
Round Optimal Secure Multiparty Computation
from Minimal Assumptions

Arka Rai Choudhuri1[0000−0003−0452−3426], Michele Ciampi2, Vipul Goyal3,
Abhishek Jain1, and Rafail Ostrovsky4

1 Johns Hopkins University
{achoud,abhishek}@cs.jhu.edu

2 The University of Edinburgh
mciampi@ed.ac.uk

3 Carnegie Mellon University and NTT Research
goyal@cs.cmu.edu

4 University of California, Los Angeles
rafail@cs.ucla.edu

Abstract. We construct a four round secure multiparty computation (MPC) pro-
tocol in the plain model that achieves security against any dishonest majority.
The security of our protocol relies only on the existence of four round oblivious
transfer. This culminates the long line of research on constructing round-efficient
MPC from minimal assumptions (at least w.r.t. black-box simulation).

1 Introduction

The ability to securely compute on private datasets of individuals has wide applications
of tremendous benefits to society. Secure multiparty computation (MPC) [37, 18] pro-
vides a solution to the problem of computing on private data by allowing a group of
parties to jointly evaluate any function over their private inputs in such a manner that
no one learns anything beyond the output of the function.

Since its introduction nearly three decades ago, MPC has been extensively studied
along two fundamental lines: necessary assumptions [18, 30, 26], and round complexity
[18, 4, 29, 28, 32, 33, 36, 21, 13, 2, 6, 8, 9]. 5 Even for the case of malicious adversaries
who may corrupt any number of parties, both of these topics, individually, are by now
pretty well understood:

– It is well known that oblivious transfer (OT) is both necessary and sufficient [30, 26]
for MPC.

– A recent sequence of works have established that four rounds are both necessary
[13] and sufficient [2, 6, 3, 25] for MPC (with respect to black-box simulation).
However, the assumptions required by these works are far from optimal, ranging
from sub-exponential hardness assumptions [2, 6] to polynomial hardness of spe-
cific forms of encryption schemes [25] or specific number-theoretic assumptions
[3].

5 A detailed discussion on related works can be found in the full version.

In this work, we consider the well studied goal of building round-efficient MPC
while minimizing the underlying cryptographic assumptions. Namely:

Can we construct round optimal MPC from minimal assumptions?

Precisely, we ask whether it is possible to construct four round MPC from four
round OT. This was explicitly left as an open problem in the elegant work of Ben-
hamouda and Lin [5] who constructed k-round MPC from k-round OT for k ≥ 5.

1.1 Our Results

In this work, we resolve the above question in the affirmative. Namely, we construct four
round malicious-secure MPC based only on four round (malicious-secure) OT. Our pro-
tocol admits black-box simulation and achieves security against malicious adversaries
in the dishonest majority setting.

Theorem 1 (Informal). Assuming the existence of four round OT, there exists a four
round MPC protocol for any efficiently computable functionality in the plain model.

This settles the long line of research on constructing round efficient MPC from
minimal cryptographic assumptions.

Our Approach. To obtain our result, we take a conceptually different approach from
the works of [2, 6, 3, 25] for enforcing honest behavior on (possibly malicious) protocol
participants. Unlike these works, we do not require the parties to give an explicit proof
of honest behavior within the first three rounds of the protocol. Instead, we devise a
multiparty conditional disclosure of secrets mechanism that ensures that the final round
messages of the honest parties become “opaque” if even a single participant behaved
maliciously. A key property of this mechanism is that it allows for each party to obtain
a public witness that attests to honest behavior of all the parties, without compromising
the security of any party. We refer the reader to Section 2 for details.

On the Minimal Assumptions. We study MPC in the standard broadcast communica-
tion model, where in each round, every party broadcasts a message to the other parties.
In this model, k-round MPC implies k-round bidirectional OT, where each round con-
sists of messages from both the OT sender and the receiver. However, it is not imme-
diately clear whether it also implies k-round OT in the standard, alternating-message
model for two-party protocols where each round consists of a message from only one of
the two parties. As such, the minimal assumption for k-round MPC is, in fact, k-round
bidirectional OT (as opposed to alternating-message OT).

Towards establishing the optimality of Theorem 1, we observe that k-round bidirec-
tional OT implies k-round alternating-message OT.

Theorem 2. k-round bidirectional OT implies k-round alternating-message OT.

2

Our transformation is unconditional and generalizes a message rescheduling strat-
egy previously considered by Garg et al. [13] for the specific case of three round coin-
tossing protocols. In fact, this transformation is even more general and applies to any
two-party functionality, with the restriction that only one party learns the output in the
alternating-message protocol.

An important corollary of Theorem 2 is that it establishes the missing piece from
the result of Benhamouda and Lin [5] who constructed k-round MPC from any k-round
alternating-message OT for k ≥ 5. Their result, put together with our main result in
Theorem 1 provides a full resolution of the fundamental question of basing round effi-
cient MPC on minimal assumptions.

In the sequel, for simplicity of exposition, we refer to alternating-message OT as
simply OT.

2 Technical Overview

Before we dive into the technical contributions of our work, for the uninitiated reader,
we provide a brief summary of the key challenges that arise in the design of a four
round MPC protocol and the high-level strategies adopted in prior works for addressing
them. We group these challenges into three broad categories, and will follow the same
structure in the remainder of the section.

Enforcing honest behavior. A natural idea, adopted in prior works, is to start with a
protocol that achieves security against semi-malicious6 adversaries and compile it using
zero-knowledge (ZK) proofs [20] à la GMW compiler [19] to achieve security against
malicious adversaries. This is not easy, however, since we are constrained by the number
of rounds. As observed in prior works, when the underlying protocol is delayed semi-
malicious7 [2, 5], we can forego establishing honest behavior in the first two rounds.
In particular, it suffices to establish honest behavior in the third and fourth rounds. The
main challenge that still persists, however, is that ZK proofs – the standard tool for
enforcing honest behavior – are impossible in three rounds w.r.t. black-box simulation
[17]. Thus, an alternative mechanism is required for establishing honest behavior in the
third round.

Need for rewind security. Due to the constraint on the number of rounds, all prior
works utilize design templates where multiple sub-protocols are executed in parallel.
This creates a challenge when devising a black-box simulation strategy that works by
rewinding the adversary. In particular, if the simulator rewinds the adversary (say) dur-
ing second and third round of the protocol, e.g., to extract its input, we can no longer
rely on stand-alone security of sub-protocols used in those rounds. This motivates the

6 Roughly speaking, such adversaries behave like semi-honest adversaries, except that they may
choose arbitrary random tapes.

7 Roughly speaking, a delayed semi-malicious adversary is similar to semi-malicious adversary,
except that in the second last round of a k-round protocol, it is required to output (on a special
tape) a witness (namely, its input and randomness) that establishes its honest behavior in all
the rounds so far.

3

use of sub-protocols that retain their security even in the presence of some number of
rewinds. Indeed, much work is done in all prior works to address this challenge.

Non-malleability. For similar reasons as above, we can no longer rely on standard
soundness guarantee of ZK proofs (which only hold in the stand-alone setting). All
prior works address this challenge via a careful use of some non-malleable primitive
such as non-malleable commitments [10] in order to “bootstrap non-malleability” in
the entire protocol. This leads to an involved security analysis.

Our primary technical contribution is in addressing the first two issues. We largely
follow the template of prior works in addressing non-malleability challenges. As such,
In the remainder of this technical overview, we focus on the first two issues, and defer
discussion on non-malleability to the full version.

Organization. We describe our key ideas for tackling the first and second issues in
Sections 2.1 and 2.2, respectively. We conclude by providing a summary of our protocol
in Section 2.3.

Full Version. Due to space constraints, preliminaries, details of the proofs, and com-
plexity calculations have been omitted from this manuscript, and can be found in the
full version of the paper [7].

2.1 Enforcing Honest Behavior

In any four round protocol, a rushing adversary may always choose to abort after re-
ceiving the messages of honest parties in the last round. At this point, the adversary
has already received enough information to obtain the output of the function being
computed. This suggests that we must enforce “honest behavior” on the protocol par-
ticipants within the first three rounds in order to achieve security against malicious
adversaries. Indeed, without any such safeguard, a malicious adversary may be able
learn the inputs of the honest parties, e.g., by acting maliciously so as to change the
functionality being computed to the identity function.

Since three-round ZK proofs with black-box simulation are known to be impossi-
ble, all recent works on four round MPC devise non-trivial strategies that only utilize
weaker notions of ZK (that are achievable in three or less rounds) to enforce honest
behavior within the first three rounds of the MPC protocol. However, all of these ap-
proaches end up relying on assumptions that are far from optimal: [2] and [6] use super-
polynomial-time hardness assumptions, [25] use Zaps [11] and affine-homomorphic en-
cryption schemes, and [3] use a new notion of promise ZK together with three round
strong WI [27], both of which require specific number-theoretic assumptions.

A Deferred Verification Approach. We use a different approach to address the above
challenge. We do not require the parties to give an explicit proof of honest behavior
within the first three rounds. Of course, this immediately opens up the possibility for
an adversary to cheat in the first three rounds in such a manner that by observing the
messages of the honest parties in the fourth round, it can completely break privacy. To
prevent such an attack, we require the parties to “encrypt” their last round message in

4

such a manner that it can only be decrypted by using a “witness” that establishes hon-
est behavior in the first three rounds. In other words, the verification check for honest
behavior is deferred to the fourth round.

