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Abstract. The formalization of concrete, non-idealized hash function
properties su�cient to prove the security of Bitcoin and related pro-
tocols has been elusive, as all previous security analyses of blockchain
protocols have been performed in the random oracle model. In this pa-
per we identify three such properties, and then construct a blockchain
protocol whose security can be reduced to them in the standard model
assuming a common reference string (CRS).
The three properties are: collision resistance, computational randomness
extraction and iterated hardness. While the �rst two properties have been
extensively studied, iterated hardness has been empirically stress-tested
since the rise of Bitcoin; in fact, as we demonstrate in this paper, any
attack against it (assuming the other two properties hold) results in an
attack against Bitcoin.
In addition, iterated hardness puts forth a new class of search problems
which we term iterated search problems (ISP). ISPs enable the concise
and modular speci�cation of blockchain protocols, and may be of inde-
pendent interest.

1 Introduction

Blockchain protocols, introduced by Nakamoto [46], are seen as a prominent ap-
plication of the �proof of work� (PoW) concept to the area of consensus protocol
design. PoWs were initially introduced in the work of Dwork and Naor [27] as a
spam protection mechanism, and subsequently found applications in other do-
mains such as Sybil attack resilience [26] and denial of service protection [41,4],
prior to their application to the domain of distributed consensus hinted at early
on by Aspnes et al. [3].

A PoW scheme is typi�ed by a proving algorithm, that produces a solution
given an input instance, as well as a veri�cation algorithm that veri�es the
correctness of the witness with respect to the input. The fundamental property
of a PoW scheme is that the proving algorithm allows for no signi�cant shortcuts,
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i.e., it is hard to signi�cantly make it more expedient, and hence any veri�ed
solution implies an investment of computational e�ort on behalf of the prover.
Nevertheless, this �moderate hardness� property alone has been found to be
insu�cient for the utilization of PoWs in the context of various applications
and other properties have been put forth to complement it. These include: (i)
amortization resistance, which guarantees that the adversary cannot speed up
the computation when solving multiple PoW instances together, and (ii) fast
veri�cation, which suggests a signi�cant gap between the complexities of the
proving and veri�cation algorithms.

Despite the evolution of our understanding of the PoW primitive, as exem-
pli�ed in recent works (e.g., [1,6,13,36]), there has been no de�nitive analysis
of the primitive in the context of blockchain protocol security in the standard
model. Intuitively, PoWs are useful in the consensus setting because they make
message passing (moderately) hard and hence generate stochastic opportunities
for the parties running the protocol to unify their view of the current state of
the system. This fundamentally relies on an assumption about the aggregate
computational power of the honest parties, but not on their actual number,
in relation to the computational power of the parties that may deviate from
the protocol (the �Byzantine� parties)�a hallmark of the peer-to-peer setting
Bitcoin is designed for. Despite the fact that the Bitcoin blockchain has been
analyzed formally [31,49,33,5], the required PoW properties have not been fully
identi�ed and most of the existing analysis has been carried out in the random
oracle (RO) model [10]. The same is true for a wide variety of other protocols
in the space, including [2,42,34].

We stress that despite the fact that the RO model has been widely used in
the security analysis of practical protocols and primitives, it has also received
signi�cant criticism. For example, Canetti et al. [20] showed that there exist
implementations of signatures and encryption schemes that are secure in the RO
model but insecure for any implementation of the RO in the standard model;
Nielsen [47] proved that e�cient non-committing encryption has no instantiation
in the standard model but a straightforward implementation in the RO model,
while Goldwasser and Kalai [40] showed that the Fiat-Shamir heuristic [29] does
not necessarily imply a secure digital signature, which is in contrast with the
result by Pointcheval and Stern [50] in the RO model.

It follows that it is critical to discover security arguments for blockchain
protocols that do not rely on the RO model. Note that we are looking for argu-
ments as opposed to proofs since it is easy to observe that some computational
assumption would still be needed for deriving the security of a blockchain proto-
col (recall that blockchain security cannot be inferred information theoretically
as it fundamentally requires at minimum the collision resistance of the under-
lying hash function). In fact, the formalization of non-idealized, concrete hash
function assumptions su�cient to prove security of Bitcoin and related protocols
has been identi�ed as a �fascinating open question� [18].

Following the above, the main question that motivates the present work is
the following:
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Is it possible to prove the security of blockchain protocols in the stan-
dard model under non-idealized assumptions about the underlying hash
function?

Our results. In this paper we answer the above question in the positive, by iden-
tifying three properties of a hash function family {Hk(·)}k and then constructing
a blockchain protocol whose security can be reduced to these properties (together
with NIZKs; see below) in the standard model.

The �rst property is collision resistance. Speci�cally, it should be hard for an
adversary given a random key k, to �nd two distinct messages m,m′ for which
it holds Hk(m) = Hk(m′). This property is useful in the blockchain context,
since intuitively collision resistance ensures that the hash-chain maintained by
the parties ensures the chronologically correct encoding of information.

The second property of the underlying hash function family is that it should
be computational randomness extracting (CRE). Speci�cally, there is a way to
isolate a �nite subset of the domain of the hash function family so that for any
given key k, the function Hk is a (weak) computational randomness extractor.
This property is useful in a few di�erent ways in blockchain security. Firstly, it
will help for symmetry breaking, making sure that parties work concurrently on
independent instances of the underlying problem. Secondly, it will ensure that the
problem instances generated by honest parties (in the form of new blocks), will be
su�ciently unpredictable in the eyes of the adversary. Regarding the plausibility
of a CRE hash function, note that pseudorandom functions (PRFs) are known
to imply weak computational randomness extractors [22], and assuming that a
hash function implies a PRF is a fairly standard assumption [7,25,43].

The third property asks for the iterative hardness of the underlying hash
function as multiple pre-images with near-zero hashes are stringed together in
the form of a chain. This assumption is implicit in the context of the Bitcoin
protocol. In fact, as we show, an attack against iterative hardness would result
in an attack against the protocol (assuming a CRE hash function). This implies
that there is (monetary) incentive to break this assumption, which coupled with
the fact that no signi�cant attacks have been demonstrated in the context of the
Bitcoin protocol, establishes iterated hardness of the underlying hash (in this
case SHA-256) as a plausible assumption.5

Armed with the above, we show a novel blockchain protocol whose security
can be reduced to the collision resistance, computational randomness extrac-
tion and iterative hardness of the underlying hash function. Our design adopts
Bitcoin's hash-based blockchain structure, as well as the longest-chain selection
rule. However, contrary to previous analyses of this type of protocols [31,49,5]
in the RO model, iterative hardness provides no guarantee that blocks are �non-
malleable,� in the sense that it may be easy to mine multiple blocks on the same
height of the chain once you have mined the �rst one. Our solution is to instead
construct a PoW that is malleable, and leverage it to show a reduction that
breaks the underlying iterated hardness assumption given a common-pre�x at-

5 Refer to Section 3 for further discussion on this assumption.

3



tack to the blockchain protocol. In order to achieve this, we also have to hide the
block witnesses by taking advantage of NIZK proofs with e�cient simulation,
thus managing to e�ciently extract a sequence of iterated witnesses despite the
fact that the attacker may not produce consecutive blocks.

In order to describe and analyze the protocol modularly, we put forth a new
class of search problems, which we call iterated search problems (ISP). Taking ad-
vantage of ISPs one can produce concise and modular speci�cations of blockchain
protocols, as evidenced by the description of our protocol (Section 4.3); as such,
ISPs can be of independent interest.

In a nutshell, an ISP instance is de�ned by a problem statement set X, a
witness set W and a relation R that determines when a witness satis�es the
problem statement. The ISP is also equipped with a successor algorithm S that
given a statement x and a witness w, can produce a successor problem statement
x′; a solving algorithm M which given an initial problem statement x can �nd
a sequence of witnesses; and a veri�cation algorithm V that takes a problem
statement x and witness w and outpus 1 if (x,w) ∈ R, and 0 otherwise. Each
witness corresponds to the next statement de�ned by algorithm S on input the
previous statement and witness, starting from x. The iterated hardness property
of the ISP asks that if the solving algorithm takes t steps to solve k instances
iteratively, no alternative algorithm can substantially speed this process up and
produce k iterative solutions with non-negligible probability.

We perform our analysis in the static-adversary setting with synchronous
rounds as in [31], and prove that our protocol can thwart adversaries and en-
vironments that roughly take less than half the computational steps the honest
parties collectively are allowed per round. To our knowledge this is the �rst
work that achieves such a result in the permissionless setting without idealized
assumptions and no PKI.6. In principle we can extend our results to the ∆-
synchronous setting of [49], following the techniques found in Section 7 of [32];
we leave the details to the full version of the paper. Further, we leave as an open
question the extension of our results to the dynamic setting of [33], as well as
matching the (less than) 50% threshold on adversarial computational power of
the Bitcoin blockchain which can be shown in the RO model.

