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Abstract. The shuffle model of differential privacy [Bittau et al. SOSP
2017; Erlingsson et al. SODA 2019; Cheu et al. EUROCRYPT 2019]
was proposed as a viable model for performing distributed differentially
private computations. Informally, the model consists of an untrusted an-
alyzer that receives messages sent by participating parties via a shuf-
fle functionality, the latter potentially disassociates messages from their
senders. Prior work focused on one-round differentially private shuffle
model protocols, demonstrating that functionalities such as addition and
histograms can be performed in this model with accuracy levels similar to
that of the curator model of differential privacy, where the computation
is performed by a fully trusted party. A model closely related to the shuf-
fle model was presented in the seminal work of Ishai et al. on establishing
cryptography from anonymous communication [FOCS 2006].
Focusing on the round complexity of the shuffle model, we ask in this
work what can be computed in the shuffle model of differential privacy
with two rounds. Ishai et al. showed how to use one round of the shuffle
to establish secret keys between every two parties. Using this primi-
tive to simulate a general secure multi-party protocol increases its round
complexity by one. We show how two parties can use one round of the
shuffle to send secret messages without having to first establish a secret
key, hence retaining round complexity. Combining this primitive with the
two-round semi-honest protocol of Applebaum, Brakerski, and Tsabary
[TCC 2018], we obtain that every randomized functionality can be com-
puted in the shuffle model with an honest majority, in merely two rounds.
This includes any differentially private computation.
We hence move to examine differentially private computations in the
shuffle model that (i) do not require the assumption of an honest ma-
jority, or (ii) do not admit one-round protocols, even with an honest
majority. For that, we introduce two computational tasks: common ele-
ment, and nested common element with parameter α. For the common
element problem we show that for large enough input domains, no one-
round differentially private shuffle protocol exists with constant message
complexity and negligible δ, whereas a two-round protocol exists where
every party sends a single message in every round. For the nested com-
mon element we show that no one-round differentially private protocol
exists for this problem with adversarial coalition size αn. However, we
show that it can be privately computed in two rounds against coalitions
of size cn for every c < 1. This yields a separation between one-round
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and two-round protocols. We further show a one-round protocol for the
nested common element problem that is differentially private with coali-
tions of size smaller than cn for all 0 < c < α < 1/2.

Keywords: Shuffle Model · Differential privacy · Secure Multiparty
Computation.

1 Introduction

A recent line of work in differential privacy focuses on a distributed model where
parties communicate with an analyzer via a random shuffle. The shuffle collects
messages from the participating parties and presents them to the analyzer in
a random order, hence potentially disassociating between messages and their
senders [11,21,16]. The hope is that the shuffle model would be useful for the
implementation of practical distributed differentially private statistical and ma-
chine learning analyses, and with accuracy comparable to that of centralized
differential privacy solutions. The implementation of the shuffle itself is envi-
sioned to be based on technologies such as secure enclaves, mix nets, and secure
computation.

The theoretical work on the shuffle model has so far focused on developing
protocols for the model formalized in [16]. In this synchronous one-round model,
all the participating parties send their messages through the shuffle at once (par-
ties may send one message or multiple messages). Already in this limited com-
munication model there are fundamental statistical tasks for which differentially
private shuffle model protocols exist with error comparable to that achievable in
the (centralized) curator model of differential privacy [16,5,23,4,24,6,2,25].

A model similar to the shuffle model was presented already in 2006 by Ishai,
Kushilevits, Ostrovsky, and Sahai in the context of secure multiparty compu-
tation [27]. In particular, Ishai et al. presented a one-round secure summation
protocol that has become one of the building blocks of noise efficient real summa-
tion differentialy-private protocols, where each party holds a number xi ∈ [0, 1]
and the analyzer’s task is to estimate the sum

∑
xi [23,4,24,6]. Ishai et al. also

presented a one-round protocol allowing any two parties to agree on a secret key,
a step after which the parties can privately exchange messages. Combining this
primitive with general constructions of secure multiparty computation protocols
that rely on private or secure channels, Ishai et al. showed that it is possible to
compute any (finite) function of the parties’ joint inputs in a constant number of
rounds. In particular, we observe that combining the key agreement protocol of
Ishai et al. [27] with the recent two-round secure multiparty protocol of Apple-
baum, Brakersky, and Tsabary [1] (denoted the ABT protocol), no more than
three rounds suffice for computing any (finite) randomized function securely in
the shuffle model, with semi-honest parties assuming an honest majority: one
round for every pair of parties to setup a secret key, and hence private commu-
nication channels. Two more round to simulate the ABT protocol using these
private channels. To conclude, the previous results imply that any randomized
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function (including, in particular, any curator model differential privacy com-
putation) can be computed in the shuffle model with security against an honest
majority.5

1.1 Our results

In this work, we focus on the shuffle model with semi-honest parties. We ask what
can be computed in the shuffle model with one and two rounds of communication,
and at the presence of coalitions of semi-honest parties that can put together
their inputs, randomization, and messages they receive during the computation
with the goal of breaching the privacy of other parties. We present new techniques
for constructing round-efficient protocols in the shuffle models as well as new
lowerbound techniques for studying the limitations of one-round protocols. In
more detail:

One-round private message transmission. In Section 3.1 we present a new
building block for shuffle model protocols. This is a protocol that allows a party
Pi to send a secret message to another party Pj in one round. In the key agree-
ment protocol of Ishai et al. [27], mentioned above, to agree on a bit b of the key,
each of Pi and Pj selects and sends through the shuffle a random element chosen
from a large set. Denoting the elements sent by Pi, Pj as x, y resp., parties Pi
and Pj can set the secret bit b to 0 if x < y and to 1 if x > y. (The protocol
fails if x = y.) The other parties cannot distinguish which of the two values is
x and which is y and gain no information about the bit b. Using this protocol,
party Pi learns the secret key only after the conclusion of one communication
round, and only then can Pi use the key to encrypt a message. In contrast, our
construction saves a round in the communication, as it allows Pi to encrypt a
message without having to first establish a key.

Generic two-round secure MPC for the shuffle model. Using the one-
round message transmission protocol, we show in Section 3.2 how to simulate
the two-round semi-honest secure multi-party computation protocol with in-
formation theoretic security of Applebaum et al. [1].6 The result is a general
construction in the shuffle model of two-round honest majority protocols for
the semi-honest setting, with information theoretic security. The construction is
efficient in the size of the formula representing the functionality.

Our generic two-round construction shows that the shuffle model is extremely
expressive: no more than two rounds suffice for computing any (finite) random-
ized function, including any curator level differential privacy computation, with
semi-honest parties assuming an honest majority of players. We hence move to
examine differentially private computations in the shuffle model that (i) do not

5 Curator model computations returning real numbers, such as those resulting by
adding Laplace or Gaussian noise, would need to be carefully truncated to finite
precision.

6 An alternative construction was given by Garg et al. [22]; the communication com-
plexity of their protocol is exponential in the number of parties.
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require the assumption of an honest majority, or (ii) do not admit one-round
protocols, even with an honest majority. To demonstrate our lowerbound and
upperbound techniques, we introduce two computational tasks:

Common element: Each of n parties holds an input xi taken from a large
finite domain X . The parties communicate with an analyzer via the shuffle. If
all the parties hold the same input x ∈ X then the analyzer’s task is to output
x. Otherwise, the analyzer’s outcome is not restricted.

Nested common element with parameter α: This is a variant of the com-
mon element problem, where parties P1, . . . , Pbαnc each holds an input xi ∈ X .
The other parties Pbαnc+1, . . . , Pn each holds a vector of |X | elements taken from

some finite domain Y, i.e., yi ∈ Y |X |. The parties communicate with an analyzer
via the shuffle. If all the parties of the first type hold the same input x ∈ X and
all the vectors held by parties of the second type have the same value z in their
x-th entry, then the analyzer’s task is to output z (otherwise, the analyzer’s
outcome is not restricted). We consider the case where |X | is polynomial in n,
thus, the size of the inputs is polynomial in n even when |Y| is exponential in n.

Both tasks need to be performed with differential privacy, assuming semi-
honest parties. We now describe the bounds we prove for these problems:

A lowerbound on one-round shuffle model protocols for the common
element problem. In Section 4.1 we present a new lowerbound technique for
one-round shuffle model protocols where the mutual information between input
and output is high. Unlike other lowerbounds in the shuffle model of differential
privacy that we are aware of, our lowerbound proof works for the multi-message
setting, and does not require all parties to use the same randomizer.7

For the common element problem, we show a relationship between the mes-
sage complexity `, the input domain size |X |, and the privacy parameters ε and
δ. In particular, for constant ε and negligible δ, our bound yields that for con-

stant number of messages ` and domain size |X | > 2n
O(`)

the common element
problem does not admit a one-round shuffle model protocol. At the heart of the
lowerbound proof is a transformation from a shuffle model protocol into a lo-
cal differential privacy randomizer, for which bounds on the mutual information
between the input and output are known (see, e.g., [29]).

