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Abstract. This work concerns secure protocols in the massively parallel
computation (MPC) model, which is one of the most widely-accepted
models for capturing the challenges of writing protocols for the types
of parallel computing clusters which have become commonplace today
(MapReduce, Hadoop, Spark, etc.). Recently, the work of Chan et al.
(ITCS ’20) initiated this study, giving a way to compile any MPC protocol
into a secure one in the common random string model, achieving the
standard secure multi-party computation definition of security with up
to 1/3 of the parties being corrupt.

We are interested in achieving security for much more than 1/3 corruptions.
To that end, we give two compilers for MPC protocols, which assume a
simple public-key infrastructure, and achieve semi-honest security for all-
but-one corruptions. Our first compiler assumes hardness of the learning-
with-errors (LWE) problem, and works for any MPC protocol with “short”
output—that is, where the output of the protocol can fit into the storage
space of one machine, for instance protocols that output a trained machine
learning model. Our second compiler works for any MPC protocol (even
ones with a long output, such as sorting) but assumes, in addition to
LWE, indistinguishability obfuscation and a circular secure variant of
threshold FHE. Both protocols allow the attacker to choose corrupted
parties based on the trusted setup, an improvement over Chan et al.,
whose protocol requires that the CRS is chosen independently of the
attacker’s choices.

1 Introduction

In the past two decades, the model of a sequential algorithm executing on a
RAM machine with one processor has become increasingly impractical for large-
scale datasets. Indeed, numerous programming paradigms, such as MapReduce,
Hadoop, and Spark, have been developed to utilize parallel computation power
in order to manipulate and analyze the vast amount of data that is available
today. Starting with the work of Karloff, Suri, and Vassilvitskii [49], there
have been several attempts at formalizing a theoretical model capturing such
frameworks [3,33,47,49,52,54,57,70]. Today the most widely accepted model is
called the Massively Parallel Computation (MPC) model. Throughout this paper,



whenever the acronym MPC is used, it means “Massively Parallel Computation”
and not “Multi-Party Computation”.

The MPC model is believed to best capture large clusters of Random Access
Machines (RAM), each with a somewhat considerable amount of local memory
and processing power, yet not enough to store the massive amount of available
data. Such clusters are operated by large companies such as Google or Facebook.
To be more concrete, letting N denote the total number of data records, each
machine can only store s = N ε records locally for some ε ∈ (0, 1), and the total
number of machines is m ≈ N1−ε so that they can jointly store the entire data-set.
One should think of N as huge, say tens or hundreds of petabytes, and ε as small,
say 0.2.4 In many MPC algorithms it is also okay if m · s = N · logcN for some
constant c ∈ N or even m · s = N1+θ for some small constant θ ∈ (0, 1), but not
much larger than that (see, e.g., [49,54,1,4]).

The primary metric for the complexity of algorithms in this model is their
round complexity. Computations that are performed within a machine are es-
sentially “for free”. The rule of thumb in this context is that algorithms that
require o(log2N) rounds (e.g., O(1) or O(log logN))) are considered efficient.
With the goal of designing efficient algorithms in the MPC model, there is an
immensely rich algorithmic literature suggesting various non-trivial efficient algo-
rithms for tasks of interest, including graph problems [1,3,4,5,7,8,9,10,12,17,18,16],
[30,33,41,43,38,53,54,62,68], clustering [13,15,35,42,73] and submodular function
optimization [67,36,52,58].

Secure MPC. In a very recent work, Chan, Chung, Lin, and Shi [26] initiated the
study of secure computation in the MPC model. Chan et al. [26] showed that any
task that can be efficiently computed in this model can also be securely computed
with comparable efficiency. More precisely, they show that any MPC algorithm
can be compiled to a secure counterpart that defends against a malicious adversary
who controls up to 1/3− η fraction of machines (for an arbitrarily small constant
η), where the security guarantee is similar to the one in cryptographic secure
multiparty computation. In other words, an adversary is prevented from learning
anything about the honest parties’ inputs except for what the output of the
functionality reveals. The cost of this compilation is very small: the compiled
protocol only increases the round complexity by a constant factor, and the space
required by each machine only increases by a multiplicative factor that is a fixed
polynomial in the security parameter. Since round complexity is so important in
the MPC setting, it is crucial that these cost blowups are small. Indeed, any useful
compiler must preserve even a sublogarithmic round complexity. The security of
their construction relies on the Learning With Errors (LWE) assumption and
they further rely on the existence of a common random string that is chosen
after the adversary commits to its corrupted set.

Why is secure MPC hard? Since there is a long line of work studying secure
multiparty computation (starting with [45,19]), a natural first question is whether

4 If N is one Petabyte (106 Gigabytes), then the storage of each machine in the cluster
needs to be < 16 Gigabytes.
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these classical results extend to the MPC model in a straightforward way. The
crucial aspect of algorithms in the MPC model which makes this task non-trivial is
the combination of the space constraint with the required small round complexity.
Indeed, many existing techniques from the standard secure computation literature
fail to extend to this model, since they either require too many rounds or they
require each party to store too much data. For instance, it is impossible for any
one party to store commitments or shares of all other parties’ inputs, a common
requirement in many secure computation protocols (e.g., [50,65]). This also rules
out naively adapting protocols that rely on more modern tools such as threshold
FHE [6,59,34], as they also involve a similar first step. Even previous work that
focused on large-scale secure computation [22] required one broadcast message
per party, which either incurs a large space overhead or a large blowup in the
number of rounds. Chan et al. [26] give an exciting feasibility result for secure
protocols in this model, but their construction, as mentioned, has some significant
limitations: (1) it only tolerates at most ≈1/3 corruptions, and (2) it relies on
a trusted setup which must be chosen after the choice of the corrupted parties.
Whether these limitations are inherent in this new model remains an intriguing
open question.

This work. We consider the setting of all-but-one corruptions, where the com-
putation is performed in the MPC model but security is required even for a
single honest machine if all other players are controlled by an adversary. In the
classical secure multi-party computation literature this setting is referred to as
the dishonest majority setting and generic protocols tolerating such adversarial
behaviour are well known (e.g., [45]). In contrast, in the MPC model, it is a-priori
not even clear that such a generic result can be obtained with the space and
round complexity constraints. This raises the following question, which is the
focus of this work:

Is there a generic way to efficiently compile any massively parallel protocol
into a secure version that tolerates all-but-one corruptions?

1.1 Our Results

We answer the above question in the affirmative. We give two compilers that can
be used to efficiently compile any algorithm in the MPC model into an algorithm
that implements the same functionality also in the MPC model, but now secure
even in the presence of an attacker who controls up to m− 1 of the m machines.
Both of our protocols handle semi-honest attackers who are assumed to follow
the specification of the protocol.

In terms of trusted setup, in both of our protocols we assume that there is
a public-key infrastructure (PKI) which consists of a (pk, sk1, . . . , skm): a single
public key and m secret keys, one per machine. Machine i ∈ [m] knows pk and
ski, whose size is independent of N (and none of the other secret keys). Crucially,
our protocols allow the adversary to choose the corrupted parties based on the
setup phase, an improvement over the construction of [26], for which there is
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an obvious and devastating attack if the adversary can choose corrupted parties
based on the common random string.

Notation and parameters. Let N denote the bit size of the data-set5 and suppose
that each machine has space s = N ε for some fixed constant ε ∈ (0, 1). We further
assume that the number of machines, m, is about N1−ε or even a little bigger.
The security parameter is denoted λ and it is assumed that N < λc for some
c ∈ N and s > λ.

Secure MPC with Short Outputs Our first result is a compiler that fits best
for tasks whose output is “short”. By short we mean that it fits into the memory
of (say) a single machine. The compiler blows up the number of rounds by a
constant and the space by a fixed polynomial in the security parameter, which
is identical to the efficiency of the compiler in [26]. For security, we rely on the
LWE assumption [69].

While at first it may seem that this compiler is quite restricted in the
class of algorithms it supports, in fact, there are many important and central
functionalities that fit in this class. For instance, this class contains all graph
problems whose output is somewhat succinct (like finding a shortest path in a
graph, a minimum spanning tree, a small enough connected component, etc). Even
more impressively, all submodular maximization problems, a class of problems
that captures a wide variety of problems in machine learning, fit into this class [67].