Related work. A related but distinct notion of hardness is sequential (i.e.,
non-parallelizable) iterated hardness. This notion has been considered as early
as [51], mainly in the domains of timed-release cryptography [15] and protocol
fairness [37], and recently formalized in [14] under the term iterated sequential
functions (ISF) in the context of Veri�able Delay Functions (VDFs). In addition,
a number of candidate hard problems have been proposed, including squaring
a group element of composite-modulus groups [51], hashing, and computing the
modular square root of an element on a prime order group [44]. Nevertheless,
we observe that if we base the Bitcoin protocol on an ISF (or VDF for that
matter) it will be insecure. The fundamental issue is that it does not allow
for parallelization, which is crucial for proving the security of any (Bitcoin-like)

6 See [30] for an extensive discussion on known results in the peer-to-peer/di�usion
setting.
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blockchain protocol. Indeed, an attacker with a single processor whose sequential
speed is slightly faster than that of honest parties, can outperform potentially
hundreds of them and mine longer chains �rst.

Another notion related to iterative hardness is the notion of �correlation in-
tractability� (CI) [18]. The di�erence is that while CI only bounds the success
probability in solving a single challenge, ISP fundamentally requires multiple in-
stances. Further, while CI talks about any sparse relation, the iterative hardness
de�nition is concerned with a speci�c non-sparse relation.

Finally, another related work focusing on su�cient conditions for the con-
sensus problem in the permissionless setting (and no PKI, while matching the
less than 50% threshold on adversarial computational power) is [36], which in-
troduced the concept of signatures of work (SoW) as the basic underlying as-
sumption. The only known implementation of SoWs however is in the RO model,
hence it is unknown (and an interesting open question) whether SoWs can be
realized under non-idealized hash function assumptions like the ones we consider
here.

Due to space limitations, most of the proofs are presented in the full ver-
sion [35] of the paper.

2 Preliminaries

In this section we present basic notation and de�nitions that we will use in the
rest of the paper.

For k ∈ N+, [k] denotes the set {1, . . . , k}. For strings x, z, x||z is the con-
catenation of x and z, and |x| denotes the length of x. We denote sequences
by (ai)i∈I , where I is the index set which will always be countable. For a
set X, x ← X denotes sampling a uniform element from X. For a distribu-
tion U over a set X, x ← U denotes sampling an element of X according to
U . By Um we denote the uniform distribution over {0, 1}m. For random vari-
able X, we denote by H∞(X) the min-entropy of X. We denote the statis-
tical distance between two random variables X,Z with range U by ∆[X,Z],
i.e., ∆[X,Z] = 1

2

∑
v∈U |Pr[X = v] − Pr[Z = v]|. A random variable ensem-

ble (Xi)i∈I , is a sequence of random variables indexed by I. By (Xi)i ≈ (Zi)i

(resp.
c
≈) we denote that two ensembles are statistical (resp. computational)

indistinguishable. We let λ denote the security parameter.

Protocol execution and security model. In this paper we will follow a more
concrete approach [8,11,37,12] to security evaluation. We will use functions t, ε,
whose range is N,R, respectively, and have possibly many di�erent arguments,
to denote concrete bounds on the running time (number of steps) and probabil-
ity of adversarial success of an algorithm in some given computational model,
respectively. When we speak about running time this will include the execution
time plus the length of the code (cf. [12]; note also that we will be considering
uniform machines). We will always assume that t is a polynomial in the security
parameter λ, although we will sometimes omit this dependency for brevity.
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Instead of using interactive Turing machines (ITMs) as the underlying model
of distributed computation, we will use (interactive) RAMs. The reason is that we
need a model where subroutine access and simulation do not incur a signi�cant
overhead. ITMs are not suitable for this purpose, since one needs to account
for the additional steps to go back-and-forth all the way to the place where the
subroutine is stored. A similar choice was made by Garay et al. [37]; refer to [37]
for details on using interactive RAMs in a UC-like framework. Given a RAM
M , we will denote by StepsM (1λ, x) the random variable that corresponds to
the number of steps taken by M given input 1λ and x. We will say that M is
t-bounded if it holds that Pr[StepsM (1λ, x) ≤ t(λ)] = 1.

Finally, we remark that in our analyses there will be asymptotic terms of
the form negl(λ) and concrete terms; throughout the paper, we will assume that
λ is large enough to render the asymptotic terms insigni�cant compared to the
concrete terms.

The Bitcoin backbone model. In this section, we give an overview of the
security model that we are going to use throughout this work, introduced in [36].
This model is a variant of the synchronous model presented in [31] for the analysis
of the Bitcoin backbone protocol, extended to accommodate a standard-model
analysis of PoW-based blockchain protocols. In turn the model of [31] is based
on Canetti's formulation of �real world� execution for multi-party cryptographic
protocols [16,17].

An execution of some protocol Π is de�ned with respect to an �environ-
ment� program Z, a �control� program C, and an �adversary� program A. At a
high level, Z is responsible for providing inputs to and obtaining outputs from
di�erent instances of Π, C is responsible for supervising the spawning and com-
munication of all these programs, and A aims to disrupt the goals set by the
protocol. The programs in question can be thought of as �interactive RAMs�
communicating through registers in a well-de�ned manner.

We consider executions where the set of of parties {P1, ..., Pn} running Π is
�xed and hardcoded to C. Moreover, we consider a �hybrid� model of computa-
tion [19], where the adversary A as well as all parties in the execution can access
a number of �ideal� functionalities as subroutines; the functionalities are also
modeled as RAMs and are presented later in detail. Initially Z is activated. Z
can make special requests that result in the spawning of di�erent parties and A.
In turn, A can corrupt di�erent parties by sending messages of the form (Cor-
rupt, Pi) to C, with the limitation that the total number of parties corrupted
should be at most t; t is a parameter of the execution. We assume an active
static adversary.

We are working in the synchronous model of computation, where the current
round is known to all parties, and messages sent at one round are received at the
beginning of the next one. The in�uence of the adversary in the network is going
to be actively malicious following standard cryptographic practice. While we
assume the adversary to be rushing and communication not to be authenticated,
messages sent by honest parties are guaranteed to reach their destination.
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All the above concerns are captured by the di�usion functionality Fdiff . The
functionality maintains a Receive string de�ned for each party Pi. A party is
allowed at any moment to fetch the messages sent to it at the previous round that
are contained in its personal Receive string. Moreover, when the functionality
receives an instruction to di�use a message m from party Pi, it marks the party
as complete for the current round, and forwards the message to the adversary;
note that m is allowed to be empty. At any moment, the adversary A is allowed
to specify the contents of the Receive string for each party Pi. The adversary
has to specify when it is complete for the current round. When all parties are
complete for the current round, the functionality inspects the contents of all
Receive tapes and includes any messages that were di�used by the parties in
the current round but not contributed by the adversary to the Receive tapes.
The variable round is then incremented. In the protocol description, we will use
Diffuse as the message transmission command.

In addition, we assume the existence of a common reference string (CRS)
functionality that samples the CRS in a trusted manner from a known e�ciently
samplable distribution, and is available for all parties to fetch at the start of the
execution. Note, that from our modeling it is implicit that the adversary and
the honest parties get access to the CRS at the same round.

Based on the above, we denote by {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ the random vari-

able ensemble that corresponds to the view of party P at the end of an execution
where Z takes z as input. We will consider stand-alone executions, hence z will
always be of the form 1λ, for λ ∈ N. For simplicity, to denote this random
variable ensemble we will use viewP,t,n

Π,A,Z . By view
t,n
Π,A,Z we denote the concate-

nation of the views of all parties. The probability space where these variables are
de�ned depends on the coins of all honest parties, A, Z and the CRS generation
procedure.

Furthermore, we are going to de�ne a predicate on executions and prove our
properties in disjunction with this predicate, i.e., either the property holds or
the execution is not good.

De�nition 1. Let (tA, θ)-good be a predicate de�ned on executions in the hybrid
setting described above. Then E is (tA, θ)-good, where E is one such execution,
if

the total number of steps taken by A and Z per round is no more than tA;
7

the adversary sends at most θ messages per round.

De�nition 2. Given a predicate Q and bounds tA, θ, t, n ∈ N, with t < n, we
say that protocol Π satis�es property Q for n parties assuming the number of
corruptions is bounded by t, provided that for all PPT Z,A, the probability that
Q(viewt,n

Π,A,Z) is false and the execution is (tA, θ)-good is negligible in λ.

Cryptographic primitives and building blocks. We will make use of the
following cryptographic primitives: Cryptographic hash functions, (computa-

7 The adversary cannot use the running time of honest parties that it has corrupted;
it is activated instead of them during their turn.
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tional) randomness extractors [48,22] and robust non-interactive zero-knowledge
(NIZK) [52]. Refer to Appendix A for the corresponding security de�nitions.

