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Abstract. Non-committing encryption (NCE) is a type of public key
encryption which comes with the ability to equivocate ciphertexts to
encryptions of arbitrary messages, i.e., it allows one to find coins for
key generation and encryption which “explain” a given ciphertext as an
encryption of any message. NCE is the cornerstone to construct adap-
tively secure multiparty computation [Canetti et al. STOC’96] and can
be seen as the quintessential notion of security for public key encryption
to realize ideal communication channels.
A large body of literature investigates what is the best message-to-
ciphertext ratio (i.e., the rate) that one can hope to achieve for NCE.
In this work we propose a near complete resolution to this question and
we show how to construct NCE with constant rate in the plain model
from a variety of assumptions, such as the hardness of the learning with
errors (LWE), the decisional Diffie-Hellman (DDH), or the quadratic
residuosity (QR) problem. Prior to our work, constructing NCE with
constant rate required a trusted setup and indistinguishability obfusca-
tion [Canetti et al. ASIACRYPT’17].

1 Introduction

Multiparty computation (MPC) considers the problem of mutually distrustful
parties computing a function over their inputs, while revealing no information
beyond the output of the function [22,13]. Traditionally, the security of MPC
protocols is analyzed considering two different adversarial models: In the static
settings, the adversary is required to announce the set of parties that he wants
to corrupt prior to the execution of the protocol. On the other hand, in the
adaptive settings, the adversary can corrupt parties at any point in time of
the execution, possibly depending on previously exchanged messages. Adaptive



security is widely believed to be the correct notion of security to consider when
analyzing the security of cryptographic protocols as we do not have any real-
life justification for the static model (except that adaptive security is in general
harder to achieve).

Non-Committing Encryption (NCE) was presented in [4] as the cornerstone
to construct adaptively-secure MPC, both in the stand-alone model [4] and in
the UC settings [5]. Loosely speaking, NCE incarnates the notion of an ideal
private channel, which retains the security of its messages, even if it is corrupted
at a later point in time. NCE is a public-key encryption (PKE) scheme for
which there exists a simulator that is able to create a pair of public key pk and
ciphertext ct, indistinguishable from a real pair public key/ciphertext. Given any
message M at any later point in time, the simulator can craft random coins that
explain the transcript (pk, ct) for M . A central efficiency measure for PKE is the
rate of encryption, i.e., the asymptotic ratio between the size of the message and
the size of the ciphertext. While we know how to construct high-rate PKE6 from
numerous hardness assumptions, the situation is less cheerful for NCE. The most
efficient schemes from the literature in the plain model have ciphertext-rate poly-
logarithmic in the security parameter [23,16], whereas (asymptotically) matching
the efficiency of PKE currently requires a trusted setup and indistinguishability
obfuscation [6]. Motivated by the current state of affairs, we ask the following
question:

Can we build NCE with ciphertext rate O(1) from standard assumptions?

1.1 Our Results

We present a nearly complete resolution of this question by constructing the
first NCE schemes with constant ciphertext-rate from a new abstraction, which
we call Packed Encryption with Partial Equivocality (PEPE). Then we show
how to instantiate PEPE from several standard problems, such as learning with
errors (LWE), decisional Diffie-Hellman (DDH), and quadratic residuosity (QR).
Specifically, we prove the following main theorem.

Theorem 1 (Informal). Assuming the hardness of the {LWE, DDH, QR}
problem, there exists a non-committing encryption scheme with ciphertext rate
O(1).

We note that our PEPE schemes achieve rate 1. The rate of our NCE schemes is a
small constant which is mostly determined by an information-theoretic technique
in the construction of NCE from PEPE.

As a contribution of independent interest, we present a novel ciphertext-
compression technique for packed ElGamal encryption schemes which preserves
correctness perfectly. As a direct corollary, we obtain a linearly-homomorphic
encryption scheme with rate 1 from the DDH assumption.

6 Rate-1 PKE can be easily constructed using hybrid encryption.
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Theorem 2 (Informal). Assuming the hardness of the DDH problem, there
exists a linearly homomorphic encryption scheme with rate 1.

This result generalizes and improves the recent work of Döttling et al. [10], where
they obtained a rate-1 oblivious transfer from DDH (trivially implied by rate-
1 linearly-homomorphic encryption) with inverse polynomial correctness error.
Their scheme could be lifted to achieve negligible decryption error at the cost
of introducing error-correcting codes, thus losing the additive homomorphism.
Among other things, our scheme implies simpler and more direct constructions
of rate-1 private information retrieval and rate-1 lossy trapdoor functions (using
the same compilers as described in [10]) from the DDH assumption, without
error correcting codes.

1.2 Related Work

The study of the rate of NCE has been the subject of a large body of literature.
In the following we briefly review prior progress on improving the rate of NCE.
We only consider NCE schemes with optimal round complexity, i.e., two-round
protocols. The first instantiation of NCE is due to Canetti et al. [4] and achieved
quadratic ciphertext-rate O(λ2) under the RSA or the Computational Diffie-
Hellman (CDH) assumption. Some three-round protocols were proposed after
that [1,8] (both achieving linear rate), but the only improvement in the two-
round settings was only made several years later in [7], where an NCE with
ciphertext-rate O(λ) was presented, assuming the hardness of factoring Blum
integers.

The rate question for NCE has recently received renewed interest: In [17], a
scheme based on the φ-hiding assumption and achieving polylogarithmic (in the
length of the message) ciphertext-rate was presented. This result was improved
in a subsequent work [16], where a scheme with polylogarithmic (in the security
parameter) ciphertext-rate and based on the LWE assumption with superpolyno-
mial modulus-to-noise ratio was proposed. Finally, a scheme with quasi-optimal
(i.e., logarithmic) ciphertext-rate was presented in [23], assuming the hardness
of the DDH problem. We also mention the work of Canetti et al. [6], which
constructs NCE with optimal rate (i.e., 1 − o(1)) but at the cost of assuming
indistinguishability obfuscation (iO) and a trusted setup. A comparison with
our results is presented in Table 1.

1.3 Discussion and Open Problems

We stress that, as done in (most of) prior works improving the rate of NCE
(e.g. [17,23]), we do not take the size of the public key into account when mea-
suring the rate of the scheme. This is justified by the fact that (i) the public
keys do not depend on the encrypted messages: In some scenarios it might be ac-
ceptable to have a more expensive “offline” communication while optimizing for
an efficient “online” (i.e. message-dependent) phase. Furthermore, (ii) one can
encrypt multiple messages under the same public key. That is, the size of the
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Ciphertext
Rate

Hardness
Assumption

Setup

[4] O(λ2) RSA, CDH -

[7] O(λ) Factoring Blum integers -

[20] O(λ)
DDH, LWE,

Factoring Blum integers
-

[17] poly(log `) φ-hiding
Oblivious sampling

of RSA modulus

[16] poly(log λ) LWE -

[6] 1− o(1) iO CRS

[23] O(log λ) DDH -

Our result O(1) LWE, DDH, QR -
Table 1. Comparison with previous work. We focus only on constructions which have
two rounds of communication. λ denotes the security parameter and ` denotes the
length of the message to be encrypted.

public key grows linearly with the number of equivocable ciphertexts, as opposed
to all ciphertexts.

Finally, our work still leaves open the question about the true rate of NCE:
Is (round-optimal) NCE with (asymptotic) rate 1 possible from standard as-
sumptions and in the plain model, or is a small constant rate, as achieved in this
work, the best we can hope for?

2 Technical Overview

Before delving in the presentation of our scheme, we briefly recall the NCE
scheme of [16], which is based on LWE with superpolynomial modulus-to-noise
ratio. Let M ∈ {0, 1}` be a (long) message we want to encrypt. The public key
of this scheme is essentially a packed Regev key, that is it consists of a matrix A
and vectors v1, . . . ,v`. The matrix A ∈ Zk×nq is chosen uniformly random (where
k, n are two polynomials in the security parameter λ) whereas the vectors vi are
chosen in two different modes. Let IR ⊆ [`] be a set of indices of size `/8 chosen
at random by the key generator. We think of this set as part of the secret key.

– For all i ∈ IR the component public key vi is computed by vi = siA + ei
where s←$Zkq is the corresponding component secret key and ei←$χn is a
noise term, chosen from an appropriate LWE error distribution χ.

– For all i /∈ IR the component keys vi←$Znq are chosen uniformly random.