In the literature, the above idea is referred to as conditional disclosure of secrets
(CDS) [1]. Typically, however, CDS is defined and constructed as a two-party protocol
involving a single encryptor – who encrypts a secret message w.r.t. some statement –
and a single decryptor who presumably holds a witness that allows for decryption. 8

This does not suffice in the multiparty setting due to the following challenges:

– The multiparty setting involves multiple decryptors as opposed to a single decryp-
tor. A naive way to address this would be to simply run multiple executions of
two-party CDS in parallel, each involving a different decryptor, such that the ith ex-
ecution allows party i to decrypt by using a witness that establishes its own honest
behavior earlier in the protocol. However, consider the case where the adversary
corrupts at least two parties. In the above implementation, a corrupted party who
behaved honestly during the first three rounds would be able to decrypt the honest
party message in the last round even if another corrupted party behaved maliciously.
This would clearly violate security. As such, we need a mechanism to jointly certify
honest behavior of all the parties (as opposed to a single party).

– In the two-party setting, the input and randomness of the decryptor constitutes a
natural witness for attesting its honest behavior. In the multiparty setting, however,
it is not clear how an individual decryptor can obtain such a witness that establishes
honest behavior of all the parties without trivially violating privacy of other parties.

We address these challenges by implementing a multiparty conditional disclosure
of secrets (MCDS) mechanism. Informally speaking, an MCDS scheme can be viewed
as a tuple of (possibly interactive) algorithms (Gen,Enc,Dec): (a) Gen takes as input
an instance and witness pair (x,w) and outputs a “public” witness π. (b) Enc takes as
input n statements (x1, . . . , xn) and a message m and outputs an encryption c of m.
(c) Dec takes as input a ciphertext c and tuples (x1, π1), . . . , (xn, πn) and outputs m or
⊥. We require the following properties:

– Correctness: If all the instances (x1, . . . , xn) are true, then dec outputs m.
– Message Privacy: If at least one instance is false, then c is semantically secure.
– Witness Privacy: There exists a simulator algorithm that can simulate the output
π of Gen without using the private witness w.

The security properties of MCDS allow us to overcome the aforementioned chal-
lenges. In particular, the witness privacy guarantee allows the parties to publicly release
the witnesses (π1, . . . , πn) while maintaining privacy of their inputs and randomness.

In order to construct MCDS with witness privacy guarantee, we look towards ZK
proof systems. As a first attempt, we could implement public witnesses via a delayed-
input9 four round ZK proof system. Specifically, each party i is required to give a ZK

8 There are some exceptions; we refer the reader to the full version for discussion on other
models.

9 A proof system is said to be delayed input if the instance is only required for computing the
last round of the proof.

5

proof for xi such that the last round of the proof constitutes a public witness πi. Fur-
ther, a simple, non-interactive method to implement the encryption and the decryption
mechanism is witness encryption [12]. However, presently witness encryption is only
known from non-standard assumptions (let alone OT).

To achieve our result from minimal assumptions, we instead use garbled circuits
[37] and four round OT to implement MCDS. Namely, each party i garbles a circuit
that contains hardwired the entire transcript of the first three rounds of the underlying
MPC, as well the fourth round message of the MPC of party i. Upon receiving as input
a witness π1, . . . , πn, where πj is a witness for honest behavior of party j, the garbled
circuit outputs the fourth round message. Each party j can encode its witness πj in the
OT receiver messages, where the corresponding sender inputs will be the wire labels
of the garbled circuit. Party j then release its private randomness used inside OT in the
fourth round so that any other party j′ can use it to compute the output of the OT, thereby
learning the necessary wire labels for evaluating the garbled circuit sent by party i. For
security, it is imperative the witness πj remains hidden until the randomness is revealed
in the fourth round.

A problem with the above strategy is that in a four round OT, the receiver’s input
must be fixed by the third round. This means that we can no longer use four round ZK
proofs, and instead must use three round proofs to create public witnesses of honest be-
havior. But which three round proofs must we use? Towards this, we look to the weaker
notion of promise ZK introduced by [3]. Roughly, promise ZK relaxes the standard no-
tion of ZK by guaranteeing security only against malicious verifiers who do not abort.
Importantly, unlike standard ZK, distributional10 promise ZK can be achieved in only
three rounds with black-box simulation in the bidirectional message model. This raises
two questions – is promise ZK sufficient for our purposes, and what assumptions are
required for three round promise ZK?

Promise ZK Under the Hood. Let us start with the first question. An immediate chal-
lenge with using promise ZK is that it provides no security in the case where the verifier
always aborts. In application to four round MPC, this corresponds to the case where the
(rushing) adversary always aborts in the third round. Since the partial transcript at the
end of third round (necessarily) contains inputs of honest parties, we still need to argue
security in this case. The work of [3] addressed this problem by using a “hybrid” ZK
protocol that achieves the promise ZK property when the adversary is non-aborting, and
strong witness-indistinguishability (WI) property against aborting adversaries. The idea
is that by relying on strong WI property (only in the case where adversary aborts in the
third round), we can switch from using real inputs of honest parties to input 0. However,
three round strong WI is only known based on specific number-theoretic assumptions
[27].

To minimize our use of assumptions, we do not use strong WI, and instead devise
a hybrid argument strategy – similar to that achieved via strong WI – by using promise
ZK under the hood. Recall that since we use the third round prover message of promise
ZK as a witness for conditional decryption, it is not given in the clear, but is instead
“encrypted” inside the OT receiver messages in the third round. This has the positive

10 That is, where the instances are sampled from a public distribution.

6

effect of shielding promise ZK from the case where the adversary always aborts in
the third round.11 In particular, we can use the following strategy for arguing security
against aborting adversaries: we first switch from using promise ZK third round prover
message to simply using 0’s as the OT receiver’s inputs. Now, we can replace the honest
parties’ inputs with 0 inputs by relying on the security of the sub-protocols used within
the first three rounds. Next, we can switch back to using honestly computed promise
ZK third round prover message as the OT receiver’s inputs.

Let us now consider the second question, namely, the assumptions required for three
round promise ZK. The work of [3] used specific number-theoretic assumptions to con-
struct three round (distributional) promise ZK. However, we only wish to rely on the
use of four round OT. Towards this, we note that the main ingredient in the construc-
tion of promise ZK by [3] that necessitated the use of number-theoretic assumptions is
a three round WI proof system that achieves “bounded-rewind-security.” Roughly, this
means that the WI property holds even against verifiers who can rewind the prover an a
priori bounded number of times.

Towards minimizing assumptions, we note that a very recent work of [23] provides
a construction of such a WI based only on non-interactive commitments. By using their
result, we can obtain three round promise ZK based on non-interactive commitments,
which in turn can be obtained from four round OT using the recent observation of
Lombardi and Schaeffer [31].

2.2 Rewinding Related Challenges

While the above ideas form the basis of our approach, we run into several obstacles
during implementation due to rewinding-related issues that we mentioned earlier. In
order to explain these challenges and our solution ideas, we first describe a high-level
template of our four round MPC protocol based on the ideas discussed so far. To narrow
the focus of the discussion on the challenges unique to the present work, we ignore some
details for now and discuss them later.

An Initial Protocol Template. We devise a compiler from four round delayed semi-
malicious MPC protocols of a special form to a four round malicious-secure MPC pro-
tocol. Specifically, we use a four round delayed semi-malicious protocol Π obtained
by plugging in a four-round malicious-secure (which implies delayed semi-malicious
security) OT in the k-round semi-malicious MPC protocol of [14, 5] based on k-round
semi-malicious OT. An important property of this protocol that we rely upon is that it
consists only of OT messages in the first k − 2 rounds. Further, we also rely upon the
random self-reducibility of OT, which implies that the first two rounds do not depend on
the OT receiver’s input, and the first three rounds do not depend on the sender’s input.12

To achieve malicious security, similar to prior works, our compiler uses several
building blocks (see Section 2.3 for a detailed discussion). One prominent building

11 Note that if the protocol does progress to the fourth round, then we do not need to shield
promise ZK anymore.

12 We note that this property was also used by [5] in their construction of k-round malicious-
secure MPC.

7

block is a three-round extractable commitment scheme that is executed in parallel with
the first three rounds of the delayed semi-malicious MPC. The extractable commit-
ment scheme is used by the parties to commit to their inputs and randomness. This
allows the simulator for our protocol to extract the adversary’s inputs and randomness
by rewinding the second and third rounds, and then use them to simulate the delayed
semi-malicious MPC.

Bounded-Rewind-Secure OT. The above template poses an immediate challenge in
proving security of the protocol. Since the simulator rewinds the second and third
rounds in order to extract the adversary’s inputs, this means that the second and third
round messages of the delayed semi-malicious MPC also get rewound. For this reason,
we cannot simply rely upon delayed semi-malicious security of the MPC. Instead, we
need the MPC protocol to remain secure even when it is being rewound. More specifi-
cally, since we are using an MPC protocol where the first two rounds only consist of OT
messages, we need a four round rewind-secure OT protocol. Since the third round of a
four round OT only contains a message from the OT receiver, we need the following
form of rewind security property: an adversarial sender cannot determine the input bit
used by the receiver even if it can rewind the receiver during the second and third round.

