Multi-key Fully-Homomorphic Encryption in the
Plain Model

Prabhanjan Ananth', Abhishek Jain?, Zhengzhong Jin%, and Giulio Malavolta®

! University of California Santa Barbara, Santa Barbara, CA
prabhanjan@cs.ucsb.edu
2 Johns Hopkins University, Baltimore, MD
abhishek@cs. jhu.edu
zzjin@cs. jhu.edu
3 Max Planck Institute for Security and Privacy
giulio.malavolta®hotmail.it

Abstract. The notion of multi-key fully homomorphic encryption (multi-
key FHE) [L6pez-Alt, Tromer, Vaikuntanathan, STOC’12] was proposed
as a generalization of fully homomorphic encryption to the multiparty
setting. In a multi-key FHE scheme for n parties, each party can individ-
ually choose a key pair and use it to encrypt its own private input. Given
n ciphertexts computed in this manner, the parties can homomorphically
evaluate a circuit C over them to obtain a new ciphertext containing the
output of C', which can then be decrypted via a decryption protocol. The
key efficiency property is that the size of the (evaluated) ciphertext is
independent of the size of the circuit.

Multi-key FHE with one-round decryption [Mukherjee and Wichs, Euro-
crypt’16], has found several powerful applications in cryptography over
the past few years. However, an important drawback of all such known
schemes is that they require a trusted setup.

In this work, we address the problem of constructing multi-key FHE in
the plain model. We obtain the following results:

— A multi-key FHE scheme with one-round decryption based on the
hardness of learning with errors (LWE), ring LWE, and decisional
small polynomial ratio (DSPR) problems.

— A variant of multi-key FHE where we relax the decryption algo-
rithm to be non-compact — i.e., where the decryption complexity
can depend on the size of C' — based on the hardness of LWE. We
call this variant multi-homomorphic encryption (MHE). We observe
that MHE is already sufficient for some applications of multi-key
FHE.

1 Introduction

Fully-homomorphic encryption [21] (FHE) allows one to compute on encrypted
data. An important limitation of FHE is that it requires all of the data to be en-
crypted under the same public key in order to perform homomorphic evaluations.
To circumvent this shortcoming, Lépez-Alt et al. [29] proposed a multi-party ex-
tension of FHE, namely, multi-key FHE, where each party can sample a key pair

(sks, pk;) locally and encrypt its message under its own public key. Then one
can publicly evaluate any (polynomially computable) circuit over the resulting
ciphertexts ¢; = Enc(pk;, m;), each encrypted under an independently sampled
public key. Naturally, decrypting the resulting multi-key ciphertext requires one
to know all the secret keys for the parties involved.

In this work we are interested in multi-key FHE schemes with a one-round
decryption protocol: Given a multi-key ciphertext ¢ = Enc((pky, ..., pky), C(m1,
...,mpy)), the decryption consists of (i) a local phase, where each party indepen-
dently computes a decryption share p; using its secret key sk;, and a (ii) public
phase, where the plaintext m can be publicly recovered from the decryption
shares (p1,...,pN)-

Other than being an interesting primitive on its own, multi-key FHE with
one-round (also referred to as “non-interactive”) decryption implies a natural
solution for secure multi-party computation (MPC) with optimal round com-
plexity and communication complexity independent of the size of the circuit
being computed [31]. Additionally, multi-key FHE with one-round decryption
has proven to be a versatile tool to construct powerful cryptographic primitives,
such as spooky encryption [18], homomorphic secret sharing [11,12], obfuscation
and functional encryption combiners [4,5], multiparty obfuscation [25], homo-
morphic time-lock puzzles [30,14], and ad-hoc multi-input functional encryption
[1].

To the best of our knowledge, all known multi-key FHE schemes with one-
round decryption assume a trusted setup [17,31,16,32] or require non-standard
assumptions, such as the existence of sub-exponentially secure general-purpose
obfuscation [18]. A major open question in this area (stated in [31,16]) is whether
it is possible to avoid the use of a common setup and obtain a solution in the
plain model.

1.1 Our Results

We present the first construction of a multi-key FHE with one-round decryption
in the plain model, i.e. without a trusted setup, from standard assumptions over
lattices. Specifically, we prove the following main theorem:

Theorem 1 (Informal). Assuming,

- Two-round semi-malicious oblivious transfer in the plain model,
- Multi-key FHE with trusted setup and one-round decryption and,
- Multi-key FHE in the plain model but with arbitrary round decryption,

there exists multi-key FHE in the plain model with one-round decryption.