To encrypt a message M , it is first encoded into a binary string y ∈ {0, 1}` using
a suitable error-correcting code (ECC), the choice of which is rather delicate7.
The encrypter then chooses a random subset IS ⊆ [`], also of size `/8. For

7 We need a code ECC which can efficiently decode from a 1/2− δ fraction of random
errors.
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all indices i ∈ IS , we replace the i-th component of the string y by uniformly
random bits.

The (modified) string y is then encrypted using a noisy version of the packed
Regev scheme [21] in its gaussian variant. More precisely, one first samples a
vector r from a suitable discrete gaussian over Zn and computes

c1 = ArT

∀i ∈ [`] : wi = vir
T + e∗i + yi · q/2,

where the masking noise terms e∗i are chosen from an appropriate discrete gaus-
sian. To decrypt a ciphertext (c1, w1, . . . , w`) one proceeds as follows. For all
indices i ∈ IR, the decrypter is in possession of a component secret key si which
allows him to recover yi by computing wi − sic1 ≈ yi · q/2 and rounding. All
components with indices outside of IR are effectively erased from the view of the
receiver. However, by the above choice of parameters the receiver will be able to
recover the message M with high probability using the efficient decoder of ECC.
This establishes correctness of the scheme.

We will briefly discuss how we can equivocate messages if the system is set
up in simulation mode. Instead of running honest key generation, the simulator
chooses a set Ib ⊆ [`] of size `/4. We call Ib the set of bad indices. Now, the
simulator chooses the matrix A jointly with the vi for i ∈ Ib via a lattice

trapdoor sampler. I.e., the simulator generates a matrix B ∈ Z(k+`/4)×n
q with

a lattice trapdoor tdB, then sets A to be the first k rows of B and uses the
remaining `/4 rows for the vectors vi with indices i ∈ Ib. The remaining vi with
indices in the good set Ig = [`] \ Ib will be chosen as LWE samples, i.e. for these
components the simulator will know a corresponding secret key si.

To simulate a ciphertext, the simulator chooses a uniformly random bit string
y′ and encrypts it as before via noisy Regev encryption. We will briefly sketch the
main ideas of how ciphertexts are equivoked. Given a message M , the simulator
needs to compute random coins rG which explain the public key pk and rE which
explain the ciphertext ct. Now, M is encoded into a binary string y ∈ {0, 1}` via
ECC. Now, note since the string y′ was chosen at random, it will agree with y
in approximately 50% of the indices. For the remaining 50% of indices on which
y′ and y disagree, the simulator has two strategies at its disposal.

– For all indices i ∈ Ib it will be able to resample the gaussian r via a gaus-
sian sampler that uses the lattice trapdoor tdB. This effectively allows the
simulator to reprogram all ciphertext components wi with index i ∈ Ib as
encryptions of yi (instead of y′i). This resampling procedure is the reason
the masking noise terms e∗i are needed. The resampling procedure creates
small artifacts in the ciphertext components with indices i ∈ Ig, and the
masking noise terms are used to statistically drown these artifacts.

– For the remaining indices, it will claim they were in the set IS by choosing
this set appropriately.

A good deal of care has to be taken when opening the sets IR and IS in order to
ensure that they have the right statistics. In order to ensure this, the simulator
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will make use of the fact that any component key in the set Ig can be claimed
to be either from the set IR or [`] \ IR.

2.1 Packed Encryption with Equivocality

Our first contribution is an abstraction of the above framework into a generic
construction of NCE using a novel primitive that we call Packed Encryption with
Partial Equivocality (PEPE).8 A PEPE is a cryptographic primitive that allows
one to encrypt a message M ∈ {0, 1}` into a ciphertext ct, using random coins
rE . Later, we can find random coins r′E such that the encryption of M ′ 6= M is
exactly ct, conditioned on the fact that M ′ and M differ only on some predefined
positions. More precisely, a PEPE consists of the following algorithms.

– Key Generation: Given a subset I ⊂ [`] and a bit b, it outputs a pair
of public and secret keys (pk, sk) ← KG(b, I; rG) on either the real mode (if
b = 0) or on the ideal mode (if b = 1), created using random coins rG. Public
keys created in different modes should be indistinguishable. A pair of keys
created in the ideal mode will allow for equivocation of some of the positions
of an encrypted message.

– Encryption: Given a message M ∈ {0, 1}` and a public key pk, it outputs
a ciphertext ct← E(pk,M ; rE) encrypted using random coins rE .

– Decryption: Given a secret key sk corresponding to the subset I, it outputs
Mi for i ∈ I.

Additionally, a PEPE scheme is equipped with the algorithms EquivPK and
EquivCT defined as follows.

– Equivocation of public key randomness: Given a subset I ′ ⊂ I and the
pair (pk, sk)← KG(b, I; rG), this algorithm outputs r′G such that (pk, sk′) =
KG(0, I ′; r′G).

– Equivocation of ciphertext randomness. Given a message M ′ (that
differs from M only in the indexes not in I) and random coins rE , this
algorithm outputs random coins r′E such that E(pk,M ; rE) = E(pk,M ′; r′E).

As security requirement, the random coins outputted by the algorithms described
above should be indistinguishable from real random coins.

NCE from PEPE. Our construction of NCE from PEPE closely follows the
outline [16] as explained above, where we replace packed Regev encryption with
a PEPE scheme. In the real mode, we also setup the PEPE scheme in real
mode. In simulation mode, we setup keys in the appropriate simulation mode.
The ciphertext randomness equivocation property of the PEPE scheme serves as

8 A somewhat similar notion is the one of Somewhere Equivocal Encryption [15].
However, Somewhere Equivocal Encryption is a purely symmetric-key primitive and
equivocation is performed by finding a new secret key. On the other hand, PEPE is
a public-key primitive and equivocation is achieved by finding new random coins for
the key generation and encryption algorithms.
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a drop-in replacement for the gaussian sampling property of the packed Regev
scheme in [16]. The remaining aspects are essentially identical to the [16] such
as the use of error correcting codes and set partitions.

Assuming that we have a PEPE scheme which achieves constant rate, then
the rate of this NCE construction is dominated by the rate penalty of the error
correcting code ECC. Consequently, given that ECC has constant rate, this
transformation results in an NCE scheme with constant rate.

In the remainder of this outline we briefly discuss constructing rate-1 PEPE
schemes from LWE, DDH, and QR.

2.2 Construction from LWE

Before presenting our construction for PEPE from the LWE assumption, we
recall a compression technique for Regev’s scheme, recently introduced in [3].
Recall that in packed Regev encryption, a ciphertext is of the form

ct = (c1, (w1, . . . , w`)) ∈ Znq × Z`q

where c1 is a ciphertext header and w1, . . . , w` are the ciphertext payload com-
ponents. As explained above, given a component secret key si a component wi
can be decrypted by computing wi − si · c1 and rounding the result to either 0
or q/2. Given that the modulus q is sufficiently large, we can compress such a
ciphertext by choosing an offset z such that for all indices i

wi + z /∈ [q/4−B, q/4 +B] ∪ [−q/4−B,−q/4 +B] ,

where B is a bound on the decryption noise. Given that the modulus q is large
enough, we can ensure that such an offset z always exists and can be found
efficiently. Note that z is computed from the ciphertext only, i.e. without the
knowledge of the corresponding plaintexts. Given such a z, we can compress the
wi into single bits by computing ci = bwi + ze2. The new compressed ciphertext
is composed by (c1, {ci}i∈[`], z). To decrypt such a compressed ciphertext, we
compute ci−bsic1 + ze2. A routine calculation shows that, given that z satisfies
the constraints above, decryption is always correct.

PEPE from LWE. Recasting the construction of [16] in terms of PEPE, im-
mediately gives us a PEPE scheme of polylogarithmic rate. Since the scheme
obtained in this way is a packed Regev scheme, it is naturally compatible with
the ciphertext compression technique provided above.

To see that the resulting scheme still supports public key and ciphertext
equivocation, note first that we leave the public key unmodified. On the other
hand, note that ciphertext compression is merely a public post-processing oper-
ation on a ciphertext. Consequently, to equivocate a compressed ciphertext, all
we have to do is to equivocate the underlying uncompressed ciphertext. Thus,
given that the message length ` is sufficiently large, we obtain a PEPE scheme
with rate 1 under the same assumptions as above.
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2.3 Construction from DDH

We will now outline our DDH-based construction, which follows the same blueprint
as the LWE-based construction. We first construct a PEPE scheme with poor
rate (O(λ)), and then combine it with a public ciphertext compression technique.

