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Abstract. This paper makes three contributions. First, we present a
simple theory of random systems. The main idea is to think of a proba-
bilistic system as an equivalence class of distributions over deterministic
systems. Second, we demonstrate how in this new theory, the optimal
information-theoretic distinguishing advantage between two systems can
be characterized merely in terms of the statistical distance of probability
distributions, providing a more elementary understanding of the distance
of systems. In particular, two systems that are ε-close in terms of the best
distinguishing advantage can be understood as being equal with proba-
bility 1− ε, a property that holds statically, without even considering a
distinguisher, let alone its interaction with the systems. Finally, we ex-
ploit this new characterization of the distinguishing advantage to prove
that any threshold combiner is an amplifier for indistinguishability in the
information-theoretic setting, generalizing and simplifying results from
Maurer, Pietrzak, and Renner (CRYPTO 2007).

1 Introduction

1.1 Random Systems

A random system is an object of general interest in computer science and in
particular in cryptography. Informally, a random system is an abstract object
which operates in rounds. In the i-th round, an input (or query) Xi is answered
with a random output Yi, and each round may (probabilistically) depend on
the previous rounds. In previous work [9,12], a random system S is defined by a
sequence of conditional probability distributions pS

Yi|XiY i−1 (or pS
Y i|Xi) for i ≥ 1.

This captures exactly the input-output behavior of a probabilistic system, as it
gives the probability distribution of any output Yi, conditioned on the previous
inputs Xi = (X1, . . . , Xi) and outputs Y i−1 = (Y1, . . . , Yi−1).

For example, a uniform random function (URF) from X to Y is a random
system R corresponding to the following behavior: Every new input xi ∈ X is
answered with an independent uniform random value yi ∈ Y and every input
that was given before is answered consistently. Similarly, a uniform random
permutation is a random system P (different from R).

Many statements appearing in the cryptographic literature are about ran-
dom systems (even though they are usually expressed in a specific language, for
example using pseudo-code). For example, the optimal distinguishing advantage



AdvD(S,T) of a distinguisher class D between two systems S and T only de-
pends on the behavior of S and T. In particular, it is independent of how S is
implemented (in program code), whether it is a Turing Machine, or how efficient
it is. For example, the well-known URP-URF switching lemma [3,10] is a state-
ment about the optimal information-theoretic distinguishing advantage between
the two random systems R and P (see above). Clearly, the switching lemma
holds irrespective of the concrete implementations of the systems R or P, e.g.,
whether they employ eager or lazy sampling.

1.2 Random Systems as Equivalence Classes

An abstract object can (usually) be represented as an equivalence class of objects
from a lower abstraction layer. Perhaps surprisingly, this can give new insight
about the object and also be technically useful. As an example, assume our
(abstract) objects are pairs (X,Y) of probability distributions over the same set.
If we let [(X,Y)] denote the equivalence class of all random experiments E with
two arbitrarily correlated random variables X and Y distributed according to X
and Y, we can express the statistical distance as follows (also known as Coupling
Lemma [1]):

δ(X,Y) = inf
E∈[(X,Y)]

PrE(X 6= Y ).

Note that the statistical distance δ(X,Y) is defined at the level of probability
distributions, and thus does not require any joint distribution between X and
Y (let alone a random experiment with accordingly distributed random vari-
ables). Nevertheless, the coupling interpretation provides a very intuitive and
elementary understanding of the statistical distance. Moreover, it is a powerful
technique that can be used to show the closeness (in statistical distance) of two
probability distributions X and Y: one exhibits any random experiment E with
cleverly correlated random variables X and Y (distributed according to X and
Y) such that PrE(X = Y ) is close to 1. This coupling technique has been used
extensively for example to prove that certain Markov chains are rapidly mixing,
i.e., they converge quickly to their stationary distribution (see for example [1]).

The gist of such reasoning is to lower the level of abstraction in order to
define or interpret a property, or to prove a statement in a more elementary and
intuitive manner.

In this paper, we apply the outlined way of thinking to random systems. We
explore a lower level of abstraction which we call probabilistic discrete systems.
A probabilistic discrete system (PDS) is defined as a (probability) distribution
over deterministic discrete systems (DDS). Loosely speaking, this captures the
fact that for any implementation of a random system we can fix the randomness
(say, the “random tape”) to obtain a deterministic system. We then observe that
there exist different PDS that are observationally equivalent, i.e., their input-
output behavior is equal, implying that they correspond to the same random
system. Thus, we propose to think of a random system S as an equivalence class
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of PDS and write S ∈ S for a PDS S that behaves like S (i.e., it is an element
of the equivalence class S). For example, a uniform random function R can be
implemented by a PDS R that initially samples the complete function table and
by a PDS R′ that employs lazy sampling. These are two different PDS (R 6= R′),
but they are behaviorally equivalent and thus correspond to the same random
system, i.e., R ∈ R and R′ ∈ R (see also the later Example 5).