Theorem 1 (Secure MPC for Short Output, Informal). Assume hardness
of LWE. Given any massively parallel computation (MPC) protocol Π which
after R rounds results in an output of size ≤ s for party 1 and no output for
any other party, there is a secure MPC algorithm Π̃ that securely realizes Π
with semi-honest security in the presence of an adversary that statically corrupts
up to m− 1 parties. Moreover, Π̃ completes in O(R) rounds, consumes at most
O(s)·poly(λ) space per machine, and incurs O(m·s)·poly(λ) total communication
per round.

As mentioned above, by security we mean an analogue of standard cryp-
tographic multiparty computation security, adapted to the massively parallel
computation (MPC) model. We use the LWE assumption to instantiate a secure
variant of an n-out-of-n threshold fully-homomorphic scheme (FHE) [6,20] which
supports “incremental decoding”. This is an alternative to the standard decoding
procedure of threshold FHE schemes which is suited to work in the MPC model.
See Section 2 for details.

We prove that our construction satisfies semi-honest security where the
attacker gets to choose its corrupted set before the protocol begins but after
the public key is published. (In comparison, recall that [26] had their attacker
commit on its corrupted set before even seeing the CRS.)

5 We assume for simplicity that a data record takes up one bit.
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Secure MPC with Long Outputs Our second result is a compiler that works
for any protocol in the MPC model. Many MPC protocols perform tasks whose
output is much larger than what fits into one machine. Such tasks may include,
for example, the task of sorting the input. Here the result of the protocol is that
each machine contains a small piece of the output, which is considered to be the
concatenation of all machines’ outputs in order. Our second compiler can be used
for such functionalities.

In this construction we rely, in addition to LWE, on a circular secure variant
of the threshold FHE scheme from the short output protocol and also on indis-
tinguishability obfuscation [14,39,71]. The compiler achieves the same round and
space blowup as the short-output compiler.

Theorem 2 (Secure MPC for Long Output, Informal). Assume the exis-
tence of an circular secure n-out-of-n threshold FHE scheme with incremental
decoding, along with iO and hardness of LWE. Given any massively parallel com-
putation (MPC) protocol Π that completes in R rounds, there is a secure MPC
algorithm Π̃ that securely realizes Π with semi-honest security in the presence of
an adversary that statically corrupts up to m− 1 parties. Moreover, Π̃ completes
in O(R) rounds, consumes at most O(s) · poly(λ) space per machine, and incurs
O(m · s) · poly(λ) total communication per round.

1.2 Related Work

The cryptography literature has extensively studied secure computation on par-
allel architectures, but most existing works focus on the PRAM model (where
each processing unit has O(1) local storage) [61,22,23,29,56,31,32,28,27,2]. Most
real-world large-scale parallel computation is now done on large clusters which are
much more accurately modeled by the MPC architecture, and the aforementioned
works usually do not apply to this setting. Other distributed models of computa-
tions have been considered in cryptographic contexts. Parter and Yogev [63,64]
considered secure computation on graphs in the so-called CONGEST model of
computation (where each message is of size at most O(logN) bits).

Paper Organization

An overview of our constructions is given next in Section 2. Some standard
preliminaries and the building blocks that we use in our construction are formally
defined in Section 3. The MPC model is formally defined in Section 4. The
compiler for short output protocols appears in Section 5 and the compiler for
long output protocols is in Section 6.

2 Technical Overview

In this section we give the high-level overview of our protocols. Let us briefly recall
the model. The total input size contains N bits and there are about m ≈ N1−ε
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machines, each having space s = N ε. In every round, each machine can send and
receive at most s bits since its local space is bounded (e.g., a machine cannot
broadcast a message to everyone in one round). We are given some protocol in
the MPC model that computes some functionality f : ({0, 1}lin)m → ({0, 1}s)m,
where lin ≤ s, and we would like to compile it into a secure version that computes
the same functionality. We would like to preserve the round complexity up
to constant blowup, and to preserve the space complexity as much as possible.
Moreover, we want semi-honest security, which means there must exist a simulator
which, without the honest parties’ inputs, can simulate the view of a set of
corrupted parties, provided the parties do not deviate from the specification of
the protocol.

Since our goal is to use cryptographic assumptions to achieve security for MPC
protocols, we introduce an additional parameter λ, which is a security parameter.
One should assume that N is upper bounded by some large polynomial in λ and
that s is large enough to store O(λ) bits.

We first note that we can start by assuming that the communication patterns,
i.e., the number of messages sent by each party, the size of messages, and the
recipients, do not leak anything about the parties’ inputs. We call a protocol that
achieves this communication oblivious. A generic transformation for any MPC
protocol was shown by [26], which achieved communication obliviousness with
constant blowup in rounds and space.

2.1 The Short Output Protocol

We start with a protocol in the easier case where the underlying MPC results
with a “short” output, meaning that it fits into the memory of a single machine
(say the first one).

In a nutshell, the idea is as follows: we want to execute an encrypted version
of the (insecure) MPC algorithm using a homomorphic encryption scheme. In
the classical setting of secure computation this idea was extensively used in
threshold/multi-key FHE based solutions, for instance, in [6,55,60,25,66,20,11]
There, in a high-level, each party first broadcasts an encryption of its input. Then
each party can (locally) homomorphically compute the desired function over
the combined inputs of all parties, and finally all parties participate in a joint
decryption protocol that allows them to decrypt the output. Moreover, this joint
decryption protocol does not allow any party to decrypt any ciphertext beyond
the output ciphertext. The classical joint decryption protocol is completely non-
interactive: each party broadcasts a “partial decryption” value so that each party
who holds partial decryptions from all other parties can locally decode the final
output of the protocol.

Recall that in our setting each party has bounded space and so it is impossible
for any party to store all partial decryptions and so the joint decryption protocol
described above cannot work in the MPC model. To get around this, we relax the
joint decryption protocol by allowing it to be interactive. To this end, we design
a new joint decryption protocol that splits the process of “combining” partial
decryption into many rounds (concretely, logλm ∈ O(1) rounds). We use the
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additive-secret-sharing threshold FHE scheme of Boneh et al. [20] and modify
their decryption procedure, as we explain next.

At a high-level, the ciphertext in the simplest variant of Boneh et al.’s [20]
scheme is a GSW [40] ciphertext, and each party’s secret key is a linear share of
the GSW secret key. In addition, partial decryption works in the same way as the
GSW decryption using the secret key share with an additional re-randomization,
and then the final decryption phase is just a linear function that combines the
partial decryptions and a final step of rounding. 6 We observe that the first part
of final decryption, which is just a linear function, can be executed in a tree-like
fashion, so that if each party has a partial decryption, no party will need to store
more than a few partial decryptions at a time.

Our trick is to adjust the parameters of this tree to be aligned with the MPC
model. We let each machine hold about λ different partial decryptions (causing
a λ blow up in space) which causes the depth of the tree to be roughly logλm.
Since m is bounded by some fixed polynomial in λ this is still O(1). Overall, this
step adds O(1) rounds of communication and results with a single party knowing
the output. As a small technical note, to simulate the view of set of corrupted
parties which do not learn the output, we require one additional property of the
threshold FHE scheme: it must be possible to simulate partial decryptions of an
incomplete set I ′ ( [m] of parties without knowing even the output of the circuit.
This requirement is not captured in the original definition of threshold FHE in
[20], but we show that their construction satisfies it.

2.2 The Long Output Protocol

Here, we would like to support MPC protocols whose output is “long”, namely,
each party will have an output. Directly extending the short output protocol fails.
Indeed, there, we used a tree-like protocol to gradually “aggregate” the sum of all
partial decryption at a single machines’s memory. In the current case, each party
needs to do the same procedure to recover its own output. Since we have a bound
on the total communication of each party, we cannot run all gradual decryptions
in parallel, so this requires about m/ε rounds (which is way too much).

Recall that the goal of the decryption phase is for the parties to learn the
decryption of its output, without learning the decryptions of any other ciphertext.
If we can somehow construct a decryption phase where the communication is
independent of the output size, we would have a valid long output protocol. This
is non-trivial: what we essentially need is some “limited” master secret key, which
somehow only decrypts a limited set of ciphertexts, and nothing else. Moreover,
we need to be able to generate this key within the limitations of the MPC model:
no single machine can even hold the complete set of ciphertext which this secret
key is supposed to decrypt.