The one-round lowerbound is contrasted in Section 4.2 with a two-round
protocol for the common element problem where each party sends a single mes-
sage in each round. In this protocol, the parties need to communicate through
the shuffle in only one of the rounds (and can either use the shuffle or a public
channel in the other round).

An impossibility result for the nested common element problem. In
Section 5.1 we show (for large enough X , i.e., |X | = Ω̃(n2)) that, regardless of the
number of messages sent by each party, no one-round shuffle protocol exists for
the problem that is secure against coalitions of αn semi-honest parties, even when

7 Three exceptions are the recent works of Balcer et al. [3], Cheu and Ullman [17],
and Chen et al. [15], mentioned in Section 1.2.
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the domain Y is binary. We observe that for every c < 1 the nested common
element problem has a 2-round private protocol secure against a coalition of
size cn. This gives a separation between what can be computed with coalitions
of size up to αn in one- and two-round shuffle model protocols. Intuitively, the
lowerbound follows from the fact that after seeing the shuffle outcome, a coalition
covering P1, . . . , Pbαnc can simulate the protocol’s execution for any possible
value x ∈ X and hence learn all vector entries on which the inputs of parties
Pbαnc+1, . . . , Pn agree. When Y is binary, Bun et al. [13] have used fingerprinting
codes to show that this task is impossible when the dimension of the vectors is
Ω̃(n2), even in the curator model of differential privacy (in the setting of the
nested common element the dimension corresponds to |X |).8

A one-round protocol for the nested common element problem. A
natural approach to solve the nested common element problem in two rounds
is to execute a (one-round) protocol for the common element problem among
parties P1, . . . , Pbαnc, then, if a common element x is found, repeat the protocol
with parties Pbαnc+1, . . . , Pn ignoring all but the x-th entry of their vectors. It
may seem that any shuffle model protocol for the problem should require more
than one round. We show that this is not the case. In fact, there is a one-round
protocol that tightly matches the above impossibility result for α ≤ 1/2. For all
c < min {α, 1− α} there exist one-round shuffle model protocols for the nested
common element problem that are secure in the presence of coalitions of size up
to cn.

1.2 Other related work

Private protocols for the common element problem in the shuffle model are
implied by protocols for histograms [16,23,2]. Specifically, for all c < 1, one-round
shuffle model protocols for the common element problem that are secure in the
presence of coalitions of size up to cn (provided that n = Ω( 1

ε2 log 1
δ )) are implied

by the protocols of Balcer and Cheu [2]. While they only considered privacy given
the view of the analyzer, their protocols are secure against coalitions containing
a constant fraction of the parties.

Lowerbounds on the error level achievable in the one-round single message
shuffle model for the problems of frequency estimation and selection were pro-
vided by Ghazi et al. [23]. Robustness against adversarial behaviour in the shuffle
model was informally discussed by Balle et al. [6], when discussing the effect ma-
licious parties can have on the accuracy guarantees in their protocols for addition
of real numbers.

Closest to our interest are the recent lowerbounds by Balcer et al. [3]. They
define robustly shuffle private one-round protocols, where privacy guarantees
are required to hold if at least γn parties participate in the protocol. The other
malicious parties avoid sending messages to the shuffle. While this model is
equivalent to ours in the one-round setting, the lowerbound techniques in [3] are

8 Bun et al. [13] have considered a related problem, however their technique applies
also to this task.
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different from ours. In particular, they forge an interesting relationships between
online pan-privacy [20] and robustly shuffle private one-round protocols and
hence can use lowerbounds from pan-privacy to deduce lowerbounds for robustly
shuffle private one-round protocols. Specifically, for estimating the number of
distinct elements they prove that the additive error grows as Θε(

√
k), and for

uniformity testing they prove that the sample complexity grows as Θ̃ε,δ(k
2/3). In

both cases k is the domain size. (These bounds also hold in our model.) As with
our bounds, the lowerbounds by Balcer et al. hold in the case where different
parties may use different randomizers, and send multiple messages.

Independent and parallel to our work, Cheu and Ullman [17] and Chen et
al. [15] presented strong impossibility results for 1-round shuffle model protocols.
In particular, Cheu and Ullman [17] showed that every 1-round shuffle model
protocol for private agnostic learning of parity functions over d bits requires
Ω(2d/2) samples, while O(d) samples suffice in the (centralized) curator model.
Our work shows, in particular, that private agnostic learning of parity functions
using O(d) samples can be done in the shuffle model in two rounds (with semi-
honest parties assuming an honest majority). Hence, combined with our work,
the results of [17] provide additional separations between one-round and two-
round shuffle model protocols.

2 Preliminaries

2.1 The communication model

Let X be a data domain and let M be an arbitrary message domain (w.l.o.g.,
⊥ ∈ X ,M). We consider a model where the inputs and the computation are
distributed among n parties P1, . . . , Pn executing a protocol Π = (R̄, S), where
R̄ = (R1, . . . , Rn) are n stateful randomized functionalities and S is a stateless
channel that acts either as a shuffle functionality or as a public channel. See
Fig. 1 for a formal description of protocols in the shuffle model.

Definition 2.1. Consider an execution of a protocol in the shuffle model as
described in Fig. 1. The message complexity of Π is `, the number of messages
that each party sends to the shuffle in each round. The round complexity of Π
is r. The shuffle complexity of Π is the number of rounds where S is used as a
shuffle.

Remark 2.2. A protocol that uses a public random string w can always be con-
verted into a protocol that does not use a public random string, at the cost of
one additional communication round in which party P1 sends the string w (in
the semi-honest setting). This additional communication round can be thought
of as an “offline” round, as it is independent of the inputs and the function.

2.2 Differentially private shuffle model protocols

Definition 2.3. We say that input vectors x = (x1, . . . , xn) ∈ Xn and x′ =
(x′1, . . . , x

′
n) ∈ Xn are i-neighboring if they differ on exactly the i-th entry. We
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Execution of a protocol Π = ((R1, . . . , Rn), S) in the shuffle model

Initialization:

– All parties receive a public random string w ∈ {0, 1}∗.
– Each party Pi receives its input xi ∈ X and initializes the execution

of Ri(w, xi).

Communication rounds 1 ≤ j ≤ r:

1. If round j uses S as a shuffle:
(a) Each party Pi invokes Ri to generate ` messages

(mi,j [1], . . . ,mi,j [`]) ∈ M` and sends (mi,j [1], . . . ,mi,j [`]) ∈ M`

to S.
(b) Let (m̂1, . . . , m̂n`) = (m1,j [1], . . . ,m1,j [`], . . . ,mn,j [1], . . . ,mn,j [`])

be the n` messages received by S.
(c) S chooses a permutation π : [n`]→ [n`] uniformly at random.
(d) S outputs sj = (m̂π(1), . . . , m̂π(n`)) to all parties.

2. Otherwise (round j uses S as a public channel):
(a) Each party Pi invokes Ri to generate a (single) message mi,j ∈
M, which it sends to S.

(b) S outputs sj = (m1,j , . . . ,mn,j).
3. Pi feeds sj to Ri.

Output: Each party Pi invokes Ri to obtain its local output oi.

Fig. 1. The communication model.
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say that x and x′ are neighboring if there exists an index i such that they are
i-neighboring.

Definition 2.4. We say that two probability distributions D0,D1 ∈ ∆(Ω) are
(ε, δ)-close and write D0 ≈ε,δ D1 if for all events T ⊂ Ω and for b ∈ {0, 1},

Pr
t∼Db

[t ∈ T ] ≤ eε · Pr
t∼D1−b

[t ∈ T ] + δ.

Definition 2.5 (Differential privacy [19,18]). An algorithm A is (ε, δ) dif-
ferentially private if for all neighboring x,x′ we have that A(x) ≈ε,δ A(x′).

We are now ready to define what it means for a protocol to be differentially
private in the (semi-honest) shuffle model. Intuitively, this means that the view
of every coalition C of up to t parties cannot depend too strongly on the input
of a party Pi 6∈ C. More formally,

Definition 2.6 (View in shuffle model). The view of a coalition C on input
x in protocol Π, denoted ViewΠC (x), is the random variable consisting of the
public randomness w, the inputs and local randomness of the parties in C, and
the output of the r rounds of Π when executed on x, i.e., s1, . . . , sr.

Definition 2.7 (Multiparty semi-honest differential privacy [10,29]). A
protocol Π is (ε, δ)-differentially private against coalitions of size t if for all
i ∈ [n], for all coalitions C of t parties s.t. Pi 6∈ C, and for all i-neighboring
x,x′,

ViewΠC (x) ≈ε,δ ViewΠC (x′).