Robust public transaction ledgers. Our work is concerned with necessary
and su�cient conditions to implement a public transaction ledger. Next, we give
the transaction ledger de�nition introduced in [31], with the liveness property
slightly strengthened, as in [49].

A public transaction ledger is de�ned with respect to a set of valid ledgers L
and a set of valid transactions T , each one possessing an e�cient membership
test. A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Ledgers
correspond to chains of blocks in the Bitcoin protocol. It is possible for the
adversary to create two transactions that are con�icting; valid ledgers must not
contain con�icting transactions. Moreover, it is assumed that in the protocol
execution there also exists an oracle Txgen that generates valid transactions,
and is unambiguous, i.e., the adversary cannot create transactions that come in
`con�ict' with the transactions generated by the oracle. A transaction is called
neutral if there does not exist any transactions that come in con�ict with it. Any
ledger that contains neutral or non-con�icting transactions is considered to be
valid.

De�nition 3. A protocol Π implements a robust public transaction ledger if
it organizes the ledger as a chain of blocks of transactions and it satis�es the
following two properties:

Consistency (parameterized by the �depth� parameter k ∈ N): If in a
certain round an honest player reports a ledger that contains a transaction
tx in a block more than k blocks away from the end of the ledger, where
k ∈ N is the �depth� parameter (such transactions are called stable), then
tx will be reported as stable and in the same position in the ledger by any
honest player from this round on.

Liveness (parameterized by k, u ∈ N�the �depth� and �wait time� param-
eters, resp.): For every u consecutive rounds, there exists a round and an
honest party, such that the transactions given as input to that party at this
round that are either (i) issued by Txgen or (ii) neutral, will be reported by
all honest parties as stable at the end of this round interval.

3 Hash Functions Properties for Blockchain Security

In this section we describe the three falsi�able assumptions about hash func-
tions which the security of our protocol is going to be based on. Two of these
properties, namely, collision resistance [23] and weak computational randomness
extraction [22], have been extensively studied in the hash function literature.
The third one is new, and has to do with the moderate hardness of computing
sequences of small hashes. We proceed to discuss each of the properties in detail.

We start with collision resistance. Most known blockchain protocols make
use of a collision-resistant hash function in order to establish basic structural
properties, e.g., that the adversary cannot create a blockchain that contains a
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cycle. That is exactly the way we are going to use this property here. We will
use the following security de�nition [39].8

De�nition 4. Let H = {{Hk : {0, 1}∗ → {0, 1}λ}k∈K(λ)}λ∈N be a hash-function
family, and A be a PPT adversary. Then H is collision resistant if and only
if for any λ ∈ N and corresponding {Hk}k∈K in H,

Pr
k←K

[(m,m′)← A(1λ, k) : (m 6= m′) ∧ (Hk(m) = Hk(m′))] ≤ negl(λ).

Our second security assumption has to do with the existence of a �xed-length-
input hash function family that is a weak computational randomness extractor.
As explained in [22], this assumption is weaker than assuming a �xed-length-
input pseudorandom function family (FI-PRF), a common assumption in the
hash function literature [7,25,43]. We adapt the de�nition of a weak computa-
tional randomness extractor to the context of a hash function family.

De�nition 5. Let H = {{Hk : {0, 1}dλ → {0, 1}λ}k∈K(λ)}λ∈N, for some d ∈ N,
d > 1, be a �xed-length input hash-function family. H is a computational
randomness extracting (CRE) hash function family if for some c ∈ N+, c < d,
the function family E = {Eλ : {0, 1}(c+1)λ × {0, 1}(d−c−1)λ → {0, 1}λ}λ, where
Eλ(x, i)

def
= Hk(x||i), is a weak (cλ)-computational extractor, for any k ∈ K(λ).

This property will be useful in our protocol for two reasons. First, to ensure
that the distributions of blocks generated by honest parties are identical and
independent. Second, to establish that the blocks generated by honest parties,
and which the adversary has the choice to mine on, look su�ciently random and
hence the moderate hardness of the underlying problem is preserved.

Our third assumption about hash functions has to do with the hardness of
�nding sequences of small hashes in the hash-based (SHA-256) PoW construction
proposed for Bitcoin. In more detail, given the hash x of some block, comput-
ing a valid PoW for this construction consists of �nding witnesses w1, w2 such
that Hk(Hk(x||w1)||w2) < T . In turn, our hardness property requires that any
adversary should take a number of steps proportional to the number of PoWs
computed, when these PoWs form a sequence starting from a uniformly random
string x. The property is parameterized by t, the number of steps the adversary
takes to generate each PoW on average.

De�nition 6. Let H = {{Hk : {0, 1}dλ → {0, 1}λ}k∈K(λ)}λ∈N, for some d ∈ N,
d > 1, be a �xed-length input hash-function family, and let T be some hardness
parameter. H is t-iteratively hard i� there exists a polynomial k0(·), such that
for any PPT RAM (A1,A2), λ ∈ N, and k ≥ k0(λ), it holds that:

Pr
σ←K(λ);
x0←[0,T ]

st← A1(1λ, σ); (wi, w
′
i)i∈[k] ← A2(1λ, st, x0) :

∀i ∈ [k] : xi := Hσ(Hσ(xi−1||wi)||w′i) < T

∧ StepsA2
(st, x0) < k · t

 ≤ negl(λ)

8 Throughout our exposition for simplicity we will assume that H takes one step to
be evaluated. We note that our results can be generalized to the case where H takes
more time.
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Our choice to base the security of our protocol on the iterated hardness
of Bitcoin's PoW construction is not accidental. The fact that any attack on
iterated hardness implies an attack on Bitcoin, as we show in Appendix B, as
well as the fact that no attacks have been publicly disclosed in the last ten years
that this construction has been actively used in Bitcoin, constitute empirical
evidence in its favor. Note that this would not necessarily be the case if we
based security on a stronger hardness property that was not necessary to prove
Bitcoin secure, as it would then be possible that an attack against the property
is known and the adversary does not have any incentive to reveal/deploy it, as
it does not a�ect the security of the protocol in any way.9

We note that to prove the security of our protocol both properties in De�-
nitions 5 and 6 should hold for the same hash function and for suitable param-
eters 10, which we discuss in the next section; collision resistance may hold for
a di�erent hash function. As argued above, SHA-256 is a natural candidate for
these assumptions. Finally, in our protocol analysis we will also make use of a
number of other standard assumptions, such as the existence of a NIZK-PoK
scheme and that the honest parties control the majority of the computational
power. The theorem we prove is as follows:

Theorem 3 (Informal) Assume the existence of collision-resistant hash func-
tions, a hash function family that is CRE and iteratively hard for appropriate
parameters, a one-way trapdoor permutation and a dense cryptosystem (for the
NIZK), and that tA is (roughly) less than half the total running time of honest
parties per round. Then there exists a protocol that implements a robust public
transaction ledger.

Finally, Gentry and Wichs [38] de�ne as falsi�able the cryptographic as-
sumptions that can be expressed as a game between an e�cient challenger and
an adversary. All cryptographic assumptions of Theorem 3 are falsi�able in this
sense, with two caveats: First, due to the concrete security approach our work
takes, the challenger should take as input the number of steps of the adversary.
Second, in the computational randomness extraction property we quantify over
all keys of the hash and all e�ciently samplable distributions with su�cient min-
entropy, which is not immediate to express in the framework of [38]. Instead, we
could choose the key randomly, and expresses the extraction property w.r.t. a
single family of source distributions that the adversary can in�uence. To simplify
our presentation we adopt the former version of the de�nition. However, we note
that the proof techniques we use can be adapted to handle the latter.

9 The pro�tability of an attack may also work as a counterincentive to revealing it.
Nevertheless, there is merit in our argument if we take into consideration �white hat�
actors who have tried breaking Bitcoin.

10 Intuitively, the adversary should not be able to compute small hashes much faster
than the rate at which honest parties generate blocks that is guaranteed by the
computational extractor property.
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4 Blockchains from Non-Idealized Hash Functions

In this section we present and prove secure a protocol that implements a transac-
tion ledger and is based on a hash function that satis�es the properties described
in Section 3. We modularize our presentation and analysis by �rst introducing
the concept of iterated search problems (ISP) in Section 4.1, and then presenting
a technical overview in Section 4.2, followed by an ISP-based blockchain pro-
tocol in Section 4.3. Then, in Section 4.4, we introduce a �blockchain friendly�
ISP security de�nition, that we show in Section 4.5 to be su�cient to prove our
protocol secure. Finally, in Section 4.6 we construct a secure ISP based on the
hash properties de�ned in Section 3, which in combination with our protocol can
be shown to satisfy Theorem 3.

The choice of modularizing the protocol analysis has multiple bene�ts. In
particular, it �rst allows us to formally capture all required properties that the
moderately hard problem our protocol is built on should satisfy for the analysis
to go through. We hope that this will motivate building other constructions in
the future. Secondly, it makes it easier to take advantage of previous e�orts to
analyze relevant protocols [31,49,36]. While we adapt some of the proof tech-
niques presented there, an important contribution of our work is that the ISP
notion which we built on is considerably weaker and can be instantiated in the
standard model from fairly simple assumptions.