Clearly, an OT protocol with black-box simulation cannot be secure against an ar-
bitrary number of rewinds. In particular, the best we can hope for is security against
an a priori bounded number of rewinds. Following observations from [3], we note that
bounded-rewind security of OT is, in fact, sufficient for our purposes. Roughly, the
main idea is that the rewind-security of OT is invoked to argue indistinguishability of
two consecutive hybrids inside our security proof. In order to establish indistinguisha-
bility by contradiction, it suffices to build an adversary that breaks OT security with
some non-negligible probability (as opposed to overwhelming probability). This, in
turn means that the reduction only needs to extract the adversary’s input required for
generating its view with non-negligible probability. By using a specific extractable com-
mitment scheme, we can ensure that the number of rewinds necessary for this task are
a priori bounded.

Standard OT protocols, however, do not guarantee any form of bounded-rewind se-
curity. Towards this, we provide a generic construction of a four round bounded-rewind
secure OT starting from any four round OT, which may be of independent interest. Our
transformation is in fact more general and works for any k ≥ 4 round OT, when rewind-
ing is restricted to rounds k− 2 and k− 1. For simplicity, we describe our ideas for the
case where we need security against one rewind; our transformation easily extends to
handle more rewinds.

A natural idea to achieve one-rewind security for receivers, previously considered
in [5], is the following: run two copies of an OT protocol in parallel for the first k − 2
rounds. In round k − 1, the receiver randomly chooses one of the two copies and only
continues that OT execution, while the sender continues both the OT executions. In the
last round, the parties only complete the OT execution that was selected by the receiver
in round k − 1. Now, suppose that an adversarial sender rewinds the receiver in rounds
k−2 and k−1. Then, if the receiver selects different OT copies on the “main” execution
thread and the “rewound” execution thread, we can easily reduce one-rewind security
of this protocol to stand-alone security of the underlying OT.

8

The above idea suffers from a subtle issue. Note that the above strategy for dealing
with rewinds is inherently biased, namely, the choice made by the receiver on the re-
wound thread is not random, and is instead correlated with its choice on the main thread.
If we use this protocol in the design of our MPC protocol, it leads to the following is-
sue during simulation: consider an adversary who chooses a random z and then always
aborts if the receiver selects the z-th OT copy. Clearly, this adversary only aborts with
probability 1/2 in an honest execution. Now, consider the high-level simulation strat-
egy for our MPC protocol discussed earlier, where the simulator rewinds the second
and third rounds to extract the adversary’s inputs. In order to ensure rewind security of
the OT, this simulator, with overall probability 1/2, will select the z-th OT copy on all
the rewound execution threads. However, in this case, the simulator will always fail in
extracting the adversary’s inputs no matter how many times it rewinds.

We address the above problem via a secret-sharing approach to eliminate the bias.
Instead of simply running two copies of OT, we run ` · n copies in parallel during the
first k − 2 rounds. These ` · n copies can be divided into n tuples, each consisting of
` copies. In round k − 1, the receiver selects a single copy from each of the n tuples
at random. It then uses n-out-of-n secret sharing to divide its input bit b into n shares
b1, . . . , bn, and then uses share bi in the OT copy selected from the i-th tuple. In the
last round, sender now additionally sends a garbled circuit (GC) that contains its input
(x0, x1) hardwired. The GC takes as input all the bits b1, . . . , bn, reconstructs b and
then outputs xb. The sender uses the labels of the GC as its inputs in the OT executions.
Intuitively, by setting ` appropriately, we can ensure that for at least one tuple i, the OT
copies randomly selected by the receiver on the main thread and the rewound threads
are different, which ensures that bi (and thereby, b) remains hidden. We refer the reader
to the technical section for more details.

Proofs Of Proofs. We now describe another challenge in implementing our template
of four round MPC. As discussed earlier, we use a three round extractable commitment
scheme to enable extraction of the adversary’s inputs and randomness. For reasons sim-
ilar to those as for the case of OT, we actually use an extractable commitment scheme
that achieves bounded-rewind security. Specifically, we use a simplified variant of the
three-round commitment scheme constructed by [3].13

A specific property of this commitment scheme is that in order to achieve rewind
security, it is designed such that the third round message of the committer is not “veri-
fiable.” This means that the committer may be able to send a malformed message with-
out being detected by the receiver. For this reason, we require each party to prove the
“well-formedness” of its commitment via promise ZK. This, however, poses the follow-
ing challenge during simulation: since the third round prover message of promise ZK is
encrypted inside OT receiver message, the simulator doesn’t know whether the adver-
sary’s commitment is well-formed or not. In particular, if the adversary’s commitment
is not well-formed, the simulator may end up running forever, in its attempt to extract
the adversary’s input via rewinding.

13 The commitment scheme of [3] also achieves some security properties, in addition to bounded
rewind security, that are not required by our compiler. Hence, we use a simplified variant of
their scheme.

9

One natural idea to deal with this issue is to first extract adversary’s promise ZK
message from the OT executions via rewinding, and then decide whether or not to
attempt extracting the adversary’s input. However, since we are using an arbitrary
(malicious-secure) OT, we do not know in advance the number of rewinds required
for extracting the receiver’s input. This in turn means that we cannot correctly set the
rewind security of the sub-protocols used in our final MPC protocol appropriately in
advance.

We address this issue via the following strategy. We use another three round (delayed-
input) extractable commitment scheme [34] (ecom) as well as another copy of promise
ZK. This copy of promise ZK proves honest behavior in the first three rounds, and its
third message is committed inside the extractable commitment. Further, the third round
message of this extractable commitment is such that it allows for polynomial-time ex-
traction (with the possibility of “over-extraction”14). This, however, comes at the cost
that this extractable commitment does not achieve any rewind security. Interestingly,
stand-alone security of this scheme suffices for our purposes since we only use it in the
case where the adversary always aborts in the third round (and therefore, no rewinds
are performed).

The main idea is that by using such a special-purpose extractable commitment
scheme, we can ensure that an a priori fixed constant number of rewinds are suffi-
cient for extracting the committed value, namely, the promise ZK third round prover
message, with noticeable probability. This, in turn, allows us to set the rewind security
of other sub-protocols used in our MPC protocol in advance to specific constants.

Of course, the adversary may always choose to commit to malformed promise ZK
messages within the extractable commitment scheme. In this case, our simulator may
always decide not to extract adversary’s input, even if the adversary was behaving hon-
estly otherwise. This obviously would lead to a view that is distinguishable from the
real world. To address this issue, we use a proofs of proofs strategy. Namely, we require
the first copy of promise ZK, which is encrypted inside OT, to prove that the second
copy of promise ZK is “accepting”. In this case, if the adversary commits malformed
promise ZK messages within the extractable commitment, the promise ZK message in-
side OT will not be accepting. This, in turn, means that due to the security of garbled
circuits, the fourth round messages of the parties will become “opaque”.

Finally, we remark that for technical reasons, we do extract the promise ZK en-
crypted inside the OT receiver message in our final hybrid. However, in this particular
hybrid, the number of rewinds required for extraction do not matter since in this hybrid,
we only make change inside a non-interactive primitive (specifically, garbled circuit)
that is trivially secure against an unbounded polynomial number of rewinds.

2.3 Protocol Design Summary

Putting all the various pieces together, we describe the overall structure of the protocol
at a high level to demonstrate the purpose of its various components in the context of
the protocol.

14 This means the extractor can output a non ⊥ value if the commitment has no valid opening.

10

Pi Pj
recom1 msg1(x, r) td1 ncom1 rwi1,a ecom1 rwi1,b ot1 wi1

recom2 msg2(x, r) td2 ncom2 rwi2,a ecom2 rwi2,b ot2 wi2

recom3(x, r) msg3(x, r) td3 ncom3(̃r) ecom1(rwi3,a) ot3(rwi3,b)

GC
(
msg4(x, r)

)
ot4 wi3

For simplicity we consider the messages sent from Pi to Pj . Note that even though
Pj is the intended recipient for the messages in a two party sub-protocol, the messages
are broadcast to all parties.

Delayed semi-malicious MPC (blue). Pi uses input x and randomness r to compute
the messages msgk for the bounded rewind secure four-round delayed semi malicious
protocol Π .

Multiparty Conditional Disclosure of Secrets (red). As discussed earlier, the last
message of Π is not sent in the clear but instead sent inside a garbled circuit GC used
to implement MCDS. We use a four-round oblivious transfer protocol otk to allow the
parties to obtain garbled circuit wire labels corresponding to their witnesses. We defer
the discussion on the witness for MCDS below.

Rewind Secure Extractable commitment (green). The same input and randomness
used to compute messages for Π is committed via an extractable commitment recomk.
This is done to enable the simulator to extract the inputs and randomness of the adver-
sary for simulation. As discussed earlier, we use a three round extractable commitment
that achieves bounded rewind security.

Promise ZK (purple). We use promise ZK in a non-black box manner in our protocol.
Specifically, it consists of a trapdoor generation phase tdk, and a bounded rewind se-
cure witness indistinguishable proof rwik. As discussed in our proofs of proofs strategy,
we actually use two copies of the promise ZK (indexed by subscripts a and b in the
figure), but both of these copies will share a single instance of the trapdoor generation.
At a high level, both rwis prove that either the claim is true or “I committed to the
trapdoor in the non-malleable commitment” (see below). We also note that one of the
rwi copies, specifically, the copy indexed with subscript b is used as a witness for the
MCDS mechanism.

