] that behaves like a single
instance of π along with one (or more) instances of a “global subroutine pro-
tocol” γ. We formulate UC emulation with Global Subroutines in Section 2.2,
state the Universal Composition theorem with Global Subroutines composition
in Section 2.3 and conclude with remarks in Section 2.4. We also provide a proof
sketch. See [BCH+20] for the full proof.

2.1 Treating multiple protocols as a single protocol

We start by defining the transformation that takes two protocols π and γ and
combines them into a single protocol µ = M[π, γ], such that one instance of µ
behaves like one instance of π and one or more instances of γ, and where the
instances of γ take inputs both from the instance of π within µ, and from outside
µ. We refer to µ as the management protocol.

The goal of the construction is to ensure that an instance of protocol µ
presents the exact same behavior as one instance of π alongside one (or more)

9

instances of γ, while at the same time making sure that, from the point of view
of the basic UC framework, µ remains a subroutine-respecting protocol. This
will mean that incoming communication to µ specifies a session ID for µ, plus a
session identifier for either the instance of π or an instance of γ. The input is then
forwarded internally either to the instance of π or to the appropriate instance of
γ. Outgoing communication is handled similarly. Note that it is important to
make sure that the (virtual) instances of π and γ receive communication that is
formatted exactly as it would be, were it the case that π and γ are independent
machines. (This is needed so that the behavior of π and γ will remain unchanged.)
See depiction in Figure 3.

µ

π

sh[π]

I-1→
O-2←

O-1→
I-1←

I-2 ↑ ↓O-3

γ

sh[γ]

A

Fig. 3: The three main components of our management protocol
µ = M[π, γ] handling access to π and γ, both equipped with
shells sh[·]. For sh[π], different types of incoming and outgoing
messages are indicated in gray.

In order to allow black-box use of the UC composition theorem in the proof
of our new composition theorem, we need to make sure that an instance of µ
mimics the execution of a single instance of π (alongside one or more instances
of γ). That is, µ must make sure that the various machines of an instance of µ
maintain a single, consistent virtual instance of π. To maintain the necessary
information about the execution, we allow the management protocol µ to make
use of a directory ITI similar to the one used to ensure the subroutine-exposing
property. That is, we embed a special ITI called execution graph directory in
the operation of the management protocol (and shells) that acts as a central
accumulator of knowledge.7

7 While there are alternative solutions such as an extra shell propagating information
about the execution graph, the directory appears to be a technically simple solution
for our transformation. Our transformation is a proof technique, and as such the
transformed protocol is not meant to be deployed in reality (where one may argue
that such a central entity is unrealistic).

10

We now detail the execution graph directory for the structured protocol µ.
The following generic shell mechanism—implemented by an additional, outermost
shell of µ and all its subroutines—makes sure that this outermost shell layer
maintains information about the induced execution graph as well as additional
auxiliary information extracted from the underlying protocol (i.e. the body in
the view of this additional shell). Let pidegDIR be an exclusive identifier, i.e., an
identifier that never appears in any execution of the base protocol. Assume the
session identifier is sid.

– The ITI with special identifier (µ, sid||pidegDIR) never activates its body and
the shell processes three types of requests: first, when activated with input
(register, aux) from an ITI M , it stores the entry (M, aux) in an ordered
list (initially empty) unless M is already recorded in the list. Second, when
activated with input (invoke,M ′, aux) from an already registered ITIM and
ITI M ′ is not yet registered, then record (M →M ′). Also, record (M ′, aux)
unless M ′ is already registered. The return value to M in both cases is the
trivial output ok. The party allows any registered ITI M to query the stored
list and ignores any message on the backdoor tape.

– For any other ITI running in this instance, when activated for the first
time, the shell sends (register, aux) to ITI (µ, sid||pidegDIR) where aux can
denote any auxiliary information. (Note that reveal-sender id and forced-write
flags are set). When receiving ok it resumes processing its first activation by
activating its body (which in structured protocols might be another shell
oblivious of the above interaction).

– For any other ITI running in this instance, when the shell processes an
external write request from its body to an ITI M , it sends (invoke,M, aux)
to ITI (µ, sid||pidegDIR) where aux can denote any auxiliary information,
before resuming with processing the external write request.

By exclusivity of pidegDIR, the shell operates in an oblivious fashion from the
point of view of the body. Since the shell only talks to pidegDIR, this in turn is
even oblivious to the environment and the adversary.

In fact, this is not entirely obvious: while no interaction via the backdoor tape
indeed means that the adversary can neither corrupt nor extract information from
the directory, another corrupted ITI in the system might get information from
pidegDIR via a normal query and give the result to the adversary. This, however,
is not possible: in UC, model-related instructions are organized in shell layers,
where each shell is unaware of the outer shells, and treats the inner shells as part
of the body. Now, the shell layer describing the model-related instructions to
communicate with directories is outside of the shell implementing the corruption
layer and therefore, the corruption layer is unaware of the directory. For more
details, see [Can20, Section 5.1]. We note that this observation is already crucial
for the standard UC composition theorem and not novel for our work, because
corruptions must not invalidate the subroutine-exposing property of a protocol
and hence corruptions should not interfere with the subroutine-exposing shell (or
the shell introduced by the UC operator).

11

To conclude, the above mechanism is used by M[π, γ] and its subsidiaries sh[·]
in the following way: first, whenever a new machine with code M[·] is about to
spawn an instance of π, it registers with the directory and defines as auxiliary
input the extended identity of the instance of π it is going to spawn (and can
also halt if it sees that another session already started). Second, the machines
running code sh[·] use the invoke calls and put as auxiliary input the information
eidsrc → eiddest of the virtual ITIs of sh[·] to additionally store the invocation
graph of the main instance of π which in particular allows to infer what the
(virtual) main instance of π is (see below for why this is important). In particular,
all ITIs in the extended session of M[π, γ] use the same execution graph directory
ITI. To see that we get all properties we need from this, we refer to Proposition 1.

We now give a formal definition of M[π, γ]. The construction uses the body and
shell formalism from [Can20].

The management protocol. In a nutshell, M[π, γ] is a standard UC protocol that
works as follows:

– M[π, γ] exposes its subroutine structure to a directory ITI (which the en-
vironment can access) and its invocation graph to an additional execution
graph directory ITI as discussed above to ensure that M[π, γ] is subroutine
respecting.

– M[π, γ] can be invoked with an arbitrary session identifier. It allows the
environment to invoke exactly one (top-level) instance of π with a freely
chosen session identifier (note that addressing this “challenge protocol” is done
in an abstract manner by using an identifier MAIN). Additionally, arbitrarily
many instances of γ (again with arbitrary session identifiers) can be invoked
(again the addressing is done in an abstract fashion using identifier GLOBAL).