Let us define the functionality of this “limited” master secret key more
formally. It will be convenient to describe it as a circuit. Ideally, the circuit

6 Note that although the Shamir-based TFHE scheme in [20] requires a field size which
is polynomial in the number of parties n, the field size in the simpler additive-based
scheme is independent of n, which is crucial in our construction.
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has hardwired the secret keys from all parties along with all ciphertexts which
correspond to the output of the computation. Each party would be able to submit
its output to the circuit, and the circuit would be able to check if this ciphertext
is a member of the valid set, and decrypt if this is the case. Even ignoring security
(namely, that a machine can learn all keys; we will address this later), there are
two efficiency problems: first, the circuit contains m ciphertexts, and the second
is that it contains m secret keys (and recall that m� s).

To solve the first problem, instead of storing the ciphertexts explicitly, we
use a succinct commitment thereof. We need a way for the parties to collectively
compute this commitment in the MPC model and without increasing the number
of rounds too much. To this end, we use a variant of Merkle commitments with
larger arity. We note that the tree structure of Merkle commitments suits our
model very well: if a single machine is responsible for computing the label of
a single node in the tree, we achieve a low-communication-complexity protocol
relatively easily. Then, if we set the arity to be O(λ), the number of rounds will
be roughly logλm, which is constant assuming m is at most a fixed polynomial
in λ.

To solve the second problem, we observe an important property about the
basic n-out-of-n threshold FHE scheme of Boneh et al. Namely, in this scheme,
the public key is a GSW public key, each party’s secret key is a linear share of the
corresponding GSW secret key, and encryption under the threshold FHE scheme
is simply a GSW encryption with this public key. This means that knowing the
sum of all parties’ secret keys is sufficient to decrypt, and this sum is compact.

So we have a feasible circuit with the functionality we need in order to
implement a “limited” master secret key. We of course need a secure version of
this circuit, which will not leak the master secret key hardcoded in the circuit. To
do this we use indistinguishability obfuscation. We give a high-level overview of
the techniques which we use in conjunction with obfuscation to achieve security.
Since we want to be able to simulate the view of the corrupted parties, we need
a simulated version of the circuit, which has no master secret key embedded
but which can still produce the decrypted outputs. The main idea for how we
overcome this is to exploit the fact that the simulator is allowed to set the
randomness of the corrupted parties. We will use the Merkle commitment to
force each party to input their randomness to the circuit, and when simulating
we will embed the output in this randomness, padded with a PRF. The circuit
can then unpad and use this as its output without knowing the secret key.
This is a somewhat standard technique in iO literature first used by [46]. One
technical detail is that since iO only guarantees indistinguishability against
circuits which are functionally equivalent, we need a succinct commitment which
can guarantee statistical binding for some indices. This type of primitive, a
somewhere-statistically-binding (SSB) hash, was also constructed by [46] from
the learning-with-errors (LWE) assumption. We observe that the construction of
[46] also uses a tree structure similar to a Merkle tree, which allows the machines
to collectively compute the commitment without too much communication or
storage.
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Now that we have a way to generate a “limited” secret key, the question is,
how can the parties do this without leaking their secret key shares? We need
to somehow assemble this obfuscated circuit, which has the master secret key
embedded, even though no party is allowed to know the master secret key. Our
key idea is to leverage our short-output secure MPC protocol for this purpose:
we can use that protocol to securely compute the obfuscated circuit! The short-
output protocol guarantees that parties learn nothing about the execution of the
protocol beyond the output and their inputs, and this is exactly what we need in
order to compute the obfuscated circuit without revealing the master secret key.

One final technical challenge we need to overcome is that an SSB hash
commitment does not guarantee privacy; it may leak information about the
committed values. In order to achieve output privacy, we introduce an extra step
in the protocol where each party pads their encrypted output before committing.
We refer to Section 6 for details.

On the necessity of a PKI. Our constructions require a public-key infrastructure
(PKI); a trusted party must generate a (single) public key and (many) secret
key shares which it distributes to each machine. We do not know if this is
necessary, but at least we argue that known techniques from the classical secure
computation literature do not work in the MPC model (and so drastically new
ideas are needed). Indeed, classically, secure multi-party computation protocols
avoid using a PKI by using threshold multi-key FHE (e.g., [6,55,60,25,66,11]),
where each party generates its own key pair and uses the concatenation of all
public keys as the master public key. This does not extend to our setting, since
the number of machines is much larger than the space of each individual machine
(and so a machines cannot even store all public keys). Of course, obtaining our
results without a PKI is a natural open problem.

3 Preliminaries

For x ∈ {0, 1}∗, let x[a : b] be the substring of x starting at a and ending at
b. A function negl : N→ R is negligible if it is asymptotically smaller than any
inverse-polynomial function, namely, for every constant c > 0 there exists an
integer Nc such that negl(λ) ≤ λ−c for all λ > Nc. Two sequences of random
variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable
if for any non-uniform PPT algorithm A there exists a negligible function negl
such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ negl(λ) for all λ ∈ N.

3.1 Threshold FHE with Incremental Decryption

We will use a threshold FHE scheme with an “incremental” decryption procedure,
specialized for the MPC model. Our definition follows that of [48].

An n-out-of-n threshold fully homomorphic encryption scheme with in-
cremental decryption is a tuple (TFHE.Setup,TFHE.Enc,TFHE.Eval,TFHE.Dec,
TFHE.PartDec,TFHE.CombineParts,TFHE.Round) of algorithms which satisfy the
following properties:
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– TFHE.Setup(1λ, n)→ (pk, sk1, . . . , skn): On input the security parameter λ
and the number of parties n, the setup algorithm outputs a public key and a
set of secret key shares.

– TFHE.Encpk(m)→ ct: On input a public key pk and a plaintext m ∈ {0, 1}∗,
the encryption algorithm outputs a ciphertext ct.

– TFHE.Eval(C, ct1, . . . , ctk) → ĉt: On input a public key pk, a circuit C :
{0, 1}l1 × · · · × {0, 1}lk → {0, 1}lo , and a set of ciphertexts ct1, . . . , ctk, the
evaluation algorithm outputs a ciphertext ĉt.

– TFHE.Decsk(ct)→ m: On input the master secret key sk1 + · · ·+ skn and a
ciphertext ct, the decryption algorithm outputs the plaintext m.

– TFHE.PartDecski(ct) → pi: a ciphertext ct and a secret key share ski, the
partial decryption algorithm outputs a partial decryption pi for party Pi.

– TFHE.CombineParts(pI , pJ) → pI∪J : On input two partial decryptions pI
and pJ , the combine algorithm outputs another partial decryption algorithm
pItJ

– TFHE.Round(p) → m: On input a partial decryption p, the rounding algo-
rithm outputs a plaintext m.

Compactness of ciphertexts: There exists a polynomial p such that |ct| ≤ poly(λ) ·
|m| for any ciphertext ct generated from the algorithms of the TFHE, and
pi ≤ poly(λ) · |m| as well for all i.7

Correctness with local decryption: For all λ, n,C,m1, . . . ,mk, the following condi-
tion holds. For (pk, sk1, . . . , skn)← TFHE.Setup(1λ, n), ctj ← TFHE.Encpk(mj)
for j ∈ [k], ĉt← TFHE.Eval(C, ct1, . . . , ctk), and pi ← TFHE.PartDecski(ĉt), take
any binary tree with n leaves labeled with the pi, and with each non-leaf node
v labeled with TFHE.CombineParts(pl, pr), where pl is the label of v’s left child
and pr is the label of v’s right child. Let ρ be the label of the root; then

Pr [TFHE.Round(ρ) = C(m1, . . . ,mk)] = 1− negl(λ).

Correctness of MSK decryption: For all λ, n,C,m1, . . . ,mk, the following condi-
tion holds. For (pk, sk1, . . . , skn) ← TFHE.Setup(1λ, n), cti ← TFHE.Encpk(mi)
for i ∈ [k], ĉt← TFHE.Eval(C, ct1, . . . , ctk),

Pr
[
TFHE.Decsk(ĉt) = C(m1, . . . ,mk)

]
= 1− negl(λ),

where sk = sk1 + · · ·+ skn.