A multi-key FHE with one-round decryption in the common reference string
(CRS) model can be constructed assuming the hardness of the standard learning
with errors (LWE) problem [17,31]. Similarly, two-round semi-malicious oblivious
transfer can also be instantiated assuming learning with errors [13]. On the other
hand, a multi-key FHE scheme without setup, but with complex decryption, was

proposed in [29] assuming the hardness of the Ring LWE and the decisional small
polynomial ratio (DSPR) problems,* Thus, we obtain the following implication:

Theorem 2 (Informal). Assuming that the LWE, Ring LWE, and DSPR prob-
lems are hard, there exists a leveled multi-key FHE scheme in the plain model
with one-round decryption. Additionally assuming circular security of our scheme,
there exists multi-key FHE in the plain model with one-round decryption.

We remark that our compiler is completely generic in the choice of the scheme
and thus can benefit from future development in the realm of multi-key FHE
with multi-round decryption. We also point out that our construction achieves
a relaxed security notion where, among other differences, we require compu-
tational indistinguishability of simulated decryption shares, whereas the works
of [31,16,32] achieved statistical indistinguishability (see Section 4 for a precise
statement). To the best of our knowledge, this definition suffices for known ap-
plications of multi-key FHE.

Multiparty Homomorphic Encryption. As a stepping stone towards our
main result, we introduce the notion of multiparty homomorphic encryption
(MHE). MHE is a variant of multi-key FHE that retains its key virtue of com-
munication efficiency but sacrifices on the efficiency of final output computation
step. Specifically, the reconstruction of the message from the decryption shares
is “non-compact”, i.e. its computational complexity might depend on the size of
the evaluated circuit. Crucially, we still require that the size of the (evaluated) ci-
phertexts is independent of size of the circuit. As we discuss below, MHE suffices
for some applications of multi-key FHE, including a two-round MPC protocol
where the first message depends only on the input of each party and can be
reused for arbitrarily many evaluations of different circuits.

Note that unlike the case of (single-key) FHE, allowing for non-compact
output computation does not trivialize the notion of MHE. Indeed, in the case
of FHE, a trivial scheme with non-compact output computation can be obtained
via any public-key encryption scheme by simply considering a decryption process
that first recovers the plaintext and then evaluates the circuit to compute the
output. Such an approach, however, does not extend to the multiparty setting
since it would violate the security requirement of MHE (defined similarly to that
of multi-key FHE).

We prove the following theorem:

Theorem 3 (Informal). Assuming the hardness of the LWE problem (with
sub-exponential modulus-to-noise ratio), there exists an MHE scheme in the plain
model.

At a technical level, we develop a recursive self-synthesis transformation that
lifts any one-time MHE scheme (i.e. where the first message can be securely used

4 These assumptions have been cryptanalyzed in [2,27], which affects the concrete
choice of the parameters of the scheme. However, all known attacks (including these
works) run in sub-exponential time. We refer the reader to [26] for recommendations
on the parameter choices for conjectured A-bits of security.

only for the evaluation of a single circuit) to an unbounded MHE. Our approach
bears resemblance to and builds upon several seemingly unrelated works dating
as far back as the construction of pseudorandom functions from pseudorandom
generators [23], as well as recent constructions of indistinguishability obfusca-
tion from functional encryption [9,6] (and even more recently, constructions of
identity-based encryption [20,15]).

Reusable MPC. A direct application of MHE is a two-round (semi-honest)
MPC protocol in the plain model with the following two salient properties:

— The first round of the protocol, which only depends on the inputs of the
parties, can be reused for an arbitrary number of computations. That is,
after the completion of the first round, the parties can execute the second
round multiple times, each time with a different circuit C; of their choice,
to learn the output of Cy over their fixed inputs.

— The communication complexity of the protocol is independent of the circuit
size (and only depends on the circuit depth).

Alternately, we can use our multi-key FHE to achieve the same result with com-
munication complexity independent of the circuit size, albeit based on stronger
assumptions.

Previously, such a protocol — obtained via multi-key FHE — was only known in
the CRS model [31]. Benhamouda and Lin [8] recently investigated the problem
of two-round reusable MPC (with circuit-size dependent communication) and
give a construction for the same, in the plain model, based on bilinear maps.’
Our construction is based on a different assumption, namely, LWE, and therefore
can be conjectured to satisfy post-quantum security.

Concurrent Work on Reusable MPC. The work of Bartusek et al. [7] inves-
tigate the question of two-round MPC with reusable first message. They propose
schemes assuming the hardness of the DDH assumption over traditional groups.
In contrast with our work, the resulting MPC is non-compact, i.e. the communi-
cation complexity is proportional to the size of the circuit. Moreover, unlike [7],
our scheme can be conjectured to be secure against quantum adversaries.

1.2 Open Problems

Our work leaves open some interesting directions for future research. The most
compelling problem is to construct a multi-key FHE with one-round decryption
assuming only the hardness of the (plain) LWE problem. Another relevant direc-
tion is to improve the practical efficiency of our proposal and to obtain a more
“direct” construction of multi-key FHE from lattice assumptions.