– When an ITI running M[π, γ], say with party ID pid, provides input to π
in session s, then it wraps this input and invokes the ITI with code sh[π],
party id pid, and a session ID that encodes s. This ITI unwraps the received
content and provides it to the main party pid of π in session s. A similar
mechanism happens between any two machines to ensure that this instance
of π is oblivious of this overlay.

– The machines running sh[π] (resp. sh[γ]) detect, using the execution graph
directory, when a “main party of π (resp. γ)” provides subroutine output
to an external party, and can then provide this output to the correct main
party M[π, γ] which delivers it to the environment. Note that when M[π, γ]
delivers such outputs to the environment, it only reveals the party ID and
session ID, and whether the source was the global subroutine (using identifier
GLOBAL) or the single invoked instance (using identifier MAIN). Recall that
the UC control function plays a similar role. We note in passing that M[π, γ]
can ensure that at most one session of π is invoked by the concept of the
execution graph directory and block any attempt to create a new session of
π if one exists already.

– M[π, γ] refuses to communicate with the adversary, i.e., it does not communi-
cate over the backdoor tape and is hence also incorruptible.

12

In order to map this to a program, we quickly recall the message passing
mechanism in UC. UC uses the external-write mechanism via which a machine
can instruct the control function to invoke a machine with a given input on one
of three tapes. Messages are either written on the input tape (e.g., when a party
calls a subsidiary), or on the subroutine-output tape (e.g., when a subsidiary
returns an output to a caller), or on the backdoor tape (which only models the
interaction with the adversary). Therefore, our transformation has to take care
to route all the messages of the “wrapped” instance of π to the correct machines
by taking care of inputs, subroutine outputs, and backdoor messages.

Code of Transformation. The formal description of the management protocol
M[π, γ], which is parameterized by two ITMs π and γ, as well as the code of the
associated shell of the transformation, denoted sh[code] that takes as parameters
the ITM code and is a structured protocol that runs code as its body, are provided
in Appendix A.

Runtime considerations as a standard UC protocol. The protocols generated by
M[·] are standard UC protocols executed by an environment Z. The run-time of
M[·] and sh[·] deserves further discussion. Recall that in a parameterized system,
each ITI only starts executing after receiving import at least k — where k is the
security parameter. That means when M[·] is first invoked it requires import k
to before executing, the execution graph directory requires additional import k,
and the sub-protocol sh[π] or sh[γ] to which the message is directed also requires
import k before executing. We define M[·] such that it begins executing only
after receiving import at least 3k; this ensures that the initial operation has
sufficient import to complete. The further operations performed by M[·] and the
shell sh of π and γ are only administrative such as copying and routing messages
between ITIs, which means that they can be accounted for by slightly increasing
the involved polynomials.

An alternative management protocol. We note that defining M[π, γ] so that
the main parties of an instance of M[π, γ] consist of ITIs that run exclusively
shell code, and where the ITIs that have body π or γ are subroutines of these
main parties of M[π, γ], is a design choice that was made mainly for clarity of
exposition and to clearly delineate the various parts of the management protocol.
Alternatively, one can define a different management protocol, M[π, γ]′, where
the code of the main ITIs of M[π, γ] becomes part of the shell code of the ITIs
whose body runs either π or γ. That is, the main parties of an instance of M[π, γ]′
will be the union of the main parties of the relevant top-level instance of π, along
with the main parties of the relevant top-level instances of γ. One adantage of
this formalism is that there are no additional management-only ITIs, and so the
runtime issues mentioned in the previous paragraph do not come up. In addition,
we believe that the restriction to regular setups can be relaxed. Additional details
are provided in [BCH+20].

13

2.2 UC Emulation With Global Subroutines

We now define a variant of UC emulation that intends to capture, within the
plain UC model, the notion of EUC-emulation from [CDPW07]. Namely, we say
what it means for a protocol π to UC-emulate another protocol φ, in the case
where either π or φ or both are using another protocol γ as subroutine, where γ
can be accessed as subroutine of other protocols, i.e., is “global” or “shared”.

Definition 1 (UC emulation with global subroutines). Let π, φ and γ be
protocols. We say that π ξ-UC-emulates φ in the presence of γ if protocol M[π, γ]
ξ-UC-emulates protocol M[φ, γ].

Note that in the above, ξ can be any identity bound as of standard UC. Recall
that it is a tool to get more fine-grained security statements and technically
restricts the environment to interact with the protocol instances π and γ in a
certain way.

Our definition of UC-emulation in the presence of a global subroutine is very
general, and we need further terminology in preparation for the conditions under
which the composition theorem applies. Consider the case where we want to
analyze security of multiple instances of a protocol π which individually are
subroutine respecting except that they all call a global subroutine γ. In the
terminology of [CDPW07], such protocols are called γ-subroutine respecting. We
generalize their definition and allow for more than one instance of γ.

Definition 2 (γ-subroutine respecting). A protocol π is called γ-subroutine
respecting if the four conditions of thestandard subroutine respecting propertyre-
quired from any (sub-)party of some instance of π are relaxed as follows:

– the conditions do not apply to those sub-parties of instance s that also belong
to some extended session s′ of protocol γ;

– (sub-)parties of s may pass input to machines that belong to some extended
session s′ of protocol γ, even if those machines are not yet part of the extended
instance of s .

While the definition above allows π to violate subroutine respecting through
subroutines with a code that is also used by γ, we are only interested in protocols
π where subsidiaries only communicate with outside protocols if they belong
to the subroutine γ. To this end, we will only consider γ-subroutine-respecting
protocols π where γ is itself subroutine respecting.

For our composition theorem to hold, we must impose a light technical
condition on the shared subroutine. The condition states that (a) a shared
subroutine does not spawn new ITIs by providing subroutine output to them, and
(b) the shared subroutine may not invoke the outside protocol as a subroutine.
On a high level, this prevents that the shared subroutine itself spawns new higher-
level sessions. On a technical level, the composition theorem relies on a hybrid
argument that would not work if the shared subroutine spawns, for example, new
sessions for which it is not decidable in a dynamic fashion whether or not they
actually belong to the main instance of the protocol under consideration. To

14

our knowledge, all global setups used in the literature satisfy these restrictions.
For example, a global CRS does not output the reference string to parties who
never asked for it, a global ledger requires parties to register before participating
in the protocol, and a global clock only tells the time on demand. An example
of a hypothetical functionality that violates this condition is a global channel
functionality that outputs a message to a receiver whose extended identity can
be freely chosen by the sender.

Definition 3 (Regular setup). Let φ, γ be protocols. We say that γ is a φ-
regular setup if, in any execution, the main parties of an instance of γ do not
invoke a new ITI of φ via a message destined for the subroutine output tape, and
do not have an ITI with code φ as subsidiary.