Observe that if a protocol is differentially private against coalitions of size t
as in the definition above, then it also the case that ViewΠC (x) ≈ε,δ ViewΠC (x′)
for all coalitions C of size less than t.

Remark 2.8.

1. The shuffle functionality S. It is not essential that the shuffle function-
ality S be randomized. The shuffle output s in Step (1d) of Protocol Π
in Fig. 1 can be replaced with any canonical representation of the multi-
set {m̂1, . . . , m̂n`} (e.g., in lexicographic order) without affecting any of our
results.

2. Hybrid-shuffle model. The shuffle model can equivalently be thought of
as a hybrid model, where all parties have access to a shuffle functionality.

3. The local randomizers Ri. In deviation from most of prior work on the
shuffle model, the randomizers R1, . . . , Rn need not be identical. In particu-
lar, the execution of Ri may depend on the identity i of player Pi.

4. Local model protocols. An (ε, δ)-differentially private protocol Π with
zero shuffle complexity satisfies local differential privacy [28,29].

5. Shuffle model with an analyzer. In prior work on the shuffle model one
party, A, is an analyzer. The analyzer has no input (xA = ⊥) and does not
send messages, i.e., (mA,j [1], . . . ,mA,j [`]) = ⊥` for 1 ≤ j ≤ r. In this setting
the local output of parties P1, . . . , Pn is ⊥ and the outcome of the protocol
is the local output of A. Sections 4 and 5 consider the shuffle model with an
analyzer.
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2.3 Secure computation protocols with semi-honest parties

Let f : Xn → Yn be a randomized functionality. We recall the definition from the
cryptographic literature of what it means that a protocol Π securely computes
f(x1, . . . , xn) with semi-honest parties. We will use this definition both in the
shuffle model and in the setting where the parties communicate over a complete
network of private channels. For the latter we define the view of a coalition as
follows:

Definition 2.9 (View in a complete network of private channels). The
view of a coalition C on input x in protocol Π, denoted viewπ

C(x), is the random
variable consisting of the inputs and local randomness of the parties in C and the
messages the parties in C receive from the parties in C = {P1, . . . , Pn} \ C.

Definition 2.10 (Secure computation in the semi-honest model). A
protocol Π is said to δ-securely compute f with coalitions of size at most t if
there exists a simulator SimΠ such that for any coalition C of at most t parties
and every input vector x = (x1, . . . , xn) ∈ Xn,(

SimΠ(C,x[C],y[C]),y[C]
)
≈0,δ

(
ViewΠC (x),Output(C)

)
,

where y = f(x) and Output(C) is the output of the parties in C in the protocol.
The probability distribution on the left is over the randomness of f and the
randomness of the simulator, and the probability distribution on the right is over
the randomness of the honest parties and the adversary. When δ = 0 we say that
Π provides perfect privacy.

Remark 2.11. In the shuffle model, ViewΠC (x) also includes the public random
string w (if exists), and the probability distribution on the right in Definition 2.10
is also over the public random string.

We next state a composition theorem for differentially private protocols using
secure protocols.

Lemma 2.12. Let Π be a protocol with one invocation of a black-box access
to some function f (the f -hybrid model). Let Πf be a protocol that δ′-securely
computes f with coalitions of size up to t. Let Π ′ be as in Π, except that the call
to f is replaced with the execution of Πf . If Π is (ε, δ)-differentially private
with coalitions of size up to t, then Π ′ is (ε, (eε+1) · δ′+ δ)-differentially private
with coalitions of size up to t.

Proof. Consider a coalition C of up to t parties. The random variable ViewΠ
′

C (x)
consisting the view of coalition C in an execution of protocol Π ′ can be parsed
into the view of C in protocol Π, i.e., ViewΠC (x), and the view of C in the exe-

cution of protocol Πf , i.e., View
Πf

C (y). In the latter y is the input to f in the
execution of Π on input x (similarly, we will use y′ to denote the input to f in

the execution of Π on input x′). Note that, by Definition 2.10, View
Πf

C (y) can

be simulated as SimΠf (C,y[C], fC(y)) up to statistical distance δ′. Observe that
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ViewΠC contains the inputs yC sent to f as well as the outcome seen by the coali-
tion, fC(y). Hence, SimΠf (C,y[C], fC(y)) is a post-processing of ViewΠC (x). To
emphasize this fact, we write SimΠf (ViewΠC (x)) instead of SimΠf (C,y[C], fC(y)).

Let Pi 6∈ C. For all i-neighboring x,x′ and all T we have that

Pr[ViewΠ
′

C (x) ∈ T ] = Pr[(ViewΠC (x),View
Πf

C (y)) ∈ T ]

≤ Pr[(ViewΠC (x),SimΠf (ViewΠC (x))) ∈ T ] + δ′

≤ eε · Pr[(ViewΠC (x′),SimΠf (ViewΠC (x′))) ∈ T ] + δ + δ′

≤ eε · (Pr[(ViewΠC (x′),View
Πf

C (y′)) ∈ T ] + δ′) + δ + δ′

= eε · Pr[ViewΠ
′

C (x′) ∈ T ] + (eε + 1)δ′ + δ.

The second step in the analysis follows from the fact that differential privacy
is preserved under post-processing. ut

2.4 Pairwise independent hash functions

In our constructions We use pair pairwise independent hash functions, defined
below.

Definition 2.13 (Pairwise independent hash functions). A family of hash
functions H = {h : X → R} is said to be pairwise independent, if for any two
distinct elements x1 6= x2 ∈ X , and any two (possibly equal) values y1, y2 ∈ R,

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] =
1

|R|2
,

where h is chosen with uniform distribution from H independently of x1, x2.

In particular, if H is a pairwise independent family, then for every x1 6= x2 ∈ X
it holds that Prh∈H [h(x1) = h(x2)] = 1

|R| , and for every set A ⊆ X we have

Prh∈H [∃x1 6=x2∈A h(x1) = h(x2)] ≤ |A|2
|R| , in this case we say that A is perfectly

hashed by h.

3 A Two-Round Secure MPC Protocol in the Shuffle
Model

In this section we show that every functionality that can be computed with differ-
ential privacy in the centralized model can be computed with differential privacy
in the shuffle model in two rounds assuming an honest majority. To achieve this
result we first show a one-round protocol in the shuffle model for secure mes-
sage transmission, that is, we show that how to emulate a private channel. This
result together with an honest-majority two-round MPC protocol of [1] in the
private channel model imply that every functionality (including differentially-
private functionalities) can be securely computed in the shuffle model in two
rounds assuming an honest majority.
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3.1 A one-round secure message transmission protocol

Assume that party Pi wants to send a message to party Pj using the shuffle such
that any other party will not learn any information on the message. In [27] this
was done in two rounds. In the first round Pi and Pj agree on a secret key, and in
the second round Pi encrypts the message using this key as a one-time pad. We
present a protocol such that Pi knows the key in advance and can encrypt the
message already in the first round. The resulting protocol has statistical security.

We start by describing a variant of the protocol of [27] for key exchange.
As a first step, we describe a key exchange protocol in which Pi and Pj agree
with probability 1/2 on a random bit (and with probability 1/2 the output is
“FAIL”). The protocol is as follows: Party Pi samples a uniformly distributed
bit a and sends to the shuffle the message (i, j, a). Similarly, party Pj samples a
uniformly distributed bit b and sends to the shuffle the message (i, j, b).9 If a = b
the protocol fails. Otherwise, the joint key is a. As both parties Pi, Pj get the
output of the shuffle, they both know if the protocol fails (a = b) or not, and if
the protocol does not fail (a 6= b) they both know a – the common key. On the
other hand, an adversary that sees the output of the shuffle when a 6= b, sees a
shuffle of the two messages {(i, j, 0), (i, j, 1)} and does not get any information
on a. To generate a k-bit key, the above protocol is repeated 3k times in parallel
with independent random bits a`, b` in each execution, and the shared key is the
bits of Pi in the first k indices where a` 6= b`. By a simple Chernoff-Hoefding
bound, the probability that there are no such k indices is exponentially small.
See Fig. 2 for a formal description of the protocol.

Protocol KeyExchange

Inputs: Pi and Pj hold a security parameter 1k.

1. Pi samples 3k uniformly distributed bits (a1, . . . , a3k) and sends to
the shuffle 3k messages (i, j, 1, a1), . . . , (i, j, 3k, a3k).

2. Pj samples 3k uniformly distributed bits (b1, . . . , b3k) and sends to
the shuffle 3k messages (i, j, 1, b1), . . . , (i, j, 3k, b3k).