® The authors communicated their result statement privately to us. A public version
of their paper was not available at the time of first writing of this paper, but can
now be found in (8].

2 Technical Overview

Towards constructing both multi-key FHE and MHE, we first consider a relaxed
notion of MHE where the evaluation algorithm is allowed to be private; we call
this notion pMHE.

MHE with Private Evaluation (pMHE). An MHE scheme with private
evaluation, associated with n parties, consists of the following algorithms:

— Encryption: The i'" party, for i € [n], on input z; produces a ciphertext
ct; and secret key sk;.

— Evaluation: The i*" party on input all the ciphertexts cti,...,cty, secret
key sk;, and circuit C, it evaluates the ciphertexts to obtain a partial de-
crypted value p;. We emphasize that the i*" party requires sk; for its evalu-
ation and thus is not a public operation.

— Final Decryption: Given all the partial decrypted values (p1,...,pn) and
the circuit C, reconstruct the output C(zq,...,2N).

Towards obtaining our main results, we will also sometimes consider a version of
pMHE in the CRS model, where the encryption, evaluation and the final decryp-
tion algorithms additionally take as input a CRS, generated by a trusted setup.
Furthermore, we will also consider pMHE schemes with an efficiency property
that we refer to as ciphertext succinctness. We postpone defining this property
to later in this section.

Roadmap of our Approach. Using the abstraction of pMHE, we achieve
both of our results as illustrated in Figure 1:

— The starting point of our approach is a one-time pMHE, namely, a pMHE
scheme where the initial ciphertexts, i.e., encryptions of z; for every i € [n],
can be evaluated upon only once. The first step in our approach, involving the
technical bulk of our work, is a reusability transformation that takes a one-
time pMHE in the CRS model and converts it into a pMHE scheme (in the
plain model), that allows for (unbounded) polynomially-many homomorphic
evaluations (of different circuits) over the initial ciphertexts. We outline this
in Section 2.1.

— We next describe two different transformations: The first transformation
converts a pMHE scheme to multi-key FHE (Section 2.2) and the second
transformation converts it to an MHE scheme (Section 2.3).

— Finally, in Section 2.4, we discuss instantiation of one-time pMHE.

2.1 Reusability Transformation

We now proceed to describe our reusability transformation from a one-time
pMHE scheme in the CRS model to a (reusable) pMHE scheme in the plain
model. We will in fact first consider the simpler problem of obtaining a pMHE
scheme in the CRS model. Later, we show how we can modify the transformation
to get rid of the CRS.

One-Time pMHE

CRS
ons|
with

ciphertext succinctness

Reusability Transformation (Section 7)

+ LFE (Section 9.1)

(Reusalzjjt)}LpMHE + FHE (Section 9.2) (Reusable) MHE

ciphertext succinctness

in platn model

+ [29] (Section 8)

Multi-key FHE
in plain model

Fig. 1. Our Approach

Reusability: Naive Attempt. Let OneMHE denote a one-time pMHE scheme.
Using two instantiations of OneMHE that we call OneMHEy and OneMHE;, we
first attempt to build an pMHE scheme for a circuit class C = {Cy,C;} that
allows for only two decryption queries, denoted by TwoMHE.

— The i'" party, for i € [N], on input z;, produces two ciphertexts ct{ and ct?,
where ct} is computed by encrypting x; using OneMHE, and ct; is computed
by encrypting x; using OneMHE;.

— To evaluate a circuit Cy, for b € {0,1}, run the evaluation procedure of
OneMHE, to obtain the partial decrypted values.

— The final decryption on input C} and partial decrypted values produces the
output.

It is easy to see that the above scheme supports two decryption queries. While
the above template can be generalized if C consists of polynomially many circuits;
every circuit in C is associated with an instantiation of OneMHE. However, it is
clear that this approach does not scale when C consists of exponentially many
circuits.

Recursive Self-Synthesis. Instead of generating all the instantiations of
OneMHE during the encryption phase, as is done in TwoMHE, our main insight is
to instead defer the generation of the instantiations of OneMHE to the evaluation

phase. The advantage of this approach is that, during the evaluation phase, we
know exactly which circuit is being evaluated and thus we can afford to be frugal
and only generate the instantiations of OneMHE that are necessary, based on the
description of this circuit. The idea of bootstrapping a ”one-time” secure scheme
into a "multi-time” secure scheme is not new and has been studied in different
contexts in cryptography; be it the classical result on pseudorandom functions
from pseudorandom generators [24] or the more recent results on indistinguisha-
bility from functional encryption [6,10,28] and constructions of identity-based
encryption [20,15,19]. In particular, as we will see soon, our implementation of
deferring the executions of OneMHE and only invoke the instantiations as needed
bears some resemblance to techniques developed in these works, albeit in a very
different context.