Many interesting properties of random systems depend on what interaction is
allowed with the system. Usually, this is formalized based on the notion of envi-
ronments and, in cryptography, the notion of distinguishers. Such environments
are complex objects (similar to random systems) which maintain state and can
ask adaptive queries. This can pose a significant challenge for example when
proving indistinguishability bounds, and naturally leads to the following ques-
tion:

Is it possible to express properties which classically involve environments
equivalently as natural intrinsic properties of the systems themselves, i.e.,
without the explicit concept of an environment?

We answer this question in the positive. The key idea is to exploit the equivalence
classes: we prove that the optimal information-theoretic distinguishing advan-
tage Adv(S,T) is equal to ∆(S,T), the infimum statistical distance δ(S,T) for
PDS S ∈ S and T ∈ T. By combining this result with the above coupling inter-
pretation of the statistical distance, we can think of the distinguishing advantage
Adv(R, I) between a real system R and an ideal system I as a failure probability
of R, i.e., the probability that R is not equal to I. This is quite surprising since
being equal is a purely static property, whereas the traditional distinguishing
advantage appears to be inherently dynamic.

The coupling theorem for random systems is not only of conceptual interest.
It also represents a novel technique to prove indistinguishability bounds in an
elementary fashion: in the core of such a proof, one only needs to bound the
statistical distance of probability distributions over deterministic systems (for
example by using the Coupling Method mentioned above). Usually, the fact that
the distribution is over systems will be irrelevant. In particular, the interaction
with the systems and the complexity of (adaptive) environments is completely
avoided.

1.3 Security and Indistinguishability Amplification

Security amplification is a central theme of cryptography. Turning weak objects
into strong objects is useful as it allows to weaken the required assumptions. In-
distinguishability amplification is a special kind of security amplification, where
the quantity of interest is the closeness (in terms of adaptive indistinguishabil-
ity) to some idealized system. Most of the well-known constructions achieving
indistinguishability amplification do this by combining many moderately close
systems into a single system that is very close to its ideal form.
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In this paper, we take a more general approach to indistinguishability amplifi-
cation and present results that allow (for example) to combine many moderately
close systems into multiple systems that are jointly very close to independent
instances of their ideal form. This is useful, since many cryptographic proto-
cols need several independent instantiations of a scheme, for example a (pseu-
do-)random permutation.

1.4 Motivating Examples for Indistinguishability Amplification

As a first motivating example, consider the following construction C that com-
bines three independent random1 permutations2 π1, π2, and π3 into two random
permutations by cascading (composing) them as follows:

C(π1,π2,π3) = (π1 ◦ π3,π2 ◦ π3).

π1

π2

π3

If, say, the second constructed permutation is (forward-)queried with x, the value
x is input to π2 and the output x′ = π2(x) is forwarded to π3. The output of
π3(x′) is the response to the query x.

Clearly, if any two of the three random permutations πi are a (perfect)
uniform random permutation P, then (π1 ◦π3,π2 ◦π3) behaves exactly as if all
three random permutations πi are perfect uniform random permutations (i.e.,
it behaves as two independent uniform random permutations (P,P′)). Thus, we
call C a (2, 3)-combiner for the pairs (π1,P), (π2,P), (π3,P).

What, however, can we say when the πi are only εi-close3 to a uniform
random permutation? A straightforward hybrid argument shows that

Adv((π1 ◦ π3,π2 ◦ π3), (P,P′)) ≤ min(ε1 + ε2, ε1 + ε3, ε2 + ε3),

where Adv(·, ·) denotes the optimal distinguishing advantage over all adaptive
(computationally unbounded) distinguishers. Intuitively though, one might hope
that if all εi (as opposed to only two of them) are small, a better bound is
achievable. Ideally, this bound should be smaller than the individual εi, i.e., we

1 Throughout this paper, we use the word random as in random variable, i.e., not
implying uniformity of a distribution.

2 We assume the permutations to be stateless and both-sided (though all claims re-
main true if the permutations are all one-sided). A both-sided permutation is a
permutation that allows forward- and backward-queries, i.e., queries to π and π−1.

3 By ε-close we mean that any adaptive (computationally unbounded) distinguisher
has distinguishing advantage at most ε.
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want to obtain indistinguishability amplification. A consequence of one of our
results (Theorem 3) is that this is indeed possible. We have

Adv((π1 ◦ π3,π2 ◦ π3), (P,P′)) ≤ 2(ε1ε2 + ε1ε3 + ε2ε3)− 3ε1ε2ε3.