Semantic (and circular) security of encryption: We give two alternative definitions
of semantic security, the standard one and a notion of circular security. For any
PPT adversary A, the following experiment ExptA,TFHE,sem outputs 1 with
1/2 + negl(λ) probability:

7 As noted in the technical overview, although this does not hold for the Shamir-based
TFHE scheme in [20], it does hold for the simpler additive-based TFHE scheme given
in the same paper.
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ExptA,TFHE,sem:

1. The challenger runs (pk, sk1, . . . , skn)← TFHE.Setup(1λ, n) and
provides pk to A.

2. A outputs a set I ( [n] and a message m; for circular security m
can contain special symbols xskiy.

3. The challenger provides {ski}i∈I to A.
4. In circular security, the challenger computes m′ by replacing every

symbol xskiy with the secret key ski. In normal semantic security
the challenger sets m′ = m.

5. The challenger chooses b
$← {0, 1}; if b = 0 then the challenger

sends TFHE.Encpk(m′), and if b = 1 then the challenger sends
TFHE.Encpk(0|m′|).

6. A outputs a guess b′. The experiment outputs 1 if b = b′.

(Circular) Simulation security: There exists a simulator (TFHE.Sim.Setup,
TFHE.Sim.Query) such that for any PPT A, the following experiments
ExptA,TFHE,real and ExptA,TFHE,ideal are indistinguishable:

ExptA,TFHE,real:

1. The challenger runs (pk, sk1, . . . , skn) ← TFHE.Setup(1λ) and
provides pk to A.

2. A outputs a set I ( [n] and messages m1, . . . ,mk, along with
{rj}J for some subset J ⊂ [k]. In addition, for circular simulation
security each mi can contain special symbols xski′y.

3. In circular simulation security, for each i ∈ [k], the challenger
computes m′i by replacing every symbol xski′y with the secret key
ski′ . In normal simulation security, the challenger sets m′i = mi.

4. The challenger provides {ski}i∈I toA and {TFHE.Encpk(m′i)}i∈[k]
to A. For each i ∈ [k], if the adversary supplied randomness ri,
then this randomness is used as the randomness for encrypting
m′i.

5. A issues a polynomial number of adaptive queries of
the form (I ′, C), and for each query the challenger com-
putes ĉt ← TFHE.Eval(C, ct1, . . . , ctk) and responds with
{TFHE.PartDecski(ĉt)}i∈I′ .

6. At the end of the experiment, A outputs a distinguishing bit b.
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ExptA,TFHE,ideal:

1. The challenger runs (pk, sk′1, . . . , sk
′
n, σsim) ← TFHE.Setup(1λ)

and provides pk to A.
2. A outputs a set I ( [n] and messages m1, . . . ,mk, along with
{rj}J for some subset J ⊂ [k]. In addition, for circular simulation
security each mi can contain special symbols xski′y.

3. In circular simulation security, for each i ∈ [k], the challenger
computes m′i by replacing every symbol xski′y with the secret key
ski′ . In normal simulation security, the challenger sets m′i = mi.

4. The challenger runs ({ski}i∈I , σsim) ← TFHE.Sim.Setup(pk, I)
and provides {ski}i∈I and {TFHE.Encpk(m′i)}i∈[k] to A. For each
i ∈ [k], if the adversary supplied randomness ri, then this ran-
domness is used as the randomness for encrypting m′i.

5. A issues a polynomial number of adaptive queries of the
form (I ′, C), and the challenger runs the simulator {pi}i∈I′ ←
TFHE.Sim.Query(C, {cti}i∈[k], {rj}j∈J , C(m′1, . . . ,m

′
k), I ′, σsim)

and responds with {pi}i∈I′ .
6. At the end of the experiment, A outputs a distinguishing bit b.

Simulation of incomplete decryptions: We additionally require that, for the above
experiments, if I ∪ I ′ 6= [n], then it is possible to simulate partial decryptions
without knowing the circuit output. In other words, if I ∪ I ′ 6= [n] then in the
ideal world the challenger can compute

{pi}i∈I′ ← TFHE.Sim.Query(C, {cti}i∈[k], {m′j , rj}j∈J ,⊥, I ′, σsim)

in step 4 above, and indistinguishability still holds.
Although this additional requirement is not explicit in the simulation security

definition of [48], it follows implicitly from the fact that semantic security holds
whenever the adversary does not have all secret keys ski. More specifically,
assume the adversary requests an “incomplete” partial decryption set I ′ from
the challenger, where I ∪ I ′ 6= [m]. This means that for all i ∈ [m] \ (I ∪ I ′), the
adversary receives no information at all about ski, so by TFHE semantic security
it is possible to switch all encryptions for i 6∈ J (i.e. where the adversary does not
supply the encryption randomness) to 0. Thus to simulate partial decryptions for
I ′, it is only necessary to know the output of C over the inputs m′i, i ∈ J , and
0, i 6∈ J . Since the TFHE simulator receives m′i for all i ∈ J , it can thus simulate
partial decryptions without knowing the output of C over the true inputs.

The next theorem states that a threshold FHE (TFHE) scheme with incre-
mental decryption exists under the Learning with Errors (LWE) assumption.

Theorem 3. Assuming LWE, there exists a threshold FHE (TFHE) scheme
with incremental decryption satisfying the above requirements except for circular
security.
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Proof sketch. We use the most basic construction of [20] and observe that it
can be modified to satisfy the incremental decryption property as follows. In
their decryption procedure, one gets all partial decryptions and they are added
together and then a non-linear rounding is performed. We obtain incrementality
by separating the two parts into two procedures. The first only performs the first
part of adding up partial decryptions–this can be done incrementally since this
is a linear operation. The second operation is the rounding operation which is
executed in the end.

To see why the simulation of incomplete decryptions property holds, note
that the secret keys of the parties are linear shares of a GSW secret key. This
means that if I ∪ I ′ 6= [n] then the distribution of shares corresponding to I ∪ I ′
are identical to uniform. Thus the simulator can pick uniform random ski for
each i ∈ I ′ in order to simulate partial decryptions without knowing the circuit
evaluation.

Remark 1. We note that we will use a plain threshold FHE (TFHE) scheme
with incremental decryption in the protocol for short output functionalities (see
Section 5) and so that one can be based on the hardness of LWE. However,
the long output protocol (see Section 6) will require a circular secure version
of threshold FHE (TFHE) scheme with incremental decryption (defined above)
which we do not know how to base on any standard assumption, except by
assuming that the construction from Theorem 3 satisfies it).

3.2 Somewhere Statistically Binding Hash

A somewhere statistically binding (SSB) hash [46] consists of the following
algorithms, which satisfy the properties below:

– SSB.Setup(1λ, L, d, f, i∗)→ h: On input integers L, d, f , and an index i∗ ∈
[fdL], outputs a hash key h.

– SSB.Start(h, x)→ v: On input h and a string x ∈ {0, 1}L, output a hash tree
leaf v.

– SSB.Combine(h, {vi}i∈[f ])→ v̂: On input h and f hash tree nodes {vi}i∈[f ],
output a parent node v̂.

– SSB.Verify(h, i, xi, z, {v})→ b: On input h, and index i, a string xi, a hash
tree root z, and a set {v} of nodes, output 1 iff {v} consists of a path from
the leaf corresponding to xi to the root z, as well as the siblings of all nodes
along this path.

Correctness: For any integers L, d, and f , and any indices i∗, j, strings {xi}i∈[fd]

where |xi| = L, and any h← SSB.Setup(1λ, L, d, f, i∗), if {v} consists of a path in
the tree generated using SSB.Start(h, ·) and SSB.Combine(h, ·) on the leaf strings
{xi}i∈[fd], from the leaf corresponding to xj to the root z, along with the siblings
of all nodes along this path, then SSB.Verify(h, j, xj , z, {v}) = 1.

Compactness of commitment and openings: All node labels generated by the
SSB.Start and SSB.Combine algorithms are binary strings of size poly(λ) · L.
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Index hiding: Consider the following game between an adversary A and a
challenger:

1. A(1λ) chooses L, d, and f , and two indices i∗0 and i∗1.

2. The challenger chooses a bit b ←$ {0, 1} and sets h ←
SSB.Setup(1λ, L, d, f, i∗b).

3. The adversary gets h and outpus a bit b′. The game outputs 1 iff b = b′.

We require that no PPT A can win the game with non-negligible probability.

Somewhere statistically binding: For all λ, L, d, and f , i∗, and for any key
h ← SSB.Setup(1λ, L, d, f, i∗), there do not exist any values z, x, x′, {v}, {v′}
such that SSB.Verify(h, i∗, x, z, {v}) = SSB.Verify(h, i∗, x′, z, {v′}) = 1.

Theorem 4 ([46, Theorem 3.2]). Assume LWE. Then there exists an SSB
hash construction satisfying the above properties.