As will become clear in Proposition 1, when considering a protocol φ that is
γ-subroutine respecting, where γ itself is φ-regular and subroutine respecting,
then we naturally have a clean interaction between φ and “a global subroutine” γ
without any unexpected artifacts. For example, γ does not initiate new ITIs with
code φ, neither as new protocol sessions “outside of γ” nor as proper subroutines
of γ itself.

We next state the useful proposition that our transformation is by default
subroutine respecting and preserves the behavior of the involved protocols in the
following sense: Let π, γ be as before, and let α be a protocol that invokes at
most one session of π. Let α̂ be the protocol that executes α as a virtual ITI
within a shell. Let sidM be an otherwise unused SID.

– When α provides input m to ITI eiddest with code code ∈ {π, γ}, then α̂
instead provides input ((m, eidsrc), eid′dest) to M[π, γ] with SID sidM, where
eidsrc is the extended identity of the virtual instance of α and eid′dest equals
eiddest except that its code-field code′ is set to MAIN if code = π and to GLOBAL
if code = γ (and results in the same subroutine being invoked as α does).

– When α̂ obtains subroutine output ((m, eidsrc), eiddest) from M[π, γ] with SID
sidM, where eiddest is the extended identity of the virtual instance of α, then
α̂ emulates subroutine output m from eidsrc to α, overwriting code MAIN of
eidsrc with π and code GLOBAL with γ.

Proposition 1 (M[π, γ] is subroutine respecting and preserves behav-
ior). Let γ be subroutine respecting and π be γ-subroutine respecting. Then the
protocol M[π, γ] is subroutine respecting. In addition, let γ be π-regular, and let
α be a protocol that invokes at most one subroutine with code π. Denote by α̂ the
transformed protocol described above. Then the transcript established by the set
of virtual ITIs in an execution of some environment with α̂ is identical to the
transcript established by the set of ITIs induced by the environment that has the
same random tape but interacts with α.

The proof is deferred to [BCH+20].

15

2.3 Universal Composition with Global Subroutines

We are now ready to state a composition theorem that lets us replace protocol
instances in the presence of a global setup. See Figure 4 for a graphical depiction.

Z

M[π, γ]

π

sh[π]

γ

sh[γ]

≈ Z

M[φ, γ]

φ

sh[φ]

γ

sh[γ]

⇓ Theorem 1

Z ρ
π

π

π

γ

≈ Z ρ
φ

φ

φ

γ

Fig. 4: A graphical depiction of our composition theorem in the presence
of global setups. Top: π UC-emulates φ (Definition 1). Bottom: Re-
placement of φ by π in some context protocol ρ. See Theorem 1 for the
assumptions made on ρ, π and γ for replacement to go through. Empty
boxes indicate subroutines of ρ that are not π or φ.

Theorem 1 (Universal Composition with Global Subroutines – UCGS
Theorem). Let ρ, φ, π, γ be subroutine-exposing protocols, where γ is a φ-regular
setup and subroutine respecting, φ, π are γ-subroutine respecting and ρ is (π, φ, ξ)-
compliant and (π,M[code, γ], ξ)-compliant for code ∈ {φ, π}. Assume π ξ-UC-
emulates φ in the presence of γ, then ρφ→π UC-emulates ρ.

In line with the run-time discussion for M[·], protocol ρ only starts executing
after receiving import at least 4k. This ensures that, during the execution, the
modified version of ρ (which we refer to as ϑ in the proof) has a sufficient run-
time budget to accommodate the creation of the additional ITI M[code, γ], its
execution graph directory, as well as an additional directory introduced by the
proof technique in this theorem.

Proof (outline). In the spirit of our overall approach, we aim at applying the UC
composition theorem instead of reproving composition from scratch. Thus, we
choose the following high level structure of the proof. We modify each invocation

16

of φ within ρ separately. For each i = 1, . . . , n, we first rewrite ρ such that the
management protocol M[φ, γ] is invoked instead of the i-th φ. Then, we replace
φ with π within this instance of the management protocol. This is done by
invoking the UC composition theorem. Afterwards, we remove the management
protocol instance again and let ρ instead call π directly. All modifications are
oblivious from the perspective of the environment. The full proof can be found
in [BCH+20]. ut

We point out that our composition proof makes it explicit that no changes
to the concrete interaction between φ (resp. π) and the instances of the global
subroutine γ are needed. This is important point to consider, since often all
instances of φ (resp.π) within ρ would share the same instance (or a fixed number
of instances) of γ and hence our theorem shows that this behavior is preserved.
Such specific cases (where a bounded number of instances of γ can be assumed
to exist) follow as a special case of our treatment.

2.4 On existing Global UC Statements and Proofs

In general, statements found in the literature work in the externalized UC (EUC)
subspace of GUC. Although we argue in [BCH+20] that EUC as a framework has
some subtle issues, most known protocols do look fine in a meaningful context
(which should be made explicit). First, most global setups in the literature
are easily seen to be regular, i.e., only provide output to the requesting ITI
(examples include a clock, random oracle, ledger functionality). Next, proofs
typically assume a sort of domain separation between claimed identities by the
environment and real ITIs in the system. (Note that this is not given by the
model: even if the environment cannot claim external identities in the same
session as the test session, the test session does not have to exist when first
accessing the global setup.) In UC 2020 [Can20], one can define ξ as a condition
on allowed identities in the system. Two typical restrictions are found in the
literature such as in [BMTZ17]:

(a) ξ is satisfied if (i) any eid of an ITI in the system is not declared by the
environment as an external source eid in a request to γ. This is typically a
minimal requirement, as otherwise, whatever the global setup provides to a
protocol, this information could be first claimed by the environment (for the
entire test session) even before spawning the test session. This is problematic
unless we have very simple setups such as a common-reference string or a
plain global random oracle [BGK+18].

(b) As a further restriction, one could enforce that γ provides per session guaran-
tees: ξ is satisfied if whenever (additionally to above) eid = (µ, sid||pid) and
eid′ = (µ′, sid||pid′) are the source extended identities in an input to γ, then
µ = µ′ has to hold. This technically does not allow any other instance to
access the shared information, but still the information is formally accessible
by the environment claiming an external identity of this session. This model
is useful when certain elements of the setup need to be programmed by a
simulator, while keeping the overall model of execution close to standard UC.

17

If proofs conducted in EUC have the above restrictions assumed when proving
indistinguishability of the simulation, then it is conceivable that these proofs
are transferable into our new model to satisfy precondition of Theorem 1 and
thus composition is again established. We discuss such “EUC statements” in the
next section. In particular, Section 3.2 recovers an EUC example in detail, where
we also show how our model can capture various forms of “shared subroutines”
ranging from subroutines fully accessible by the environment to subroutines
shared only by the challenge protocol (which captures joint-state UC (JUC)).