3. The shuffle publishes a random permutation of the messages it got.
4. Let `1 < `2 < · · · < `k be the first k indices such that a`j 6= b`j

(if there are no such k indices, output “FAIL”). The joint key is
(a`1 , a`2 , . . . , a`k ).

Fig. 2. A one-round key exchange protocol.

To construct a one-round protocol for secure message transmission from Pi
to Pj , we want Pi to know the key in advance so it can use the key to encrypt

9 We add the prefix i, j to the messages sent by Pi and Pj to enable all pairs of parties
to exchange keys in parallel. It is essential that both Pi and Pj list the identities i, j
in the same order (e.g., lexicographic order).
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the message at the same time it sends the messages for the key exchange. In
Protocol KeyExchange, party Pi does not know the key in advance since it
does not know the bits that (a1, . . . , a3k) and (b1, . . . , b3k) disagree. To overcome
this problem Pi will use all the bits it generates as a pre-key K. In this case
Pj will know all bits of the pre-key K whereas an adversary will learn only
about half of the bits of K. Parties Pi and Pj wish to agree on a key generated
from the pre-key K without interaction such that the adversary gets negligible
information about the agreed key. This is an instance of the privacy amplification
problem and a simple solution is to sample a pairwise independent hash function
h and set the key as h(K). It follows by the left-over hash lemma [26] that h(K)
is close to uniform given h and the knowledge of the adversary about the pre-key
K.

Theorem 3.1 (The left-over hash lemma [26]). Let m,n be integers and
X be a random variable distributed over {0, 1}n such that Pr[X = x] ≤ 2−m

for every x ∈ {0, 1}n. Let H be a family of pairwise independent hash functions

from {0, 1}n to {0, 1}m−2k. Then, for a random h uniformly distributed in H
and independent of X,

SD ((h(X), h), (U, h)) ≤ 2−k,

where U is uniform over {0, 1}m−2k and independent of h, and where SD denotes
the statistical distance (total variation distance).

Protocol SecureMessageTransmission

Inputs: Party Pi holds a security parameter 1k and a message M of length
at most k, party Pj holds security parameter 1k.

1. Pi samples 7k uniformly distributed bits (a1, . . . , a7k) and sends to
the shuffle 7k messages (i, j, 1, a1), . . . , (i, j, 7k, a7k).

2. Pj samples 7k uniformly distributed bits (b1, . . . , b7k) and sends to
the shuffle 7k messages (i, j, 1, b1), . . . , (i, j, 7k, b7k).

3. Pi samples a function h uniformly at random from a family of pairwise

independent functions H =
{
h : {0, 1}7k → {0, 1}k

}
and sends to the

shuffle the message (i, j, “message”, h, h(a1, . . . , a7k)⊕M).
4. The shuffle publishes a random permutation of the messages it got.

Fig. 3. A one-round protocol for secure message transmission.

Theorem 3.2. Protocol SecureMessageTransmission is a correct and se-
cure protocol for message transmission, that is (1) Pj can always recover M ,
(2) For every two messages M,M ′ the statistical distance between the views of
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the referee and all parties except for Pi and Pj in an executions of Protocol Se-
cureMessageTransmission with M and Protocol SecureMessageTrans-
mission with M ′ is at most 3 · 2−k.

Proof. For the correctness of the protocol, as Pj knows its messages, it can
deduce for every ` the message (i, j, `, a`) sent by Pi, hence compute the common
key h(a1, . . . , a7k) and compute M .

For the security of the protocol, first note that by a Chernoff-Hoefding bound,
the probability that there are less than 3k indices ` such that a` 6= b` is less than
2−k, and such executions add at most 2−k to the statistical distance. We continue
the analysis assuming that such event did not occur.

We consider an execution of Protocol SecureMessageTransmission in
which is Step (3) party Pi sends the message (i, j, “message”, h, u ⊕M) for a

uniformly sampled u ∈ {0, 1}k. In this case, the executions for M and M ′ are
equally distributed (as u acts as a one-time pad). To prove the security it suf-
fices to prove that for every message M , the statistical distance in the view in
the executions of Protocol SecureMessageTransmission and the modified
Protocol SecureMessageTransmission (both with M) is at most 2−k. Fix
a set L ⊂ [7k] of size at least 3k, and consider all executions in which a` 6= b`
if and only if ` ∈ L. For every index ` ∈ L, the view discloses no information
on a` in these executions (since an adversary sees a random shuffle of the two
messages (i, j, `, 0), (i, j, `, 1) and does not get any information on a`). In other
words, there are at least 23k strings (a1, . . . , a7k) possible given the executions
are consistent with L, and all strings are equiprobable. Thus, by Theorem 3.1,
the statistical distance between u and h(a1, . . . , a7k) is at most 2−k. This com-
pletes the proof of security. ut

3.2 A two round MPC protocol

We construct a two-round MPC protocol in the shuffle model for every func-
tionality on inputs from a finite domain assuming an honest majority. The con-
struction is via a combination of the two-round MPC protocol of Applebaum,
Brakersky, and Tsabary [1] (Henceforth, Protocol ABT, see Theorem 3.3 below),
which assumes private channels between every pair of parties, with Protocol Se-
cureMessageTransmission executed in the shuffle model. The latter is used
for simulating the private channels.

Theorem 3.3 (Protocol ABT [1, Theorem 1.1]). At the presence of honest
majority, any function f can be computed with perfect privacy in a complete net-
work of private channels in two rounds with polynomial efficiency in the number
of parties and in the size of the formula that computes f .

Theorem 3.4. Let f : Xn → {0, 1} be a function and γ > 0 (γ can depend on
n and f). At the presence of honest majority, any function f can be computed
with γ-statistical privacy in the shuffle model in two rounds with polynomial
efficiency in the number of parties, in the size of the formula that computes f ,
and in log 1/γ.
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Proof. In Fig. 4, we describe Protocol MPCinShuffle – the two round MPC
protocol in the shuffle model.

Protocol MPCinShuffle

Protocol MPCinShuffle simulates (in the shuffle model) Protocol ABT
of Theorem 3.3:

– In each of the two rounds of Protocol ABT:
• For each i, j ∈ [n]:
∗ Party Pi prepares the message that it would send to party Pj

in Protocol ABT.
∗ Pi and Pj execute Protocol SecureMessageTransmission

with this message and security parameter 1k.
/* In each round, all n(n − 1) secure message transmission pro-
tocols are executed in parallel and using the same shuffle */

– At the end of the protocol, each party computes the output of f from
the simulated messages of Protocol ABT.

Fig. 4. A two-round MPC protocol in the shuffle model for arbitrary functionalities.

As Protocol SecureMessageTransmission has perfect correctness, each
party in Protocol MPCinShuffle can compute the messages it gets in Protocol
ABT and compute f without any error.

For the security of the protocol, let C be a coalition of less than n/2 parties.
We construct a simulator that generates a view for C that is O(n22−k) far from
the view of C in the real-world execution of Protocol MPCinShuffle:

– Execute the simulator of Protocol ABT of Theorem 3.3 and generate a view
for C that is identically distributed as the real view of C in Protocol ABT.

– For each round and for each pair Pi, Pj :
• If at least one of Pi, Pj is in C then let Mi,j be the message that Pi sends

to Pj in the simulated view.
• Otherwise, let Mi,j be some fixed arbitrary message.
• Execute Protocol SecureMessageTransmission with the messageMi,j

and generate the messages that Pi, Pj send to the shuffle.
– For each round, shuffle the messages generated by Pi, Pj for every i, j ∈ [n].
– Output: The shuffled messages of round 1 and the shuffled messages of

round 2, the randomness of every Pi generated by the simulator of Protocol
ABT, and the randomness used by every Pi ∈ C in an execution of Protocol
SecureMessageTransmission for which Pi is either the sender or the
receiver.

By Theorem 3.2, for every Pi, Pj /∈ C, the messages generated in the sim-
ulation (i.e., the messages of Protocol SecureMessageTransmission for the
fixed message Mi,j and the message that Pi and Pj send to the shuffle in the real
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world for the real message of the Protocol ABT of Theorem 3.3 are only O(2−k)
far. Thus, the output of the simulator we constructed is at most O(n2−k) far
from the view of C in the real execution of Protocol MPCinShuffle. ut
Remark 3.5.

1. In Protocol SecureMessageTransmission we use the shuffle in both rounds
as we execute Protocol SecureMessageTransmission in each round. We
can optimize the protocol and only use the shuffle in the first round. To
achieve this, in the first round each ordered pair of parties Pi, Pj also exe-
cutes Protocol KeyExchange in round 1 and generate a key, which is used
by Pi to encrypt the message that it send to Pj in round 2. The encrypted
messages is sent on the public channel.