Witness Indistinguishable Proof (orange). We also use a regular witness indistin-
guishable proof wi (without any rewind security) to establish honest behavior of the
parties in the last round of the protocol. This effectively involves proving that either
the last round message was computed honestly or “I committed to the trapdoor in the
non-malleable commitment” (see below).

Extractable commitment (brown). As discussed earlier, we use an extractable com-
mitment ecom (without rewind security) to implement our proofs of proofs strategy to
enable simulation.

11

Non-malleability (dark blue). We bootstrap non-malleability in our protocol using
non-malleable commitments ncom in a similar manner to prior works [2, 3]. Specifi-
cally, in the honest execution of the protocol, the parties simply commit to a random
value r̃. We rely on specific properties of the ncom, which we do not discuss here and
refer the reader to the technical sections.

Finally, we note that our protocol design uses multiple sub-protocols with bounded
rewind security. We do not discuss how the bounds for the sub-protocols are set here,
and instead defer this discussion to Section 5.

Complexity of the protocol description. One might wonder why our construction is
so involved and whether there is a simpler construction. This is an important question
that needs to be addressed. Unfortunately, our current understanding of the problem
does not allow for a protocol that is easier to describe, but we believe that our solution
is less complex than the prior state-of-the-art solutions [3, 25].

3 Preliminaries

We present the syntax and informal definitions of some preliminaries below. Additional
preliminaries, and the full definitions can be found in the full version.

3.1 Extractable Commitments with Bounded Rewinding Security

In this section, we describe an extractable commitment protocol that is additionally
secure against a bounded number of rewinds. Since we are interested in the three round
protocol, we limit our discussion in this section to this setting. A simple extractable
commitment is a commitment protocol between a sender (with input x) and a receiver
which allows an extractor, with the ability to rewind the sender via the second and third
round of the protocol, to extract the sender’s committed value. Several constructions
of three round extractable commitment schemes are known in the literature (see, e.g.,
[34, 35]).

When we additionally require bounded rewind security, we shall parameterize this
bound by Brecom. Roughly this means that the value committed by a sender in an ex-
ecution of the commitment protocol remains hidden even if a malicious receiver can
rewind the sender back to the start of the second round of the protocol an a priori
boundedBrecom number of times. Extraction will then necessarily require strictly larger
than Brecom rewinds.

In the remainder of the section, we describe a construction of a three round ex-
tractable commitment protocol with bounded rewind security RECom = (S,R). The
construction is adapted from the construction presented in [3], and simplified for our
setting since we do not require the stronger notion of “reusability”, as defined in their
work.

In our application, we setBrecom = 4; however, our construction also supports larger
values of Brecom. For technical reasons, we don’t define or prove Brecom-rewinding
security property and reusability property for our extractable commitment protocol.
Instead, this is done inline in our four round MPC protocol.

12

Construction. Let Com denote a non-interactive perfectly binding commitment scheme
based on injective one-way functions. Let N and Brecom be positive integers such that
N − Brecom − 1 ≥ N

2 + 1. For Brecom = 4, it suffices to set N = 12. The three round
extractable commitment protocol RECom is described in Figure 1.

Sender S has input x.

Commitment Phase:

1. Round 1: S does the following:
– Pick N random degree Brecom polynomials p1, . . . , pN over Zq , where q is a prime

larger than 2λ.
– Compute recomS→R

1,` ← Com(p`; r`) using a random string r`, for every ` ∈ [N].
– Send recomS→R

1 = (recomS→R
1,1 , . . . , recomS→R

1,N) to R.
2. Round 2: R does the following:

– Pick random values z` ←$Zq for every ` ∈ [N].
– Send recomR→S

2 = (z1, . . . , zN) to S.
3. Round 3: S does the following:

– Compute recomS→R
3,` ← (x⊕ p`(0), p`(z`)) for all ` ∈ [N].

– Send recomS→R
3 = (recomS→R

3,1 , . . . , recomS→R
3,N) to R.

Decommitment Phase:

1. S outputs p1, . . . , pN together with the randomness r1, . . . , rN used in the first round
commitments.

2. R first verifies the following:
– For each ` ∈ [N], recomS→R

1,` = Com(p`; r`).
– Parse recomS→R

3,` = (α`, β`). Verify that β` = p`(z`).
– For each ` ∈ [N], compute x` = p`(0)⊕α`. Verify that all the x` values are equal.

If any of the above verifications fail, R outputs ⊥. Otherwise, R outputs x.

Fig. 1: Extractable Commitment Scheme recom.
The corresponding properties for the above construction is presented in the full

version.

3.2 Trapdoor Generation Protocol with Bounded Rewind Security

This section, we discuss the syntax and provide an intuitive definition, along with a
sketched construction, for a Trapdoor Generation Protocol with Bounded Rewind Se-
curity [3]. The complete definition along with the construction is provided in the full
version.

In a Trapdoor Generation Protocol, without bounded rewind security, a sender S
(a.k.a. trapdoor generator) communicates with a receiver R. The protocol itself has no
output, and the receiver has no input. The goal is for the sender to establish a trapdoor
upon completion. On the one hand, the trapdoor can be extracted via a special extraction
algorithm that has the ability to rewind the sender. On the other hand, no cheating
receiver should be able to recover the trapdoor.

13

Syntax. A trapdoor generation protocol TDGen = (TDGen1,TDGen2,TDGen3,TDOut,
TDValid,TDExt) is a three round protocol between two parties - a sender (trapdoor
generator) S and receiver R that proceeds as below.

1. Round 1 - TDGen1(·): S computes and sends tdS→R1 ← TDGen1(rS) using a
random string rS .

2. Round 2 - TDGen2(·): R computes and sends tdR→S2 ← TDGen2(td
S→R
1 ; rR)

using randomness rR.
3. Round 3 - TDGen3(·): S computes and sends tdS→R3 ← TDGen3(td

R→S
2 ; rS)

4. Output - TDOut(·) The receiver R outputs TDOut(tdS→R1 , tdR→S2 , tdS→R3).
5. Trapdoor Validation Algorithm - TDValid(·): Given input (t, tdS→R1), output a

single bit 0 or 1 that determines whether the value t is a valid trapdoor correspond-
ing to the message td1 sent in the first round of the trapdoor generation protocol.

In what follows, for brevity, we set td1 to be tdS→R1 . Similarly we use td2 and td3
instead of tdR→S2 and tdS→R3 , respectively. Note that the algorithm TDValid does not
form a part of the interaction between the trapdoor generator and the receiver. It is, in
fact, a public algorithm that enables public verification of whether a value t is a valid
trapdoor for a first round message td1.

The protocol satisfies two properties: (i) Sender security, i.e., no cheating PPT re-
ceiver can learn a valid trapdoor, and (ii) Extraction, i.e., there exists an expected PPT
algorithm (a.k.a. extractor) that can extract a trapdoor from an adversarial sender via
rewinding.

Extraction. There exists a PPT extractor algorithm TDExt that, given a set of values15

(td1, {tdi2, td
i
3}3i=1) such that td12, td

2
2, td

3
2 are distinct and TDOut(td1, td

i
2, td

i
3) = 1

for all i ∈ [3], outputs a trapdoor t such that TDValid(t, td1) = 1.

1-Rewind Security. Intuitively, a Trapdoor Generation protocol is 1-rewind secure if
it protects a sender against a (possibly cheating) receiver that has the ability to rewind it
once. Specifically, the receiver is allowed to query the sender on two (possibly adaptive)
different second round messages, thereby receiving two different third round responses
from the sender. It should be the case that the trapdoor still remains hidden to the re-
ceiver.

Construction Based on One-way Functions. We sketch here the simple construction
based on any signature scheme. In the first round, the sender samples a signing key pair
and sends the verification key to the receiver. The receiver queries a random message
in the second round, and the sender responds with the corresponding signature in the
third. The trapdoor is defined to be 3 distinct (message,signature) pairs. It is easy to see
that both extraction and 1-rewind security are satisfied for this construction.

15 These values can be obtained from the malicious sender via an expected PPT rewinding proce-
dure. The expected PPT simulator in our applications performs the necessary rewindings and
then feeds these values to the extractor TDExt.

14

3.3 Witness Indistinguishable Proofs with Bounded Rewinding Security

In this section we discuss the informal definition of a delayed input witness indis-
tinguishable arguments (WI) to additionally satisfy Brwi-bounded rewinding security,
where the same statement is proven across all the rewinds. We refer to such primitives
as Brwi-bounded rewind secure WI.

Brwi-Bounded Rewinding Security. The intuition for the definition is similar to that
of the trapdoor generation protocol as described in the previous section. Here, for the
three round delayed-input witness indistinguishable argument we want witness indistin-
guishability to be preserved as long as the verifier is restricted to rewinding the prover
Brwi-1 times. Specifically, the prover sends its first round message to the verifier, who
then choses (i) a triple consisting of a statement, and any two corresponding witnesses
w0 and w1; (ii) Brwi-1 second round verifier messages for the single first round prover
message. The prover then completes the protocol, responding to each of the Brwi-1 ver-
ifier messages, using either witness w0 or w1 for every response.

We refer the reader to the full version for the formal definitions of both, a delayed
input WI, and the Brwi-bounded rewind secure WI.

It was recently shown in [24] that there exists such WI arguments assuming non-
interactive commitments. For further details, see the full version. We will use their
scheme in our protocol.