3 Applications of the UCGS Theorem

We provide two examples to showcase how to prove emulation statements in
the UC model in the presence of global subroutines and to verify that the
preconditions of the UCGS Theorem are satisfied. The first example is global
public-key infrastructure (specifically, adapting the treatment of [CSV16]). The
second example is a global clock (adapting the treatment of [BMTZ17]).

These examples bring forth two additional technical aspects of universal
composition with global subroutines within the UC framework: The first has
to do with the mechanics of having one ideal functionality call another ideal
functionality as a subroutine, and the second has to do with the need to find a
judicious way to define the external-identities predicate ξ for the management
protocol so as to make the best use of the UCGS theorem. (Indeed, these aspects
of UC with global subroutines have been lacking in the treatment of [CDPW07].)

Section 3.1 introduces the formalism for having an ideal functionality call
another ideal functionality as subroutine. Section 3.2 presents the application to
modeling global public-key infrastructure. Section 3.3 presents the application to
modeling global clock in the context of blockchains.

3.1 Interaction between Ideal Functionality and Shared Subroutine

The UCGS theorem essentially state that if protocol π UC-emulates protocol φ
in the presence of γ, and both π and φ are γ-subroutine respecting, then ρφ→π
UC-emulates ρ for any ρ. A natural use-case of the theorem is when the emulated
protocol, φ, is an ideal protocol for some ideal functionality F , and γ is an ideal
protocol for some ideal functionality G. This means that to make meaningful use
of the theorem, F should make subroutine calls to γ, which in this case means
that F should call dummy parties for G.

A simplistic way to do that would be to simply have F directly call (and thus
create) dummy parties for G. However, in this case, by the definition of dummy
parties as per the UC framework [Can20], the PID of the created dummy party
will be the identity of F . This may be overly restrictive, since the emulating
protocol, π might have other ITIs call G. So, instead, we define a mechanism
whereby F does not directly call a dummy party for G. Instead, F creates a
new “intermediate dummy party,” which serves as a relay of inputs and outputs
between F and the dummy party of G. The identity (specifically the PID) of the

18

intermediate dummy party is determined (by F) so as to enable realization of φ by
protocols π where the PIDs of the parties that use G are meaningful for the overall
security. (This mechanism can be viewed as a way to make rigorous informal
statements such as “provide input x to G on behalf of [sender] S” [CSV16].)
Details follow.

Definition 4 (Intermediary dummy party). Let F be an ideal functionality
and γ some protocol. We define the operation of an intermediary dummy party
with code IMF,γ as below. Let (p, s) be the party and session id indicated on
the identity tape, and let CIM (code of intermediary) be an exclusive syntactic
delimiter ending the description of the code IMF,γ .

– When activated with input (call, (s′, p′), v) from an ITI with code F and sid
s: the party only acts if the content of the identity tape matches (·||CIM, ·||·)
and the reveal-sender-id flag is set. Then, provide input v to the ITI eidt :=
(γ, s′||p′) (with reveal-sender identity and forced-write flags set).

– Upon receiving a value v′ on the subroutine output from an ITI with identity
eid = (γ, s′||p′) (for some s′, p′): the party only acts if the content of the
identity tape matches (·||CIM, ·||·) and the reveal-sender-id flag is set. Then,
provide subroutine output (return, (s′, p′), v′) to the ITI with identity eidt :=
(F , s||⊥) (with reveal-sender identity and forced-write flags set).

– Any other message on any tape that is not matching to some case above is
ignored.

A functionality F can now contain general instructions of the form “provide
input x on behalf of P in session s to an instance of γ running in session s′ and
PID P ′” and is understood as the following operation: the ITI running code
F in some session sid provides input (call, (s′, P ′), x) to intermediary dummy
party with identity (s, P) and code IMF,γ . Now, P (in session s) will appear as
the PID of the ITI invoking γ. F can process the answers when obtaining the
returned values from the intermediary dummy party on its subroutine output
tape.

Often it is clear from the context—and standard for EUC-like statements—
that only one session of γ with a predefined session identifier s̃id is expected to
be running, and that each main party (with PID) P of the challenge session s
can participate in the shared process γ (i.e. by invoking ITI with identity (s̃, P)
and code γ). In such cases, the statement “output x on behalf of P to γ” by an
ideal functionality F in (challenge) session s is understood as providing input
(call, (s̃, P), x) to the intermediary dummy party with identity (s, P) (and code
IMF,γ) with exactly the desired effect that the ITI with code γ, PID P and sid
s̃id is invoked, and where P in session s appears as the official caller.

Clearly, the intermediary is a modeling tool that no environment should
tamper with. Hence, for the sake of clarity, when we speak of UC realization of an
ideal functionality interacting with a global subroutine, we mean the following:

Definition 5 (Realization with interaction with shared subroutine).
We say that π UC-realizes F in the presence of γ w.r.t. ξ-identity bounded

19

environments, if Definition 1 holds for the particular choice of φ := idealF and
with respect to the identity bound ξ′ that equals ξ augmented with the restriction
that no eid specified by the environment (source or destination) can specify code
with delimiter CIM.

The intermediary dummy party provides a guaranteed interaction channel
and formalizes what was implicitly assumed in prior work when a functionality
interacts with, e.g., a global setup such as an certification functionality in the
name of a party.

3.2 Example 1: Authentication with Global Certification

Authentication with respect to a global certification functionality (often called
PKI) aims at formalizing the fact that if a certified verification key for a digital
signature is globally available, then any signature generated with respect to that
key can be verified globally, by anyone, even if the signature was generated in the
context of a specific protocol. This in particular mean that protocols that employ
certified digital signatures might have global “side effects”. For example, if Alice
signs a message in a particular session, using a signing key for which there is a
globally accessible certificate, then anyone can cross-check that it was Alice who
signed the message. In particular, this might mean that Alice can incur further
liabilities.

[CSV16] provides a treatment of this situation within the GUC framework
of [CDPW07]. We use the UCGS theorem provide an alternative (and arguably
simpler) treatment within the plain UC framework.

The global certification functionality. The shared subroutine is γ = idealGpid
cert

.
Note that the functionality is parameterized by a party identity pid. We assume
that the functionality is following the standard PID-wise corruption mechanism
as specified in [Can20]: this means that the functionality manages corruption
messages for party identifiers that are main parties in the execution of idealF ,
and marks those party identifiers as corrupted for which it received a corruption
message on the backdoor tape.8

Functionality Gpid
cert

Variable: pk ← ⊥.
Adversarial key registration: Upon receiving (Register, sid, v) on the back-
door tape and if pid is corrupted and pk = ⊥ then update pk ← v.
Signature Generation: Upon receiving a value (Sign, sid,m) from a party with
PID pid (via input to the dummy party with SID sid and PID pid):
(a) If this is the first request then do:

8 The functionality is also expected to provide this list upon a special request from
dummy party with PID A such that the corruption sets can be verified by the
environment to be identical in both the ideal and real worlds.