We will first explain our novel ciphertext compression technique for the dis-
crete logarithm settings. This algorithm, can be seen as the computational analog
of the one described above and it is inspired by recent techniques developed in
the domain of homomorphic secret sharing [2]. The scheme is perfectly correct,
however the caveat is that the compression algorithm will run in expected poly-
nomial time (or, alternatively, will introduce a decryption error with negligible
probability). Let G be a prime order group with generator g and let

(h1 = gs1 , . . . , h` = gs`)

be a set of public keys. The ciphertexts that we want to compress are of the
form

(gr, (hri g
M1 , . . . , hri g

M`)) = (c1, (w1, . . . , w`)) ∈ G`+1

where r←$Zp and M ∈ {0, 1}`, which is an extended version of the El-Gamal
scheme. Decryption is performed component-wise by computing wi/c

si
1 and check-

ing if the result is equal to 1 (in which case, Mi = 0) or g (Mi = 1).
Let T be a polynomial in the security parameter. Our compression algorithm

uses a pseudorandom function PRF : {0, 1}λ×G→ {0, 1}τ . On input a ciphertext
(c1, (w1, . . . , w`)), the compression algorithm samples a random key K for the
PRF until the following two conditions are simultaneously satisfied: For all i ∈ [`]
it holds that

(1) PRF(K,wi/g) 6= 0.
(2) There exists a δi ∈ [T − 1] such that PRF(K,wi · gδi) = 0.

The compressed ciphertext ct is composed by ct = (K, c1, δ1 mod 2, . . . , δ`
mod 2) ∈ {0, 1}λ × G × {0, 1}` where δi is the smallest integer that satisfies
condition (2). In order to decrypt, one needs to find, for every i ∈ [`], the small-
est γi such that PRF(K, csi1 · gγi) = 0 by exhaustive search. Finally it outputs
Mi = δi⊕LSB(γi), where LSB denotes the least significant bit of an integer. Note
that the scheme is correct with probability 1, since condition (1) ensures that
there is no ambiguity in the decoding of the bit Mi. By setting the parameters
appropriately, we can guarantee that K can always be found in polynomial time,
except with negligible probability.

PEPE from DDH. We will now outline our uncompressed DDH-based PEPE
construction, which shares some ideas with the LWE based construction above.
Assume that the underlying group G supports oblivious sampling, i.e. we can
sample uniformly random group elements without knowledge of any discrete
logarithm relation. For a vector a ∈ Znp we will use the notation [a] to denote
ga (i.e. the component-wise exponentiation). In real mode, the public key pk =
([a], {[v]}) of our DDH-based PEPE is chosen as follows. Choose the vector [a]
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and all [vi] for i ∈ [`] \ I obliviously. For all indices i ∈ I choose a uniformly
random si←$Zp and set [vi] = si · [a] = [si · a] (where we write exponentiation
multiplicatively). The secret key consists of the component keys {si}i∈I .

To encrypt a message M ∈ {0, 1}`, first choose a uniformly random r←$Znp
and compute [c1] = [a] · r = [a · r] and for all i ∈ [`] [wi] = [vi] · r + [Mi]. The
vector r ∈ Znp constitute the random coins for encryption. To decrypt the i-th
ciphertext component, compute [wi]− si · [c1], output 0 if this equals 1 and 1 if
it equals g = [1].

We will now briefly outline how ciphertext equivocation works for this scheme.
In the ideal mode, all elements of the public key are computed non-obliviously
with respect to a single generator g = [1]. That is, we sample [a] by choosing a
uniformly random a′←$Znp and setting [a] = a′ · [1]. For all i ∈ I we choose a
random si←$Zp and set [vi] = si ·a′ · [1]. For all i ∈ [`]\I we choose a uniformly
random v′i←$Znp and set [vi] = v′i·[1]. The simulator will keep all non-obliviously
sampled ring elements as equivocation trapdoor. Notice that obliviously sampled
public keys and non-obliviously sampled public keys are identically distributed.

We will finally describe how ciphertexts are equivoked. For a given a cipher-
text ct = ([c1], [w1], . . . , [w`]) encrypting a message M ∈ {0, 1}`, the simulator
knows the random coins r that were used to generate this ciphertext. I.e. it
knows (in Zp) that

c1 = a · r
w1 = v1 · r +M1

...

w` = v` · r +M`

Now, given a message M ′ ∈ {0, 1}` which agrees with M on the index set I we
can equivoke the ciphertext ct as an encryption of M ′ by by uniformly choosing
a solution r̄ ∈ Znp for the linear equation system

c1 = a · r̄
w1 = vi1 · r̄ +M ′i1

...

wik = vik · r̄ +M ′ik

where [`] \ I = {i1, . . . , ik}. Notice that since for i ∈ [`] \ I the vi are chosen
uniformly at random, given that k + 1 ≤ n this system has full rank with
overwhelming probability. Consequently, we can sample a uniform solution r̄
via basic linear algebra. Finally, note that since for i ∈ I the vi are of the form
si · a, it also holds that wi = vi · r̄ +M ′i , as ar = c1 = ar̄1 and Mi = M ′i . Thus
this scheme has perfect ciphertext equivocality.

Finally, applying the oblivious ciphertext compression algorithm described
above yields a PEPE scheme of rate 1.
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2.4 Construction from QR

We conclude our overview by briefly sketching how to adapt the above developed
techniques to construct PEPE from the QR assumption.9 Similarly to the DDH
case, the public is composed by

pk =
(
[a], {[vi]}i∈[`

)
where [a]←$QRnN and [vi] = si[a] for i ∈ I and [vi]←$QRnN . To encrypt a
message M ∈ {0, 1}`, we compute

c̃t = ([arT ], ((−1)M1 · [v1r
T ], . . . , (−1)M` · [v`rT ]) ∈ QRNn ×G`

with a uniformly chosen r←$Zn(N−1)/2, and compress it into ct = ([arT ], (b1, . . . , b`)) ∈
QRnN × {0, 1}` via the compressing procedure of [10]. When generating a public
key in the equivocal mode, the simulator keeps a and the vectors vi, for i /∈ I,
to himself. The vectors a and vi will allow him to equivocate by solving a linear
system of equations in a similar fashion as in the DDH case.

3 Preliminaries

Throughout this work, λ denotes the natural security parameter. By negl(λ),
we denote a negligible function in λ, that is, a function that vanishes faster than
any polynomial in λ.

Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we
denote by y ← A(x) the output y after running A on input x. If S is a (finite)
set, we denote by x←$S the experiment of sampling uniformly at random an
element x from S. If D is a distribution over S, we denote by x←$D the element
x sampled from S according to D. We say that D is B-bounded if for every
x←$D, we have ‖x‖ < B, except with negligible probability, and where ‖x‖
is the usual `2 norm. We will usually use bold upper-case letters (e.g., M) to
denote matrices and lower-case letters (e.g., v) to denote vectors, unless explicitly
state otherwise. Let q ∈ N. We define the rounding function b·e2 : Zq → Z2 as
bxe2 = bx · 2/qe mod 2.

We say that two distributions are computationally indistinguishable if no
probabilistic polynomial-time (PPT) adversary can distinguish them.

The following lemma will be useful and provides a tail bound for the hyper-
geometric distribution.

Lemma 3 Let H(a, b, n) be a hypergeometric distribution, with a = αn and
b = βn, and let X be a random variable sampled from H(a, b, n). Then

Pr [X ≤ (αβ − ε)n] ≤ negl(n)

for some constant 0 < ε < 1.

9 The QR-based construction is presented in the full version of this paper.
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3.1 Coding Theory

We present some basic coding theory definitions and results that will be useful
for our work.

Definition 4 (Error-Correcting Code) A (binary) Error-Correnting Code
(ECC) consists of a pair of algorithms ECCN,n = (Encode,Decode) such that:

– c ← Encode(M ∈ {0, 1}n) takes as input a message M ∈ {0, 1}n to be
encoded. It outputs a codeword c ∈ {0, 1}N .

– M ← Decode(c′) takes as input a corrupted codeword c′ ∈ {0, 1}N . It outputs
M if c′ and c← Decode(M) differ in at most t positions.