3.4 Special Non-Malleable Commitments

In this work we make use of a commitment scheme that is non-malleable, non-malleable
with respect to extraction and enjoys some additional properties. We refer to such
a commitment scheme as a special non-malleable commitment scheme. We refer the
reader to the full version for the basic definitions of non-malleable commitments. In the
full version we also briefly detail the non-malleable commitment scheme of [22] and
show that it is a special non-malleable commitment scheme.

4 Oblivious Transfer with Bounded Rewind Security

In this section we define, and construct a four round oblivious transfer protocol that is
additionally secure against a bounded number of rewinds. We construct such a protocol
assuming the existence of any four round OT protocol. Specifically, for an OT protocol
to be rewind secure, we require security against an adversary who is allowed to re-
execute the second and third round of the protocol multiple times. But the first and
fourth round are executed only once.

4.1 Definition

We start by formalizing the notion of a rewind secure oblivious transfer protocol. We
shall denote by outR〈S(x), R(y)〉 the output of the receiver R on execution of the
protocol between R with input y, and sender S with input x. The four round oblivious

15

transfer protocol is specified by four algorithms OTj for j ∈ [4]; and the corresponding
output protocol message is denoted by otj . We consider a delayed receiver input notion
of the protocol where the receiver input is only required for the computation of ot3.

Definition 1. An interactive protocol (S,R) between a polynomial time sender S with
inputs s0, s1 and polynomial time receiver R with input b, is a four round bounded
rewind secure oblivious transfer (OT) if the following properties hold:

– Correctness. For any selection bit b, for any messages s0, s1 ∈ {0, 1}, it holds that

Pr

[
outR〈S(s0, s1), R(b)〉 = sb

]
= 1

where the probability is over the random coins of the sender S and receiver R.

– Security against Malicious Sender with B rewinds. Here, we require indistin-
guishability security against a malicious sender where the receiver uses input b[k]
in the k-th rewound execution of the second and third round. Specifically, consider
the experiment described below. ∀

{
b0[k], b1[k]

}
k∈[B]

∈ {0, 1} where

Experiment Eσ:
1. Run OT1 to obtain ot1 which is independent of the receiver input. Send to A.
2. A then returns {ot2[j]}j∈[B] messages.
3. For each j ∈ [B], run OT3 on (ot1, ot2[j], b

σ[j]) and send the response to A.
4. The output of the experiment is the entire transcript.

We say that the scheme is secure against malicious senders with B rewinds if the
experiments E0 and E1 are indistinguishable.

4.2 Construction

We describe below the protocol ΠR which achieves rewind security against malicious
senders. The Sender S’s input is s0, s1 ∈ {0, 1} while the receiver R’s input is b ∈
{0, 1}.

Components. We require the following two components:

– n · BOT instances of a 4 round OT protocol which achieves indistinguishability
security against malicious senders.

– GC = (Garble,Eval) is a secure garbling scheme.

Protocol. The basic idea is to split the receiver input across multiple different OT
executions such that during any rewind, a different set of OTs will be selected to proceed
with the execution thereby preserving the security of the receiver’s input. The sender
constructs a garbled circuit which is used to internally recombine the various inputs
shares and only return the appropriate output. The protocol is described below.

16

Round 1. (ΠR
1) : The receiver R computes the first round message of all the OTs. ∀i ∈

[n], k ∈ [BOT], oti,k1 := OT1

(
1λ; rR

)
and send

{
oti,k1

}
i∈[n],k∈[BOT]

to S. We refer to index

i as the outer index, and k as the inner index.

Round 2. (ΠR
2) : The sender S responds to all of the OT messages. ∀i ∈ [n], k ∈ [BOT],

compute oti,k2 := OT2

(
oti,k1 ; rS

)
and sends

{
oti,k2

}
i∈[n],k∈[BOT]

to R.

Round 3. (ΠR
3) : The receiver now selects only a single OT to continue for i. It then encodes

its input b by computing n additive shares and using each share as an input to a separate OT.
Specifically, receiver R does the following:

– Compute n additive shares of b. Specifically, sample the first n − 1 shares at random
∀` ∈ [n− 1] b` ←$ {0, 1} and set the last share bn := b

⊕n−1
`=1 bj .

– Sample within each tuple, the index for which to continue the OT. ∀i ∈ [n],
σi ←$ [BOT] .

– Use input bi to compute the receiver message for oti,σi3 . The other OTs are discontin-

ued. Specifically, ∀i ∈ [n], compute oti,σi3 ← OT3

(
bi, ot

i,σi
1 , oti,σi2 ; rR

)
and send{

oti,σi3 , σi
}
i∈[n]

to S.

Round 4. (ΠR
4) : The sender encodes its inputs (s0, s1) in a garbled circuit and uses the

corresponding labels to complete the OT protocol.

– Compute garbled circuit:
(
Cot, lab

)
:= Garble (Cot [s0, s1] ; rgc,i), where

Circuit Cot[s0, s1] on input b1, . . . , bn outputs sb where b :=
⊕n

i=1 bi.

– For i ∈ [n], compute oti,σi4 := OT4

(
labi,0, labi,1, ot

i,σi
1 , oti,σi2 , oti,σi3 ; rS

)
and send{

oti,σi4

}
i∈[n]

to R.

Evaluation. (OTEval′) : The receiver R now evaluates the OT protocol to obtain labels
needed to evaluate the output of the garbled circuit.

– For i ∈ [n], compute l̂abi := OTEval
(
bi, ot

i,σi
1 , oti,σi2 , oti,σi3 , oti,σi4 ; rR

)
– Output s′ := Eval

(
Cot,

{
l̂abi
}
i∈[n]

)

We now have the corresponding Lemma, which we prove in the full version.

Lemma 1. Assuming receiver indistinguishability of OT against malicious senders, the
receiver input in ΠR remains indistinguishable under BOT-rewinds.

Remark 1. We note that while our construction is proved against malicious senders, for
our application it suffices to have the following two properties:

– bounded rewind security against semi malicious senders.
– standalone security against receivers.

17

Remark 2. While not relevant to the bounded rewind security of the scheme, we note
that in our applications, a malicious sender might compute the garbled circuit incor-
rectly. This stems from the fact that there will be multiple participants evaluating the
garbled circuit to compute the OT output. We will therefore have to prove that the mes-
sages of the protocol were in fact computed correctly.

4.3 Four Round Delayed Input Multiparty Computation with Bounded Rewind
Security

Looking ahead, for our main result, we will compile an underlying semi-malicious pro-
tocol to achieve malicious security. In order to use the underlying semi-malicious pro-
tocol in a black-box manner, we will require the protocol to satisfy bounded rewind
security. In this section, we provide only an informal definition with a sketch of the
construction. The formal definition, along with a more detailed discussion of the in-
stantiation can be found in the full version.

To start with, we consider a four round delayed input semi-malicious protocols sat-
isfying the following additional properties, where we denote by msgk the messages of
all parties output in the k-th round by Π .

1. Property 1: msg1 and msg2 of Π contain only messages of OT instances.
2. Property 2: msg1 and msg2 of Π do not depend on the input. The input is used

only in the computation of msg3 and msg4.
3. Property 3: The simulator S simulates the honest parties’ messages msg1 and

msg2 via S1 and S2 by simply running the honest OT sender and receiver algo-
rithms.

4. Property 4: msg3 can be divided into two parts: (i) components independent of the
OT messages; and (ii) OT messages.

Here we clarify what it means for a component of a message to be independent of OT
messages. We say a component of msg3 is independent of OT messages if its com-
putation in the third round is independent of the both the private and public state of
OT.

The recent works of [14, 5] construct two round semi-malicious protocols. Both
protocols when instantiated with a four round OT protocol, satisfy the above structure.
This follows from the fact that when their protocols are instantiated with a four round
OT protocol, the non-OT components of their protocol are executed only in round 3.

The bounded rewind security notion follows in similar vein to the bounded rewind
secure primitives we have previously defined. Note that the primary difference here
stems from the fact that the protocol we consider is in the simultaneous message model.
We say that a protocol satisfying the above properties is bounded rewind secure if the
protocol remains secure in the presence of an that adversary is able to rewind the hon-
est parties in the second and third round of the execution. Specifically, an adversary
is allowed to: (a) initially query B − 1 many distinct second round messages and re-
ceive third round messages in response; (b) in the last (B-th) query, the adversary also
includes inputs for the honest parties. The adversary should then be unable to distin-
guish between the case that the protocol completes from the B-th query onward, where

18

the last round was either completed with honest inputs provided by the adversary, or
simulated.

Instantiation. On plugging in the bounded rewind-secure OT constructed in the pre-
vious section into the semi-malicious protocols of [14, 5] gives us the required delayed
input MPC protocol with bounded rewind security.

5 Four Round MPC

Building Blocks. We list below all the building blocks of our protocol.
– Trapdoor Generation Protocol: TDGen = (TDGen1,TDGen2,TDGen3,TDOut,
TDValid,TDExt) is a three round Btd-rewind secure trapdoor generation protocol
based on one-way functions (see Section 3.2). We set Btd to be 2.
In our MPC construction, we use a “multi-receiver” version of TDGen that works as
follows: whenever a sender party i sends its first round message td1, all of the other
(n − 1) parties send a second round receiver message td2,i. The sender now pre-
pares td2 = (td2,1|| . . . ||td2,n−1), and then uses it to compute td3. All the (n− 1)
receivers individually verify the validity of td3.

– Delayed-Input WI Argument: WI = (WI1,WI2,WI3,WI4) is a three round delayed-
input witness indistinguishable proof system (see Section 3.3), where WI4 is used
to compute the decision of the verifier.