2. In a setting with an analyzer as in Remark 2.8, the protocol can be simplified,
with the expense that we now need to assume that the number of colluding
parties in P1, . . . , Pn is less than (n− 1)/2. We execute Protocol ABT with
n+1 parties, where the (n+1)-th party (i.e., the analyzer) has no input and
is the only party that receives an output. Furthermore, we assume that the
analyzer is always in the coalition, and, therefore, the messages that it sends
and receives are public. As the analyzer cannot send messages to the shuffle,
we use the public random string as the random string of the analyzer and
the messages that the input-less analyzer sends in the first round to party Pj
in Protocol ABT are generated by Pj without interaction using the random
common string. Furthermore, in the second round each party only sends its
message to the analyzer and this message is sent in the clear.

3. In Protocol SecureMessageTransmission the shuffle receives O(k) mes-
sages and shuffles them. We actually only need to shuffle every pair of mes-
sages (i, j, `, a`), (i, j, `, b`), thus, we can use many copies of 2-message shuffle.
The same is true for Protocol MPCinShuffle.

Corollary 3.6. Let f be an (ε, δ)-differentially private functional (in the cen-
tralized model) acting on inputs from a finite domain and using a finite number
of random bits and γ > 0. At the presence of honest majority, the functionality
f can be computed with (ε, δ+ (eε+ 1)γ)-differential privacy in the shuffle model
in two rounds with polynomial efficiency in the number of parties, in the size of
the formula that computes f , and in log 1/γ.

Proof. We use Protocol MPCinShuffle to compute the function f . By
Lemma 2.12 the resulting protocol is private. ut

4 The Common Element Problem

In this section we study the following problem.

Definition 4.1 (The common element problem). In the common element
problem, there are n parties P1, . . . , Pn, where each party Pi gets an input xi ∈
X , and there is an analyzer P0 (with no input). If all inputs are equal, i.e.,
x1 = x2 = · · · = xn, then with probability at least 3/4 the analyzer must output
x1 at the end of the execution. The outcome is not restricted otherwise.
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4.1 An impossibility result for single-round constant-message
protocols

We present an impossibility result for 1-round protocols for the common element
problem. Informally, we show that if the domain size |X | is large, then either
the number of messages ` must be large, or else the privacy parameter δ must
be “large”. Before we state and prove this impossibility result, we introduce the
following bound on the mutual information between the input of a party in a
1-round differentially protocol and the messages she submits to the shuffle. This
bound holds for any 1-round differentially protocol (not only for protocols for
the common element problem).

Theorem 4.2. Let Π be a 1-round shuffle model protocol for n parties satisfying
(ε, δ)-differential privacy for coalitions of size 1, with message complexity `. Let
X denote the input domain (i.e., the input of every party is an element of X ).
Let (Z1, . . . , Zn) ∈ Xn denote (possibly correlated) random variables. Consider
the execution of Π on inputs x1 = Z1, . . . xn = Zn, and for i ∈ [n] let Yi denote
the vector of messages submitted by party Pi to the shuffle, in lexicographic order.
Also let W be a random variable denoting the public randomness of the protocol.
Then for every i ∈ [n], if Zi is uniformly distributed over X then

I(Yi,W ;Zi) = O

(
(en)` ·

(
ε2 +

δ

ε
log |X |+ δ

ε
log

ε

δ

)
+ ` · log (n)

)
.

In words, the theorem states that the mutual information between Zi (the
input of party Pi), and (Yi,W ) (the messages submitted by party Pi and the
public randomness) is bounded.

Before proving Theorem 4.2, we quote two basic results from information
theory (see the full version of this work for the proofs of these lemmas, as well
as additional preliminaries form information theory). Consider three random
variables Y1, Y2, Z, where Y1 and Y2 are conditionally independent given Z. The
following lemma shows that the amount of information that (Y1, Y2) give about
Z, is at most the amount that Y1 gives on Z plus the amount that Y2 gives on Z.
(This is not necessarily true without the conditionally independent assumption.)

Lemma 4.3. Let Y1, Y2, Z be random variables, where Y1 and Y2 are condition-
ally independent given Z. Then, I(Z;Y1) + I(Z;Y2) ≥ I(Z;Y1, Y2).

The following lemma shows that if I(X;Y |Z) is high and if H(Z) is low,
then I(X;Y ) must also be high. That is, if X gives a lot of information on Y
when conditioning on a random variable Z with low entropy, then X gives a lot
of information on Y even without conditioning on Z.

Lemma 4.4. Let X,Y, Z be three random variables. Then, I(X;Y ) ≥ I(X;Y |Z)−
H(Z).

We are now ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Let R1, . . . , Rn denote the randomizers in the protocol
Π, and fix i ∈ [n]. We use Π and i to construct the following algorithm, which
we call LocalRandomizer, that gets a single input xi and a public random string
w.

1. Compute m̃i ← Ri(w, xi). That is, m̃i is the vector of ` messages chosen by
Ri.

2. For j 6= i, sample xj ∈ X uniformly at random, and let m̃j ← Rj(w, xj).

3. For j ∈ [n], we write ỹj to denote m̃j after sorting it in lexicographic order.

4. Let s̃ be a random permutation of the collection of all messages in m̃1, . . . , m̃n.

5. Let ỹ denote a (sorted) vector of ` messages chosen randomly (without
repetition) from s̃.

6. Return ỹ, w.

Consider the execution of LocalRandomizer on a uniformly random input

xi = Z̃ with the public randomness W̃ . We will use Ỹ , S̃ and
{
M̃i

}
i∈[n]

{
Ỹi

}
i∈[n]

to denote the random variables taking values ỹ, s̃, {m̃i}i∈[n], and {ỹi}i∈[n] dur-
ing the execution.

Observe that S̃ is identically distributed to the outcome of the shuffler
in an execution of Π on random inputs, and observe that the outcome of
LocalRandomizer is computed as a post-processing of S̃ and W̃ . Algorithm
LocalRandomizer is, therefore, (ε, δ)-differentially private (as a function of xi).
Since the mutual information between the input and the output of a differen-
tially private algorithm is bounded (see, e.g., [8] or Theorem A.1), there exists
a constant λ such that

I
(
Ỹ , W̃ ; Z̃

)
≤ λ ·

(
ε2 +

δ

ε
log |X |+ δ

ε
log(ε/δ)

)
. (1)

We now relate I
(
Ỹ , W̃ ; Z̃

)
to I

(
Ỹi, W̃ ; Z̃

)
. Intuitively, the connection is that

with probability ≈ n−` we get that Ỹ = Ỹi. Formally, let T be a random variable
taking value 0 if Ỹ = Ỹi and otherwise T = 1, and denote p = Pr[T = 0] =
1/
(
`n
`

)
. By Lemma 4.4 and using standard bounds on the entropy of a binary

random variable we get that

I
(
Ỹ , W̃ ; Z̃

)
≥ I

(
Ỹ , W̃ ; Z̃

∣∣∣T)−H(T ) ≥ I
(
Ỹ , W̃ ; Z̃

∣∣∣T)− p log

(
4

p

)
= E
t←T

[
I
(
Ỹ , W̃ ; Z̃

∣∣∣T = t
)]
− p log

(
4

p

)
≥ p · I

(
Ỹ , W̃ ; Z̃

∣∣∣T = 0
)
− p log

(
4

p

)
= p · I(Ỹi, W̃ ; Z̃)− p log

(
4

p

)
. (2)
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So, combining Inequalities (1) and (2) we get that

I
(
Ỹi, W̃ ; Z̃

)
≤ λ

p
·
(
ε2 +

δ

ε
log |X |+ δ

ε
log(ε/δ)

)
+ log

(
4

p

)
≤ λ · (en)` ·

(
ε2 +

δ

ε
log |X |+ δ

ε
log(ε/δ)

)
+ ` · log (4en) .

Finally, observe that the input Z̃, the public randomness W̃ , and the (sorted)

vectors of messages Ỹi in the execution of LocalRandomizer are identically dis-
tributed to these variables in the execution of Π on inputs (Z1, . . . , Zn) with the

public randomness W . That is, the random variables
(
Ỹi, W̃ , Z̃

)
and (Yi,W,Zi)

are identically distributed. Therefore,

I (Yi,W ;Zi) ≤ λ · (en)` ·
(
ε2 +

δ

ε
log |X |+ δ

ε
log(ε/δ)

)
+ ` · log (4en) .

ut

We next present our impossibility result for the common element problem.

Theorem 4.5. There exists a constant λ > 1 such that the following holds.

Let ε ≤ 1, let ` ∈ N , and let X be such that |X | ≥ 2λ(4en)
`+1

. Let Π be a 1-
round protocol for the common element problem over the domain X with message
complexity `, such that Π is (ε, δ)-differentially private for coalitions of size 1.
Then,

δ = Ω
(
(en)−`−1

)
.