Let ECCN,n be a ECC. We call R = n/N the rate of a code C. The error rate
is defined as E = t/N . A list-decoding ECC [14] is a ECC such that the Decode
algorithm outputs a list S of polynomial size (in the security parameter), one
of which is the correct original encoded message. Constructions for list-decoding
ECC with constant rate and that correct a large amount of errors (say, 1/2− ζ
for any constant ζ > 0) are known to exist [14].

Lemma 5 ([18]) Let C be a list-decoding ECC with rate R and error rate E.
Then, there exists a unique-decoding error correction code with rate R and error
rate E given that One-Way Functions exist.

In particular, there exists a code with constant rate R and error rate of 1/2−ζ,
for any constant ζ > 0, given that One-Way Functions exist.

3.2 Hardness Assumptions

In the following, we present the hardness assumptions that we use in this work.

Learning with Errors The Learning with Errors (LWE) problem was firstly
presented in [21]. We now present the decisional version of the problem. In the
following, let Dσ be a discrete Gaussian distribution with parameter σ.

Definition 6 (Learning with Errors) Let k, q ∈ Z and let Dσ be an error
distribution. The LWE assumption holds if for any PPT adversary

|Pr [1← A(A, sA + e)]− Pr [1← A(A,u)]| ≤ negl(λ)

for all n ∈ Z, where A←$Zk×nq , s←$Zkq , e←$Dn
σ and u←$Znq .

In this work, we assume the hardness of the LWE with superpolynomial
modulus-to-noise ratio. That is, we assume that the problem remains hard even
when B/q = negl(λ) where the error e comes from a B-bounded distribution.

The following lemma states that we can drown (i.e., statistically hide) an
error vector with a much wider distribution.
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Lemma 7 Let q, B, σ such that q = λω(1) and σ/B = λω(1). Then the distribu-
tions Dσ and Dσ+e are statistically close, where e is sampled from a B-bounded
distribution.

The following lemma states that there are matrices statistically close to uni-
form and for which we can sample low-norm pre-images with the help of a
trapdoor [12,19].

Lemma 8 ([19]) There exists a pair of algorithms (TrapGen,SampleD) such
that:

– (B, td) ← TrapGen(1λ, k, n, q) takes as input the security parameter λ and
n, k, q ∈ Z. It outputs a matrix B ∈ Zk×nq and a trapdoor td. The matrix B

is 2−k close to uniform.
– r ← SampleD(td,B,y, σ) takes as input a trapdoor td, a matrix B and a

vector y ∈ Zkq . It outputs r ∈ Znq such that r←$DΛ⊥y (B),σ, where DΛ⊥y (B),σ is
the discrete Gaussian distribution with standard deviation σ over the lattice
Λ⊥y (B) = {r ∈ Znq : ArT = y}.

Decisional Diffie-Hellman A (prime-order) group generator is an algorithm G
that takes as an input a security parameter 1λ and outputs (G, p, g), where G is
the description of a multiplicative cyclic group, p is the order of the group which
is always a prime number unless differently specified, and g is a generator of
the group. In the following we state the decisional version of the Diffie-Hellman
(DDH) assumption [9].

Definition 9 (Decisional Diffie-Hellman Assumption) A group generator
algorithm G satisfies the DDH assumption (or is DDH-hard) if for any PPT
adversary A∣∣Pr[1← A((G, p, g), (ga, gb, gab))]− Pr[1← A((G, p, g), (ga, gb, gc))]

∣∣ ≤ negl(λ)

where (G, p, g)←$G(1λ) and (a, b, c)←$Zp.

In this work, we use the matrix version of the DDH assumption, called the
Matrix Decisional Diffie-Hellman Assumption (MDDH), which generalizes the
DDH assumption (and other number-theoretic assumptions). Let g ∈ G and let
M ∈ Zk×np . We denote by [M] ∈ Gk×n the matrix

gM =

g
M1,1 . . . gM1,n

...
. . .

...
gMk,1 . . . gMk,n

 .

Definition 10 (Matrix Decisional Diffie-Hellman Assumption [11]) A group
generator algorithm G satisfies the MDDH if for any PPT algorithm A such that

|Pr [1← A((G, p, g), ([A], [wA]))]− Pr [1← A((G, p, g), ([A], [u]))]| ≤ negl(λ)

where (G, p, g)←$G(1λ), k < n, A←$Zk×np , w←$Zkp and u←$Znp .

Observe that anyone can compute s[A] = [sA], w[A] = [wA] or [A]vT =
[AvT ] knowing [A], s, w and v, for any A ∈ Zk×nq , s ∈ Zq, w ∈ Zkq and v ∈ Znq .
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Quadratic Residuosity In this version, we omit the QR assumption descrip-
tion due to space restrictions.

3.3 Non-Committing Encryption

The formal definition of Non-Committing Encryption, as well as its security
requirements, are presented below.

Definition 11 (Non-Committing Encryption) A Non-Committing Encryp-
tion (NCE) scheme is composed by a tuple of algorithms (Gen,Enc,Dec,Sim1,Sim2)
such that:

– (pk, sk)← Gen(1λ, rG) takes as input a security parameter λ and some ran-
domness rG. It outputs a pair of public and secret keys (pk, sk).

– c ← Enc(pk,M, rE) takes as input a public key pk, a message M and ran-
domness rE. It outputs a ciphertext c.

– M/ ⊥← Dec(sk, c) takes as input a secret key sk and a ciphertext c. It outputs
either a message M or an error message ⊥.

– (pk, c, st) ← Sim1(1λ) takes as input a security parameter λ. It outputs a
simulated public key pk, a ciphertext c and an internal state st.

– (rG, rE) ← Sim2(M, st) takes as input a message M and an internal state
st. It outputs a pair of randomness for key generation and for encryption
(rG, rE).

A NCE scheme should have the following properties:

– Correctness. A NCE scheme is said to be correct if

Pr

[
M ← Dec(sk, c) :

(pk, sk)← Gen(1λ)
c← Enc(pk,M)

]
≥ 1− negl(λ) .

– Simulatability. Let A be any PPT adversary. A NCE scheme is said to
be simulatable if the distributions IDEAL and REAL are computationally
indistinguishable to A, where

IDEAL =

(M, pk, c, rG, rE) :
(pk, c, st)← Sim1(1λ)

M ← A(pk)
(rG, rE)← Sim2(M, st)


and

REAL =

(M, pk, c, rG, rE) :
(pk, sk)← Gen(1λ, rG)

M ← A(pk)
c← Enc(pk,M, rE)

 .

4 Ciphertext Shrinking Algorithms

In this section we discuss how we can shrink the ciphertext of certain cryptosys-
tems based on LWE, DDH or QR. Every procedure presented in this section is
a post-processing operation that is applied to a ciphertext in order to reduce its
size.
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4.1 Ciphertext Shrinking Algorithm for LWE-based Encryption
Schemes

The following technique to shrink ciphertexts of LWE-based PKE schemes was
firstly introduced in [3]. This is a post-processing technique that can be applied
to every decrypt-and-multiply PKE scheme (see [3] for details). In particular, it
can be applied to the usual Regev’s scheme [21] which we use to construct our
NCE scheme.

Construction 1 Consider a PKE scheme with ciphertexts of the form (c1,
(w2,1, . . . , w2,`)) ∈ Znq × Z`q, secret key S ∈ Z`×nq and where decryption is com-

puted by multiplying b(w2,1, . . . , w2,`) − ScT1 e2 = bM + ee2 where e is sampled
from a B-bounded distribution. We describe the shrinking algorithms in detail:

Shrink(pk, (c1, (w2,1, . . . , w2,`))):

– Choose z←$Zq \ U where

U =
⋃̀
i=1

([
−q

4
− w2,i −B,−

q

4
− w2,i +B

]
∪
[q

4
− w2,i −B,

q

4
− w2,i +B

])
.

– Compute c2,i = bw2,i + ze2 ∈ Z2 for every i ∈ [`].
– Output ct = (c1, (c2,1, . . . , c2,`), z).

ShrinkDec(sk = S, ct) :

– Parse ct as (c1, (c2,1, . . . , c2,`), z).
– Compute Mi ←

(
c2,i − bsicT1 + ze2

)
mod 2 where si is the i-th row of S.

– Output M = (M1, . . . ,M`).

Note that each bit of M is independently recovered from the other ones.
Hence, we can relax the definition of ShrinkDec in order to output only a partial
decryption of M . More precisely, if a subset I ⊆ [`] is given as input to ShrinkDec,
then it outputs {Mi}i∈I .

The following lemma guarantees the correctness of the shrinking procedure
presented above.