Illustration. Before explaining our approach to handle any polynomial number
of decryption queries, we start with the same example as before: The goal is to
build pMHE scheme for a circuit class C = {Cy, C } that allows for 2 decryption
queries. The difference, however, is, unlike before, the approach we describe
below will scale to exponentially many circuits.

We employ a tree-based approach to solve this problem. The tree associated
with this scheme consists of three nodes: a root and two leaves. The first leaf is
associated with the circuit Cy and the second leaf is associated with the circuit
C1. Every node is associated with an instantiation of the one-time pMHE scheme.
Denote the one-time pMHE scheme associated with the root to be OneMHE | ,
with the left leaf to be OneMHE(and the right leaf node to be OneMHE;.

Armed with the above notation, we now present an overview of construction
of a pMHE scheme for C = {Cy, C1 } allowing for 2 decryption queries as follows:

— The 4*" party, for i € [N], on input z;, produces the ciphertext ct! , where
ct’, is computed by encrypting x; using OneMHE .

— To evaluate a circuit Cy, for b € {0,1}, the i*" party does the following:

e First run the evaluation procedure of OneMHE, on input circuit C|
(defined below) to obtain the i*" partial decrypted value associated with
OneMHE .

Denote C' to be the circuit® that takes as input (x1,...,zy) and
produces: (i) GC; o wire labels for OneMHE ciphertext of z; under the
ith party’s secret key, for every i, and, (ii) GC; 1 wire labels for OneMHE;
ciphertext of z; under the i*" party’s secret key, for every i.

o It computes a garbled circuit GC; , defined below.

Denote GC;y to be the garbling of a circuit that takes as input
OneMHE, ciphertexts of x1, ...,z N, performs evaluation of Cj using the
it" secret key associated with OneMHE, and outputs the OneMHE; par-
tial decryption values.

5 We consider the setting where the circuit is randomized; this is without loss of
generality since we can assume that the randomness for this circuit is supplied by
the parties

Output the i*" partial decrypted value of OneMHE | and the garbled circuit
GCip.

— The final decryption algorithm takes as input the OneMHE ; partial decryp-
tion values from all the parties, garbled circuits GCi , ..., GCnp, circuit Cy,
(to be evaluated) and performs the following operations:

e It first runs the final decryption procedure of OneMHE; to obtain the
wire labels corresponding to all the garbled circuits GC1,...,GCn.

e It then evaluates all the garbled circuits to obtain the OneMHE,; partial
decryption values.

e Using the OneMHE, partial decryption values, compute the final decryp-
tion procedure of OneMHE,, to obtain Cy(z1,...,zN).

Full-Fledged Tree-Based Approach. We can generalize the above approach
to construct a pMHE scheme for any circuit class and that handles any poly-
nomially many queries. If s is the maximum size of the circuit in the class of
circuits, we consider a binary tree of depth s.

— Every edge in the tree is labeled. If an edge e is incident from the parent to
its left child then label it with O and if e is incident from the parent to its
right child then label it with 1.

— Every node in the tree is labeled. The label is the concatenation of all the
edge labels on the path from the root to the node.

— Every leaf is associated with a circuit of size s.

With each node v, associate with v a new instantiation of a one-time pMHE
scheme, that we denote by OneMHE;(,, where 1(v) is the label associated with
node v. If v is the root node 1(v) = L.

Informally, the encryption algorithm of pMHE generates OneMHE | encryp-
tion of z; under the i*" secret key. During the evaluation procedure, on input C,
each party generates s garbled circuits, one for every node on the path from the
root to the leaf labeled with C'. The role of these garbled circuits is to delegate
the computation of the partial decrypted values to the final decryption phase. In
more detail, the garbled circuit associated with the node v computes the partial
decrypted values associated with OneMHE;(,. The partial decryption values will
be generated by homomorphically evaluating the following circuit: (i) the wire
labels, associated with OneMHE;,||o encryptions of x1,...,zy, of all the N gar-
bled circuits associated with the node v||0 and, (ii) the wire labels, associated
with OneMHE,,||; encryptions of x1,...,2n, of all the N garbled circuits asso-
ciated with the node v||1. Note that the homomorphic evaluation is performed
inside the garbled circuit.

During the final decryption, starting from the root node, each garbled circuit
(of every party) is evaluated to obtain wire labels of the garbled circuit associated
with the child node on the path from the root to the leaf labelled with C'. Finally,
the garbled circuit associated with the leaf labelled with C' is then evaluated to

obtain the OneMHE¢ partial decrypted values. These partial decrypted values
are then decoded to recover the final output C(x1, ..
We give an overview of the final decryption process in Figure 2.

.,IN).

' \
1
GCry ! 15t party’s :

\ partial de- :

(performs evaluation ! cryptions !

of OneMHE,) : w.r.t. OneMHE, : GCh o1
1 1
1
: : {GC'L,OU}iE[n] (performs evaluation
X ' wire labels of OneMHE,)
: :—» for
) . (CTs of
: : OneMH EUU)
: + \
: : {GCi01}icm)
: : wire labels
1 —> for
' ! (CTs of
| | OneMHE;)
: :
GCnp ' nt? party’s ' \

! partial de- !