Proof. We first give a short overview of the proof. Recall that if all inputs are
equal to some element x ∈ X , then the analyzer must output x with high proba-
bility. This also holds when the (common) input x is chosen uniformly at random
from X , which means that the mutual information between the (common) input
and the output of the analyzer must be high. We show that this means that
there must be at least one party Pi∗ such that mutual information between the
random (common) input and the messages submitted by Pi∗ must be high, which
will contradict Theorem 4.2.

Let R1, . . . , Rn denote the randomizers in the protocol Π. Let Z be a uni-
formly random element of X and consider the execution of Π on inputs x1 =
x2 = · · · = xn = Z with a public random string W . For i ∈ [n], let Mi denote a
random variable representing the vector of ` messages submitted to the shuffler
by party Pi, and let Yi be the same as Mi after sorting it in lexicographic order.
Let S be a random variable denoting the outcome of the shuffler. That is, S is
a random permutation of all the messages in M1, . . . ,Mn. Alternatively, S is a
random permutation of all the messages in Y1, . . . , Yn. We use A for the random
variable denoting the outcome of the analyzer at the end of the execution.

Since A = Z with probability at least 3/4, the mutual information between
A and Z must be high. Specifically, Let B be a random variable taking value 0
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if A = Z and otherwise B = 1. By Lemma 4.4

I(A;Z) ≥ I(A;Z|B)−H(B) ≥ I(A;Z|B)− 1 = E
b←B

[
I(A;Z|B = b)

]
− 1

≥ 3

4
· I(A;Z|B = 0)− 1 =

3

4
· I(Z;Z)− 1 =

3

4
·H(Z)− 1

=
3

4
· log |X | − 1 ≥ 1

2
· log |X |.

Recall that A is a (possibly randomized) function of the outcome of the shuffle
S and the public randomness W . Hence, I(S,W ;Z) ≥ I(A;Z) ≥ 1

2 · log |X |. We
now show that there must exist an index i∗ ∈ [n] such that

I(Yi∗ ,W ;Z) ≥ 1

n
· I(S,W ;Z) ≥ 1

2n
· log |X |.

To that end, observe that since Π is a 1-round protocol, then conditioned on
Z and on the public randomness W we have that the messages that party Pi
sends are independent of the messages that party Pj , where j 6= i, sends. That
is, the random variables Y1, . . . , Yn are conditionally independent given (Z,W ).
Therefore, by Lemma 4.3 we have that∑

i∈[n]

I(Yi,W ;Z) =
∑
i∈[n]

(
I(W ;Z) + I(Yi;Z|W )

)
=
∑
i∈[n]

I(Yi;Z|W )

≥ I(Y1, . . . , Yn;Z|W )

≥ I(S;Z|W )

= I(S,W ;Z)− I(W ;Z)

= I(S,W ;Z)

≥ 1

2
· log |X |.

Hence, there must exist an index i∗ such that

I(Yi∗ ,W ;Z) ≥ 1

n
· I(S,W ;Z) ≥ 1

2n
· log |X |.

We are now ready to complete the proof. Observe that it suffices to prove the

theorem assuming that ε = 1 and that |X | = 2λ(4en)
`+1

. The reason is that any
(ε, δ)-differentially private protocol with ε ≤ 1 is also (1, δ)-differentially private,
and that a protocol for the common element problem over a domain X is, in
particular, a protocol for the common element problem over subsets of X . By
Theorem 4.2 (our bound on the mutual information between the input and the
messages submitted by any single party in a 1-round protocol), there exists a
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constant λ > 1 such that

1

2n
· log |X | ≤ I(Yi∗ ,W ;Z)

≤ λ · (en)` ·
(
ε2 +

δ

ε
log |X |+ δ

ε
log(ε/δ)

)
+ ` · log (4en) .

Substituting ε = 1 and |X | = 2λ(4en)
`+1

, and solving for δ, we get that δ ≥
1

8λ(en)`+1 . ut

4.2 A two-round protocol with message complexity 1

Intuitively, Theorem 4.5 shows that in any 1-round protocol for the common
element problem, we either have that the message complexity is large, or we
have that δ cannot be too small. In Fig. 5 we present a two round protocol for
the common element problem, in which the message complexity is 1 and δ can
be negligible. Our protocol, which we call Protocol CommonTwoRound, uses
the shuffle channel in only one of the two rounds, and the communication in the
second round is done via a public channel.

Theorem 4.6. Let δ ∈ (0, 1). Protocol CommonTwoRound, described in Fig. 5,
is (O(1), O(δ))-differentially private against coalitions of size 0.9n that solves the
common element problem. The protocol uses two rounds (one via a public channel
and one via the shuffle) and has message complexity 1.

We begin with the privacy analysis of Protocol CommonTwoRound.

Lemma 4.7. Protocol CommonTwoRound is (O(1), O(δ))-differentially pri-
vate against coalitions of size 0.9n.

Proof. Fix an index i ∈ [n], fix two i-neighboring input vectors x and x′, and
fix a coalition C of size |C| = 0.9n such that Pi /∈ C. We need to show that
ViewΠC (x) ≈ε,δ ViewΠC (x′). First observe that with probability at least 1 − δ
over the choice of the hash function h, we have that h perfectly hashes all the
different inputs in x,x′ (note x,x′ span at most n + 1 different values). We
proceed with the analysis after fixing such a hash function h.

We write xC = x′C to denote the inputs of the parties in C, and fix the
internal randomness rC of the parties in C. Now let S1 and S2 be random variables
representing the output of the public channel and the shuffle, respectively, during
the execution on x, where we denote S2 = ⊥ if the execution halted on Step (3).
Similarly, S′1, S

′
2 denote the outputs of these channels during the execution on

x′. With these notations we have that

ViewΠC (x) = (h, rC ,xC , S1, S2) and ViewΠC (x′) = (h, rC ,xC , S
′
1, S
′
2) .

Observe that S1 and S′1 are computed using an (ε, 0)-differentially private
protocol in the local model (see Theorem A.2), and hence,

(h, rC ,xC , S1) ≈(ε,0) (h, rC ,xC , S
′
1) .
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Protocol CommonTwoRound

Inputs: Each party Pi (for i ∈ [n]) holds an input xi ∈ X . The analyzer
P0 has no input. All parties have access to a hash function h : X → [n2/δ]
chosen with uniform distribution from a pairwise independent family (de-
fined, e.g., using a public random string).

1. Every party Pi computes yi ← h(xi).
2. The parties use the public channel to execute a 1-round (ε, 0)-

differentially private protocol in the local model for histograms over
the (distributed) database Y = (y1, y2, . . . , yn) with failure probabil-
ity δ (see e.g., [12], or Theorem A.2). This results in a data structure
D (known to all parties) that gives estimations for the multiplici-
ties of elements in Y . That is, for every y ∈ [n2/δ] we have that
D(y) ≈ |{i ∈ [n] : yi = y}|.

3. Let y∗ ∈ [n2/δ] be an element that maximizes D(y). If D(y) < 98·n
100

then all parties terminate, and the analyzer outputs ⊥.
4. Otherwise, each party Pi prepares a single message mi as follows:

(a) If yi 6= y∗ then mi = ⊥.
(b) Otherwise, mi = ⊥ with probability 1/2 and mi = xi with prob-

ability 1/2.
5. Each party Pi sends the message mi to the shuffle. All parties receive

a permutation s of (m1, . . . ,mn).
6. The analyzer outputs the element x∗ 6= ⊥ with the largest number of

appearances in s (the analyzer fails if all elements of s are equal to
⊥).

Fig. 5. A two-round protocol in the shuffle model for the common element problem
with message complexity 1.
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We next argue about S2 and S′2. For an element x ∈ X we write fx(x) to
denote the number of occurrences of x in the input vector x. Also, let x∗ ∈ X
denote the most frequent element in x, that is, an element such that fx(x∗) is
maximized.
Case (a) fx(x∗) ≤ 96·n

100
: By the utility guarantees of the protocol for his-

tograms (executed on Step (2)), each of the two executions terminates in Step (3)
with probability at least (1− δ). This is because if n = Ω( 1

ε2 log( 1
εδ )) then with

probability at least (1 − δ) all of the estimates given by D(·) are accurate to
within ±0.01n (see Theorem A.2). Therefore, in case (a) we have

ViewΠC (x) = (h, rC ,xC , S1, S2) ≈(0,δ) (h, rC ,xC , S1,⊥)

≈(ε,δ) (h, rC ,xC , S
′
1,⊥) ≈(0,δ) (h, rC ,xC , S

′
1, S
′
2) = ViewΠC (x′).