Lemma 12 ([3]) Let B = B(λ) and q > 4`B. Then the shrinking algorithm
described in Construction 1 is correct up to noise B.

4.2 Ciphertext Shrinking Algorithm for DDH-based Encryption
Schemes

Before presenting the shrinking procedure compatible with DDH-based encryp-
tion schemes, recall the definition of Pseudorandom Functions (PRF).

14



Definition 13 (Pseudorandom Function) Let α = α(λ) and β = β(λ). A
Pseudorandom Function (PRF) is defined by a keyed function PRF : {0, 1}λ ×
{0, 1}α → {0, 1}β such that, for any adversary A

|Pr [1← A(y, x) : y ← PRF(K,x)]− Pr [1← A(y, x) : y ← f(x)]| ≤ negl(λ)

for any x ∈ {0, 1}α, where f : {0, 1}α → {0, 1}β is a uniformly chosen random
function and the key K is sampled uniformly at random from {0, 1}λ.

We now explain how one can compress ciphertexts of ElGamal-based encryp-
tion schemes. The following technique is a variant of the compression technique
introduced in [2,10]. However, in this variant we achieve perfect correctness.

Construction 2 Below we show our DDH-based scheme, with message space
Z`q, for some polynomials q = q(λ) and ` = `(λ). The scheme is parametrized
by two polynomials τ = τ(λ) and T = T (λ) that influence the runtime of the
evaluation algorithm, whose exact value will be fixed later. The scheme assumes
the existence of a pseudorandom function PRF : {0, 1}λ × G → {0, 1}τ . We
also assume that we have ciphertexts of the form (c1, (w2,1, . . . , w2,`)) ∈ G×G`
and that the secret key is of the form (x1, . . . x`) ∈ Z`p. Decryption is done by

computing w2,i/c
xi
1 = gMi and recovering Mi ∈ Zq, for each i ∈ [`].

Shrink(pk, (c1, (w2,1, . . . , w2,`))):

– Set d0 = c1 and di = w2,i, for all i = 1, . . . , `.
– Sample a uniform key K ←$ {0, 1}λ such that the following conditions are

simultaneously satisfied:
(1) For all i = 1, . . . , ` and for all k = 1, . . . , (q − 1) it holds that

PRF(K, di/g
k) 6= 0τ .

(2) For all i = 1, . . . , ` there exists some k = 0, . . . , (T − 1) such that
PRF(K, di · gk) = 0τ .

– For all i = 1, . . . , ` let δi be the smallest non-negative integer such that
PRF(K, di · gδi) = 0τ .

– Return ct = (K, d0, δ1 mod q, . . . , δ` mod q).

ShrinkDec(sk, ct) :

– Parse sk as (x1, . . . , x`) and ct as (K, d0, δ1 mod q, . . . , δ` mod q).
– Compute for all i = 1, . . . , ` the smallest non-negative integer γi such that

PRF(K, dxi0 · gγi) = 0τ

– Set Mi = δi − γi mod q.
– Return M = (M1, . . . ,M`).

Again, note that each element Mi can be independently decrypted. Thus, if
the ShrinkDec algorithm receives as input a subset I ⊆ [`], it outputs {Mi} for
i ∈ I.
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Analysis. The more interesting aspects of this scheme concern its correctness
and the runtime of the subroutines.

Lemma 14 The scheme as described in Construction 2 is perfectly correct.

Proof. We assume without loss of generality that the decryption algorithm takes
as input an evaluated ciphertext ct = (K, d0, δ1, . . . , δ`). Recall that d0 = c1 = gr

for a random r←$Zp. Furthermore, for all i = 1, . . . , ` the term δi is defined to
be the smallest non-negative integer (mod q) such that PRF(K, di · gδi) = 0τ ,
where

di = hri g
Mi = gxirigMi = dxi0 g

Mi

Recall that γi is defined to be the smallest non-negative integer such that
PRF(K, dxi0 · gγi) = 0τ . Note that the pair (δi, γi) is always well defined by
condition (2). We claim that

di · gδi = dxi0 · gγi

with probability 1. Assume that this is not the case, then we have that Mi+δi 6=
γi. We distinguish two cases:

(a) Mi + δi < γi : This case cannot happen since we assumed that γi was the
smallest non-negative integer such that PRF(K, dxi0 · gγi) = 0τ .

(b) Mi+δi > γi : This case implies that γi < q since Mi ≤ q and δi is the smallest
non-negative integer such that PRF(K, di ·gδi) = PRF(K, dxi0 ·gMi ·gδi) = 0τ .
Consequently we have that PRF(K, di/g

γi) = 0τ where γi < q, which violates
condition (2).

Therefore we have that

Mi = γi − δi mod q

for all i = 1, . . . , `. This concludes our proof.

By condition (2), the values of γi always lie within T − 1 steps from dxi0 and
therefore ShrinkDec runs in strict polynomial time. What is left to be shown is
that Shrink runs in expected polynomial time.

Lemma 15 Let PRF be a pseudorandom function, let τ = log2(2(q − 1)`) and
let T = 2τλ loge(`) + (q− 1)`. Then Shrink terminates within λ iterations except
with negligible probability.

Proof. Observe that all the subroutines of Shrink run in strict polynomial time,
except for the sampling of K. It therefore suffices to bound the probability that
some K satisfies conditions (1) and (2) simultaneously. Throughout the following
analysis we treat PRF(K, ·) as a truly random function (indexed by K) and the
same analysis holds true, up to a negligible amount, for the case that PRF(K, ·)
is a pseudorandom function by a standard argument.
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We first bound from below the probability that a uniform K ←$ {0, 1}λ sat-
isfies condition (1), that is,

Pr
[
∀i ∈ [`],∀k ∈ [q − 1] : PRF(K, di/g

k) 6= 0τ
]
≥
(

1− 1

2τ

)(q−1)`

≥ 1− (q − 1)`

2τ
= 1− (q − 1)`

2(q − 1)`
=

1

2

* where the probability is taken over the random choice of K. The first in-
equality comes from the fact that we assume that all points di/g

k are distinct
(since it minimizes the probability) and therefore the outputs of PRF(K, ·) are
uniformly and independently distributed over {0, 1}τ . The second inequality is
from Bernoulli. We now bound from above the probability that condition (2) is
not satisfied, conditioned on the fact that condition (1) is met. Let us denote by
S ⊆ {0, 1}λ the set of all keys K that satisfy condition (1). Then we have

Pr
[
∃i ∈ [`] s.t. ∀k = 0, . . . , (T − 1) : PRF(K, di · gk) 6= 0τ

∣∣K ∈ S]
≤
∑̀
i=1

Pr
[
∀k = 0, . . . , (T − 1) : PRF(K, di · gk) 6= 0τ

∣∣K ∈ S]
≤
∑̀
i=1

(
1− 1

2τ

)T−(q−1)`
≤
∑̀
i=1

e−
T−(q−1)`

2τ =
∑̀
i=1

e−λ loge(`) = e−λ

where the probability is taken over the random choice of K. The first inequality
comes from a union bound whereas the second inequality is derived by observing
that the constraint K ∈ S fixes the value of PRF(K, ·) on at most (q−1)` points.

To conclude, the probability that condition (1) is not satisfied after λ uniform
choices of K is at most 2−λ and the probability that condition (2) is not satisfied
constrained on meeting condition (1) is e−λ. By a union bound, the probability
that Shrink does not terminate after λ iterations is at most 2−λ + e−λ.

Rate-1 Linearly Homomorphic Encryption from DDH. An interesting conse-
quence of our algorithm is that it yields a linearly homomorphic encryption
scheme with rate approaching 1 from the DDH assumption. To see why this
is the case, we recall the packed version of ElGamal encryption: The public
key of the scheme consists of the tuple (g, h1, . . . , h`) = (g, gx1 , . . . , gx`), and a
ciphertext for a message (M1, . . . ,M`) is of the form

(gr, hr1 · gM1 , . . . , hr` · gM`)

for some uniformly chosen r←$Zp. This scheme can be shown secure by ` in-
vocations of the DDH assumption and satisfies the structural requirements to
apply our shrinking algorithm as described above. Furthermore note that the
scheme supports the homomorphic evaluation of linear functions f : Z`q → Zq.
One caveat of this scheme is that the runtime of the shrinking algorithm is poly-
nomial q and therefore the function f has a polynomial-size range (we stress
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that q is a bound on the output size and not the order of the DDH-hard group
p). Yet these homomorphic capabilities suffice for many interesting applications,
such as constructing rate-1 oblivious transfer, or semi-compact homomorphic
encryption for branching programs [10].