(performs evaluation : cryptions :

of OneMHE,) : w.r.t. OneMHE, : GCh.o1

\ ’
M LR T ‘ (performs evaluation

of OneMHEqg,)

Fig. 2. A glimpse of the final decryption process of the reusable pMHE scheme when
evaluated upon the circuit with the boolean representation C' = 01 - - - . During the eval-
uation process, the i'" party generates the garbled circuits GCi0,GCi01,---,GCic
as part of the partial decrypted values. The garbled circuit GCj (., associated with
the prefix 1(v) of C, computes the evaluation procedure of OneMHE,(,). The output of
final decryption of OneMHE;(,y are (i) the wire labels of GC; 1(v)|j0, for every i € [n],
of the encryptions of all the inputs of the parties, z1,...,xn generated with respect to
OneMHE (.| |0 and, (ii) the wire labels of GC; 1(v)||1, for every i € [n], for the encryptions
of all the inputs of the parties, x1,...,zN generated with respect to OneMHE;,y|j1.

Efficiency Challenges. To argue that the above scheme is a pMHE scheme,
we should at the very least argue that the encryption, evaluation and final de-
cryption algorithms can be executed in polynomial time. Let us first argue that
all the garbled circuits can be computed in polynomial time by the i*" party.
The time to compute the garbled circuit associated with the root node is poly-
nomial in the time to compute OneMHEqy and OneMHE; ciphertexts. Even if the

time to compute OneMHEq and OneMHE; ciphertexts only grows proportional
to the depth of the circuits being evaluated, the recursion would already blow
up the size of the first garbled circuit to be ezponential in s! This suggests that
we need to define a suitable succinctness property on OneMHE in order to make
the above transformation work.

Identifying the Necessary Efficiency for Recursion. To make the above
recursion idea work, we impose a stringent efficiency constraint on the encryption
complexity of OneMHE. In particular, we require two properties to hold:

1. The size of the encryption circuit is a polynomial in the security parameter
A, the number of parties, the input length, and the depth of the circuit.

2. The depth of the encryption circuit OneMHE grows polynomially in A, the
number of parties and and the input length.

Put together, we refer to the above efficiency properties as ciphertext succinct-
ness. It turns out that if we have an OneMHE scheme with ciphertext succinct-
ness, then the resulting reusable pMHE scheme has polynomial efficiency and
moreover, the ciphertext sizes in the resulting scheme are polynomial in the
security parameter alone.”

Removing the CRS. Note that if we start with OneMHE in the CRS model,
we end up with reusable pMHE scheme still in the CRS model. However, our
goal was to construct a pMHE in the plain model. To fix this, we revisit the
tree-based approach to construct pMHE and make two important changes.

The first change is the following: Instead of instantiating the root node with
a OneMHE scheme satisfying ciphertext succinctness, we instantiate it by a
OneMHE scheme that need not satisfy any succinctness property (and thus can
be instantiated by any semi-malicious MPC in the plain model); if we work
out the recursion analysis carefully it turns out that its not necessary that the
OneMHE scheme associated with the root node satisfy ciphertext succinctness.
The intermediate nodes, however, still need to satisfy ciphertext succinctness
and thus need to be instantiated using OneMHE in the CRS model.

Since the intermediate nodes still require a CRS, we make the parent node
generate the CRS for its children. That is, upon evaluating the partial decryp-
tion values output by a garbled circuit associated with node v (see Figure 2 for
reference), we obtain: (i) wire labels for crsy, o and the OneMHE(,) o cipher-
texts computed with respect to the common reference string crsy(,jo and, (ii)
wire labels for crsy,,|; and OneMHE,(,; ciphertexts computed with respect to
the common reference string crsy(,)|1- That is, the circuit being homomorphi-
cally evaluated by OneMHE(, first generates crsy,))jo, Crsi()|1, then generates

7 An informed reader may wish to draw an analogy to recent works that devise recur-
sive strategies to build indistinguishability obfuscation from functional encryption
[6,10,28]. These works show that a functional encryption scheme with a sufficiently
compact encryption procedure (roughly, where the complexity of encryption is sub-
linear in the size of the circuit) can be used to build an indistinguishability obfusca-
tion scheme. In a similar vein, ciphertext succinctness can be seen as the necessary
efficiency notion for driving the recursion in our setting without blowing up efficiency.

10

the OneMHE;(,)|j0, OneMHE(,|;1 ciphertexts followed by generating wire labels
for these ciphertexts. This is the reason why we require the root node to be
associated with a OneMHE scheme in the plain model; if not, its unclear how we
would be able to generate the CRS for the root node.