3.3 Indistinguishability Obfuscation for Circuits

Let C be a class of Boolean circuits. An obfuscation scheme for C consists of one
algorithm iO with the following syntax.

iO(C ∈ C, 1λ): The obfuscation algorithm is a PPT algorithm that takes as
input a circuit C ∈ C, security parameter λ. It outputs an obfuscated circuit.

An obfuscation scheme is said to be a secure indistingushability obfuscator
for C [14,39,71] if it satisfies the following correctness and security properties:

– Correctness: For every security parameter λ, input length n, circuit C ∈ C
that takes n bit inputs, input x ∈ {0, 1}n, C ′(x) = C(x), for C ′ ← iO(C, 1λ).

– Security: For every PPT adversary A = (A1, A2), the following experiment
outputs 1 with at most 1/2 + negl(λ):

Experiment ExptA,iO :

1. (C0, C1, σ)← A1(1λ)
2. If |C0| 6= |C1|, or if either C0 or C1 have different input lengths,

then the experiment outputs a uniformly random bit.
Else, let n denote the input lengths of C0, C1. If there exists an
input x ∈ {0, 1}n such that C0(x) 6= C1(x), then the experiment
outputs a uniformly random bit.

3. b← {0, 1}, C̃ ← iO(Cb, 1
λ).

4. b′ ← A2(σ, C̃).
5. Experiment outputs 1 if b = b′, else it outputs 0.
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3.4 Puncturable Pseudorandom Functions

We use the definition of puncturable PRFs given in [72], given as follows. A punc-
turable family of PRFs F is given by a triple of turing machines PPRF.KeyGen,
PPRF.Puncture, and F , and a pair of computable functions n() and m(), satisfying
the following conditions:

– Functionality preserved under puncturing: For every PPT adversary
A such that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ)
where x 6∈ S, we have that:

Pr

[
F (K,x) = F (KS , x) | K ← PPRF.KeyGen(1λ),

KS ← PPRF.Puncture(K,S)

]
= 1

– Pseudorandom at punctured points: For every PPT adversary (A1,A2)
such that A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, consider an
experiment where K ← PPRF.KeyGen(1λ) and KS ← PPRF.Puncture(K,S).
Then we have∣∣∣Pr

[
A2(σ,KS , S, F (K,S)) = 1

]
− Pr

[
A2(σ,KS , S, Um(λ)|̇S|) = 1

]∣∣∣ ≤ negl(λ)

where F (K,S) denotes the concatenation of F (K,x) for all x ∈ S in
lexicographic order and U` denotes the uniform distribution over ` bits.

Theorem 5 ([44,21,24,51]). If one-way functions exist, then for all efficiently
computable n(λ) and m(λ) there exists a puncturable PRF family that maps n(λ)
bits to m(λ) bits.

4 Model

4.1 Massively Parallel Computation (MPC)

We now describe the Massively Parallel Computation (MPC) model. This de-
scription is an adaptation of the description in [26]. Let N be the input size
in bits and ε ∈ (0, 1) a constant. The MPC model consists of m parties, where
m ∈ [N1−ε, poly(N)] and each party has a local space of s = N ε bits. Hence,
the total space of all parties is m · s ≥ N bits. Often in the design of MPC
algorithms we also want that the total space is not too much larger than N , and
thus many works assume that m · s = Õ(N) or m · s = O(N1+θ) for some small
constant θ ∈ (0, 1). The m parties are pairwise connected, so every party can
send messages to every other party.

Protocols in the MPC model work as follows. At the beginning of a protocol,
each party receives N/m bits of input, and then the protocol proceeds in rounds.
During each round, each party performs some local computation bounded by
poly(s), and afterwards may send messages to some other parties through pairwise
channels. A well-formed MPC protocol must guarantee that each party sends
and receives at most s bits each round, since there is no space to store more
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messages. After receiving the messages for this round the party appends them to
its local state. When the protocol terminates, the result of the computation is
written down by all machines, i.e., by concatenating the outputs of all machines.
Every machine’s output is also constrained to at most s bits. An MPC algorithm
may be randomized, in which case every machine has a sequential-access random
tape and can read random coins from the random tape. The size of this random
tape is not charged to the machine’s space consumption.

Communication Obliviousness: In this paper we will assume that the underlying
MPC protocol discussed is communication-oblivious. This means that in each
round, the number of messages, the recipients, and the size of each message are
determined completely independently of all parties’ inputs. More formally, we
assume that there is an efficient algorithm which, given an index i and round
number j, outputs the set of parties Pi sends messages to in round j, along with
number of bits of each message. The work of [26] showed that this is without
loss of generality: any MPC protocol can be compiled into an communication-
oblivious one with constant round blowup. We also assume for simplicity that
the underlying MPC protocol is given in the form of a set of circuits describing
the behavior of each party in each round (one can emulate a RAM program with
storage s with a circuit of width O(s)).

4.2 Secure Massively Parallel Computation

We are interested in achieving secure MPC: we would like protocols where, if a
subset of the parties are corrupted, these parties learn nothing from an execution
of the protocol beyond their inputs and outputs. We focus on semi-honest security,
where all parties follow the protocol specification completely even if they are
corrupted. We will also work in the PKI model, where we assume there is a
trusted party that runs a setup algorithm and distributes a public key and secret
keys to each party.

For an MPC protocol Π and a set I of corrupted parties, denote with
viewΠI (λ, {(xi, ri)}i∈[m]) the distribution of the view of all parties in I in an
execution of Π with inputs {(xi, ri)}. This view contains, for each party Pi, i ∈ I,
Pi’s secret key ski, inputs (xi, ri) to the underlying MPC protocol, the random
coins it uses in executing the compiled protocol, and all messages it received from
all other parties throughout the protocol. We argue the existence of simulator S, a
polynomial-time algorithm which takes the public key and the set I off corrupted
parties and generates a view indistinguishable from viewΠI (λ, {(xi, ri)}i∈[m]).

Definition 1. We say that an MPC protocol Π is semi-honest secure in the
PKI model if there exists an efficient simulator S such that for all {(xi, ri)}i∈[m],
and all I ( [m] chosen by an efficient adversary after seeing the public
key, S(λ, pk, I{(xi, ri)}i∈I , {yi}i∈I) is computationally indistinguishable from
viewΠI (λ, {(xi, ri)}i∈[m]).

Note that in this definition we allow the simulator to choose each corrupted
party’s secret key and the random coins it uses.
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5 Secure MPC for Short Output

In this section, we prove the following theorem:

Theorem 6 (Secure MPC for Short Output). Assume hardness of LWE.
Suppose that s = N ε and that m is upper bounded by a fixed polynomial in N .
Let λ denote a security parameter, and assume λ ≤ s and that N ≤ λc for some
fixed constant c. Given any massively parallel computation (MPC) protocol Π
that completes in R rounds where each of the m machines has s local space, and
assuming Π results in an output of size lout ≤ s for party 1 and no output for
any other party, there is a secure MPC algorithm Π̃ in the PKI setting that
securely realizes Π with semi-honest security in the presence of an adversary that
statically corrupts up to m− 1 parties. Moreover, Π̃ completes in O(R) rounds,
consumes at most O(s) · poly(λ) space per machine, and incurs O(m · s) · poly(λ)
total communication per round.

The rest of this section is devoted to the proof of Theorem 6

5.1 Assumptions and Notation

We assume, without loss of generality, the following about the massively parallel
computation (MPC) protocol which we will compile (these assumptions are
essentially the same as in the previous section):

– The protocol takes R rounds, and is represented by a family of circuits
{Mi,j}i∈[m],j∈[R], where Mi,j denotes the behavior of party Pi in round j.
In the proof of security we will also use the circuit M , the composition of
all Mi,j , which takes in all parties’ initial states and outputs the combined
output of the protocol.

– The protocol is communication-oblivious: during round j, each party Pi sends
messages to a prescribed number of parties, each of a prescribed number of
bits, and that these recipients and message lengths are efficiently computable
independent of Pi’s state in round j.

– Mi,j takes as input Pi’s state σj−1 ∈ {0, 1}≤s at the end of round j − 1, and
outputs Pi’s updated state σj . We assume σj includes Pi’s outgoing messages
for round j, and that these messages are at a predetermined location in
σj . Let MPCMessages(i, j) be an efficient algorithm which produces a set
{(i′, si′ , ei′)}, where σ[si′ : ei′ ] is the message for Pi′ .