4.3 Ciphertext Shrinking Algorithm for QR-based Encryption
Schemes

The ciphertext shrinking algorithm for QR-based encryption schemes is the one
presented in [10]. We omit it here due to space restrictions.

5 Packed Encryption with Partial Equivocality

We begin this section by presenting the formal definition of PEPE as well as its
security properties. We then show how to construct this primitive under several
hardness assumptions. Then, we present constructions of PEPE from LWE, DDH
and QR assumptions.

Definition 16 A Packed Encryption with Partial Equivocality (PEPE) scheme
that encrypts messages in {0, 1}` is composed by a tuple of algorithms (KG,E,D,
EquivPK,EquivCT) where:

– (pk, sk)← KG(1λ, b ∈ {0, 1}, I, r) takes as input a security parameter λ, a bit
b, a set of indexes I ∈ [`] and random coins r.10 It outputs a pair of public
and secret keys (pk, sk). When b = 0 we say that the keys were generated in
the real mode. Otherwise, if b = 1, we say that the keys were generated in
the ideal mode.

– ct← E(pk,M ∈ {0, 1}`, r) takes as input a public key pk, a message M and
random coins r, and outputs a ciphertext ct.

– (Mi)i∈I ← D(sk, ct) takes as input a secret key sk and a ciphertext ct. It
outputs bits Mi, for i ∈ I.

– r′ ← EquivPK(sk, b, (I, r), I ′) takes as input a secret key sk, a bit b, subsets
I, I ′ ⊆ [`] and randomness r. It outputs randomness r′.

– r′ ← EquivCT(sk, (M, r), {M ′i}i/∈I) takes as input a secret key sk, a pair of
message and randomness (M, r) and and some bits {M ′i}i/∈I together with a
subset I ⊆ [`]. It outputs random coins r′.

A PEPE scheme should fulfill correctness for decryption and for equivocality.
Also, the random coins used in the key generation and encryption algorithms
should be indistinguishable from random coins outputted by the equivocality
algorithms.

10 When the random coins r are omitted, it means they are chosen uniformly at random
during the execution of the algorithm. In this case, the algorithm also outputs r.
The same happens for algorithm E.
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– Correctness. For any message M ∈ {0, 1}` and any subset I ⊂ [`], we have
that

Pr

{Mi}i∈I = {M ′i}i∈I :
(pk, sk)← KG(1λ, 0, I, rG)

ct← E(pk,M, rE)
{M ′i}i∈I ← D(sk, ct)

 ≥ 1− negl(λ) .

– Public key randomness indistinguishability. The random coins out-
putted by the algorithm EquivPK should be computationally indistinguish-
able from true random coins. That is, the distributions IDEALpk and REALpk
should be computationally indistinguishable, where

IDEALpkb =

{
rG :

(pk, sk)← KG(1λ, b, I ′, r′G)
rG ← EquivPK(sk, b, (I ′, r′G), I)

}
and

REALpk =
{
rG : (pk, sk)← KG(1λ, 0, I, rG)

}
for any subsets I, I ′ ⊂ [`] such that I ⊂ I ′ and any b ∈ {0, 1}.
Note that this also ensures that no adversary can distinguish public keys
created in the ideal mode or in the real mode as the distribution of both
keys are indistinguishable.

– Ciphertext randomness indistinguishability. The random coins out-
putted by the algorithm EquivCT should be statistically close to true ran-
dom coins. That is, for any subset I ⊂ [`] and any message M ′ ∈ {0, 1}`, the
distributions IDEALct and REALct should be statistically close, where

IDEALct =

(pk,M, rE) :

(pk, sk)← KG(1λ, 1, I, r′G)
ct← E(pk,M ′, r′E)

M ← A(pk)
rE ← EquivCT(sk, (M ′, r′E), {Mi}i/∈I)


and

REALct =

(pk,M, rE) :
(pk, sk)← KG(1λ, 0, I, r′G)

M ← A(pk)
ct← E(pk,M, rE)


where A is an unbounded adversary which outputs a message M such that
Mi = M ′i for i ∈ I.

5.1 Packed Encryption with Partial Equivocality from LWE

We now present a PEPE scheme from the LWE assumption. The construction
is similar to the one in [16], except that we use the compression technique intro-
duced in [3] to achieve better rate.

Construction 3 Let (TrapGen,SampleD) be the pair of algorithms described in
Lemma 8, let (Shrink,ShrinkDec) the pair of algorithms described in Construction
1 and let σ, σ′ ∈ R such that σ/σ′ = negl(λ).
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KG(1λ, b ∈ {0, 1}, I, rG):

– If b = 0, do the following:
• Choose A←$Zk×nq

• For i ∈ I, set vi = siA + ei where si←$Zkq and ei←$Dn
σ .

• For i /∈ I, set vi←$Znq .
• Set pk = (A, {vi}i∈[`]) and sk = (I, {si}i∈I)
• Set the random coins rG = {ei}i∈I .

– Else if b = 1, do the following:

• Run (B, tdB) ← TrapGen(1λ, k + ` − |I|, n, q) and parse B as

(
A
V

)
∈

Z(k+`−|I|)×n
q .

• For i ∈ I, set
vi = siA + ei

where si←$Zkq and ei←$Dn
σ .

• For i /∈ I, set vi = Vi, where Vi is the i-th row of V.
• Set pk = (A, {vi}i∈[`]) and sk = (I, {si}i∈I , tdB).
• Set the random coins rG = {ei}i∈I .

– Output (pk, sk)

E(pk,M ∈ {0, 1}`, rE):

– Parse pk = (A, {vi}i∈[`]).
– Sample r←$Dn

σ .
– Compute c1 ← ArT and w2,i = vir

T +ei+bq/2e ·Mi ∈ Zq, for every i ∈ [`],
where ei←$Dσ′ .

– Compress (c1, (w2,1, . . . , w2,`)) into

(c1, (c2,1, . . . , c2,`), z)← Shrink(c1, (w2,1, . . . , w2,`)).

– Set the random coins rE to be (r, {ei}i∈[`]).
– Output ct = (c1, (c2,1, . . . , c2,`), z).

D(sk, ct):

– Parse sk as (I, {si}i∈I) and ct as (c1, (c2,1, . . . , c2,`), z).
– Compute {Mi}i∈I ← ShrinkDec(sk, ct, I).
– Output {Mi}i∈I .

EquivPK(sk, b, (I, r), I ′):

– If I ′ 6⊆ I, then abort the protocol. Else, continue.
– Parse r as {ei}i∈I .
– If b = 0, parse sk as (I, {si}i∈I). Else, parse sk = (I, {si}i∈I , tdB).
– Set r′ = {ei}i∈I′ and sk = (I ′, {si}i∈I′)
– Output (sk′, r′)
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EquivCT((sk, rG), (M, r), (M ′i)i/∈I):

– Parse sk as (I, {si}i∈I , tdB) and rG = {ei}i∈I . Set ct = (c1, (c2,1, . . . , c2,`), z)←
E(pk,M, r) where r = (r, {e∗i }i∈[`]).

– Sample e′i←$Dσ′ for i /∈ I, and r̄ ← SampleD(tdB,B,y, σ) where y =
(c1, {w2,i − bq/2eMi − e′i}i/∈I)

– For i ∈ I, set e′i = e∗i + ei(r− r̄)T .

– Output r′ = (r̄, {e′i}i∈[`]).

Analysis. Correctness for decryption follows from the correctness of the usual
Regev’s scheme and from Lemma 12.

Lemma 17 (Public-key randomness indistinguishability) The scheme in
Construction 3 is public key randomness indistinguishable given that the LWE
assumption holds.

Proof. Assume that b = 1 in the experiment IDEALpk (the case where b = 0 is
just a particular case of this one). The proof follows from the following sequence
of hybrids:

Hybrid H0. This is the experiment IDEALpk between a challenger C and an
adversary A:

– (pk, sk)← KG(1λ, 1, I ′, r′G) where pk = (A, {vi}i∈[`]) and sk = (I ′, {si}i∈I′ , tdB).

– Run rG ← EquivPK(sk, 1, (I ′, r′G), I).

– b← A(rG).

Hybrid H1. In this hybrid, we replace the matrix A and the vectors vi, when
i /∈ I ′, for uniform ones.