20

1. If pid is not corrupted then output (KeyGen) to the adversary (via
the backdoor tape). Upon receiving (Verification Key, v) from the
adversary (on the backdoor tape) and if pid is still not corrupted store
pk ← v internally.

2. Check at this point that pk 6= ⊥. If not, then ignore the request.
(b) Output (Sign,m) to the adversary (via the backdoor tape). Upon receiving

(Signature,m, σ) from the adversary (on the backdoor tape), verify that no
entry (m,σ, 0) is recorded. If it is, then output ⊥ to the caller. Else, output
(Signature,m, σ) to the calling party and record the entry (m,σ, 1).

Signature Verification: Upon receiving a value (Verify, sid,m, σ) from party
P (including the adversary) do the following: first, if pk = ⊥ then output
(Verified,m, 0) to P . Else, output (Verify,m, σ) to the adversary (via backdoor
tape). Upon receiving (Verified,m, f, φ) from the adversary (on the backdoor
tape) do:

(a) If (m,σ, b′) is recorded then set f = b′.
(b) Else, if the signer is not corrupted, and no entry (m,σ′, 1) for any σ′ is recorded,

then set f = 0 and record the entry (m,σ, 0).
(c) Else set f = φ, and record the entry (m,σ, f).
(d) Output (Verified,m, f) to P .

The protocol. The protocol φAauth works as follows, where the shared subroutine is
γ = idealGA

cert
, where A is part of the code. Note that we use the eid of the caller

as the PID of the sender (to prevent that arbitrary machines can send messages
in the name of A), and also simply choose the session-id sid0 = A for the shared
subroutine. We further assume an unprotected medium to send messages, which
as specified in [Can20] can be modeled by simply letting the shell forward sent
messages to the adversary (via the backdoor tape) and interpret specific inputs
on the backdoor tape as received messages.

(a) Upon receiving an input (Send, sid, B,m) from party A9, verify that this
machine’s eid is (φAauth, sid||A); otherwise, ignore the request. Then, set sid0 =
A and m′ = (m; sid;B), send (Sign,m′) to GAcert (i.e., the input is given to
the ITI running code γ in session sid0 with pid = A) to obtain the response
(Signature, sid0,m

′, σ), send (sid;A;m;σ) to ITI (φAauth, sid||B) (via the
unprotected communication medium).

(b) Upon receiving message (sid′;A;m;σ) from the unprotected communication
medium, this party, denote its eid by (φAauth, sid||B), sets sid0 = A, sets
m′ = (m; sid;B), sends (Verify, sid0,m

′, σ) to GAcert (i.e., the input is given
to the ITI running code γ in session sid0 with pid = B), and obtains a response

9 Let us emphasize that party (i.e., machine) A is not a participant of the protocol
φAauth (i.e., does not run the code φAauth), but is the ITI which invokes the (sender’s
part of the) protocol φAauth (with PID A).

21

(Verified,m′, f). If f = 1 then B outputs (Sent, sid, A,B,m) (with target
eid eidt = B) and halts. Else B halts with no output.

We also assume here standard byzantine corruption of protocol ITIs as defined
in [Can20]: for a structured protocol, this involves interaction with a special cor-
ruption aggregation ITI that aggregates all corruption information (provided by
the shell of the protocols). The goal of this is that the environment receives “gen-
uine” information about the corruption sets during the execution. The corruption
aggregation is identified by a special PID A .

The realized functionality. The realized functionality provides authenticated
message exchange between a sender A and a chosen receiver. Note that the
adversarial ability to obtain legitimate signatures on messages allows to produce
a publicly verifiable trail of the message transmission between A and B (which
is referred to by the term non-deniable in [CSV16]). As above, we follow the
standard PID-wise corruption model for functionalities [Can20].

Functionality FAcert-auth

(a) Upon receiving an input (Send, sid, B,m) from party A, first verify that the
calling (dummy) party (running idealFA

cert-auth
in session sid by definition)

encodes the PID A. Ignore the request if this is not the case. Then, generate
public delayed-output to B, i.e., first output (Sent, sid, A,B,m) to the adver-
sary on the backdoor tape. Once delivery is granted by the adversary, output
(Sent, sid, A,B,m) to B.a

(b) Upon receiving (External-info, sid, A,B,m′) from the adversary, if an
output was not yet delivered to B, then set sid0 = A and output
(Sign, sid0, (m′, sid, B)) on behalf of A to idealGA

cert
(in session sid0) and

forward the response to the adversary.
(c) Upon receiving a value (Corrupt-send, sid, B′,m′) from the adversaryb: if

A is marked as corrupted and an output was not yet delivered to B′, then
output (Sent, A,B′, sid;m′) to B′.

(d) Upon receiving (Report), from a party P via dummy party with pid A , first
set sid0 = A and output (Report) on behalf of A to idealGA

cert
(in session

sid0). Upon receiving the set of corrupted parties, add the PIDs of the marked
corrupted parties of this functionality and output the list to P (via dummy
party A).

a It is instructive to recall what “output m to B” means if no explicit dummy
party is mentioned via which this output is delivered [Can20, Section 7.3]: it
means that the functionality produces output to a main party running the
dummy protocol with session sid and pid = B and this dummy party produces
the output towards the machine with eid = B.

b This is an additional adversarial capability beyond what is minimally provided
by the standard PID-wise corruption model.

The identity bound on the environment. In order to show in which contexts the
protocol is secure, we have to specify an identity bound. For the result to be

22

broadly applicable, we have to find the least restrictive conditions on the allowed
interaction between the environment and the challenge protocol (and γ) such
that the realization statement holds.

In our specific case, we can give the following guarantee which basically says
that the environment cannot claim the extended identity of the signer: more
precisely, we mean that the environment is not allowed to claim source eid eid
in requests to π running in a session s if eid has been already used as the PID
to sign a value (m, s, ·) and PID is not marked as corrupted. Conversely, the
environment is not allowed to invoke γ to sign a value (m, s, ·) using as PID an
extended id eid which has been used before as the caller of π running in session
s and which is not marked as corrupted. Furthermore, it is not allowed that the
environment provides input to the ITI (γ, ·||A) (where “not allowed” means that
the input provided by the environment is formally rejected if the condition is
satisfied by the state of the system at the moment of providing the input. See
more details in [Can20]). All other invocations are allowed.