– At the end of each round j, Pi appends all messages received in round j to
the end of σj in arbitrary order.

– The parties’ input lengths are all lin, and the output length is lout.

We assume the following about the Threshold FHE (TFHE) scheme:

– For simplicity, we assume each ciphertext ct has size blowup λ.
– If ct is a valid ciphertext for message m, then ct[λ · (i− 1) : λ · i] is a valid

ciphertext for the i-th bit of m.
– We assume the TFHE scheme takes an implicit depth parameter, which we

set to the depth of M ; we omit this in our descriptions for simplicity.
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5.2 The Protocol

We now give the secure MPC protocol. The protocol proceeds in two phases:
first, each party encrypts its initial state under pk, and the parties carry out
an encrypted version of the original (insecure) MPC protocol using the TFHE
evaluation function. Second, P1 distributes the resulting ciphertext, which is
an encryption of the output, and all parties compute and combine their partial
decryptions so that P1 learns the decrypted output. This second phase crucially
relys on the fact that the TFHE scheme partial decryptions can be combined
locally in a tree.

The formal description of the protocol is below. Note that we use two subpro-
tocols Distribute and Combine, which are given after the main protocol.

Short Output Protocol

Setup: Each party Pi knows a public key pk along with a secret key ski,
where (pk, sk1, . . . , skm)← TFHE.Setup(1λ,m).

Input: Party Pi has input xi and randomness ri to the underlying MPC
protocol.

Encrypted MPC Phase: For the first R rounds, the behavior of each party
Pi is as follows:
– Before starting: Pi computes ctσi,0

← TFHE.Encpk((xi, ri)), its
encrypted initial state.

– During round j: Pi starts with a ciphertext ctσi,j−1
, and does the

following:
1. Compute ctσi,j

← TFHE.Eval(Mi,j , ctσi,j−1
)

2. For each (i′, si′ , ei′) ∈ MPCMessages(i, j), send
ctσi,j [λ · si′ : λ · ei′ ] to party Pi′ .

3. For each encrypted message ctm received in round j, append to
ctσi,j

.

Distributed Output Decryption Phase: At the end of the encrypted
execution of the MPC protocol, P1’s resulting ciphertext ctσ1,R

= cto is an
encryption of the output of the protocol, and the parties do the following:
1. All parties: Run Distribute(cto).
2. Each party Pi: Compute cto,i ← TFHE.PartDecski(cto).
3. All parties: Run Combine(TFHE.CombineParts, {co,i}i∈[m]); P1

obtains the resulting ρ.
4. Output: P1 runs TFHE.Round(ρ) to obtain a decryption of the

output of the underlying MPC protocol.

Distribute(x):
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Parameters: Let the fan-in f be s/(λ|x|). Let t = dlogf me.

Round k: In this round, the parents are all Pi such that i ≡ 0
(mod f t−k), and the children are all Pj such that j ≡ 0 (mod f t−k+1)
but j 6≡ 0 (mod f t−k). Each parent Pi sends x to all its child nodes.
The protocol stops after t rounds. After this point all nodes have x.

Combine(op, {xi}i∈[m]):

Parameters: Assume op is associative and commutative, |xi| = |xj | for all
i, j, and that |xi opxj | = |xi| = |xj |. Let the fan-in f be s/(λ|x|).

Start: Each node Pi sets xi,0 ← xi.

Round k: In this round, the parents are all Pi such that i ≡ 0 (mod fk),
and the children are all Pj such that j ≡ 0 (mod fk−1) but j 6≡ 0
(mod fk). Each child Pj sends xj,k−1 to its parent Pi. Pi sets
xi,k ← xjs,k−1 opxjs+1,k−1 op . . . opxje,k−1, where js is the index of the
first child of Pi, and je is the index of the last child.

End: After t = dlogf me rounds, P1 has x1,t = x1 op . . . opxm.

5.3 Correctness and Efficiency

We refer to the full version of the paper [37] for the proofs of correctness and
efficiency.

5.4 Security

To prove security, we exhibit a semi-honest simulator for the protocol given
above. This simulator will generate a view of an arbitrary set of corrupted parties
using only the corrupted parties’ inputs and randomness and the output of the
protocol, which will be indistinguishable from the view of the corrupted parties in
an honest execution of the protocol. Note that the simulator receives the public
key which is assumed to be generated honestly by the TFHE setup algorithm,
and also receives the set I as input. This allows the corrupted set I to be chosen
based on the public key.

The behavior of the simulator is described below.

Short Output Simulator

19



Input: The simulator receives the corrupted set I, the public key pk, the
corrupted parties’ inputs and randomness {(xi, ri)}i∈I , and, if 1 ∈ I, the
output y.

Simulated Setup: To generate the corrupted parties’ secret keys, the
simulator uses the TFHE simulated setup:
({skc,i}i∈I , σsim)← TFHE.Sim.Setup(pk, I).
After initializing the PKI, the simulator carries out a virtual execution of
the protocol to generate the corrupted parties’ views.

Simulated Encrypted MPC Phase: For the first R rounds, the behavior of
the simulator is as follows:
– Before starting:
• For each corrupted party Pi: The simulator generates

uniform randomness ri and then encrypts Pi’s inputs and
randomness under the public key: ctσi,0

← TFHE.Encpk((xi, ri)).
• For each honest party Pi′ : The simulator computes an

encryption of 0: ctσi,0
← TFHE.Encpk((0|xi|, 0|ri|))

– During round j: The simulator carries out round j in the same way
as in the real world.

Distributed Output Decryption Phase: At the end of the encrypted
execution of the MPC protocol, the simulator has P1’s resulting
ciphertext ctσ1,R

= cto. It then does the following:
1. On behalf of all parties: Run Distribute(cto).
2. For each corrupted Pi: Compute cto,i ← TFHE.PartDecski(cto).
3. Invoke the TFHE simulator to obtain simulated partial decryptions:
{cto,i′}i 6∈I ← TFHE.Sim.Query(M, {ctσi,0

}i∈[m], y, [m] \ I, σsim), or if
1 6∈ I,
{cto,i′}i 6∈I ← TFHE.Sim.Query(M, {ctσi,0}i∈[m],⊥, [m] \ I, σsim).

4. Compute cto,i ← TFHE.PartDecski(cto).
5. On behalf of all parties: Run

Combine(TFHE.CombineParts, {co,i}i∈[m]); P1 obtains the resulting ρ.
6. Output: P1 runs TFHE.Round(ρ) to obtain a decryption of the

output of the underlying MPC protocol.

We refer to the full version of the paper [37] for the proof of indistinguishability
between the real and ideal worlds.

On the source of randomness. The massively parallel computation model states
that a party should not incur a space penalty for the random coins it uses. For
simplicity, we did not address this part of the model in our construction, but a
simple modification allows our protocol to support arbitrarily many random coins.
We can do this by having the randomness embedded in the circuit Mi,j for each
step of the underlying MPC protocol, and having each party rerandomize the
ciphertexts encrypting the MPC messages before sending, the standard technique
for circuit privacy in FHE, to hide this randomness.
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6 Long Output

We now discuss our long-output result. The theorem we prove is below.

Theorem 7 (Secure MPC for Long Output). Assume the existence of an
n-out-of-n threshold FHE scheme with circular security, along with iO and LWE.
Suppose that s = N ε and that m is upper bounded by a fixed polynomial in N .
Let λ denote a security parameter, and assume λ ≤ s and that N ≤ λc for some
fixed constant c. Given any massively parallel computation (MPC) protocol Π
that completes in R rounds where each of the m machines has s local space, and
assuming Π results in each party having an output of size lout ≤ s, there is a
secure MPC algorithm Π̃ that securely realizes Π with semi-honest security in the
presence of an adversary that statically corrupts up to m− 1 parties. Moreover,
Π̃ completes in O(R) rounds, consumes at most O(s) ·poly(λ) space per machine,
and incurs O(m · s) · poly(λ) total communication per round.

The rest of this section is devoted to proving Theorem 7.

6.1 Assumptions and Notation

We assume, without loss of generality, the following about the massively parallel
computation (MPC) protocol which we will compile:

– The protocol takes R rounds, and is represented by a family of circuits
{Mi,j}i∈[m],j∈[R], where Mi,j denotes the behavior of party Pi in round j.
In the proof of security we will also use the circuit M , the composition of
all Mi,j , which takes in all parties’ initial states and outputs the combined
output of the protocol.