4.1 Iterated Search Problems

In this section we introduce a class of problems inspired by Bitcoin's underlying
computational problem. The straightforward properties that this class should
have, are the ability to �nd a witness for a problem statement and to verify that
the witness is correct, matching Bitcoin's block mining and block veri�cation
procedures, respectively. In addition, the notion models the ability to generate a
new problem statement from a valid statement/witness pair. This captures the
fact that in Bitcoin the problem that a miner solves depends on a previous block
(i.e., a statement/witness pair). This concept has appeared before in the study of
iterated sequential functions [14], whose name we draw from. Syntactically, the
key di�erence here is that in each iteration we are not evaluating a function, but
instead we are solving a search problem with possibly many witnesses. Moreover,
as we already commented in Section 1 iterated sequential functions are not the
correct abstractions for Bitcoin's underlying computational problem, as they
allow for an attack against the protocol. We proceed to give a formal de�nition
of ISPs.

De�nition 7 (Iterated Search Problem). An iterated search problem (ISP)
I speci�es a collection (Iλ)λ∈N of distributions.11 For every value of the security
parameter λ ≥ 0, Iλ is a probability distribution of instance descriptions. An
instance description Λ speci�es

11 Here we follow the notation used in [21] to de�ne subset membership problems. We
remark that no other connection exists between the two papers.
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1. �nite, non-empty sets X,W , and
2. a binary relation R ⊂ X ×W .
We write Λ[X,W,R] to indicate that the instance Λ speci�es X,W and R as
above.

An ISP also provides several algorithms. For this purpose, we require that
the instance descriptions, as well as the elements of the sets X and W , can be
uniquely encoded as bit strings of length polynomial in λ, and that both X and
(Iλ)λ∈N have polynomial-time samplers. The ISP algorithms are as follows, all
parameterized by Λ[X,W,R]:

Veri�cation algorithm VΛ(x,w): A deterministic algorithm that takes as
input a problem statement x and a witness w and outputs 1 if (x,w) ∈ R
and 0 otherwise.

Successor algorithm SΛ(x,w): A deterministic algorithm that takes as input
a problem statement12 x and a valid witness w and outputs a new instance
x′ ∈ X.

Solving algorithm MΛ(x, k): A probabilistic algorithm that takes as input
a problem statement x and a number k ∈ N+ and outputs a sequence of k
witnesses (wi)i∈[k].

In the sequel, we will omit writing Λ as a parameter of V, S,M when it is clear
from the context. In order to ease the presentation, we recursively extend the
de�nitions of S and R to sequences of witnesses as follows: Let S(x, ∅) := x and
for any k > 1, S(x, (wi)i∈[k]) := S(S(x, (wi)i∈[k−1]), wk) and (x, (wi)i∈[k]) ∈ R
i�

∧k
i=1(S(x, (wj)j∈[i−1]), wi) ∈ R. Further, we assume that M is correct, i.e.,

for (wi)i∈[k] ←M(x, k), it holds that (x, (wi)i∈[k]) ∈ R.
Example. Next, we present as an example Bitcoin's underlying computational
problem captured as an ISP.

Construction 1. Let T be a protocol parameter representing how hard it is to
solve a problem instance.13 Then:

Iλ is the uniform distribution over functions H : {0, 1}∗ → {0, 1}λ in some
family of hash functions H, i.e., Λ = {H};
X = {x|x < T ∧ x ∈ {0, 1}λ} and W = {0, 1}∗ × {0, 1}λ;
R = {(x,w)|H(H(x||m)||ctr) < T, for w = m||ctr};
V (x,w) checks whether H(H(x||m)||ctr) < T , for w = m||ctr;
S(x,w) = H(H(x||m)||ctr), and
M(x, 1) tests whether V (x, (m, ctr)) is true, for di�erent (m, ctr) pairs, until
it �nds a solution. M(x, k) is de�ned inductively, by running successively
M(x, k − 1) and M(x′, 1), for x′ := S(x,M(x, k − 1)). The output consists
of the witnesses output by the two programs.

12 We could formalize S more generally, to take as input a sequence of problem state-
ments. However, for our exposition the current formulation su�ces. Note, that a
more general de�nition would be needed for the variable di�culty case [33], which
we do not study here, where the next block's di�culty depends on the whole chain.

13 For simplicity, in our exposition the hardness parameter for each ISP is �xed, and
we do not capture it explicitly.

12



4.2 Technical Overview

Next, we give a complete overview of the technical results of this section re-
garding the implementation of a transaction ledger based on non-idealized hash
functions.

First, we describe our ISP-based protocol in Section 4.3. The main challenge
to overcome is that while the protocol's security is going to be based on iterated
hardness (De�nition 6), it operates in a setting where the adversary can also take
advantage of the work of honest parties. This includes the adversary being able
to see the information leaked by the honestly produced blocks, as well as honest
parties directly working on the chain it is extending. In contrast, the iterated
hardness experiment does not provide any guarantees about these cases, as the
adversary does not receive any externally computed witnesses.

Towards this end, blocks in our protocol, instead of exposing the relevant
computed witness, contain a proof of knowledge (PoK) of such a valid witness
through a non-interactive zero-knowledge (NIZK) proof. At �rst, the fact that
we use NIZK proofs for a language that is moderately hard may seem counterin-
tuitive, due to the fact that a trivial simulator and extractor would exist for the
zero-knowledge and soundness properties, since computing a new witness for a
given statement takes polynomial time. Instead, following our general approach,
we make concrete assumptions regarding the e�ciency of both the simulator and
the extractor. Informally, we require that the time it takes to simulate a proof
or extract a witness is a lot smaller than the time it takes for honest parties to
compute a witness (see Assumption 2). Note that in practice this can be achieved
by making the underlying problem hard enough, which on the �ip side will a�ect
the performance of the resulting ledger being implemented.

Regarding chain selection, we adopt the longest-chain rule of the Bitcoin
protocol. As we will see later, this will allow our protocol to operate even if the
witnesses of the ISP are malleable. To make our analysis cleaner, the hash-chain
structure of blocks is decoupled from the underlying computational problem.

As an intermediate step, in Section 4.4, we present a set of ISP properties
su�cient to prove our protocol secure. First, an ISP is iteratively hard i� the
ISP solving algorithm takes t steps to solve k instances iteratively, and no alter-
native algorithm can substantially speed up this process and produce k iterative
solutions with non-negligible probability. Next, an ISP is (t, α)-successful when
the number of steps of the solving algorithm is below t with probability at least
α. The ISP is next-problem simulatable if the output of the successor algorithm
applied on a witness w corresponding to an instance x can be simulated indepen-
dently of x and the same is the case for the running time of the solver. Finally,
an ISP is witness-malleable if, given a witness w for a problem instance x, it is
possible to sample an alternative witness whose resulting distribution via the
successor algorithm is computationally indistinguishable with the output of the
successor over a random witness produced by the solving algorithm.

Armed with the above de�nitions we prove in Section 4.5 that our novel
blockchain protocol implements a transaction ledger. We note that the main
technical di�culty of our blockchain security proof is to construct a reduction
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that breaks the underlying iterated hardness assumption given a common-pre�x
attack to the blockchain protocol. The reduction takes advantage of the fact that
the ISP is witness malleable and next-problem simulatable to cheaply simulate
honest parties' work, as well as amenable to zero-knowledge proof simulation
and extraction to extract a sequence of iterated witnesses despite the fact that
the attacker may not produce consecutive blocks. After some more work, we are
able to prove the following theorem:

Theorem 3 (Informal). Assume the existence of collision-resistant hash func-
tions, a one-way trapdoor permutation and a dense cryptosystem (for the NIZK)
and a secure ISP problem with appropriate parameters, and that tA is (roughly)
less than half the total running time of honest parties per round. Then there
exists a protocol that implements a robust public transaction ledger.

Finally, in Section 4.6, we present a secure ISP problem assuming the exis-
tence of a hash function that satis�es both the computational extraction and
iterated hardness properties presented in Section 3. The main characteristic of
this new ISP (Construction 2) is that, similarly to the Bitcoin ISP (Construc-
tion 1), it uses a double hash, but, in contrast, it requires the inner hash value
to be below the target threshold, as opposed to the outer value. In more detail,
given a problem statement x and witnesses w1, w2, while the next problem is
de�ned exactly as in Bitcoin, i.e., H(H(x||w1)||w2), the witnesses are valid if
H(x||w1) < T holds, compared to H(H(x||w1)||w2) < T . This swap allows the
randomness of the outer hash witness to be freely selected by a uniform distri-
bution. In turn, this gives us the ability to argue that (i) due to the randomness
extraction property of the hash, the inner hash value is computationally indis-
tinguishable from uniform and hence the solving run-time of the ISP can be sim-
ulated independently of the problem statement; (ii) again due to the randomness
extraction property, the outer hash value is computationally indistinguishable
from uniform, and (iii) witness malleability can be shown in a straightforward
manner by choosing another witness for the outer hash at random. Moreover,
regarding the hard-ISP property, we can take advantage of the iterative hardness
of Bitcoin's ISP construction and the fact that Construction 2 is closely related
to it. The main idea is that if there exists an attacker against our construction,
then we can use it to break the iterative hardness property (De�nition 6) by
using the inner hash witnesses in Construction 2 as an outer hash witnesses in
Construction 1. Putting everything together results in the following:

Lemmas 5 and 6 (Informal). Assume the existence of a hash function family
that is CRE and iteratively hard for appropriate parameters. Then, there exists
a secure ISP problem.