Implications of the above identity bound. Recall that any non-trivial bound ξ
restricts the class of context protocols ρ for which the UCGS theorem applies:
Essentially the theorem applies only to those protocols ρ which manage to
guarantee that the bound ξ remains valid for any combination of φ and γ as
subroutines within ρ, and similarly for any combination of π and γ as subroutines
of ρφ→π. In the above case, this means that authenticity of the sender identity
is guaranteed as long as the context protocol ρ makes sure that the global
certification module γ only takes signature requests from entities that correctly
represent their identity. Since the underlying model guarantees that the caller
identity is correctly represented, except for the case of inputs provided by the
environment, this means that authenticity is guaranteed as long as ρ makes sure
that γ does not take inputs directly from the environment.

We note that the restriction also touches the corruption model in order to
ensure PID-wise corruption. We force the environment to obtain the system’s
corruption information only through one corruption aggregation machine, which
in our case is the functionality (resp. challenge protocol) that provides the entire
system’s view to Z. Note that this is in accordance with the approach that there
is exactly one machine in an execution that provides this information to the
environment. We thus have:

Lemma 1. Let I be an extended identity, and let ξĪ be the predicate that allows
all extended identities other than I as described above. Protocol φIauth UC-realizes
FIcert-auth in the presence of γ = idealGI

cert
with respect to the identity bound ξĪ .

The proof is deferred to [BCH+20].

3.3 Example 2: Composable Blockchains with a Global Clock

Motviation. We next showcase the shared-setups composition theorem by demon-
strating how it can be applied to obtain composition (i.e., subroutine replace-
ment) in a context in which global (shared) setups have recently become the

23

norm, namely that of composable blockchains. Concretely, a number of recent
works [BGK+18, BGM+18, KKKZ18, BMTZ17] analyze the backbone protocol
(intuitively corresponding to the the consensus layer) of mainstream cryptocurren-
cies, such as Bitcoin and Ouroboros assuming a global (shared) clock functionality
which is used for enforcing synchrony.

In a nutshell these works prove that by providing access to a global clock
Gclock (along with some additional local or global setups) the underlying back-
bone implements a functionality FLedger that abstract a transaction ledger with
eventual consistency guarantees (more concretely, a ledger enforcing the so-called
common-prefix, liveness, and chain quality property, cf. [GKL15, PSS17].

Let us focus on [BMTZ17]. This work proved that inducing a special way
(discussed below) in which the global (shared) clock functionality is used—i.e., a
special registration/deregistration mechanism—there exists a simulator in the
{FLedger,Gclock}-hybrid world that emulates the behavior of any adversary at-
tacking the Bitcoin backbone protocol in the {Gclock,FRO,Fnet}-hybrid world,
where FRO and Fnet are standard (local to the protocol) UC functionalities.
The goal of this modeling is to enable abstracting the internals of the ledger
protocol, designing protocols that have access to the ledger functionality (and
the global clock), and then using the GUC theorem to argue that any protocol
which is proved security assuming access to this local ledger functionality will
remain secure when the functionality is replaced by the Bitcoin backbone proto-
col. Assuming existence of such a composition theorem, [BMTZ17] proceeded
in proposing a construction of a cryptocurrency ledger—namely a ledger func-
tionality that also checks signatures of parties—assuming a ledger as above and
a signatures functionality. However, as discussed, the GUC modeling does not
provide sufficiently detailed treatment of external identities so as to make the
above approach go through.

We show how the UCGS Theorem can be used by arguing that the precondi-
tions of Theorem 1 are satisfied for the involved components.

Context restrictions. First we need to fix the (identity bound) predicate ξ used
to define the applicable context. Recall, that ξ is intended to restrict the set (or
rather the sequence) of extended identities that the environment can claim when
contacting protocols. Let us first consider what happens if we do not impose any
restriction. We argue that any such unrestricted access makes the global clock
functionality behave in a way that no longer ensures synchrony.

To this direction let us recall the basic idea behind clock Gclock. For clarity,
we show a concrete clock functionality formulated in our model in Figure 5. The
functionality Gclock stores a monotonically increasing counter τsid (corresponding
to the current time or global round) which any party can request by issuing
a special clock-read command. Furthermore, any honest party can send a
message clock-update to the clock which records it and once all honest parties
have sent such a request while the time was τsid, the clock increases its time, i.e.,
sets τsid := τsid + 1.

The above clock was used as follows to ensure synchrony—i.e., that no party
starts its round ρ + 1 before every party has finished round ρ—which was a

24

property necessary for the security proof in the above blockchain protocols: In
each round, as soon as a party has completed all its actions (sent and received
all its messages) for the current round, it signals this to the clock by sending
a clock-update command; from that point on this party keeps asking the
clock for the time whenever activated and proceeds to the next round only once
it observes that this counter advances. As the latter event requires everyone
to signal that they are done with the current round, this gives us the desired
synchrony guarantee. Notably, by design of the setup, any Gclock-ideal protocol γ
is trivially regular (according to Definition 3). This is true because the clock has
a special registration mechanism which forces it to only talk to ITIs which have
already registered with it and therefore never spawns new ITIs as required by
that definition.

So what happens to the above, when ξ is overly liberal? If the environment
is allowed to impersonate the protocol session of a party towards the clock (by
issuing an external write request with the source-ID being the session of that
party) then the environment is able to make the clock advance without waiting
for this party, thus entirely destroys the above round structure. This points to
the following natural ξ: The environment is not able to issue any request to the
clock which has source ID the ID of a party that already exists in the system, or
to spawn any ITI for which it already claimed an external identity before in an
interaction with the clock. This corresponds to item (a) in the last paragraph of
section Section 2.4.10 This requirement is assumed and shown to be sufficient
in [BMTZ17] and therefore implies that the environment cannot make the clock
ignore existing honest parties playing the protocol, hence the clock will enable
the above synchronous rounds structure. In the following we will use this ξ to
apply Theorem 1; for clarity we denote it as ξsync.

Applying the composition theorem. Assume now that we want to prove that in
the aforementioned construction of the cryptocurrency ledger from the simpler
(backbone) ledger FLedger from [BMTZ17] we can replace the simpler ledger
FLedger by the backbone protocol. This corresponds to proving Theorem 1 for
γ being the Gclock-ideal protocol, π being the backbone protocol, φ being the
FLedger-ideal protocol, and ρ being the construction of the cryptocurrency ledger
with access to φ. All protocols, π, φ, ρ can access protocol γ. First, by inspection of
these protocols, we can verify that ρ, φ, π, γ are subroutine respecting. Note that
although the protocols logic is involved, the subroutine structure is quite simple
(i.e., subroutine calls only go to ideal protocols that formalize either local or
global setups). In particular, although not directly claimed in the original version
of in [BMTZ17], it is possible to convert both φ and π into subroutine-exposing
protocols by applying the exposing mechanism(by equipping the protocols with
the respective subroutine-exposing shell). Finally, both π and φ are by design
subroutine respecting except with calls to γ (note that this is due to the fact that

10 Clearly, if we assume again PID-wise corruption like previous paragraphs, we need to
further restrict the environment to access only the corruption aggregation machine
of the ledger protocol to obtain the natural interpretation of “PID-wise corruption”.