– The protocol is oblivious: during round j, each party Pi sends messages to a
prescribed number of parties, each of a prescribed number of bits, and that
these recipients and message lengths are efficiently computable independent
of Pi’s state in round j.

– Mi,j takes as input Pi’s state σj−1 ∈ {0, 1}≤s at the end of round j − 1,
and outputs Pi’s updated state σj . We assume σj includes Pi’s messages
for round j, and that these messages are at a predetermined location in
σj . Let MPCMessages(i, j) be an efficient algorithm which produces a set
{(i′, si′ , ei′)}, where σ[si′ : ei′ ] is the message for Pi′ .

– At the end of each round j, Pi appends all messages received in round j to
the end of σj in arbitrary order.

– Each party’s input is of size lin and its output is of size lout.

We assume the following about the TFHE scheme:

– For simplicity, we assume each ciphertext ct has size blowup λ.
– If ct is a valid ciphertext for message m, then we assume ct[λ · (i− 1) : λ · i]

is a valid ciphertext for the i-th bit of m.
– We assume the TFHE scheme takes an implicit depth parameter, which we

set to the maximum depth of M , SSBDistSetup, or GenerateCircuit; we omit
this in our descriptions for simplicity.
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6.2 The Protocol

We now give the secure MPC protocol. Recall that we are working under a PKI,
so every party Pi knows the public key along with its secret key ski. At a high
level, the protocol is divided into two main phases, as in the previous protocol,
with the major differences occurring in the second phase. In the first phase,
as in the short-output protocol, each party encrypts its initial state under pk,
and the parties carry out an encrypted version of the original (insecure) MPC
protocol using the TFHE evaluation function. In the second phase, the parties
interact with each other so that all parties obtain an obfuscation of a circuit
which will allow them to decrypt their outputs and nothing else. This involves
carrying out a subprotocol CalcSSBHash in which the parties collectively compute
a somewhere-statistically-binding (SSB) commitment to their ciphertexts along
with some randomness. Recall that an SSB hash is a construction Merkle-tree
which is designed specifically to enable security proofs when using iO.

We briefly explain CalcSSBHash. The purpose of this protocol is for all parties
to know an SSB commitment z to their collective inputs, and for each party
Pi to know an opening πi for its respective input. We will perform this process
over a tree with arity f (which we will specify later), mirroring the Merkle-like
tree of the SSB hash. In the first round, the parties use SSB.Start, and then
send the resulting label to the parties Pi′ , i

′ ≡ 0 (mod f) (call these nodes the
parents). Each of these parties Pi′ then uses SSB.Combine on the labels {yi,0} of
its children to get a new combined label yi′,1, and then all the Pi′ parties send
their new labels to Pi′′ , i

′′ ≡ 0 (mod f2). In addition, since the string each party
P ′i now has a part of its children’s openings, namely yi′,1 and the set {yi,0} of
sibling labels, it sends πi,1 = (yi′,1, {yi,0}) to each of its children.

This process completes within 2dlogf me rounds, where in each round the
current layer calculates new labels and sends them to the new layer of parents,
and each layer sends any πi,j received from its parent to all its children. At the
end, all parties will know z and πi.

The formal description of the protocol is below. Note that we use the subpro-
tocols Distribute and CalcSSBHash; Distribute was defined in the previous section,
and CalcSSBHash is defined after the main protocol.

Long Output Protocol

Setup: Each party Pi knows a public key pk along with a secret key ski,
where (pk, sk1, . . . , skm)← TFHE.Setup(1λ,m).

Input: Each party Pi has input xi and randomness ri to the underlying
MPC protocol.

Encrypted MPC Phase: For the first R rounds, the behavior of each party
Pi is exactly as in the encrypted MPC phase of the short output protocol.
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Output Padding Phase: Assume without loss of generality each party’s
plaintext output in the underlying MPC protocol is of size L. After the R
rounds of the encrypted MPC protocol are done, each party Pi does the
following:
1. Compute a random string padi ∈ {0, 1}lout .
2. Calculate ctpadi ← TFHE.Encpk(padi).
3. Calculate cto,i ← TFHE.Eval(⊕, ctpadi , ctσi,R

), the TFHE evaluation
of the circuit which pads σi,R with padi.

Output Circuit Generation Phase: At the end of the previous phase, each
party Pi has an encryption cto,i of their output padded with padi. The
parties then coordinate with each other in a manner which is now
described, so that at the end P1 has an obfuscation of the circuit Csk,z,
defined below.
1. Each party Pi chooses a uniform random string rh,i.
2. All parties run the short-output compiler from the previous section

over the protocol SSBDistSetup(2lout, 1, {rh,i}) defined below, so that
P1 obtains an SSB hash key h.

3. The parties run the protocol Distribute(h).
4. Each party chooses a uniform random string ro,i of size lout, and the

parties run the protocol CalcSSBHash(h, {(cto,i, ro,i)}) defined below,
so that each party Pi obtains an SSB commitment z and an opening
πi to (cto,i, ro,i).

5. Each party chooses a uniform random string riO,i, and the parties run
the short-output compiler over the protocol
GenerateCircuith,z({(ski, riO,i)}) defined below, so that P1 obtains an
obfuscation C ′ of the circuit Cz,sk, also defined below.

6. The parties run Distribute(C ′).

Offline Output Decryption Phase: Once every party knows C ′, each party
Pi can run C ′(i, cto,i, πi) to obtain y′i, Pi’s padded output under the
original MPC protocol. Pi can then compute yi ← yi ⊕ padi.

CalcSSBHash(h, {xi}i∈[m]):

Input: Each party Pi has a key h and xi. In this protocol we will number
the parties starting at 0 (so the first party will be P0).

Parameters: Let λ ≤ s. Assume h is an SSB hash which has been
initialized with fan-in f = s1/2λ/|x|1/2 and t = dlogf me.

Before starting: Each party Pi first computes ← SSB.Start(h, xi) to
obtain a string yi,0 of size λ.
When carrying out the protocol, we will divide the parties into subsets.
Let Sr = {Pi | i ≡ 0 (mod fr)} (and let S0 = {Pi}i∈[m]), let the set of
children for i in Sr be Di,r = {Pj | j ≡ 0 (mod fr−1) and i ≤ j ≤ i+ fr},
and let the parent of i in Sr be qi,r = frbi/frc.
For k = 1, . . . , dlogf me+ 1, do the following:
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Round k: In this round, the parties in the sets Sk−t,
t = 1, 3, . . . , 2dk/2e − 1 will participate.

– Each party Pi in Sk−1 does the following:

1. If k − 1 > 0, receive yj,k−2 from each Pj ∈ Di,k−1
2. If k − 1 > 0, calculate
yi,k−1 ← SSB.Combine(h, {yj,k−2}Pj∈Di,k−1

), and send
(yi,k−1, {yj,k−2}j∈Di,k−1

to all parties Pj , j ∈ Di,k−1.
3. Send yi,k−1 to Pqi

– Each party Pj in Sr for r = 0, . . . , k − 2 does the following:

1. Check if received πj,r′ = (yi,r′ , {yj′,r′−1}j′∈Di,r′ ) from Pqj
2. If so, append πj,r′ to πj .
3. If r > 0, send πj,r′ to all Pj′′ ∈ Dj,r.

For k′ = dlogf me+ 2, . . . , 2dlogf me+ 1:

Round k′: Each party Pj in Sr for r = 0, . . . , dlogf me does the following:

1. Check if received πj,r′ = (yi,r′ , {yj′,r′−1}j′∈Di,r′ ) from Pqj
2. If so, append πj,r′ to πj .

3. If r > 0, send πj,r′ to all Pj′′ ∈ Dj,r.

Output: The protocol stops after 2dlogf me rounds, and every party Pi
knows the SSB tree root y and the opening πi of xi.

SSBDistSetup(l, i∗, {rh,i}):

Parameters: Let λ ≤ s. Let the fan-in f be s1/2λ/l1/2 and d = dlogf me.
1. Parties run Combine(+, {rh,i}) so that P1 gets rh =

∑
rh,i.

2. P1 generates an SSB hash key h← SSB.Setup(1λ, l, d, f, i∗; rh) with l
as the block size and i∗ as the statistically binding index.

Output: At the end of the protocol, P1’s output is defined as h. All other
parties have blank output.