2.2 From pMHE to Multi-key FHE

Once we obtain a reusable pMHE in the plain model, our main result follows from
a simple bootstrapping procedure. Our transformation lifts a multi-key FHE
scheme in the plain model with “complex” (i.e. not one-round) decryption to a
multi-key FHE in the plain model with one-round decryption, by additionally
assuming the existence of a reusable pMHE. Plugging the scheme from [29] into
our compiler yields our main result.

The high-level idea of our transformation is to use the pMHE scheme to
securely evaluate the decryption circuit (no matter how complex is) of input the
multi-key FHE. This allows us to combine the compactness of the multi-key FHE
and the one-round decryption of the pMHE into a single scheme that inherits
the best of both worlds. More concretely, our compiled scheme looks as follows.

— Key Generation: The i-th party runs the key generation algorithm of the
underlying multi-key FHE to obtain a key pair (pk;, sk;), then computes the
pMHE encryption of sk; to obtain a ciphertext ct; and an secret evaluation
key sk;. The public key is set to (pk;, ct;).

— Encryption: To encrypt a message m;, the i-th party simply runs the en-
cryption algorithm of the multi-key FHE scheme to obtain a ciphertext ct;.

— Evaluation: On input the ciphertexts cty,...,cty and a circuit C, the i-th
party runs the (deterministic) multi-key evaluation algorithm to obtain an
evaluated ciphertext ct. Then each party runs the evaluation algorithm of
the pMHE scheme for the circuit

I'(skq,...,sky) = Dec((ski,...,sky),ct)

over the pMHE ciphertexts cty, ..., cty, where the value ct is hardwired in
the circuit. The i-th party returns the corresponding output p;.

— Final Decryption: Given the description of the circuit I" (which is known
to all parties) and the decryption shares (p1,...,pn), reconstruct the output
using the final decryption algorithm of pMHE.

We stress that, in order to achieve the functionality of a multi-key FHE scheme,
it is imperative that the underlying pMHE scheme has reusable ciphertexts,
which was indeed the main challenge for our construction. It is important to
observe that even thought the pMHE scheme does not have a compact decryption
algorithm, this does not affect the compactness of the complied scheme. This is
because the size of the circuit I is independent of the size of the evaluated circuit
C, by the compactness of the underlying multi-key FHE scheme.

11

2.3 From pMHE to MHE

Equipped with pMHE, we discuss how to construct a full-fledged MHE scheme.
There are two hurdles we need to cross to obtain this application. The first being
the fact that pMHE only supports private evaluation and the second being that
pPMHE only satisfies ciphertext succinctness and in particular, could have large
partial decryption values.

We address the second problem by applying a compiler that generically trans-
forms a pMHE scheme with large partial decryption values into a scheme with
succinct partial decryption values; that is, one that only grows proportional to
the input, output lengths and the depth of the circuit being evaluated. Such
compilers, that we refer to as low communication compilers were recently stud-
ied in the context of two-round secure MPC protocols [33,3] and we adapt them
to our setting. Once we apply such a compiler, we achieve our desired pMHE
scheme that satisfies the required efficiency property.

To achieve an MHE scheme with public evaluation, we use a (single-key)
leveled FHE scheme. Each party encrypts its secret key using FHE, that is, the
it" party generates an FHE key pair (pk;, sk;) and encrypts the i*" secret key of
pMHE under pk,; we denote the resulting ciphertext as FHE.ct;. The i** party
ciphertext of the MHE scheme (MHE.ct;) now consists of the i*" party cipher-
text of the pMHE scheme (pMHE.ct;) along with FHE.ct;. The public evaluation
of MHE now consists of homomorphically evaluating the pMHE private eval-
uation circuit, with (C,pMHE.cty,...,pMHE.cty) hardwired, on the ciphertext
FHE.ct;. Since this is performed for each party, there are N resulting FHE ci-
phertexts (FmE?cl7 . FH/EEN). During the partial decryption phase, the i*"

party decrypts FHE.ct; using sk; to obtain the partial decryption value corre-
sponds to the pMHE scheme. The final decryption of MHE is the same as the
final decryption of pMHE.

2.4 Instantiating One-Time pMHE in the CRS model

So far we have shown that one-time pMHE suffices to achieve both of our results.
All that remains is to instantiate the one-time pMHE in the CRS model. We
instantiate this using the multi-key FHE scheme with one-round decryption in
the CRS model. A sequence of works [17,31,16] have presented a construction of
such a scheme based on the LWE problem.

3 Preliminaries

We denote the security parameter by A. We focus only on boolean circuits
in this work. For any circuit C, let C.in,C.out,C.depth be the input length,
output length and depth of the circuit C, respectively. Denote C.params =
(C.in, C.out, C.depth).