– Bounded-Rewind Secure WI Argument: RWI = (RWI1,RWI2,RWI3,RWI4)
is a three round delayed-input witness-indistinguishable proof with Brwia -rewind
security (see Section 3.3). RWI4 is used to compute the decision of the verifier. We
will use two different instances of RWI that we will refer to as RWIa and RWIb,
where the subscripts a and b denote the different instances. We set their respective
rewind security parameters Brwia and Brwib to be some fixed polynomial.

– Special Non-malleable Commitment: NMCom = (NMCom1,NMCom2,NMCom3)
is a three round special non-malleable commitment scheme. Let ExtNMCom denote
the extractor associated with NMCom.

– Bounded-Rewind Secure Extractable Commitment: RECom = (RECom1,RECom2,
RECom3) is the three round Brecom-rewind secure delayed-input extractable com-
mitment based on non-interactive commitments (see Section 3.1). We set rewind-
ing security parameter Brecom to be 4. ExtRECom is the extractor associated with
RECom.

– Extractable Commitment: Ecom = (Ecom1,Ecom2,Ecom3,ExtEcom) is the three
round delayed-input extractable commitment scheme based on statistically binding
commitment schemes. They satisfy the 2-extraction property.

– Delayed Semi-Malicious MPC: Π is a four round BΠ -bounded rewind secure
delayed input MPC protocol based on oblivious transfer (see Section 4.3). We set
BΠ to be 9.

– Garbled Circuits: GC = (Garble,Eval) is a secure garbling scheme. We denote the
labels {labi,0, labi,1}i∈[L] by lab. We will often partition the labels of the garbled
circuit to indicate the party providing the input corresponding to the label indices,
and denote this by lab|j for party j.

19

– Oblivious Transfer: OT = (OT1,OT2,OT3,OT4) is a four round oblivious
transfer protocol. We abuse notation slightly and use this as implementing paral-
lel OT executions where the receiver’s input is a string of length ` and the sender
now has ` pairs of inputs. We require regular indistinguishability security against a
malicious sender. In addition, we require extraction of the receiver’s input bit.

Levels of rewind security. We recall the notion of bounded-rewind security and the
need for levels of rewind security. Bounded-rewind security, as in [3], is used in the se-
curity proof to argue indistinguishability in intermediate hybrids. The main idea is that
when arguing indistinguishability of two hybrids, to derive a contradiction it suffices
to build an adversary with non-negligible success probability. As such, as long as the
adversary does not abort with some non-negligible probability (which is indeed true), a
small constant number of rewinds are sufficient for extracting with non-negligible prob-
ability. The exact bounded-rewind security constants for various primitives are carefully
set to establish various “levels” of security.

For primitives with bounded rewind security, we requireBrwia , Brwib , BΠ > Brecom >
Btd where they denote the total number of rewinds (including the main thread) that they
are secure against. In addition, we require all of them to be larger than the number of
threads required to extract from NMCom and Ecom. For the above primitives, we have
Brwia = Brwib = poly (λ) (for some fixed polynomial), BΠ = 9, Brecom = 4 and
Btd = 2 thus satisfying our requirements.

Notation for Transcripts. We introduce a common notation that we shall use to de-
note partial transcripts of an execution of different protocols that we use in our MPC
construction. For any execution of protocol X , we use TX [`] to denote the transcript of
the first ` rounds.

NP languages. We define the NP languages used for the three different proof systems
that we use in our protocol. We denote statements and witnesses as st and w, respec-
tively.
1. RWIa: We use RWIa for language La, which is characterized by the following

relation Ra:

st :=
(
TΠ [2],

{
Tj

recom[3]
}
j∈[n] , {msg`}`∈[3] ,Tncom[3], td1

)
w :=

(
inp, r,

{
rjrecom

}
j∈[n] , t, rncom

)
Ra(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: all of the following conditions hold:

– ∀j, Tj
recom[3] is a well-formed transcript of RECom w.r.t. input (inp, r) and

randomness rjrecom.
– for every ` ≤ 3, msg` is an honestly computed `th round message in the

protocolΠ w.r.t. input inp, randomness r and the first (`−1) round protocol
transcript TΠ [`− 1].

(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and random-
ness rncom (AND) t is a valid trapdoor w.r.t. td1

20

2. RWIb: We use RWIb for language Lb, which is characterized by the following rela-
tion Rb:

st :=
({

Tj
rwia

[2], stja,T
j
ecom[3]

}
j∈[n] ,Tncom[3], td1

)
w :=

({
rjrwia ,w

j
a, rwi

j
3,a, r

j
ecom

}
j∈[n] , t, rncom

)
.

Rb(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: all of the following conditions hold:

– ∀j, Tj
ecom[3] is a well-formed transcript of Ecom w.r.t. input

{
rwik3,a

}
k∈[n]

and randomness rjecom.
– ∀j, Tj

rwia
[2]||rwij3,a is an honestly computed transcript of RWIa for La with

statement stja, witness wja and randomness rjrwia . a

(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and random-
ness rncom (AND) t is a valid trapdoor w.r.t. td1

a Since RWI is not publicly verifiable, the relation establishes that the RWI prover
messages were computed honestly w.r.t. the witness and randomness for the state-
ment.

3. WI: We use WI for language Lc, which is characterized by the following relation
Rc:

st :=
(
{msgi, ncomi}i∈[3] ,

{
recomj

i

}
i∈[3],j∈[n]

,
{
rwiji

}
i∈[2],j∈[n]

,

Trans3,
{
otji

}
i∈[4],j∈[n]

,
{
stj
}
j∈[n]

, C̃, td1,TNMCom[3]
)

w :=
(
inp, r,

{
rjrecom, r

j
ot, r

j
rwi

}
j∈[n] ,msg4, rgc, t, rncom

)
Rc(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: For every j, all of the following conditions hold:

– Tj
recom[3] is a well-formed transcript of RECom w.r.t. input (inp, r) and ran-

domness rjrecom.
– msg4 is honestly computed round 4 message of Π w.r.t. inp, randomness r

and transcript TΠ [3].
– (C, lab) is honest garbling of C that contains hardwired values

msg4,
{
Tj

rwi[2], st
j
b, r

j
rwi

}
j∈[n], using randomness rgc. (See Figure 2.)

– otj4 is honestly computed using lab|j , randomness rjot and transcript Tj
ot[3].

(Tj
ot[4] = Tj

ot[3]‖otj4).
(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and random-

ness rncom (AND) t is a valid trapdoor w.r.t. td1

21

C

[
msg4,

{
Tj

rwib
[2], stjb, r

j
rwib

}
j∈[n]

]
Input: {rwij3,b}j∈[n]

– If for every j 6= i, RWI4
(
stjb,T

j
rwib

[2]‖rwij3,b; r
j
rwib

)
= 1, output msg4;

– Else, output ⊥.

Fig. 2: Circuit C

5.1 The Protocol

In this section, we describe our four round MPC protocol between n players P1, · · · ,Pn.
Let xi denote the input of party Pi. At the start of the protocol, each party samples a
sufficiently long random tape to use in the various sub-protocols; let rX denote the
randomness used in sub-protocol X .

Notational Conventions. We establish some conventions for simplifying notation in
the protocol description. We only indicate randomness as an explicit input for comput-
ing the first round message of a sub-protocol; for subsequent computations, we assume
it to be an implicit input. Similarly, we assume that any next-message of a sub-protocol
takes as input a partial transcript of the “previous” rounds, and do not write it explicitly.
Whenever necessary, we augment our notation with superscript i → j to indicate the a
instance of an execution of a sub-protocol between a “sender” i and “receiver” j (where
sometimes, the sender is a prover and receiver is a verifier). When the specific instance
is clear from context, we shall drop the superscript. When we wish to refer to multiple
instances involving a party i, we will use the shorthand superscript i → • or • → i,
depending upon whether i is the sender or the receiver. For example, Ti→•

X [`] will be a

shorthand to indicate
{
Ti→j
X [`]

}
j∈[n]

.

We will sometimes use explanatory comments within the protocol description, de-
noted as //comment. Finally, we note that all messages in the protocol are broadcast; if
any party aborts during the first three rounds of the protocol, it broadcasts an abort in
the subsequent round. We do not write this explicitly in the protocol, and assume it to
be implicit. We now proceed to describe the protocol.

Round 1: Pi computes and broadcasts the first round messages of the following protocols:
1. Delayed semi-malicious MPC Π: msg1,i ← Π1 (ri).
2. Sender message of TDGen: td1,i ← TDGen1 (rtd,i).

For every j 6= i:
3. Prover message of the three delayed-input WI argument systems

– WI: wii→j1 ←WI1(r
i→j
wi).

– RWIa: rwii→ja,1 ← RWI1(r
i→j
rwia

).

– RWIb: rwii→jb,1 ← RWI1(r
i→j
rwib

).

22

4. Sender message of the three delayed-input commitment schemes
– Ecom: ecomi→j

1 ← Ecom1(r
i→j
ecom).

– RECom: recomi→j
1 ← RECom1(r

i→j
recom).

– NMCom: ncomi→j
1 ← NMCom1(r

i→j
ncom).

5. Receiver message of OT: otj→i1 ← OT1

(
rj→iot

)
.

Round 2: Pi computes and broadcasts the second round messages of the following protocols:
1. Delayed semi-malicious MPC Π: msg2,i ← Π2.