GenerateCircuith,z({(ski, riO,i)}i∈[m]):

Input: P1 the SSB commitment z; each party Pi has ski.

1. Parties run Combine(+, {ski}) so that P1 has the master secret key
sk.

2. Parties run Combine(+, {riO,i}) so that P1 has riO =
∑
riO,i.

3. P1 calculates the obfuscation C ′ ← iO(Csk,z; riO).
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Output: At the end of the protocol, P1’s output is defined as C ′. All other
parties have blank output.

Circuit Ch,sk,z(i, cto,i, ro,i, πi):

1. If SSB.Verify(h, z, i, (cto,i, ro,i), πi) = 1:

(a) Output TFHE.Decsk(cto,i).

2. Otherwise, output ⊥.

6.3 Correctness and Efficiency

We refer to the full version of the paper [37] for the proofs of correctness and
efficiency.

6.4 Security

Let I ⊂ [m] be the set of corrupted parties. We describe the behavior of the
simulator, which takes as input 1λ, I, the public key, the parties’ outputs {yi}i∈[m],
and the corrupted parties’ inputs {xi}i∈I , and outputs the secret keys and the
view of the corrupted parties. Note that as in the short output construction the
construction of this simulator allows the corrupted set I to be chosen based on
the public key.

Long output protocol simulator:

Input: The simulator receives the corrupted set I, the public key pk, the
corrupted parties’ inputs and randomness {(xi, ri)}i∈I , and the corrupted
parties’ outputs {yi}i∈I .

Simulated Setup: To generate the corrupted parties’ secret keys, the
simulator uses the TFHE simulated setup:
({skc,i}i∈I , σsim)← TFHE.Sim.Setup(pk, I).

After initializing the PKI, the simulator carries out a virtual execution of
the protocol to generate the corrupted parties’ views.

Simulated Encrypted MPC Phase: The simulator performs this phase in
exactly the same way as in the short output simulator.
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Output Padding Phase: After the R rounds of the encrypted MPC
protocol are done, the simulator does the following on behalf of each Pi:
1. Compute a random string padi ∈ {0, 1}lout .
2. If i ∈ I, calculate ctpadi ← TFHE.Encpk(padi); otherwise calculate
ctpadi ← TFHE.Encpk(0lout).

3. Calculate cto,i ← TFHE.Eval(⊕, ctpadi , ctσi,R
), the TFHE evaluation

of the circuit which pads σi,R with padi.

Simulated Output Circuit Generation Phase: At the end of the encrypted
execution of the MPC protocol, each party Pi has an encryption cto,i of
their output. The simulator then simulates the output circuit generation
phase in the following manner, so that at the end P1 has an obfuscation
of the circuit C̃h,k,z, defined below.
1. The simulator uses the short-output simulator from the previous

section for the compiled SSBDistSetup protocol, where the protocol
output is set to be h← SSB.Setup(1λ, 2lout, f, d,m, r) for uniform
random r.

2. The simulator runs the protocol Distribute(h) on behalf of all parties.
3. The simulator chooses a PRF key k.
4. The simulator sets ro,i = PRFk(i)⊕ yi ⊕ padi for all i ∈ I, and ro,i

uniformly random for i 6∈ I.
5. The simulator runs the protocol CalcSSBHash(h, {(cto,i, ro,i)}) on

behalf of all parties, so that each party Pi obtains an SSB
commitment z and an opening πi to (cto,i, ro,i).

6. The simulator uses the short-output simulator from the previous
section for the compiled GenerateCircuit protocol, where the protocol
output is set to be the obfuscation C̃ ′ = iO(C̃h,k,z).

7. The simulator runs Distribute(C ′) on behalf of all parties.

Circuit C̃h,k,z(i, cto,i, ri,c, πi):

1. If SSB.Verify(z, i, (cto,i, ri,c), πi) = 1:
(a) Output ri,c ⊕ PRFk(i).

2. Otherwise, output ⊥.

We refer to the full version of paper [37] for the proof of indistinguishability
between the real and ideal worlds.
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6. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction via
threshold FHE. In: EUROCRYPT. pp. 483–501 (2012)

7. Assadi, S.: Simple round compression for parallel vertex cover. CoRR
abs/1709.04599 (2017)

8. Assadi, S., Bateni, M., Bernstein, A., Mirrokni, V.S., Stein, C.: Coresets meet EDCS:
algorithms for matching and vertex cover on massive graphs. In: Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. pp.
1616–1635 (2019)

9. Assadi, S., Khanna, S.: Randomized composable coresets for matching and vertex
cover. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA. pp. 3–12 (2017)

10. Assadi, S., Sun, X., Weinstein, O.: Massively parallel algorithms for finding well-
connected components in sparse graphs. In: ACM Symposium on Principles of
Distributed Computing, PODC. pp. 461–470 (2019)

11. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key FHE
and applications to round-optimal MPC. IACR Cryptology ePrint Archive 2018,
580 (2018)

12. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
mapreduce. Proceedings of the VLDB Endowment 5(5), 454–465 (2012)

13. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-
means++. Proceedings of the VLDB Endowment 5(7), 622–633 (2012)

14. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48
(2012)

15. Bateni, M., Bhaskara, A., Lattanzi, S., Mirrokni, V.: Distributed balanced clustering
via mapping coresets. In: Advances in Neural Information Processing Systems. pp.
2591–2599 (2014)

16. Behnezhad, S., Brandt, S., Derakhshan, M., Fischer, M., Hajiaghayi, M., Karp,
R.M., Uitto, J.: Massively parallel computation of matching and MIS in sparse
graphs. In: ACM Symposium on Principles of Distributed Computing, PODC. pp.
481–490 (2019)

27



17. Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Karp, R.M.: Massively paral-
lel symmetry breaking on sparse graphs: MIS and maximal matching. CoRR
abs/1807.06701 (2018)

18. Behnezhad, S., Hajiaghayi, M., Harris, D.G.: Exponentially faster massively parallel
maximal matching. In: 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS. pp. 1637–1649 (2019)

19. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC.
pp. 1–10 (1988)

20. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R., Sahai,
A.: Threshold cryptosystems from threshold fully homomorphic encryption. In:
Advances in Cryptology - CRYPTO. pp. 565–596 (2018)

21. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Advances in Cryptology - ASIACRYPT. pp. 280–300 (2013)

22. Boyle, E., Chung, K., Pass, R.: Large-scale secure computation: Multi-party com-
putation for (parallel) RAM programs. In: Advances in Cryptology - CRYPTO. pp.
742–762 (2015)

23. Boyle, E., Chung, K., Pass, R.: Oblivious parallel RAM and applications. In: Theory
of Cryptography - 13th International Conference, TCC. pp. 175–204 (2016)

24. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Public-Key Cryptography - PKC. pp. 501–519 (2014)

25. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Advances in Cryptology - CRYPTO. pp. 190–213 (2016)

26. Chan, T.H., Chung, K., Lin, W., Shi, E.: MPC for MPC: secure computation on
a massively parallel computing architecture. In: 11th Innovations in Theoretical
Computer Science Conference, ITCS. pp. 75:1–75:52 (2020)

27. Chan, T.H., Chung, K., Shi, E.: On the depth of oblivious parallel RAM. In:
Advances in Cryptology - ASIACRYPT. pp. 567–597 (2017)

28. Chan, T.H., Nayak, K., Shi, E.: Perfectly secure oblivious parallel RAM. In: Theory
of Cryptography - 16th International Conference, TCC 2018. pp. 636–668 (2018)

29. Chan, T.H., Shi, E.: Circuit OPRAM: unifying statistically and computationally se-
cure orams and oprams. In: Theory of Cryptography - 15th International Conference,
TCC. pp. 72–107 (2017)

30. Chang, Y., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of (∆+1)
coloring in congested clique, massively parallel computation, and centralized local
computation. In: ACM Symposium on Principles of Distributed Computing, PODC.
pp. 471–480 (2019)

31. Chen, Y., Chow, S.S.M., Chung, K., Lai, R.W.F., Lin, W., Zhou, H.: Cryptography
for parallel RAM from indistinguishability obfuscation. In: ACM Conference on
Innovations in Theoretical Computer Science, ITCS. pp. 179–190 (2016)

32. Chung, K.M., Qian, L.: Adaptively secure garbling schemes for parallel computations.
In: TCC (2019)

33. Czumaj, A.,  La̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K., Sankowski, P.: Round
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