Finally, using the above results we are able to obtain Theorem 3.

4.3 Blockchain Protocol Description

Next, we are going to describe our new protocol. Our protocol, Πnew
PL , uses

as building blocks three cryptographic primitives: An ISP I = (M,V, S), a
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collision-resistant hash function family H, and a robust NIZK protocol ΠNIZK =
(q,P,V,S = (S1,S2),E) for the language14

L = {(Λ[X,W,R], x, x′)|∃w ∈W : (x,w) ∈ R ∧ S(x,w) == x′}

where Λ[X,W,R] is an ISP instance of I. ΠNIZK also supports labels, which
we denote as a superscript on P and V. The initialization of these primitives
happens through the CRS all parties share at the start of the execution, which
contains: An instance description Λ[X,W,R], a statement xGen, the description
of a hash function H : {0, 1}∗ → {0, 1}λ and the NIZK reference string Ω, each
randomly sampled from Iλ, X,H, {0, 1}q(λ), respectively. Moreover, as in [31],
our protocol is parameterized by the chain validation predicate V(·), the chain
reading function R(·), and the input contribution function I(·) to capture higher-
level applications, e.g., Bitcoin.

Next, we introduce some notation used in the description of our protocol.
We use the terms block and chain to refer to tuples of the form 〈s,m, x, π〉 ∈
{0, 1}λ × {0, 1}∗ ×X × {0, 1}poly(λ), and sequences of such tuples, respectively.
The rightmost (resp., leftmost) block of chain C is denoted by head(C) (resp.,
tail(C)). Each block contains the hash of the previous block s, a message m,
the next problem x to be solved, and a NIZK proof π. We denote by BGen =
〈0λ, 0λ, xGen, 0λ〉 a special block called the genesis block ; note that xGen is part
of the CRS. A chain C = (〈si,mi, xi, πi〉)i∈[k] is valid if: (i) The �rst block
of C is equal to BGen; (ii) the contents of the chain mC = (m1, . . . ,mk) are
valid according to the chain validation predicate V, i.e., V(mC) is true; (iii)
si+1 = H(si||mi||xi||i)15 for all i ∈ [k], and (iv) Vsi+1((Λ, xi−1, xi), πi) is true
for all i ∈ [k]\{1}; see Algorithm 1. We call H(si||mi||xi||i) the hash of block Bi

and denote it by H(Bi), and de�ne H(C) ∆
= H(head(C)). We will consider two

valid blocks or chains as equal, if all their parts match, except possibly for the
NIZK proofs.

We proceed to describe the main function of the protocol, presented in Al-
gorithm 4. At each round, each party chooses the longest valid chain among the
ones it has received (Algorithm 2) and tries to extend it by computing a new wit-
ness. If it succeeds, it di�uses the new block to the network. In more detail, each
party will run the solverM on the problem x de�ned in the last block 〈s,m, x, π〉
of the chosen chain C. If it succeeds on �nding a witness w, it will then compute a
NIZK proof that it knows a witness w such that (x,w) ∈ R and S(x,w) = x′, for
some x′ ∈ X. The proof should also have a labelH(H(head(C))||m′||x′||(|C|+1)),
where m′ is the output of the input contribution function I(·), i.e., the message
encoded in the block; see Algorithm 3. Then, the party di�uses the extended
chain to the network. Finally, if the party is queried by the environment, it out-
puts R(C), where C is the chain selected by the party; the chain reading function
R(·) interprets C di�erently depending on the higher-level application running

14 We assume that both V and S are e�ciently computable. Hence, L ∈ NP.
15 We include a �xed length (λ-bit) encoding of the height of the block in the hash on

purpose. This way, the contents of the hash chain form a su�x-free code [9], which
in turn implies collision resistance. See Lemma 1.
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Algorithm 1 The validate procedure, parameterized by BGen, the hash function
H(·), the chain validation predicate V (·), and the veri�cation algorithm V of
ΠNIZK. The input is C.

1: function validate(C)
2: b← V(mC) ∧ (tail(C) = BGen) . mC describes the contents of chain C.
3: if b = True then . The chain is non-empty and meaningful w.r.t. V (·)
4: s′ ← H(BGen) . Compute the hash of the genesis block.
5: x′ ← xGen
6: C ← C1e . Remove the genesis from C
7: while (C 6= ε ∧ b = True) do
8: 〈s,m, x, π〉 ← tail(C)
9: s′′ ← H(tail(C))
10: if (s = s′ ∧ Vs′′(Ω, (Λ, x′, x), π)) then
11: s′ ← s′′ . Retain hash value
12: x′ ← x
13: C ← C1e . Remove the tail from C
14: else

15: b← False
16: return (b)

on top of the Bitcoin backbone protocol. We assume that all honest parties take
the same number of steps tH per round.

Algorithm 2 The function that �nds the �best� chain, parameterized by func-
tion max(·). The input is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do

4: if validate(Ci) then
5: temp← max(C, temp)
6: return temp

In order to turn the above protocol into a protocol realizing a public transac-
tion ledger, we de�ne functions V(·),R(·), I(·) exactly as in [31]. For completeness
we give these de�nitions in Table 1. We denote the new public ledger protocol
by Πnew

PL .

4.4 ISP Security Properties

Next, we present a set of ISP properties su�cient to prove our protocol secure.
Later in Section 4.6 we show how to instantiate them.
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Algorithm 3 The proof of work function is parameterized by the hash function
H(·), and the proving algorithm P of ΠNIZK. The input is (m′, C).

1: function pow(m′, C)
2: 〈s,m, x, π〉 ← head(C)
3: w ←M(x) . Run the honest solving algorithm of the ISP.
4: if w 6= ⊥ then

5: x′ ← S(x,w) . Compute the next problem to be solved.
6: s′ ← H(s||m||x|||C|) . Compute the hash of the last block.
7: s′′ ← H(s′||m′||x′|||C|+ 1) . Compute the hash of the new block.

8: π′ ← Ps′′(Ω, (Λ, x, x′), w) . Compute the NIZK proof.
9: B ← 〈s′,m′, x′, π′〉
10: C ← CB . Extend chain
11: return C

Algorithm 4 The Bitcoin backbone protocol, parameterized by the input con-
tribution function I(·) and the chain reading function R(·).

1: C ← BGen . Initialize C to the genesis block.
2: st← ε
3: round← 0
4: while True do

5: C̃ ← maxvalid(C, any chain C′ found in Receive())
6: 〈st,m〉 ← I(st, C̃, round, Input(),Receive()) . Determine the m-value.
7: Cnew ← pow(m, C̃)
8: if C 6= Cnew then

9: C ← Cnew

10: Diffuse(C)
11: round← round+ 1
12: if Input() contains Read then

13: write R(mC) to Output()

In the same spirit as in Boneh et al. [14]'s de�nition of an iterated sequen-
tial function, we can de�ne the notion of a hard iterated search problem. Our
de�nition is parameterized by t, δ and k0, all functions of λ which we omit for
brevity. Unlike the former de�nition, we take in account the total number of
steps instead of only the sequential ones, and we require the error probability to
be negligible after at least k0 witnesses have been found instead of one. In that
sense, our notion relaxes the strict convergence criterion of [14]. Finally, note
that the adversary is allowed some precomputation time.

De�nition 8. An ISP I = (V,M, S) is (t, δ, k0)-hard i� it holds that

For λ ∈ N and for all polynomially large k ≥ k0:

Pr
Λ[X,W,R]←Iλ;

x←X

[
(wi)i∈[k] ←M(x, k) : (x, (wi)i) ∈ R
∧ StepsM (x, k) ≤ k · t

]
≥ 1− negl(λ), and
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Content validation pre-
dicate V(·)

V(·) is true if its input 〈m1, . . . ,m`〉 is a valid ledger, i.e.,
it is in L.

Chain reading function
R(·)

R(·) returns the contents of the chain if they constitute a
valid ledger, otherwise it is unde�ned.

Input contribution func-
tion I(·)

I(·) returns the largest subsequence of transactions in the
input and receive registers that constitute a valid ledger,
with respect to the contents of the chain C the party already
has, preceded by a neutral random transaction.