Case (b) fx(x∗) > 96·n
100

: Fix any value s1 for the outcome of the public
channel, such that all the estimates given by the resulting data structure D(·)
are accurate to within ±0.01n w.r.t. x. We first show that conditioned on such
an s1 we have that

(h, rC ,xC , s1, S2) ≈(ε,δ) (h, rC ,xC , s1, S
′
2) .

To see this, observe that once we condition on s1 then either both executions
terminate on Step (3), or in the two executions we have that y∗ = h(x∗) (because
fx(x∗) > 0.96n). If s1 is such that the two executions terminate on Step (3),
then (conditioned on s1) we have S2 = S′2 = ⊥ and so

(h, rC ,xC , s1, S2) ≡ (h, rC ,xC , s1, S
′
2) .

Now suppose that the two executions do not halt prematurely, and that y∗ =
h(x∗). In that case, the outcome of the shuffle contains (randomly permuted)
copies of ⊥ and copies of x∗. Note that since the outcome of the shuffle is
randomly permuted, then the outcome distribution of the shuffle is determined
by the number of occurrences of x∗.

Note that if xi and x′i are both equal to x∗, or are both different from x∗,
then S2 and S′2 are identically distributed, which would complete the proof. We,
therefore, assume that exactly one of xi, x

′
i is equal to x∗. Suppose without loss

of generality that xi = x∗ and x′i 6= x∗.
Since fx(x∗) > 0.96n and since |C| = 0.9n, there is a set of parties I of size

|I| = 0.05n such that

1. I ∩ (C ∪ {i}) = ∅.
2. For every j ∈ I we have that xj = x′j = x∗.

We show that the outcome of the shuffle preserves differential privacy (over
the randomness of the parties in I and the randomness of the shuffle). Fix the
randomness of all parties except for parties in I. Note that this fixes the messages
that these parties submit to the shuffle, and suppose that party Pi submits x∗

during the first execution and submits ⊥ during the second execution (if party
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Pi submits ⊥ during both execution then the outcome of the shuffle is, again,
identically distributed). Let k denote the number of parties among the parties
not in I that submitted x∗ to the shuffle during the execution on x. (So during
the execution on x′ exactly k − 1 such parties submitted x∗.)

Let us denote by Z the number of parties from I that submits x∗ to the
shuffle. Note that Z ≡ Binomial

(
|I|, 12

)
. By the Hoeffding bound, assuming

that n = Ω(ln(1/δ)) (large enough), with probability at least 1− δ we have that
9
20 · |I| ≤ Z ≤

11
20 · |I|. In addition, by the properties of the Binomial distribution,

for every 9
20 · |I| ≤ z ≤

11
20 · |I| we have that

Pr[Z = z]

Pr[Z = z + 1]
=

2−|I| ·
(|I|
z

)
2−|I| ·

( |I|
z+1

) =
z + 1

|I| − z
∈ e±1.

Let us denote the number of occurrences of x∗ at the output of the shuffle
during the two executions as |S2| and |S′2|, respectively. So |S2| ≡ k + Z and
|S′2| ≡ k − 1 + Z. Fix a set F ⊆ [n] of possible values for |S2|, and denote

T = {(f − k) : f ∈ F} and T ′ = {(f − k + 1) : f ∈ F}

We have that

Pr [|S2| ∈ F ] = Pr[Z ∈ T ] ≤ δ + Pr

[
Z ∈ T ∩

{
z :

9|I|
20
≤ z ≤ 11|I|

20

}]
≤ δ + e1 · Pr

[
Z − 1 ∈ T ∩

{
z :

9|I|
20
≤ z ≤ 11|I|

20

}]
≤ δ + e1 · Pr [Z − 1 ∈ T ] = δ + e1 · Pr [Z ∈ T ′]
= δ + e1 · Pr [|S′2| ∈ F ] .

A similar analysis shows that Pr [|S′2| ∈ F ] ≤ δ + e1 · Pr [|S2| ∈ F ]. This shows
that conditioned on an output of the public channel s1 such that D(·) is accurate
for x, we have that

(h, rC ,xC , s1, S2) ≈(1,δ) (h, rC ,xC , s1, S
′
2) .

So far, we have established that the outcome of the first round (that uses
the public channel) preserves (ε, 0)-differential privacy, and, conditioned on the
outcome of the first round being “good” (i.e., the resulting data structure D is
accurate) we have that the outcome of the second round (that uses the shuffle)
preserves (1, δ)-differential privacy. Intuitively, we now want to use composition
theorems for differential privacy to show that the two rounds together satisfy
differential privacy. A small technical issue that we need to handle, though, is
that the privacy guarantees of the second round depend on the success of the
first round. As the outcome of the first round is “good” with overwhelming
probability, this technical issue can easily be resolved, as follows.

Consider two random variables S̃1 and S̃′1 that are identical to S1 and S′1,
except that if the resulting data structure D(·) is not accurate, then the value
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is replaced such that the resulting data structure D(·) is exactly correct. Since
the protocol for histograms fails with probability at most δ, we have that(
h, rC ,xC , S̃1

)
≈(0,δ) (h, rC ,xC , S1) ≈(ε,δ) (h, rC ,xC , S

′
1) ≈(0,δ)

(
h, rC ,xC , S̃′1

)
.

In words, consider an imaginary protocol in which the outcome distribution of the
first round during the two executions is replaced by S̃1 and S̃′1, respectively. The
statistical distance between the outcome distribution of this imaginary protocol
and the original protocol is at most δ. In addition, for every possible fixture of
the outcome of the first (imaginary) round we have the second round preserves
differential privacy. Therefore, composition theorems for differential privacy show
that the two rounds together satisfy differential privacy. Formally,

ViewΠC (x) = (h, rC ,xC , S1, S2) ≈(0,δ)

(
h, rC ,xC , S̃1, S2

)
≈(1+ε,δ)

(
h, rC ,xC , S̃′1, S

′
2

)
≈(0,δ) (h, rC ,xC , S

′
1, S
′
2) = ViewΠC (x′).

ut

Lemma 4.8. Protocol CommonTwoRound solves the common element prob-
lem.

Proof. Fix an input vector x = (x1, . . . , xn) ∈ Xn such that for every i we have
xi = x. By the utility guarantees of the locally-private protocol for histograms,
with probability at least 1− δ it holds that all of the estimates given by D(·) are
accurate to within ±0.01n. In that case, we have that y∗ (defined in Step (3))
satisfies y∗ = h(x). Thus, every message submitted to the shuffle in the second
round is equal to x with probability 1/2, and otherwise equal to ⊥. Therefore,
the analyzer fails to output x in Step (6) only if all of the parties submitted ⊥ to
the shuffle. This happens with probability at most 2−n. Overall, with probability
at least (1− δ − 2−n) the analyzer outputs x. ut

Theorem 4.6 now follows by combining Lemma 4.7 and Lemma 4.8.

5 Possibility and Impossibility for the Nested Common
Element Problem

In this section we define a nested version of the common element problem of Defi-
nition 4.1. This problem has a parameter 0 < α < 1. We show that this problem
cannot be solved in the shuffle model in one round with differential privacy
against coalitions of size αn (regardless of the number of messages each party
can send). In contrast, we show that it can be solved with differential privacy in
one round against coalitions of size cn for any constant c < min {α, 1− α} and
in two rounds against coalitions of size cn for any constant c < 1. The impossi-
bility result for one round and the two round protocol imply a strong separation
between what can be solved in one round and in two rounds.
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Definition 5.1 (Nested common element problem with parameter α).
Let 0 < α < 1. Consider n parties P1, . . . , Pn and an analyzer P0 (as in Re-
mark 2.8). The input of each party in P1, . . . , Pbαnc is an element xi ∈ X and
the input of each party Pbαnc+1, . . . , Pn is a vector yi of |X | elements from some
finite domain Y. The analyzer P0 has no input. If all inputs of P1, . . . , Pbαnc
are equal (i.e., x1 = x2 = · · · = xbαnc) and the x1-th coordinate in all inputs
of Pbαnc+1, . . . , Pn are equal (i.e., ybαnc+1[x1] = ybαnc+2[x1] = · · · = yn[x1]),
then the analyzer P0 must output ybαnc+1[x1] with probability at least 3/4. The
output is not restricted otherwise.

Remark 5.2. When |X | = poly(n) and |Y| is at most exponential in n, then the
length of the inputs of all parties is polynomial in n. Our impossibility result
for the nested common element problem holds in this regime (specifically, when
|X | = Ω̃(n2) and |Y| = 2). Our protocols are correct and private regardless of
the size of X and Y.

We prove the following three theorems.

Theorem 5.3. Let |X | = Ω̃(n2). There is no one-round (1, o(1/n))-differentially
private protocol in the shuffle model against coalition of size bαnc for the nested
common element problem with parameter α (regardless of the number of mes-
sages each party can send).