For any totally ordered sets Si,Sa,..., Sy, and any tuple (i%,i5,...,i%) €
S1 xSy %+ xSy, we use the notation (if,45,...,4%)+1 (resp. (i3,45,...,i5)—1)

12

to denote the lexicographical smallest (resp. biggest) element in Sy X So X -+ X S,
that is lexicographical greater (resp. less) than (if,45,...,4)).

Pseudorandom Generators. We recall the definition of pseudorandom gen-
erators. A function PRGy : {0,1}PRCGinn — [0 1}PRG.outy g 3 pseduorandom
generator, if for any PPT distinguisher D, there exits a negligible function v(\)
such that

Pr [s « {0, 1}PRGIny - D12 PRGy(s)) = 1] -

Pr [u <+ {0, 1}PRGoutx . DA) = 1] <v(N).

Learning with Errors. We recall the learning with errors (LWE) distribution.

Definition 1 (LWE distribution). For a positive integer dimension n and
modulo g, the LWE distribution As, is obtained by sampling a < Z

q» and an
error e < x, then outputting (a,b=s’ -a+e) € Ly X Zg.

Definition 2 (LWE problem). The decisional LWE,, ,, 4. problem is to dis-
tinguish the uniform distribution from the distribution As ., where s < Zg, and
the distinguisher is given m samples.

Standard instantiation of LWE takes x to be a discrete Gaussian distribution.

Definition 3 (LWE assumption). Let n = n(A),m = m(\),q = ¢(\) and
X = X(N\). The Learning with Error (LWE) assumption states that for any PPT
distinguisher D, there exits a negligible function v(\) such that

|Pr[D(1*, (A,sTA +e)) = 1] — Pr[D(1*, (A, u)) = 1]| < v())

where A < Zg*™ s < Ly, u < Ly, e < x™.

3.1 Garbling Schemes

A garbling scheme [34] is a tuple of algorithms (GC.Garble, GC.Eval) defined as
follows.

GC.Garble(1*,C,lab) On input the security parameter, a circuit C, and a set of
labels lab = {lab; }ic[c.in),be 10,1}, Where lab; , € {0, 1}*, it outputs a garbled

circuit C'. B
GC.Eval(C, lab) Oninput a garbled circuit C' and a set of labels lab = {lab; };c(c.in,
it outputs a value y.

We require the garbling scheme to satisfy the following properties.
Correctness For any circuit C, and any input 2 € {0,1}¢"",

B |3b:{|abi,b}(i,b)e[c.in]><{o‘l}FEOJ}”‘C'i", . :C(([) —1
C(—GC.GarbIe(lA,C,Iab),y(—GC.EvaI(C,(Iabi,mi)ie[cvin]) Y :

13

Simulation Security There exits a simulator Sim = (Simy,Sims) such that,
for any input z, any circuit C', and any non-uniform PPT distinguisher D,
we have

Pr [Iab « {0,1}22Cin & ¢ GC.Garble(1), C, lab) : D(1*, lab,, C) = 1} -

Pr [(sts, lab) < Simy (1%, C.params), C + Sima(sts, C(z)) : D(1*, lab, C) = 1] ‘ <v(N).

Theorem 4 ([34]). There exists a garbling scheme for all poly-sized circuits
from one-way functions.

Remark 1. For the ease of representation, for any labels lab = {lab; p }ic[n).be{0,1} 5
and any input = € {0,1}", we denote lab, = {lab; ;, }ic[n]-

3.2 Laconic Function Evaluation

A laconic function evaluation (LFE) scheme [33] for a class of poly-sized circuits
consists of four PPT algorithms crsGen, Compress, Enc, Dec described below.

crsGen (1%, params) It takes as input the security parameter), circuit parameters
params and outputs a uniformly random common string crs.

Compress(crs, C') It takes as input the common random string crs, poly-sized
circuit C' and outputs a digest digest. This is a deterministic algorithm.

Enc(crs, digest, 2) It takes as input the common random string crs, a digest
digest., a message x and outputs a ciphertext ct.

Dec(crs, C, ct) It takes as input the common random string crs, circuit C, ci-
phertext ct and outputs a message y.

Correctness. We require the following to hold:

crs<—crsGen (1> params)

digest «—Compress(crs,C) . _ o
Pr ct<—Enc(crs,digest,z) Y= C(:L') =1
y<—Dec(crs,Cct)

Efficiency. The size of CRS should be polynomial in A, the input, output
lengths and the depth of C. The size of digest, namely digest, should be poly-
nomial in A, the input, output lengths and the depth of C. The size of the output
of Enc(crs, digest~) should be polynomial in A, the input, output lengths and the
depth of C.