Table 1: The instantiation of functions V(·),R(·), I(·) for protocol Πnew
PL (I).

for any PPT RAM A = (A1,A2), λ ∈ N, and all polynomially large k ≥ k0,
it holds that

Pr
Λ[X,W,R]←Iλ;

x←X

[
st← A1(1λ, Λ); (wi)i∈[k] ← A2(1λ, st, x) :

(x, (wi)i) ∈ R ∧ StepsA2(st, x) < (1− δ)k · t

]
≤ negl(λ).

The next property, has to do with establishing an upper bound t on the the
running time of the veri�cation algorithm V . Intuitively, the product θ · t should
be a lot smaller than the number of steps tH per round available to honest
parties, to avoid resource depletion attacks.

De�nition 9. An ISP I = (V,M, S) is t-veri�able i� algorithm V takes time
at most t (on all inputs).

In general, attacking an honest solver amounts to �nding a certain set of
inputs over which the honest solving algorithm fails to produce witnesses su�-
ciently fast. In order to combat this attack, we introduce the following property:
We say that an ISP I is (t, α)-successful when the probability thatM16 computes
a witness in t steps is at least α.

De�nition 10. An ISP I = (V,M, S) is (t, α)-successful i� for λ ∈ N, Λ[X,W,R] ∈
Iλ, and for all x ∈ X it holds that: Pr[StepsM (x) < t] ≥ α.

The iterated hardness property (De�ntion 8) does not give any guarantees
regarding composition. For blockchain protocols, however, this is necessary as
many parties concurrently try to solve the same ISP. To address this issue, we
introduce the next property that ensures that learning how long it took for a wit-
ness to be computed or what the next problem de�ned by such witness is, does
not leak any information that could help the adversary �nd a witness himself.
More formally, there exists an e�cient simulator whose output is computation-
ally indistinguishable from the distribution of the time it takes to compute a
witness w for some statement x and the next statement S(x,w). Note that,
crucially, the simulator does not depend on the instance description Λ or the
problem statement x, and that we consider a non-uniform distinguisher.

16 For brevity, we use M(x) instead of M(x, 1) in this section.
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De�nition 11. An ISP I = (V,M, S) is t-next-problem simulatable i� there
exists a t-bounded RAM Ψ such that for any PPT RAM D, any λ ∈ N, any
z ∈ {0, 1}poly(λ), any Λ[X,W,R] ∈ Iλ, and any x ∈ X, it holds that

|Pr[D(1λ, z, Λ, x, (S(x,M(x)),StepsM (x))) = 1]−Pr[D(1λ, z, Λ, x, Ψ(1λ)) = 1]| ≤ negl(λ).

The next property has to do with a party's ability to �cheaply� compute
witnesses for a statement, if it already knows one. This will be important to
ensure that even if the adversary has external help to produce some of the
witnesses needed by the hard ISP experiment, as is the case for blockchain
protocols, still the overall process remains hard with respect to the number of
consecutive blocks the adversary actually produced. We call this ISP property
witness malleability.

De�nition 12. An ISP I = (V,M, S) is t-witness malleable i� there exists
a t-bounded RAM Φ such that for any PPT RAM D, any λ ∈ N, any z ∈
{0, 1}poly(λ), any Λ[X,W,R] ∈ Iλ, and any (x,w) ∈ R, it holds that (x, Φ(x,w)) ∈
R, and

|Pr[D(1λ, z, Λ, x, w, S(x, Φ(x,w))) = 1]−Pr[D(1λ, z, Λ, x, w, S(x,M(x))) = 1]| ≤ negl(λ).

Finally, we call an ISP that satis�es all the above properties secure.

De�nition 13. An ISP I = (V,M, S) is (tver, tsucc, α, tnps, tmal, thard, δhard, khard)-
secure i� it is tver-veri�able, (tsucc, α)-successful, tnps-next-problem simulatable,
tmal-witness malleable, and (thard, δhard, khard)-hard.

An ISP scheme with trivial parameters is of limited use in a distributed
environment; for example, if δhard � 1 or thard � tver. Hence, next we describe
the parameters' ranges that make for a non-trivial secure ISP. First o�, and
ignoring negligible terms, one can show that α ≤ tsucc

(1−δhard)thard
(see Lemma 4).

On the other hand, the successful property always holds for α = 0. Therefore,
for a non-trivial ISP scheme it should hold that α is close to tsucc

(1−δhard)thard
. To

avoid denial of service attacks, θ · tver must be su�ciently small compared to
thard, the running time of the solving algorithm M . Furthermore, tmal should
be a lot smaller than thard, otherwise M can be used as a trivial simulator. We
note, that the security of the protocol that we presented earlier relies on the fact
that a secure ISP scheme with favorable parameters exists, mainly re�ected in
Assumption 2 (Section 4.5).

4.5 Security of the ISP-based Blockchain Protocol

In this subsection we prove that Πnew
PL implements a robust public transaction

ledger (cf. De�nition 3), assuming the underlying ISP I is secure.

Security Proof of the ISP-based Protocol. We proceed to the main part
of the protocol analysis. The �rst assumption we are going to make is that the
underlying ISP I is secure, and that the runtimes of the procedures of the NIZK
system are upper bounded.
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λ : security parameter
n : number of parties
t : number of parties corrupted
tH : number of steps per round per honest party
tA : total number of adversarial steps per round
t′H : lower bound on number of steps running M per round per honest party
t′A : round simulation cost, excluding honest calls to M
θ : upper bound on the number of messages sent by the adversary per round
β : upper bound on the rate at which the adversary computes witnesses per step
α : probability that M outputs a witness after t′H steps
f : probability that at least one party computes a block in a round
γ : probability that exactly one party computes a block in a round
δ : upper bound on the total block generation rate
δSteps : honest parties' advantage on number of steps
δISP : adversary's advantage on ISP witnesses computation rate
khard : convergence parameter of ISP hardness

Table 2: The parameters in our analysis: λ, n, t, tH, tA, t
′
H, t
′
A, θ, khard are in N,

α, f, γ, β, δ, δSteps, δISP are in R.

Assumption 1 (ISP Assumption). For parameters tver, t
′
H, α, tnps, tmal, thard, δhard, khard, tP,

tV, tS, and tE we assume that:

ISP I is (tver, t
′
H, α, tnps, tmal, thard, δhard, khard)-secure;17

running the prover (resp., veri�er, simulator, extractor) of ΠNIZK takes tP
(resp. tV, tS, tE) steps.

Next, we introduce some additional notation necessary to formalize our sec-
ond assumption that has to do with the computational power of the honest
parties and the adversary. For brevity, and to better connect our analysis to pre-
vious work [31,49,36], we denote by β = ((1−δhard) ·thard)−1, the upper bound on
the rate at which the adversary can compute witnesses in the iterated hardness
game. We introduce two variables, t′H and t′A, that have to do with the e�ective-
ness of honest parties and the adversary in producing witnesses for I. t′H is a
lower bound on the number of steps each honest party takes per round running
M . It holds that in any round at least n − t parties will run M for at least t′H
steps. t′A denotes the maximum time needed by a RAM machine to simulate the
adversary, the environment and the honest parties in one round of the protocol
execution, without taking into account calls made to M by the latter, and with
the addition of one invocation of the NIZK extractor. They amount to:

t′A = tA + θ · tV + tE + n(tbb + tnps + tmal + tS) and t′H = tH − tbb − θtV − tP,

where tbb (bb for backbone) is an upper bound on the number of steps needed
to run the code of an honest party in one round besides the calls to M,P,V.

We are now ready to state our main computational assumption regarding
the honest parties and the adversary. Besides assuming that the total number of

17 t′H is related to our model and we formally de�ne it in the next paragraph.
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steps the honest parties take per round exceed those of the adversary, and that
the total block generation rate is bounded, we have to additionally assume that
the e�ciency of the solving algorithmM used by honest parties is comparable to
that of the adversary; i.e, as explained earlier, α should be comparable to βt′H,
otherwise the adversary will be able to compute long chains of blocks fast and
break the security of the protocol. The observation we just made, corresponds
to the �rst condition in our formalization, which we present next. To avoid
confusion, we cast most of our analysis based on the δ parameter. Furthermore,
note that under optimal conditions � i.e., δISP close to 0 and tP, tV, tE, tS, tnps, tmal

a lot smaller than tH � our assumption allows for an adversary that controls up
to 1/3 of the total computational power available (vs. 1/2 in the RO model).

Assumption 2. There exist δISP, δSteps and δ ∈ (0, 1), such that for su�ciently
large λ ∈ N:

α ≥ (1− δISP)βt′H > negl(λ) (ISP generation gap)

(n− t)t′H(1− δSteps) ≥ 2 · t′A (steps gap)
δSteps−δISP

2 ≥ δ > β(t′A + ntH) (bounded block generation rate)

Next, we focus on structural properties of blockchains in our protocol. We
follow a similar approach to [36] based on a collisions resistant hash function.
Observe that the hash structure of any blockchain in our protocol is similar to
the Merkle-Damgard transform [24], de�ned as:

MD(IV, (xi)i∈[m]) : z = IV ; for i = 1 to m do z = H(z||xi); return z,

where H is the hash function described in the CRS, and IV is set to BGen.
Based on this observation, as in [36], we can show that no e�cient adversary can
�nd distinct chains with the same hash value, as this would result to �nding a
collision on the underlying hash function. Due to space limitations we point to
the full version of the paper for the proof.