– C chooses A ← Zk×nq and vi←$Znq for i /∈ I ′. For i ∈ I ′, it computes
vi ← siA + ei. For I ⊂ I ′, set rG = {(si, ei)}i∈I . It sends rG to A.

– b← A(rG).

Claim. |Pr [1← A : A plays H0]− Pr [1← A : A plays H1]| ≤ negl(λ) .

By Lemma 8, A is statistically close to a uniform matrix. Using the same
lemma, each vi, for i /∈ I ′, is also statistically close to a uniform vector. The
claim follows.

Hybrid H2. In this hybrid, we replace each vi for i ∈ I ′ \ I by a uniform vector.

– C chooses A← Zk×nq and vi←$Znq for i /∈ I ′ and for i ∈ I ′ \ I. For i ∈ I, it
computes vi ← siA + ei. For I ⊂ I ′, it sets rG = {si, ei}i∈I . It sends rG to
A.

– b← A(rG).
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Claim. Assume that the LWE assumption holds. Then

|Pr [1← A : A plays H1]− Pr [1← A : A plays H2]| ≤ negl(λ) .

It is straightforward to build an algorithm that decides the LWE assumption
given an adversary that is able to distinguish hybrids H1 and H2. The claim
follows.

Finally, note that hybrid H2 is exactly the experiment REALpk. Hence, the
distributions are computationally indistinguishability given that the LWE as-
sumption holds.

Lemma 18 (Ciphertext randomness indistinguishability) The scheme in
Construction 3 is ciphertext randomness indistinguishable.

Proof. Let ct = (c1, (c2,1, . . . , c2,`))← E(pk,M, rE) for (pk, sk)← KG(1λ, 1, I, rG)
where pk = (A, {vi}i∈[`]), sk = (I, {si}i∈I , tdB), and rE = (r, {ei}i∈[`]) is the
randomness used in E to encrypt the message M = (M1, . . . ,M`). Now let
M ′ = (M ′1, . . . ,M

′
`) such that Mi = M ′i , for all i ∈ I, and Mi 6= M ′i other-

wise. After running EquivCT(sk, (M, rE), (M ′i)i/∈I) we obtain

r′E = (r̄, {e′i}i/∈I).

Let ct′ = (c′1, (c
′
2,1, . . . , c

′
2,`)) ← E(pk,M ′, r′E). First, note that by definition of

the algorithm SampleD (Lemma 8) we have that ArT = Ar̄T . Hence c1 = c′1.
For i ∈ I, we have that

vir
T + e∗i +

⌊q
2

⌉
Mi = vir̄

T + e′i +
⌊q

2

⌉
Mi,

hence the rounded values are the same.
Finally, for i /∈ I, by definition of SampleD, we have that

vir + ei +
⌊q

2

⌉
Mi = vir̄ + e′i + bq/2eM ′i .

Hence,

c2,i = bvir + ei + bq/2eMi + ze2 = bvir̄ + e′i + bq/2eM ′i + ze2 = c′2,i.

We conclude that ct = ct′.
By Lemma 7, we have that e′i←$Dσ′ + ei(r− r̄)T and e∗i ←$Dσ′ are statis-

tically close.

5.2 Packed Encryption with Partial Equivocality from DDH

The DDH-based construction for PEPE is presented below as well as the corre-
sponding security proofs.

Construction 4 Let (G, p, g) ← G(1λ), n ∈ N and (Shrink,ShrinkDec) be the
algorithms from Construction 2. The DDH-based PEPE scheme is defined as
follows:
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KG(1λ, b ∈ {0, 1}, I, rG):

– If b = 0, do the following:
• Choose [a] = ga where a←$Znp , (here [a] is chosen obliviously).
• For i ∈ I, set [vi] = si[a] where si←$Zp.
• For i /∈ I, set [vi]←$Gn.
• Set pk = ([a], {[vi]}i∈[`]) and sk = (I, {si}i∈I).

– Else if b = 1, do the following:
• Choose a←$Znp and compute [a] = ga.

• For i ∈ I, set [vi] = si[a] where si←$Zkp.
• For i /∈ I, set [vi]←$Gn
• Set pk = ([a], {[vi]}i∈[`]) and sk = (I,a, {si}i∈I , {vi}i/∈I).

– Output (pk, sk)

E(pk,M ∈ {0, 1}`, rE):

– Parse pk = ([a], {[vi]}i∈[`]).
– Choose r←$Znp .

– Compute [c1] = [arT ] and w2,i = [vir
T ] · gMi for every i ∈ [`].

– Compress ([c1], (w2,1, . . . , w2,`)) into

(K, [c1], (c2,1, . . . , c2,`))← Shrink([c1], (w2,1, . . . , w2,`))

where (c2,1, . . . , c2,`) = (δ1 mod 2, . . . , δ` mod 2).
– Set the random coins rE to be r.
– Output ct = (K, [c1], (c2,1, . . . , c2,`)).

D(sk, ct):

– Parse sk as (I, {si}i∈I) and ct as (K, [c1], (c2,1, . . . , c2,`)).
– Compute {Mi}i∈I ← ShrinkDec(sk, ct, I).
– Output {Mi}i∈I .

EquivPK(sk, b, (I, r), I ′):

– If I ′ 6⊆ I, then abort the protocol. Else, continue.
– If b = 0, parse sk as (I, {si}i∈I). Else, parse sk as (I,a, {si}i∈I , {vi}i/∈I).
– Set sk′ = (I ′, {si}i∈I′)
– Output sk′

EquivCT(sk, (M, r), {M ′i}i/∈I):

– Parse sk as (I,a, {si}i∈I , {vi}i/∈I) and r = r ∈ Znp . Let {i1, . . . , iα} = [`] \ I
– Sample uniformly at random a solution r̄ ∈ Znp for

a 0
vi1 M

′
i1

...
...

viα M
′
iα


(

r̄T

1

)
=


arT

vi1r
T +Mi1

...
viαrT +Miα

 .

– Output rE = r̄.
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Analysis. We now proceed to the analysis of the construction above.

Lemma 19 The scheme in Construction 4 is correct.

Correctness for decryption follows from the correctness of the matrix version
of the El Gamal scheme and from Lemma 14.

Lemma 20 (Public-key randomness indistinguishability) The scheme in
Construction 4 is public key randomness indistinguishable given that the MDDH
assumption holds.

Proof. The proof follows from the following sequence of hybrids:

Hybrid H0. This is the experiment IDEALpk between a challenger C and an
adversary A:

– (pk, sk)← KG(1λ, 1, I ′, r′G) where pk = (a, {[vi]}i∈[`]) and sk = (I ′, {si}i∈I′).
– Run rG ← EquivPK(sk, 1, (I ′, r′G), I).
– b← A(rG).

Hybrid H1. In this hybrid, we replace the vectors vi, when i ∈ I ′ \I, for uniform
ones.

– C chooses a ← Znp and vi←$Znp for i /∈ I ′ and for i ∈ I ′ \ I. For i ∈ I, it
computes [vi]← si[a]. For I ⊂ I ′, set rG = {si}i∈I . It sends rG to A.

– b← A(rG).

Claim. |Pr [1← A : A plays H0]− Pr [1← A : A plays H1]| ≤ negl(λ) .
It is straightforward to build a distinguisher for the MDDH assumption if we

are given an algorithm A that can distinguish both hybrids.
Finally, note that hybrid H1 is exactly the experiment REALpk. Hence, the

distributions are computationally indistinguishability given that the MDDH as-
sumption holds.

Lemma 21 (Ciphertext randomness indistinguishability) The scheme in
Construction 4 is ciphertext randomness indistinguishable, if 1 + α ≤ n.

Proof. Let M,M ′ ∈ {0, 1}` be any two messages such that Mi = M ′i , for i ∈ I,
and Mi 6= M ′i otherwise. We prove that, if 1 + α ≤ n, then the equation

a 0
vi1 M

′
i1

...
...

viα M
′
iα


(

r̄T

1

)
=


arT

v1r
T +Mi1

...
viαrT +Miα

 (1)

has a solution r̄ ∈ Znp , except with negligible probability.
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First, note that the equation in 1 is equivalent to
a

vi1
...

viα

 (
r̄T
)

=


arT

v1r
T +Mi1 −M ′i1

...
viαrT +Miα −M ′iα


We now prove that the rank β of the matrix on the left side is maximal, that

is, β = 1+α. Note that, every row of this matrix is uniformly chosen at random.