Security. For every PPT adversary A, input x, circuit C, there exists a PPT
simulator Sim such that for every PPT distinguisher D, there exists a negligible
function v(\) such that

Pr [1+ D (1%, crs, digest, Enc(crs, digest, 7))] —
cr5<—crsGen(1*,param5)
digest; +—Compress(crs,C')

Pr [1 < D (1%, crs, digest, Sim(crs, digest, C(z)))] ‘ < v(A).

crs<—crsGen (1, params)
digest +—Compress(crs,C')

14

Remark 2. A strong version of security, termed as adaptive security, was defined
in [33]; for our construction, selective security suffices.

Theorem 5 ([33]). Assuming the hardness of learning with errors, there exists
a laconic function evaluation protocol.

4 Multi-Key Fully Homomorphic Encryption

A multi-key FHE [29] allows one to compute functions over ciphertexts encrypted
under different and independently sampled keys. One can then decrypt the result
of the computation by gathering together the corresponding secret keys and run a
decryption algorithm. In this work we explicitly distinguish between two families
of schemes, depending on structural properties of the decryption algorithm.

— One-Round Decryption: The decryption algorithm consists of two sub-
routines (i) a local phase (PartDec) where each party computes a decryption
share of the ciphertext based only on its secret key and (ii) a public phase
(FinDec) where the plaintext can be publicly reconstructed from the decryp-
tion shares. This variant is the focus of our work.

— Unstructured Decryption: The decryption is a (possibly interactive) pro-
tocol that takes as input a ciphertext and all secret keys and returns the
underlying plaintext. No special structural requirements are imposed.

In this work we are interested in constructing the former. However, the latter is
going to be a useful building block in our transformation. More formally, a multi-
key FHE is a tuple of algorithms MKFHE = (KeyGen, Enc, Eval, Dec) defined as
follows.

KeyGen(1*,7) On input the security parameter A, and an index i € [N], it out-
puts a public-key secret-key pair (pk;,sk;) for the i-th party.

Enc(pk;,z;) On input a public key pk; of the i-th party, and a message x;, it
outputs a ciphertext ct;.

Eval(C, (ct;)jeny) On input the circuit C' of size polynomial in A and the ci-
phertexts (ct;);e[n], it outputs the evaluated ciphertext ct.

Dec((skj) e[ct) On input a set of keys sk, ...,sky and the evaluated cipher-
text ct, it outputs a value y € {0,1}°°". We say that a multi-key FHE has
a one-round decryption if the decryption protocol consists of the algorithms
PartDec and FinDec with the following syntax.

PartDec(sk;, i, ct) On input the secret key sk; of i*" party, the index 4, and
the evaluated ciphertext ct, it outputs the partial decryption p; of the
it" party.

FinDec(C, (p;)je(n)) On input all the partial decryptions (p;);e[ni, it out-
puts a value y € {0, 1}¢-°ut,

We say that the scheme is fully homomorphic if it is homomorphic for P/poly.

15

Trusted Setup. We also consider multi-key FHE schemes in the presence of a
trusted setup, in which case we also include an algorithm Setup that, on input
the security parameter 1*, outputs a common reference string crs that is given
as input to all algorithms.

Correctness. We define correctness for multi-key FHE with one-round decryp-
tion, the more general notion can be obtained by modifying our definition in a
natural way. Note that we only define correctness for a single application (single-
hop) of the homomorphic evaluation procedure. It is well known that (multi-key)
FHE schemes can be generically converted to satisfy the more general notion of
multi-hop correctness [22].

Definition 4 (Correctness). A scheme MKFHE = (KeyGen, Enc, Eval, PartDec,
FinDec) is said to satisfy the correctness of an MHE scheme if for any inputs
(wi)iciny, and circuit C, the following holds:

Vi€ [N],(pk; ,sk;) +KeyGen(1*,7)
ct; «—Enc(pk;,z;)
Pr ct«Eval(C,(cty) e (n]) Yy = C(l‘l,...,Z‘N) =1.
p;<PartDec(sk;,i,ct)
y<FinDec((p;);e[n)

Compactness. We say that a scheme is compact if the size of the evaluated
ciphertexts does not depend on the size of the circuit C' and only grows with
the security parameter (and possibly the number of keys N). Furthermore, we
require that the runtime of the decryption algorithm (and of its subroutines
PartDec and FinDec) is independent of the size of the circuit C.

Reusable Semi-Malicious Security. We define the notion of reusable security
for multi-key FHE with one-round decryption. Intuitively, this notion says that
the decryption share do not reveal anything beyond the plaintext that they
reconstruct to. In this work we present a unified notion that combines semantic
security and computational indistingushability of partial decryption shares. This
is a weakening of the definition given in [31], where the simulated decryption
shares were required to be statistically close to the honestly compute ones. To
the best of our knowledge, this weaker notion is sufficient for all applications of
multi-key FHE. Note that by default we consider a semi-malicious adversary,
that is allowed to choose the random coins of the corrupted parties arbitrarily.

We define security in the real/ideal world framework. The experiments are
parameterized by adversary A = (A;, A2), a PPT