Lemma 1. Let H be a collision-resistant hash function family. The probability
that any PPT RAM A, given BGen, can �nd two distinct valid chains C1, C2 such
that H(C1) = H(C2), is negligible in λ.

Lemma 1 implies that insertion and copy properties18 of [31], that have to do
with the way blocks are connected, do not occur with overwhelming probability
in λ.

De�nition 14. An insertion occurs when, given a chain C with two consecutive
blocks B and B0, a block B∗ created after B0 is such that B,B∗, B0 form three
consecutive blocks of a valid chain. A copy occurs if the same block exists in two
di�erent positions.

18 A third property, called �prediction,� also introduced in [31], is not needed in our
proof as it is captured by the fact that the ISP is hard even in the presence of
adversarial precomputation.
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Corollary 1. Let H be a collision-resistant hash function family. Then, for any
PPT A,Z no insertions or copies occur in view

t,n
Πnew

PL ,A,Z
with probability 1 −

negl(λ).

We proceed to the main part of the analysis. First, we introduce some useful
notation. For each round j, we de�ne the Boolean random variables Xj and Yj
as follows. Let Xj = 1 if and only if j was a successful round, i.e., at least one
honest party computed a witness at round j, and let Yj = 1 if and only if j was
a uniquely successful round, i.e., exactly one honest party computed a witness at
round j. With respect to a set of rounds R, let X(R) =

∑
j∈RXj and de�ne

Y (R) similarly.
Moreover, with respect to some block B computed by an honest party P at

some round r, let ZPr (R) denote the maximum number of distinct blocks di�used
by the adversary during R that have B as their ancestor and lie on the same
chain; note that honest parties compute at most one block per round. If P is
corrupted or did not compute any block at r, let ZPr (R) = 0. We extend the
de�nition of random variable X(R) to XP

r (R) similarly.
An important part of our analysis will be to establish lower and upper bounds

for these random variables. First, in Lemma 3 we will show that the rate at which
the adversary produces witnesses is upper bounded by β · t′A. Then, in Lemma 4
we prove that the expected rate of successful and uniquely successful rounds is
lower bounded by f and γ, respectively, both de�ned below:

f = 1− (1− α)n−t and γ = (n− t) · α · (1− βtH)n−1

Finally, for our analysis to go through, γ should be twice as big as β · t′A. As we
demonstrate next, this follows from the fact that in Assumption 2 the honest
parties take at least double the steps the adversary takes per round.

Lemma 2. Assume an ISP that complies with Assumptions 1 and 2. It holds
that γ ≥ 2(1 + δ)βt′A.

Proof. For γ it holds that:

γ =(n− t) · α · (1− βtH)n−1 ≥ (n− t) · α · (1− βtHn)

≥(n− t) · (1− δISP) · βt′H · (1− δ) ≥
(1− δISP)(1− δ)

(1− δSteps)
· 2 · βt′A ≥ 2(1 + δ)βt′A

where we have �rst used Bernouli's inequality, and then the three conditions from
Assumption 2. The last inequality follows from the fact that

δSteps−δISP

2 ≥ δ.

As promised, we prove next that the adversary cannot mine blocks extending
a single chain, with rate and probability better than that of breaking the iterative
hardness property. Due to space limitations we only give a proof sketch, and point
to the full version of the paper for the proof.

Lemma 3. For any set of consecutive rounds R, where |R| ≥ khard/βt
′
A, for any

party P , and any round i ∈ R, the probability that ZPi (R) ≥ βt′A|R| is negl(λ).
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(Proof Sketch.). W.l.o.g., let i be the �rst round of R = {i′|i ≤ i′ < i+ s}, and
let E be the event where in viewt,n

Πnew
PL ,A,Z

party P at round i mined a block B,

and the adversary mined at least βt′As blocks until round i+s that extend B and
are part of a single chain. For the sake of contradiction, assume that the lemma
does not hold, and thus Pr[E] is non-negligible. Using A, we will construct an
adversary A′ = (A′1,A′2) that breaks the iterative hardness (De�nition 8) of I
with non-negligible probability.
A′ is going to run internally A and Z, while at the same time simulating

the work honest parties do using the NIZK proof simulator. Moreover, A′ is
also going to use the witness malleability property, to trick A to produce blocks
in a sequence, instead of interleaved adversarial and (simulated) honest blocks.
Finally, using the NIZK extractor, A′ is going to extract the witnesses from the
adversarial blocks, and win the iterative hardness game. By a hybrid argument,
we can show that the view of A,Z is indistinguishable both in the real and the
simulated run, and thus the probability that E happens will be the same in both
cases, i.e., non-negligible.

We can do exactly the same reduction without simulating honest parties'
work. Then, the total running time of the second stage of A′ is s · (t′A + nt′H)-
bounded. Hence, we can derive the following bound on the longest chain that
can be produced by both honest and malicious parties during a certain number
of rounds.

Corollary 2. For any set of consecutive rounds R, where |R| ≥ khard/β(t′A +
nt′H), for any party P , and any round i ∈ R, the probability that ZPi (R) +
XP
i (R) ≥ β(t′A + nt′H) · |R| is negl(λ).

Next, we prove lower bounds on the rate of successful and uniquely successful
rounds. In our proof we are going to take advantage of the next-problem simulat-
able property of I and the zero-knowledge property of the robust NIZK we are
using. The main idea is to �rst use these two properties and similar arguments
as in Lemma 3 to construct an �ideal� execution where: (i) honest parties' behav-
ior is e�ciently simulated using Ψ , and (ii) is computationally indistinguishable
from the �real� execution. Then, since the outputs of di�erent invocations of
the runtime simulator Ψ(1λ) are independent, it will be much easier to estab-
lish lower bounds for X(·) and Y (·) in the ideal execution. Finally, due to the
fact that the two executions are computationally indistinguishable, and the ex-
ecution properties we examine can be e�ciently checked, it will follow that the
same bounds should also hold for the real execution with negligible di�erence in
probability. Due to space limitations we point to the full version of the paper for
the proof.

Lemma 4. For any set of consecutive rounds R, with |R| ≥ λ/γδ2, the following
two events occur with negligible probability in λ:

the number of uniquely successful rounds in R is less or equal to (1− δ
4 )γ ·|R|;

the number of successful rounds in R is less or equal to (1− δ
4 )f · |R|.
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Following the strategy of [31], we are now ready to de�ne the set of typical
executions for this setting.

De�nition 15 (Typical execution). An execution is typical if and only if
λ ≥ 9/δ and for any set R of consecutive rounds with |R| ≥ max{4khard, λ}/γδ2,
the following hold:

1. Y (R) > (1− δ
4 )γ|R| and X(R) > (1− δ

4 )f |R|;
2. for any party P , any round i ∈ R: ZPi (R) < γ

2(1+δ) · |R| and ZPi (R) +

XP
i (R) < β(t′A + nt′H) · |R| ; and

3. no insertions and no copies occurred.

Theorem 1. An execution is typical with probability 1− negl(λ).

Having established that typical rounds happen with overwhelming probabil-
ity, the rest of the proof follows closely that of [31]. The only di�erence is that to
prove the corresponding common-pre�x lemma, although we can match blocks
mined in uniquely successful rounds to adversarial blocks in one of the two chains
that constitute the fork, the typicality of the execution only provides a bound on
the maximum number of blocks in a single chain. Hence, only half of the blocks
matched must outnumber the uniquely successful rounds in this interval, which
is also the reason why our proof only works with an adversary controlling up to
1/3 of the parties. Due to space limitations we point to the full version of the
paper for the details.

Next, we state our theorem. Note that both Consistency and Liveness depend
on the convergence parameter khard of I.

Theorem 2. Assuming the existence of a collision-resistant hash function fam-
ily, a one-way trapdoor permutation and a dense cryptosystem (for the NIZK),
and a secure ISP problem I that comply with Assumptions 1 and 2, proto-
col Πnew

PL implements a robust public transaction ledger with parameters k =
max{4khard, λ}/γδ and u = 2k/(1− δ

4 )f , except with negligible probability in λ.

4.6 Realizing ISPs from Non-Idealized Hash Functions

Next, we present a secure ISP problem assuming the existence of a hash function
that satis�es both the computational extraction and iterated hardness properties
presented in Section 3.