For every j 6= i:
2. Receiver message of TDGen: tdi→j2 ← TDGen2.
3. Verifier message of the three delayed-input WI argument systems

– WI: wij→i2 ←WI2
– RWIa: rwij→ia,2 ← RWI2

– RWIb: rwij→ib,2 ← RWI2
4. Receiver message of the three delayed-input commitment schemes

– Ecom: ecomj→i
2 ← Ecom2.

– RECom: recomj→i
2 ← RECom2.

– NMCom: ncomj→i
2 ← NMCom2.

5. Sender message of OT: oti→j2 ← OT2.

Round 3: Pi computes and broadcasts the third round messages of the following protocols:
1. Delayed semi-malicious Π: msg3,i ← Π3 (xi) using input xi. //First step where Pi is

using its input.
2. TDGen: td3,i ← TDGen3.

For every j 6= i:
3. NMCom: ncomi→j

3 ← NMCom3(̃rj) to commit to a random r̃j .
4. RECom: recomi→j

3 ← RECom3(xi, ri) to commit to (xi, ri).
5. RWI: rwii→ja,3 ← RWI3

(
sti→ja ,wi→ja

)
to prove that Ra(sti→ja ,wi→ja) = 1, where

Statement sti→ja := (TΠ [2],Ti→•
recom[3], {msg`,i}`∈[3],T

i→j
ncom[3], td1,j)

“Honest” witness wi→ja := (xi, ri, r
i→•
recom)

6. Ecom: ecomi→j
3 ← Ecom3

(
rwii→•a,3

)
to commit to rwii→•a,3 .

7. RWIb: rwii→jb,3 ← RWI3(st
i→j
b ,wi→jb) to prove that Rb(sti→jb ,wi→jb) = 1, where

Statement sti→jb := (Ti→•
rwia [2], sti→•a ,Ti→•

ecom[3],T
i→j
ncom[3], td1,j)

“Honest” witness wi→jb := (ri→•rwia ,w
i→•
a , rwii→•a,3 , r

i→•
ecom)

8. OT: Receiver message otj→i3 ← OT3(rwi
i→j
b,3) using input rwii→jb,3 .

Round 4: Pi computes and broadcasts the following messages:
1. If ∃j 6= i such that TDValid(td1,j , td2,j , td3,j) 6= 1 , abort.

//where td2,j := (td1→j2 || · · · ||tdn→j2).
2. Delayed semi-malicious MPC Π: Fourth round message msg4,i ← Π4.
3. Garbled Circuit: Ci, where (Ci, labi)← Garble(C[msg4,i,T

•→i
rwib

[2], st•→ib , r•→irwib
]; rgc,i).

Circuit C is defined in Figure 2.

For every j 6= i:

23

4. OT: Fourth round sender message oti→j4 ← OT4

(
labi|j

)
using input labi|j

//labi|j denotes labels corresponding to the input wires for Pj’s input.

5. OT: Receiver randomness rj→iot . //This is used by other parties to compute OT output.
6. WI: wii→j3 ←WI3

(
sti→jc ,wi→jc

)
, to prove that Rc(sti→jc ,wi→jc) = 1, where

Statement sti→jc := (TΠ [3],Ti→•
recom[3],T

•→i
rwib [2], st•→ib ,Ti→•

ot [4],Ci,T
i→j
ncom[3], td1,j)

“Honest” witness wi→jc := (xi, ri, r
i→•
recom, r

i→•
ot , r•→irwib ,msg4,i, rgc,i)

Output Computation: Pi computes the following:

1. If ∃j 6= i, s.t. WI4(st
j→i
c ,Tj→i

wi [3]) 6= 1, output ⊥ and abort.
2. Compute OT outputs: ∀j 6= i,∀k 6= {i, j},

l̂abj|k ← OTEval(Tj→k
ot [4]; rj→kot)

3. Evaluate garbled circuits: ∀j 6= i, m̂sg4,j ← Eval(Cj , l̂abj), where l̂abj :=

(l̂abj|1 || · · · ||l̂abj|n).
If any evaluation returns ⊥, then output ⊥ and abort.

4. Output yi ← OUT(xi,TΠ [4]; ri), where TΠ [4] includes TΠ [3] and m̂sg4,j for every
j.

Our main result is stated in the following theorem.

Theorem 3. Assuming the hiding property of oblivious transfer, the hiding property of
extractable commitment, the hiding property of extractable commitment with bounded
rewind security, delayed semi malicious protocol with bounded rewind security com-
puting any function F , special non-malleable commitments, witness indistinguishable
proofs with bounded rewind security, security of garbled circuits, trapdoor generation
protocol with bounded rewind security, in addition to the correctness of these primitives,
then the presented protocol is a four round protocol for F secure against a malicious
dishonest majority.

Remark 3. All the above primitives can be based on one-way functions, non-interactive
commitments and oblivious trasnfer (OT). In a recent note by Lombardi and Schaeffer
[31], they give a construction of a perfectly binding non-interactive commitment based
on perfectly correct key agreement. As they point out, such key agreement schemes
can be based on perfectly correct oblivious transfer [15]. This gives us both a non-
interactive commitment schemes, and one-way functions, based on perfectly correct
oblivious transfer. Thus it suffices to instantiate all our primitives using just oblivious
transfer.

We thus have the following corollary.

Corollary 1. Assuming polynomially secure oblivious transfer with perfect correct-
ness, our constructed protocol is a four round multiparty computation protocol for any
function F .

The complete security analysis of the above protocol is presented in the full version.
Below we present a high level description of the main ideas of the proof and how the
bounded rewind-security parameters are set.

24

5.2 Security

We emphasize that our discussion below is informal, and not a complete picture of the
simulator and hybrids. Our intent is to give an outline of the key hybrids and simulation
steps to convey the main ideas. This will already highlight the need for various levels
of rewind security, one of the main challenges in proving security. There are lots of
other challenges that we do not discuss here, and similar to prior works, the full secu-
rity analysis is much more complex and we refer the reader to the full version for the
analysis.

One particular challenge that we ignore is that of an aborting adversary, either im-
plicitly or explicitly, in the first three rounds of the protocol. The case of an explicitly
aborting adversary is dealt with in a similar manner to [3, 16] by initially sampling a
partial transcript, using dummy inputs, to determine if the adversary aborts, and then
re-sampling the transcript in case the adversary does not abort. For an implicitly abort-
ing adversary, the simulator (via extraction) can determine if the adversary aborted, but
honest parties are not aware of this in the first three rounds of the protocol. This case
relies on the security of the multi-party CDS (via OT and garbled circuits) to deal with
the implicit aborts. Stepping around these challenges, the main steps in the simulation
involve (a) rewinding the adversary to extract the trapdoor and inputs; (b) completing
the witness indistinguishable arguments using the extracted trapdoor; (c) simulating the
underlying protocol using the output obtained from the ideal functionality.

Key Hybrid Components. We give below a high level overview of some key hybrids
in keeping with our simplified description of the simulator above. This will allow us to
discuss our specific choices for the level of rewinds.

– The first hybrid is identical to the real protocol execution. Each witness indistin-
guishable (WI) argument in our protocol allows for a trapdoor witness, arising from
the trapdoor generation protocol and the non-malleable commitment (NMCom).
We would like it to be the case that a simulator is able to derive the trapdoor and
produce a simulated transcript via the trapdoor witness, an adversary should not be
in possession of a trapdoor witness thereby forcing honest behavior if the witness
indistinguishable argument is accepting.
In order to argue that the adversary is not in possession of the trapdoor witness,
we need to ensure the following invariant: the adversary does not commit to the
trapdoor inside of the NMCom.
In order to do so in this hybrid, we rely on the rewind security of the trapdoor
generation protocol. Specifically, we extract from the NMCom by rewinding the
adversary once in the second and third round (two total executions of the second and
third round). If indeed the adversary was committing to the trapdoor, the extraction
is successful with some noticeable probability and thereby breaking the rewind
security of the trapdoor generation protocol. Note, as observed in [3], to arrive at a
contradiction via reduction it is sufficient to extract with noticeable (as opposed to
overwhelming) probability. This explains why we require Btd ≥ 2.
For each change that we subsequently make through the various primitives, we
will bootstrap the above technique, and argue that this invariant continues to hold.
Specifically, in order to arrive at a contradiction, we will extract from the NMCom

25

to break the security property of the corresponding primitive if the invariant ceases
to hold. This already gives us a flavor for primitives to be secure against (at least)
two rewinds needed for the extraction from the NMCom.

– In this hybrid, the simulator creates sufficient rewind execution threads in order to
extract the adversary’s input and the trapdoors needed to prove the WI using the
trapdoor witness. These rewind threads have the same first round messages as the
“main” execution thread, but the second and third round messages are computed
in each rewind thread with fresh randomness. The rewind threads terminate on
completion of the third round of the protocol.

– In the previous hybrid, the simulator is still using the honest inputs in the rewind
threads. In this hybrid the rewind threads are switched from using the honest party’s
inputs, to an honest execution with input 0. Note that these threads finish by the end
of the third round.
While the changes made in this hybrid are done in a sequence of steps, and needs to
be argued carefully, the sequence closely resembles the changes that will be made
in the main execution thread below. Therefore, we primarily focus on the hybrids
pertaining to the main execution thread.