25

Functionality Gclock

The functionality manages the set P of registered machines (identified by ex-
tended identities), i.e., a machine is added to P when receiving input Register
(and removes a machine from P when receiving De-Register. The requests give
activation back to the calling machine).
For each identity P ∈ P it manages a variable dP . For each session identifier sid
specified in an extended identity P ∈ P, the clock manages a variable τsid (all these
integer variables are initially 0).

Synchronization:

– Upon receiving (clock-update, sidC) from P ∈ P, first verify that the calling
(dummy) party encodes P as its PID; otherwise ignore the request. Set dP := 1;
execute Round-Update and forward (clock-update, sidC , P) to A.

– Upon receiving (clock-read, sidC) from any ITI P , execute Round-Update,
and then return (clock-read, sidC , τsid) to the requestor, where sid corre-
sponds to the session identifier encoded in P .

Procedure Round-Update: For each managed session sid do: If dP = 1 for all
uncorrupted P = (·, sid||·) ∈ P, then set τsid := τsid + 1 and reset dP := 0 for all
identities P = (·, sid||·) ∈ P.

Fig. 5: A global clock functionality. We remark that due to the clean definition of
shared subroutines in our model, the depicted global clock has a simpler structure
than the clock in the original version of [BMTZ17]. Still, the clock offers the
same functionality towards calling ITIs.

a similar concept exists in EUC). Finally, restricting the environment via ξsync
ensures that the use of γ (i.e., the clock) will induce the desired synchronous
structure specified for the simulation proof from [BMTZ17]. Given all of this, the
UC-realization proof of [BMTZ17] can be translated to this model (the overhead
is identical to the overhead in the previous example) to conclude that π UC-
emulate φ in the presence of γ when the environment is ξsync-identity-bounded.
Thus we can apply Theorem 1 to prove that ρφ→π UC-emulates ρ whenever the
context protocol calls the subroutine (to be replaced) in the legal way as defined
by ξsync and obtain the desired statement.

Acknowledgments. We thank the anonymous reviewers of Eurocrypt and TCC
2020 for their corrections and suggestions to improve this work.

References

BCH+20. Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann, and
Vassilis Zikas. Universal composition with global subroutines: Capturing
global setup within plain uc. Cryptology ePrint Archive, 2020.

26

BCL+11. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin.
Secure computation without authentication. J. Cryptology, 24(4):720–760,
2011.

Bea91. Donald Beaver. Secure multiparty protocols and zero-knowledge proof
systems tolerating a faulty minority. Journal of Cryptology, 4(2):75–122,
January 1991.

BGK+18. Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and
Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability. In ACM CCS, pages 913–930, 2018.

BGM+18. Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and
Vassilis Zikas. But why does it work? A rational protocol design treatment
of bitcoin. In EUROCRYPT, pages 34–65, 2018.

BMTZ17. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.
Bitcoin as a transaction ledger: A composable treatment. In CRYPTO,
pages 324–356, 2017.

BPW04. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general compo-
sition theorem for secure reactive systems. In Moni Naor, editor, Theory of
Cryptography, volume 2951 of LNCS, pages 336–354. Springer, 2004.

BPW07. Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive
simulatability (rsim) framework for asynchronous systems. Information and
Computation, 205(12):1685 – 1720, 2007.

Can00. Ran Canetti. Security and composition of multi-party cryptographic proto-
cols. Journal of Cryptology, 13(1):143–202, January 2000.

Can01. R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, FOCS ’01, pages 136–145, Washington, DC,
USA, 2001. IEEE Computer Society.

Can20. Ran Canetti. Universally composable security. Journal of the ACM, Vol. 67,
No. 5, 2020.

CDPW07. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
composable security with global setup. In Salil P. Vadhan, editor, TCC,
pages 61–85, Berlin, Heidelberg, 2007.

CDT19. Jan Camenisch, Manu Drijvers, and Björn Tackmann. Multi-protocol uc
and its use for building modular and efficient protocols. Cryptology ePrint
Archive, report 2019/065, January 2019.

CKKR19. Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. iUC:
flexible universal composability made simple. Advances in Cryptology —
ASIACRYPT 2019 (to appear), 2019.

CR03. Ran Canetti and Tal Rabin. Universal composition with joint state. In
CRYPTO, volume 2729 of LNCS, pages 265–281. Springer, 2003.

CSV16. Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable
authentication and key-exchange with global PKI. In PKC, pages 265–296,
Berlin, Heidelberg, 2016. Springer.

GHM+17. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, page 51–68, New York, NY, USA, 2017. Association for Computing
Machinery.

GKL15. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In EUROCRYPT, pages 281–310, 2015.

27

HM97. Martin Hirt and Ueli Maurer. Complete characterization of adversaries
tolerable in secure multi-party computation. In ACM PODC, pages 25–34.
ACM, 1997.

HS16. Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability
framework. Journal of Cryptology, 28(3):423–508, July 2016.

KKKZ18. Thomas Kerber, Markulf Kohlweiss, Aggelos Kiayias, and Vassilis Zikas.
Ouroboros crypsinous: Privacy-preserving proof-of-stake. IACR Cryptology
ePrint Archive, 2018:1132, 2018. To appear at IEEE S&P 2019.

KMT20. Ralf Küsters and Daniel Rausch Max Tuengerthal. The IITM model: a simple
and expressive model for universal composability. Journal of Cryptology,
2020.

Mau11. Ueli Maurer. Constructive cryptography – a new paradigm for security
definitions and proofs. In TOSCA, pages 33–56, 2011.

MR91. Silvio Micali and Phillip Rogaway. Secure computation. In CRYPTO,
volume 576 of LNCS, pages 392–404. Springer, 1991.

MR11. Ueli Maurer and Renato Renner. Abstract cryptography. In Innovations in
Computer Science, 2011.

PSS17. Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain
protocol in asynchronous networks. In EUROCRYPT, pages 643–673, 2017.

PW00. Birgit Pfitzmann and Michael Waidner. Composition and integrity preser-
vation of secure reactive systems. In ACM CCS, pages 245–254, 2000.