Theorem 5.4. For every 0 < c < 1, ε, δ ∈ [0, 1], and n ≥ 200
(1−c)n ln 4

δ there

exists a two-round (ε, δ)-differentially private protocol against coalitions of size
cn that with probability at least 1 − 1/2n−1 solves the nested common element
problem with parameter α.

Theorem 5.5. For every constants c, α such that 0 < c < min {α, 1− α} < 1,
there exists a constant ε0 such that there exits a one-round (ε0, δ)-differentially
private protocol against coalitions of size cn that with probability at least 3/4
solves the nested common element problem with parameter α, where
δ = 2−O(min{α,1−α}−c)n) and n ≥ 6 ·max {1/α, 1/(1− α)}.

In the rest of this section we prove Theorem 5.3. The proofs of Theorems 5.4
and 5.5 are given in the full version of this paper.

5.1 An impossibility result for private one-round protocols for the
nested common element problem

We next show that the nested common element problem with parameter α cannot
be solved privately against coalitions of size αn when X is large enough, namely,
when |X | = Ω̃(n2). The proof of the impossibility result is done by using an
impossibility result to the vector common element problem (in the centralized
model) defined below.
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Definition 5.6 (The vector common element problem). The input of the

problem is a database containing n vectors (y1, . . . ,yn) ∈ ({0, 1}d)n. For a given
set of vectors y1, . . . ,yn, define for every b ∈ {0, 1}

Ib = {j : y1[j] = · · · = yn[j] = b} .

To solve the the vector common element problem, an analyzer must output with
probability at least 1 − o(1/n) sets J0 and J1 such that I0 ⊆ J0, I1 ⊆ J1, and
J0 ∩ J1 = ∅.

In words, the task in the vector common element problem is to identify the
coordinates in which the inputs vectors agree, that is, for each coordinate if
all the vectors agree on the value of the coordinate then the algorithm should
return this coordinate and the common value; if the vectors do not agree on this
coordinate then the algorithm can say that this is either a zero-coordinate, a
one-coordinate, or none of the above.

The following theorem is implied by the techniques of [14] (i.e., the reduction
to fingerprinting codes).

Theorem 5.7 ([14]). For every d ∈ N, any (1, o(1/n))-differentially private
algorithm in the centralized model for the vector common element problem with
vectors of length d has sample complexity Ω̃(

√
d).

We next prove our impossibility result, i.e., prove Theorem 5.3.

Proof of Theorem 5.3. We show that if for |X | = Ω̃(n2) there is an n-party pro-
tocol, denoted Π, in the shuffle model for the nested common element problem
with parameter α that is private against the coalition of parties holding the
x-inputs, namely, C =

{
P1, . . . , Pbαnc

}
, then there is an algorithm in the cen-

tralized model for the vector common element problem with database of size
O(n2 log n) violating Theorem 5.7.

As a first step, consider the following algorithm A1 for the vector common
element problem in the centralized model, whose inputs are ybαnc+1, . . . ,yn
(each vector of length |X |).

1. The analyzer chooses a public random string w.
2. For each i ∈ {bαnc+ 1, . . . , n}, the analyzer simulates party Pi in protocol
Π with the input yi and the public random string w, generating a vector of
messages mi.

3. The analyzer shuffles the messages in mbαnc+1, · · · ,mn, denote the output
of the shuffle by m̃.

4. For every x ∈ X do:
(a) For each i ∈ {1, . . . , bαnc}, the analyzer simulates party Pi in protocol

Π with the input x and the public random string w, generating a vector
of messages mi.

(b) The analyzer shuffles the messages in m̃,m1, . . . ,mbαnc, gives the shuf-
fled messages to the analyzer of Π, and gets an output zx.

5. The analyzer returns Ib = {x : zx = b} for b ∈ {0, 1}.
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First we argue that A1 is (1, o(1/n))-differentially private: The coalition C
sees the output of the shuffle in Π and can remove the messages it sent to the
shuffle in Π, therefore computing m̃ from the view is a post-processing of an
(ε, o(1/n))-differentially private output. Second, notice that for every x ∈ X , the
shuffled messages that the analyzer of Π gets in Step (4b) are distributed as in
Π, thus, if ybαnc+1[x] = · · · = yn[x] = b, then zx = b with probability at least
3/4 (however for x 6= x′ these events might be independent).

The success probability of A1 is not enough to violate Theorem 5.3 and we
repeat it O(log |X |) times. This is done in A2, which preserves the privacy using
sub-sampling:

1. Inputs: vectors y1, . . . ,yt, where t = O(n ln |X |).
2. For ` = 1 to 4 ln |X | do:

(a) Sample a set T ⊂ [t] of size t
(3+exp(1))4 ln |X | = n and execute A1 on the

vectors (yi)i∈T and get sets J`0, J
`
1.

3. For b ∈ {0, 1}, let Jb =
{
j : j ∈ J`b for more than 4 ln |X | indices `

}
.

By Theorem A.3 (i.e., sub-sampling) and since A1 is (1, o( 1
n ))-differentially pri-

vate, each execution of Step (2a) is ( 1
4 ln |X | , o(

1
n ln |X | ))-differentially private. By

simple composition, algorithm A2 is (1, o(1/n))-differentially private.
We next argue that with probability at least 1−o(1/n) algorithm A2 outputs

disjoint sets J0, J1 such that I0 ⊆ J0 and I1 ⊆ J1. Fix j such that y1[j] = · · · =
yt[j] = b for some b. By the correctness of A1, for every ` ∈ [4 ln |X |] it holds
that j ∈ J`b with probability at least 3/4 and these events are independent.
Thus, by the Hoeffding inequality, j ∈ J`b for more than half of the values of `
with probability at least 1 − 1/|X |2. By the union bound, the probability that
the algorithm errs for some coordinate for which all vectors yi agree is at most
1/|X | = Õ(1/n2) = o(1/n).

To conclude, assuming that Π as above exits, we constructed a (1, o(1/n))-
differentially private algorithm A2 with database of size O(n2 log n) and d =
|X | = Ω̃(|X |2), contradicting Theorem 5.7. ut
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A Additional Preliminaries from Differential Privacy

The following theorem bounds the mutual information between the input and
the output of a differentially private algorithm (that operates on a database of
size 1).

Theorem A.1 ([8]). Let X be uniformly distributed over X . Let A be an (ε, δ)-
differentially private algorithm that operates on a single input (i.e., a database
of size 1) from X . Let Z denote A(X). Then,

I(X;Z) = O

(
ε2 +

δ

ε
log |X |+ δ

ε
log(ε/δ)

)
.

In our protocols we will use the following protocol in the local model for
computing histograms.

Theorem A.2 (Histogram protocol [8,7,12]). Let β, ε ≤ 1 and X be some
finite domain. There exists a 1-round (ε, 0)-differentially private protocol in the
local model for n parties with message complexity 1, in which the input of each
agent is a single element from X and the outcome is a data structure D : X → [n]
such that for every input to the protocol x ∈ Xn, with probability at least 1− β,
for every input vector x = (x1, . . . , xn) ∈ X we have∣∣∣ D(x)− |{i : xi = x}|

∣∣∣ ≤ O(1

ε
·

√
n · log

(
|X |
β

))
.

We next recall the sub-sampling technique from [28,9].

Theorem A.3 (Sub-sampling [28,9]). Let A1 be an (ε∗, δ)-differentially pri-
vate algorithm operating on databases of size n. Fix ε ≤ 1, and denote t =
n
ε (3+exp(ε∗)). Construct an algorithm A2 that on input a database D = (zi)

t
i=1

uniformly at random selects a subset T ⊆ {1, 2, ..., t} of size n, and runs A1 on

the multiset DT = (zi)i∈T . Then, A2 is
(
ε, 4ε

3+exp(ε∗)δ
)

-differentially private.

Secure addition protocols in the shuffle model. Ishai et al. [27] gave a
protocol where n ≥ 2 parties communicate with an analyzer (as in Remark 2.8)
to compute the sum of their inputs in a finite group G, in the semi-honest
setting and in the presence of a coalition including the analyzer and up to n− 1
parties. In their protocol, each participating party splits their input into ` =
O(log |G|+log n+σ) shares and sends each share in a separate message through
the shuffle. Upon receiving the n` shuffled messages, the analyzer adds them
up (in G) to compute the sum. Recent work by Ghazi et al. [24] and Balle et
al. [6] improved the dependency of the number of messages on the number of
participating parties to ` = O (1 + (log |G|+ σ)/ log n).

Theorem A.4 ([27,24,6]). Let G be a finite group. There exist a one-round
shuffle model summation protocol with n parties holding inputs xi ∈ G and an
analyzer. The protocol is secure in the semi-honest model, and in the presence
of coalitions including the analyzer and up to n− 1 parties.
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