– In this hybrid, the simulator uses the trapdoors extracted from the rewind threads
to commit to the trapdoor inside the NMCom on the main execution thread. In
order to argue indistinguishability, we perform a reduction to an external NMCom
challenger. In order to generate the transcript internally, and complete the reduction,
we need to rewind the adversary to get the trapdoor and inputs. But this causes a
problem since the rewind threads might require responses to challenges that are
meant for the external challenger. Here, we rely on the fact that the third round
of our instantiated NMCom has pseudorandom messages, allowing us to respond
to adversarial queries in the third round, that cannot be forwarded to the external
NMCom challenger. This prevents the need for bounded rewind security from the
NMCom.

– In a sequence of sub-hybrids, the simulator uses the extracted trapdoor to com-
plete both the bounded rewind secure witness indistinguishable arguments using
the trapdoor witness. As seen above, for the reduction we will need to rewind the
adversary to extract, thereby rewinding the external challenger. Since we require
extraction of the adversary’s inputs, the parameter for the bounded rewind secure
witness indistinguishable argument needs to satisfy Brwi > Brecom.

– In this hybrid, the simulator uses the extracted trapdoor to complete the witness in-
distinguishable argument. Since the third round of this protocol is completed in the
fourth round of our compiled protocol, rewinding the adversary to extract the trap-
door and input in the second and third round circumvents issues discussed above.
Therefore, we don’t require this primitive to be rewind secure.

– In this hybrid, the simulator switches to committing to 0 inside the rewind secure
extractable commitment (RECom). Unlike the previous cases, this is potentially
circularity since the arguments above do not directly extend. This is because it
cannot be the case that the external challenger remains secure if we rewind the
adversary Brecom times to extract its input.
Instead, this is argued carefully where initially we argue that switching to a com-
mitment of a “junk” value in the third round of the RECom doesn’t affect our abil-

26

ity to extract from the adversary. This “junk” commitment can be made without
knowledge of any randomness of the specific RECom instance. To argue this, we
rely on the bounded rewind security of the extractable commitment, while still ex-
tracting the trapdoor to complete the transcript. This gives us the requirement that
Brecom > Btd. This then allows for extraction of input in the reduction without
violating rewinding circularity since, on the look ahead threads to extract, we can
commit to junk without affecting input extraction.

– In this hybrid, the simulator simulates the transcript of the underlying bounded
rewind secure protocol Π . Here too, we require extracting the inputs in order to
send it to the ideal functionality. Therefore, we require BΠ > Brecom.

Acknowledgments

We would like to thank Alex Lombardi and Luke Schaeffer for pointing out to us that
any OT with perfect completeness implies non-interactive commitment schemes, and,
for suggesting to us to revise our theorem statements to reflect this observation.

Vipul Goyal is supported in part by the NSF award 1916939, a gift from Ripple, a JP
Morgan Faculty Fellowship, a PNC center for financial services innovation award, and
a Cylab seed funding award.

Arka Rai Choudhuri and Abhishek Jain are supported in part by DARPA/ARL Safe-
ware Grant W911NF-15-C-0213, NSF CNS-1814919, NSF CAREER 1942789, Sam-
sung Global Research Outreach award and Johns Hopkins University Catalyst award.
Arka Rai Choudhuri is also supported by NSF Grants CNS-1908181, CNS-1414023,
and the Office of Naval Research Grant N00014-19-1-2294.

Rafail Ostrovsky is supported in part by NSF-BSF Grant 1619348, DARPA/SPAWAR
N66001-15-C-4065, ODNI/IARPA 2019-1902070008 US-Israel BSF grant 2012366,
JP Morgan Faculty Award, Google Faculty Research Award, OKAWA Foundation Re-
search Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corpo-
ration Research Award. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official views or
policies, either expressed or implied, of the Department of Defense, DARPA, ODNI,
IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright annotation
therein.

Michele Ciampi was partially supported by H2020 project PRIVILEDGE #780477.

References
1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In:

Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidel-
berg (May 2001). https://doi.org/10.1007/3-540-44987-6 8

27

https://doi.org/10.1007/3-540-44987-6_8

2. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty
computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
468–499. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-63688-7 16

3. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero
knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487. Springer, Heidelberg (Aug 2018).
https://doi.org/10.1007/978-3-319-96881-0 16

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (ex-
tended abstract). In: 22nd ACM STOC. pp. 503–513. ACM Press (May 1990).
https://doi.org/10.1145/100216.100287

5. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious trans-
fer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78375-8 17

6. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 645–677. Springer,
Heidelberg (Nov 2017). https://doi.org/10.1007/978-3-319-70500-2 22

7. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure mul-
tiparty computation from minimal assumptions. Cryptology ePrint Archive, Report 2019/216
(2019), https://eprint.iacr.org/2019/216

8. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-malleable zero
knowledge and multi-party coin tossing in four rounds. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 711–742. Springer, Heidelberg (Nov 2017).
https://doi.org/10.1007/978-3-319-70500-2 24

9. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-
party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710. Springer, Heidelberg (Nov 2017).
https://doi.org/10.1007/978-3-319-70500-2 23

10. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd
ACM STOC. pp. 542–552. ACM Press (May 1991). https://doi.org/10.1145/103418.103474

11. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS. pp. 283–293. IEEE Com-
puter Society Press (Nov 2000). https://doi.org/10.1109/SFCS.2000.892117

12. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–476. ACM
Press (Jun 2013). https://doi.org/10.1145/2488608.2488667

13. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of
secure computation. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 448–476. Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-
662-49896-5 16

14. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assump-
tions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
468–499. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-
8 16

15. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship be-
tween public key encryption and oblivious transfer. In: 41st FOCS. pp. 325–335. IEEE Com-
puter Society Press (Nov 2000). https://doi.org/10.1109/SFCS.2000.892121

16. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems
for NP. Journal of Cryptology 9(3), 167–190 (Jun 1996)

17. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM
J. Comput. 25(1), 169–192 (1996). https://doi.org/10.1137/S0097539791220688, https:
//doi.org/10.1137/S0097539791220688

28

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-70500-2_22
https://eprint.iacr.org/2019/216
https://doi.org/10.1007/978-3-319-70500-2_24
https://doi.org/10.1007/978-3-319-70500-2_23
https://doi.org/10.1145/103418.103474
https://doi.org/10.1109/SFCS.2000.892117
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1109/SFCS.2000.892121
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness
theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp. 218–229.
ACM Press (May 1987). https://doi.org/10.1145/28395.28420

19. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-knowledge,
and a methodology of cryptographic protocol design. In: Odlyzko, A.M. (ed.) CRYPTO’86.
LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-
540-47721-7 11

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof sys-
tems. SIAM Journal on Computing 18(1), 186–208 (1989)

21. Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 695–704. ACM Press (Jun 2011).
https://doi.org/10.1145/1993636.1993729

22. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Wichs,
D., Mansour, Y. (eds.) 48th ACM STOC. pp. 1128–1141. ACM Press (Jun 2016).
https://doi.org/10.1145/2897518.2897657

23. Goyal, V., Richelson, S.: Non-malleable commitments using Goldreich-Levin list decoding.
In: Zuckerman, D. (ed.) 60th FOCS. pp. 686–699. IEEE Computer Society Press (Nov 2019).
https://doi.org/10.1109/FOCS.2019.00047

24. Goyal, V., Richelson, S.: Non-malleable commitments using goldreich-levin list decoding.
In: FOCS (2019)

25. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 488–520. Springer, Heidelberg (Aug
2018). https://doi.org/10.1007/978-3-319-96881-0 17

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - effi-
ciently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Hei-
delberg (Aug 2008). https://doi.org/10.1007/978-3-540-85174-5 32

27. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simulation in two
rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS,
vol. 10402, pp. 158–189. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-
319-63715-0 6

28. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (Aug 2004).
https://doi.org/10.1007/978-3-540-28628-8 21

29. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a dis-
honest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595.
Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9 36

30. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC. pp. 20–31.
ACM Press (May 1988). https://doi.org/10.1145/62212.62215

31. Lombardi, A., Schaeffer, L.: A note on key agreement and non-interactive commitments.
Cryptology ePrint Archive, Report 2019/279 (2019), https://eprint.iacr.org/
2019/279

32. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest ma-
jority. In: Babai, L. (ed.) 36th ACM STOC. pp. 232–241. ACM Press (Jun 2004).
https://doi.org/10.1145/1007352.1007393

33. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-exponential one-
way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 638–655.
Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-5 32

34. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-
complexity. In: 43rd FOCS. pp. 366–375. IEEE Computer Society Press (Nov 2002).
https://doi.org/10.1109/SFCS.2002.1181961

29

https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1145/1993636.1993729
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1109/FOCS.2019.00047
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1145/62212.62215
https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2019/279
https://doi.org/10.1145/1007352.1007393
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1109/SFCS.2002.1181961

35. Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (Feb 2004).
https://doi.org/10.1007/978-3-540-24638-1 11

36. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51st FOCS. pp. 531–540. IEEE Computer Society Press (Oct 2010).
https://doi.org/10.1109/FOCS.2010.87

37. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS. pp.
162–167. IEEE Computer Society Press (Oct 1986). https://doi.org/10.1109/SFCS.1986.25

30

https://doi.org/10.1007/978-3-540-24638-1_11
https://doi.org/10.1109/FOCS.2010.87
https://doi.org/10.1109/SFCS.1986.25

	Round Optimal Secure Multiparty Computation from Minimal Assumptions