A The Code of the Transformation

Protocol M[π, γ]

Let eidM = (codeM, sidM||pidM) be code, SID, and PID of this ITI as written on
the identity tape. Initialize sidπ := ε as the empty string and H[.] as an empty
map. Set eidegDIR := (codeM, sidM||pidegDIR).
Subroutine exposing.Machine M[·] follows the subroutine-exposing instructions,
i.e., it registers itself and all invoked subroutines in the directory ITI.
Incoming messages on the input tape.
– Upon receiving an input in := (m, eid′), where eid′ is an extended identity,

parse m := ((m′, eidsrc), eiddest) where eiddest = (code, siddest||piddest) is an
extended identity. If code = MAIN overwrite (within eiddest) code← π, in case
of GLOBAL overwrite code← γ. Otherwise, overwrite code← ⊥. Additionally,
store the source machine as H[eidsrc]← eid′. //Unwrap the real message, set
the correct code, and remember the source machine.

– If sidπ = ε then query the execution graph directory eidegDIR. If there is some
entry (M, sid) where M is an ITI with code π, then set sidπ := sid for the first
such entry. Discard and give up activation if code 6∈ {π, γ} or if piddest 6= pidM
or if code = π ∧ sidπ 6= ε ∧ siddest 6= sidπ.//Only talk to one instance of π, or
to γ

– If code = π then set sidπ := siddest. Define eid :=
(sh[code], (siddest, sidM)||pidM). Send (register, siddest) to eidegDIR. Is-
sue the external-write request (f := 1, eid, t, r := 1, eidM, (m′, eidsrc)), where t
denotes the input tape. //Send message to corresponding shell

Incoming messages on the subroutine-output tape.

28

– Upon receiving a subroutine output sub-out := (m, eid), where eid =
(code, sid||pid) is an extended identity, parse code = (sh[code′], (sid′, sid′′)||pid)
and m := ((m′, eidsrc), eiddest).

– If sidπ = ε then query eidegDIR for the list of registered ITIs, and if some entry
(M, sid) exists, where M has code π, set sidπ := sid for the first such entry.
Discard and give up activation if code′ 6∈ {π, γ} or if code = π ∧ sidπ = ε or if
code′ = π but eid 6= (sh[π], (sidπ, sidM)||pidM).//Only talk to one instance of
π, or to γ

– If eidsrc = (π, sid||pid) (for some pid, sid) then set eid′
src := (MAIN, sid||pid),

if eidsrc = (γ, sid||pid) (for some pid, sid) then set eid′
src := (GLOBAL, sid||pid).

Overwrite m := (m′, eid′
src). //Hide source of message from calling ITI

– Issue an external-write request: If H[eiddest] 6= ⊥, then issue (f ′ =
1, H[eiddest], t, r′ = 1, eidM,m), and otherwise, issue (f ′ = 1, eiddest, t, r

′ =
1, eidM,m) where t denotes in both cases the subroutine-output tape.

Incoming messages for the backdoor tape. This protocol ignores messages
to the backdoor tapes (and does not write to the backdoor tape of any other
machine).

Shell sh[code]

Let eidsh denote the contents on the identity tape and let pidsh and
sidsh =: (sidloc, sidM) denote the PID and SID, respectively. Set eidegDIR :=
(codeM, sidM||pidegDIR) (where pidegDIR is a publicly known special PID and codeM
can be extracted from the extended identity of the sender on the input tape upon
first invocation).
Incoming messages.
//Relay message to virtual ITI
I-1: Upon receiving an input or subroutine output (m, eid), where eid = (ψ, sid||pid)

is an extended identity, parse m as (m′, eidsrc). Query eidegDIR for the list of
the registered ITIs. If eid is not contained in the list, or sid is not either sidM
or of the form (∗, sidM), then ignore the message. Otherwise, do:
• If the virtual ITI M ′ = (code, sidloc||pidsh) already exists, then message

m′ and eidsrc are written to the corresponding tape of M ′. Virtual ITI
M ′ is then activated.

• If the virtual ITI M ′ = (code, sidloc||pidsh) does not exist yet, then a
new one is created, i.e., a new configuration for program code with the
corresponding identity is created and the request is executed as above.

//Corruption handling: only existing virtual ITIs can be corrupted, shells are
incorruptible

I-2: Upon receiving m on the backdoor tape, sh parses it as (m′, eiddest), where
eiddest is an extended identity. If eiddest 6= (code, sidloc||pidsh) then discard the
input and give up activation (i.e., ITIs running sh[·] are not corrupted).
1: If the virtual ITM M ′ = eiddest does not exist yet, then give up activation.
2: If the virtual ITM M ′ = eiddest exists, m′ is written on its backdoor tape

and M ′ is activated.
Outgoing messages.

29

//Shell can give input to any subsidiary of M[]
O-1: If the virtual ITI of the body issues an external-write instruc-

tion (f, eiddest, t, r, eidsrc,m) where t denotes the input tape, then:
(∗) Parse eiddest =: (codedest, (siddest||piddest)). Send (invoke,
sh[codedest], eidsrc → eiddest) to eidegDIR. Issue an external-write instruction
(f, (sh[codedest], (siddest, sidM)||piddest), t, r, eidsh,m′) where m′ = (m, eidsrc).

//Subroutine output either goes to M[] or to another shell
O-2: If the virtual ITI of the body issues an external-write instruction

(f, eiddest, t, r, eidsrc,m) where t denotes the subroutine-output tape, query
eidegDIR to obtain the list of registered ITIs and the execution graph structure
of the virtual ITIs.
• //Detecting the sessions of π and γ that produce output to the environ-
ment/context protocol.
If the obtained execution graph reveals that (1) this ITI with sidsh =
(sidloc, sidM) is a main party of the test session of π (i.e., the one in-
voked by M[π, γ]) and eiddest is not part of this extended test session
or (2) eiddest is not part of the extended test session and this ITI
runs a virtual ITI with code γ: then issue an external-write instruction
(f, eidM, t, r, (sh[code], sidsh||pidsh),m′), where m′ = ((m, eidsrc), eiddest),
eidM denotes the unique identity from the list of registered devices run-
ning code codeM with identity (sidM||pidsh).

• //Otherwise, the subroutine output goes to a ITI which must be part of
this extended instance. Else, proceed as in O-1 position (∗) and use the
subroutine relation eiddest → eidsrc when talking to eidegDIR.

//Enable communication with adversary
O-3: If the virtual ITI sends backdoor message m′ to the adversary, then define the

message m := (m′, (code, sidloc||pidsh)) and execute the external-write request
(f ′ = 0, (⊥,⊥), t, r′ = 1, (sh[code], sidloc||pidsh),m′) destined for the adversary
ITI.

30

	 Universal Composition with Global Subroutines: Capturing Global Setup within plain UC