Construction 2. Let H be a hash function family as in De�nitions 5 and 6. Let
T ∈ {0, 1}λ be a hardness parameter. An instance of a secure ISP is as follows:

Iλ is the uniform distribution over K(λ), i.e., Λ = {k};
X = {0, 1}λ,W = {0, 1}2(d−1)λ;

R = {(x,w)|Hk(x||w1) < T for w = w1||w2};
M(x, 1) iteratively samples w1 from U(d−1)λ, and tests whether Hk(x||w1) <
T , until it �nds a solution. It then samples a uniformly random w2 from
U(d−1)λ, and outputs w1||w2.

24



S(x,w) = Hk(Hk(x||w1)||w2), for w = w1||w2.

Construction 2 is similar to Bitcoin's ISP construction (see Section 4.1, Con-
struction 1), with the following di�erences:

1. In our construction Hk(x||w1) is required to be smaller than the hardness
parameter T , while in Bitcoin Hk(Hk(x||w1)||w2) is expected to be small,
where w1 is the hash of some message. This change allows a party who
already knows a witness (w1, w2) for some statement, to produce a new
one by changing w2 arbitrarily.

2. Each timeM tests a new possible witness, w1 is sampled randomly, instead
of just being increased by one, as in Bitcoin. This will help us later on to
argue that each test succeeds with probability proportional to T .

Obviously, if used in �native� Bitcoin this construction is totally insecure, as
by the time an honest party publishes a block, anyone can compute another valid
block with minimal e�ort. However, it is good enough for our new protocol, where
the witnesses are not exposed, and thus only a party who knows a witness can
generate new witnesses for free. Next, we argue the security of the construction.

Assuming H is a computational randomness extractor is su�cient for the
security properties that make up a secure ISP, besides hardness, to be satis�ed.
First, the fact that Hk(x||w1) is computationally indistinguishable from uniform,
for any x ∈ X, implies that the runtime and the output of M are computation-
ally indistinguishable from a process that sampled repeatedly a uniform value
from {0, 1}λ until it �nds one that is smaller than T . This in turn implies that
the runtime distribution of M is indistinguishable from the geometric distri-
bution with parameter T/2λ, and thus the successful ISP property is satis�ed.
Further, since w2 is also chosen uniformly at random, we can show that a sim-
ulator that samples a random value from Uλ and the geometric distribution,
satis�es the next-problem simulatability property. Finally, by resampling a new
w2 uniformly at random, an admissible witness is produced, and the witness
malleability property follows. Thus, we are able to state the following lemma.
Due to space limitations we point to the full version of the paper for the proof.

Lemma 5. If H is a CRE hash family (De�nition 5), then Construction 2
is O(λ)-next-problem simulatable, O(λ)-witness malleable, and (t, CT/2λ(O(t)))-
successful for any t ∈ poly(λ), where CT/2λ is the cumulative geometric distribu-

tion with parameter T/2λ.

Regarding the hard-ISP property, we are going to take advantage of the iter-
ative hardness of Bitcoin's ISP construction and the fact that Construction 2 is
closely related to it. The main idea is that if there exists an attacker against our
construction, then we can use it to break the iterative hardness property (Def-
inition 6). In more detail, given as input a statement x, the iterated hardness
attacker runs the attacker of our construction with input H(x||w), where w is
sampled at random. It is easy to see that if ((w1, w

′
1), . . . , (wm, w

′
m)) are the wit-

nesses it is going to produce, then ((w,w1), (w′1, w2), . . . , (w′m−1, wm)) are valid
witnesses for Construction 1, and also against the iterative hardness property.
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The following lemma highlights this relation. Due to space limitations we point
to the full version of the paper for the proof.

Lemma 6. Assume Construction 2 is based on a hash family H that is CRE
and t-iteratively hard. Then, for some polynomial k0(·), any σ ∈ (0, 1) and t′ =

2λ

(1−σ)T , Construction 2 is (t′, 1− t′/t, k0)-hard.

Due to Theorem 2 and the previous two lemmas, we can implement a ledger
assuming the existence of a robust NIZK, a hash family that is collision-resistant,
another hash function family that is both CRE and iteratively hard for appro-
priate parameters, and that the adversary controls less than a third of the total
computational power. The following theorem holds.19 Due to space limitations
we point to the full version of the paper for the proof.

Theorem 3. Assuming the existence of collision-resistant hash functions, a
hash function family that is CRE and thard-iteratively hard, a one-way trapdoor
permutation and a dense cryptosystem (for the NIZK), and that for some δSteps ∈
(0, 1), su�ciently large λ ∈ N, and T equal to b2λ·min{ ln((1−δ2Steps/4)−1)

t′H
,

δSteps/4
(t′A+nt′H)(1+δSteps/2)}c

it holds that :

thard ≥ (1 + δSteps/2)−1 · 2λ

T ; and

2 · t′A ≤ (1− δSteps) · (n− t)t′H
protocol Πnew

PL based on Construction 2 implements a robust public transaction
ledger, except with negligible probability in λ.
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A Cryptographic Primitives and Building Blocks

In this section we provide formal de�nitions for additional cryptographic primi-
tives used throughout the paper.

Randomness extractors. We make use of the notion of weak computational
randomness extractors, as formalized in [22].

De�nition 16. An extractor is a family of functions Ext = {Extλ : {0, 1}n(λ) ×
{0, 1}d(λ) → {0, 1}m(λ)}λ∈N, where n(·), d(·) and m(·) are polynomials. The ex-
tractor is called weak k(·)-computational if Extλ is PPT, and for all e�ciently
samplable probability ensembles {Xλ}λ with min-entropy k(λ):

(Extλ(Xλ, Ud(λ)))λ∈N
c
≈ (Um(λ))λ∈N

where computational indistinguishability is de�ned w.r.t. a non-uniform distin-
guisher.

Robust non-interactive zero-knowledge.We make use of the following com-
posable notion of non-interactive zero-knowledge, introduced in [52].

De�nition 17. Given an NP relation R, let L = {x : ∃w s.t. R(x,w) = 1}.
Π = (q,P,V,S = (S1,S2),E) is a robust NIZK argument for L, if P,V,S,E ∈
PPT and q(·) is a polynomial such that the following conditions hold:

1. Completeness. For all x ∈ L of length λ, all w such that R(x,w) = 1, and
all Ω ∈ {0, 1}q(λ), V(Ω, x,P(Ω,w, x))] = 1.

2. Multi-theorem zero-knowledge. For all PPT adversaries A, we have that
Real(λ) ≈ Sim(λ), where

Real(λ) = {Ω ← {0, 1}q(λ); out← AP(Ω,·,·)(Ω);Output out},

Sim(λ) = {(Ω, tk)← S1(1λ); out← AS′2(Ω,·,·,tk)(Ω);Output out},

and S′2(Ω, x,w, tk)
def
= S2(Ω, x, tk) if (x,w) ∈ R, and outputs failure if

(x,w) 6∈ R.
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3. Extractability. There exists a PPT algorithm E such that, for all PPT A,

Pr

[
(Ω, tk)← S1(1λ); (x, π)← AS2(Ω,·,tk)(Ω);w ← E(Ω, (x, π), tk) :

R(x,w) 6= 1 ∧ (x, π) 6∈ Q ∧ V(Ω, x, π) = 1

]
≤ negl(λ)

where Q contains the successful pairs (xi, πi) that A has queried to S2.

As in [28], we also require that the proof system supports labels. That is, al-
gorithms P,V,S,E take as input a label φ, and the completeness, zero-knowledge
and extractability properties are updated accordingly. This can be achieved by
adding the label φ to the statement x. In particular, we write Pφ(Ω, x,w) and

Vφ(Ω, x, π) for the prover and the veri�er, and Sφ2 (Ω, x, tk) and Eφ(Ω, (x, π), tk)
for the simulator and the extractor.

Theorem 4 ([52]). Assuming trapdoor permutations and a dense cryptosystem
exist, robust NIZK arguments exist for all languages in NP.

B Iterated Hardness is Necessary

In this section, we demonstrate that an attack against iterated hardness implies
an attack against the Bitcoin protocol, assuming the underlying hash function
is collision-resistant and CRE (De�nition 5). We phrase our attack against an
abstraction of the Bitcoin protocol which appeared in [31], from which it is
straightforward to extract a version of the protocol for our model. The main
idea of the attack, is that if the hash function is CRE and not iteratively hard
for appropriate parameters, then while honest parties' chains will grow at a �xed
rate due to the CRE property, Bitcoin protocol's adversary can use the iterated
hardness adversary to quickly produce a longer chain and break consistency. Due
to space limitations we point to the full version of the paper for the proof.

Theorem 5. Let n, t, tH, tA such that tA = c · (n − t)tH, for some c ∈ (0, 1).
If H is collision-resistant and CRE, and the Bitcoin protocol from [31] satis�es

Consistency with parameter k, then H is c
2 ·

(n−t)tH
(1−T/2λ)(n−t)tH

-iteratively hard, for

any polynomial k.

As expected, as the computational power of the adversary decreases, the
iteratively hard hash function needs to be less secure.
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