By a simple counting argument, we have that the rank of the matrix on the
left side is maximal, except with probability 1/|G|. Since |G| ∈ O(2ω(log λ)), then

Pr [β = 1 + α] ≥ 1− 1

|G|
≥ 1− negl(λ) .

If the rank of the matrix is equal to the rank of the augmented matrix,
then the system of equations has solutions. Hence, we can find a solution r̄ for
equation 1, except with negligible probability.

We now prove that, given r̄ satisfying Equation 1, ct = ct′, where ct =
(K, [c1], (c2,1, . . . , c2,`)) ← E(pk,M, rE) and ct′ = (K, [c′1], (c′2,1, . . . , c

′
2,`)) ←

E(pk,M ′, r′E) where M ′ is such that M ′i = Mi for i ∈ I and rE = r, r′E = r̄.

First, note that by Equation 1 we have that arT = ar̄T . Hence,[
arT

]
=
[
ar̄T

]
⇔ [c1] = [c′1] . (2)

A direct consequence of Equation 2 is that

siarT +Mi = siar̄T +Mi ⇔ c2i = c′2,i

for i ∈ I. It remains to show that c2,i = c′2,i for i /∈ I. Observe that

vir
T +Mi = vir̄

T +M ′i

for i /∈ I, from Equation 1. Hence, c2,i = c′2,i for i /∈ I.

Finally, the random coins rE used in the encryption algorithm E (in the
real mode) and the random coins r′E outputted by the equivocation algorithm
EquivCT have exactly the same distribution.

5.3 Packed Encryption with Partial Equivocality from QR

The construction of PEPE from QR is follows the same blueprint as the DDH
construction. We omit the construction in this version.
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6 From PEPE to constant ciphertext-rate NCE

Finally, we present the generic construction for NCE from PEPE, which gener-
alizes the construction of [16]. Then, we analyze the security and efficiency of
the construction.

The following lemma is adapted from [16] and will help us to prove security
for the construction.

Lemma 22 ([16]) Let ECC`,`′ = (ECC.Encode,ECC.Decode) be an error-correcting
code and let PEPE = (PEPE.KG,PEPE.E, PEPE.D,PEPE.Equiv) be a PEPE
scheme. There exists an algorithm Fid such that

(IR, IS , z
′)← Fid(Ig,y, z)

where IR, IS , Ig are subsets of [`] and y, z, z′ ∈ {0, 1}`. Moreover, the distribu-
tions IDEALsets and REALsets are computationally indistinguishable given that the
underlying PEPE scheme is public key randomness indistinguishable, where

IDEALsets =


(IR, IS , z

′) :

Ig ←$Wg

(pk, sk)← PEPE.KG(1λ, 1, Ig, rG)
z←$ {0, 1}`
M ← A(pk)

y← ECC.Encode(M)
(IR, IS , z

′)← Fid(Ig,y, z)


,

and

REALsets =


(IR, IS , z

′) :

IR←$W
(pk, sk)← PEPE.KG(1λ, 0, IR, rG)

M ← A(pk)
y← ECC.Encode(M)

IS ←$W
z′ ← f(y, IS)


for any message M , where Wg = {I ⊂ [`] : |I| = 3`/4}, W = {I ⊂ [`] :
|I| = `/8}, IR ⊂ Ig, y = (y1, . . . , y`) and f is a function such that if z′ =
(z′1, . . . , z

′
`)← f(y, IS) then

z′i =

{
yi, if i ∈ IS
z′i←$ {0, 1}, otherwise

.

Construction 5 Let ECC`,`′ = (ECC.Encode,ECC.Decode) be a suitable error-
correcting code with constant rate O(1) (Lemma 5) and PEPE = (PEPE.KG,PEPE.E,
PEPE.D,PEPE.EquivPK,PEPE.EquivCT) be a PEPE scheme with message space
{0, 1}`′ . Fid is the algorithm of Lemma 22. We describe the NCE construction
in full detail:
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KeyGen(1λ):

– Choose a random subset IR ⊂ [`] such that |IR| = `/8.
– Compute (pkpepe, skpepe)← PEPE.KG(1λ, 0, IR, rG,pepe), where rG,pepe are the

random coins.
– Output pk = pkpepe, sk = (skpepe, IR) and rG = (rG,pepe, IR).

Enc(pk,M):

– Parse pk as pkpepe.
– Encode the message by computing y = (y1, . . . , y`)← ECC.Encode(M).
– Choose a random subset IS ⊂ [`] such that |IS | = `/8. For every i ∈ [`], set

zi =

{
yi, if i ∈ IS
z′i←$ {0, 1}, otherwise

for every i ∈ [`] and z = (z1, . . . , z`).
– Compute ct← PEPE.E(pkpepe, z, rE,pepe) where rE,pepe are random coins
– Output ct and rE = (z, rE,pepe, IS).

Dec(sk, ct):

– Parse sk as (skpepe, IR).
– Compute {zi}i∈IR ← PEPE.D(skpepe, ct).
– For i /∈ IR, set zi←$ {0, 1}.
– Output M ← ECC.Decode(z) where z = (z1, . . . , z`).

Sim1(1λ):

– Choose a random subset Ig ⊂ [`] such that |Ig| = 3`/4.
– Compute (pkpepe, skpepe)← PEPE.KG(1λ, 1, Ig, rG,pepe), where rG,pepe are the

random coins.
– Choose a random encoding z←$ {0, 1}` and encrypt it

ct← PEPE.E(pkpepe, z, rE,pepe).

– Output pk = pkpepe, ct and st = (Ig, z, rG,pepe, rE,pepe).

Sim2(M, st):

– Parse st = (pkpepe, ct, skpepe, Ig, z, rG,pepe, rE,pepe).
– Encode the message M into y← ECC.Encode(M).
– Compute (IR, IS , z

′)← Fid(Ig,y, z).
– Set r′G,pepe ← PEPE.EquivPK(skpepe, 1, (Ig, rG,pepe), IR) to be the randomness

according to IR.
– Let J = {i ∈ [`] \ Ig : zi 6= z′i}. Compute

r′E,pepe ← PEPE.EquivCT(skpepe, (z, rE,pepe), {zi}i∈J).

– Set rG = (r′G,pepe, IR) and rE = (z′, r′E,pepe, IS). Output (rG, rE).
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Analysis. We now proceed to the analysis of the scheme described above.

Theorem 23 (Correctness). Let ECC`,`′ = (ECC.Encode,ECC.Decode) be an
ECC with error-rate 1/2 − δ for some constant δ > 0 (Lemma 5) and PEPE =
(PEPE.KG,PEPE.E, PEPE.D,PEPE.EquivPK,PEPE.EquivCT) be a PEPE scheme.
Then the scheme described in Construction 5 is correct.

Proof. The proof of correctness follows the proof of correctness presented in [16].
Let z = (z1, . . . , z`) be the codeword obtained after running Dec. The key obser-
vation is that |IR ∩ IS | = ξ follows a hypergeometric distribution H(1/8, 1/8, `).
Thus, we can bound the maximum value of ξ, using Lemma 3, except with neg-
ligible probability. On the other hand, all other positions of z are correct with
probability 1/2. Thus, we can estimate the number of errors γ of z:

γ ≤
(

1

2
+ ε

)
(`− ξ) ≤ `

(
1

2
+ ε

)(
1 + ε− 1

16`2

)
≤ `

(
1

2
− δ
)

where the second inequality follows from Lemma 3, and the third one follows
from considering an appropriate value for the constant ε > 0.

Theorem 24 (Simulatability). Let PEPE be a PEPE scheme. Then the scheme
in Construction 5 is simulatable.

The proof of the theorem above is presented in the full version of this paper.

Ciphertext-rate of the NCE scheme. Let R = `′/` be the rate of the code used
in Construction 5 and M ∈ {0, 1}`′ . We now analyze the ciphertext-rate of the
scheme for the LWE case when instantiated with the PEPE constructions of
Section 5. The analysis for the DDH case follows the same reasoning.

The ciphertext is composed by ct = (c1, (c2,1, . . . , c2,`), z) ∈ Znq ×{0, 1}`×Zq.
Then, the ciphertext-rate is

(n+ 1) log q + `

`′
=

(n+ 1) log q

`′
+R−1.

The ciphertext-rate is equal to R−1 when `′ tends to infinity. When we use a
code as in Lemma 5, then R = O(1), therefore the whole rate of the NCE scheme
is O(1).
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