More generally, it is natural to ask the following question4:

How many independent random permutations that are ε′-close to a uni-
form random permutation need to be combined to obtain m random
permutations that are (jointly) ε-close (for ε � ε′) to m independent
uniform random permutations?

This question has been studied for the special case m = 1 (see for exam-
ple [18,19,12]), and it is known that the cascade of n independent random per-
mutations (each ε-close to a uniform random permutation) is 1

2 (2ε)n-close to a
uniform random permutation. Of course, there is a straightforward way to use
such a construction for m = 1 multiple times in order to obtain a basic indistin-
guishability result for m > 1: one simply partitions the n independent random
permutations π1, . . . ,πn into sets of equal size and cascades the permutations
in each set.

Example 1. We can construct four random permutations from 20 random per-
mutations as follows:

π1 π2 π3 π4 π5

π6 π7 π8 π9 π10

π11 π12 π13 π14 π15

π16 π17 π18 π19 π20

If the πi are independent and all ε-close (say, 2−10-close) to a uniform random
permutation, Theorem 1 of [12] implies that the construction above yields four
random permutations that are jointly 64ε5-close ((2.3ε)5-close, 2−44.0-close) to
four independent uniform random permutations.

Naturally, one might ask whether it is possible to construct four random per-
mutations to get stronger amplification (i.e., a larger exponent) without using
more random permutations. This is indeed possible, as the following example
illustrates.

Example 2. Consider the following construction of four random permutations:

4 For the following examples we assume for simplicity some fixed upper bound ε′ on
the individual εi (where the i-th component system is εi-close to its ideal form).
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π1 π2 π3

π4 π5 π6

π7 π8 π9

π10 π11 π12

π13 π14 π15

The main advantage of this construction is that it makes use of only 15 (instead of
20) random permutations. Our results imply that if the πi are independent and
ε-close (say, 2−10-close) to a uniform random permutation, then the constructed
four random permutations are jointly 320ε6-close ((2.7ε)6-close, 2−51.6-close) to
four independent uniform random permutations.

Instead of random permutations one can just as well combine random functions:
the same constructions and bounds as in Example 1 and Example 2 apply if we
replace the cascade ◦ with the elementwise XOR ⊕. However, in this setting,
we show that the additional structure of random functions can be exploited to
achieve even stronger amplification than in the examples above.

Example 3. Let F1, . . . ,F10 be independent random functions over a finite field
F, and let A be a 4× 10 MDS5 matrix over F. Consider the following construc-
tion of four random functions (F′1,F

′
2,F

′
3,F

′
4), making use of only 10 random

functions (as opposed to the above constructions with 20 and 15, respectively):

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

(i, x) x

A

y =
∑10
j=1Aij · yj

i

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

On input x to the i-th constructed function F′i (for i ∈ {1, 2, 3, 4}), all ran-
dom functions F1, . . . ,F10 are queried with x, and the answers y1, . . . , y10 are
combined to the result y =

∑10
j=1Aij · yj .

5 An MDS (maximum distance separable) matrix [16,8] is a matrix over a finite field
for which every square submatrix is non-singular.
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Our results imply that if the Fi are independent and ε-close (say, 2−10-
close) to a uniform random function, the four random functions (F′1,F

′
2,F

′
3,F

′
4)

are jointly 7680ε7-close ((3.6ε)7-close, 2−57.0-close) to four independent uniform
random functions.

1.5 Contributions and Outline

We briefly state our main contributions in a simplified manner. In Sect. 3, we
define deterministic discrete systems and probabilistic discrete systems together
with an equivalence relation capturing the input-output behavior. Moreover, we
argue that we can characterize a random system by an equivalence class of PDS.

In Sect. 4, we define the distance ∆ for random systems as

∆(S,T) := inf
S∈S
T∈T

δ(S,T).

We then present Theorem 1, stating that for any two random systems6 S and T
we have

∆(S,T) = Adv(S,T),

and there exist PDS S ∈ S and T ∈ T such that δ(S,T) = ∆(S,T). By combining
this result with the coupling interpretation of the statistical distance (see above),
we can think in a mathematically precise sense of the distinguishing advantage
Adv(R, I) between a real system R and an ideal system I as the probability of a
failure event, i.e., the probability of the event that R and I are not equal. More
specifically, we phrase a coupling theorem for random systems (Theorem 2),
stating that for any two random systems S and T there exist PDS S ∈ S and
T ∈ T with a joint distribution (or coupling) such that

Adv(S,T) = Pr(S 6= T).

The coupling theorem also represents a novel technique to prove indistinguisha-
bility bounds in an elementary fashion: in the core of such a proof, one only needs
to bound the statistical distance of probability distributions over deterministic
systems (for example by using the Coupling Method mentioned above). Often,
the fact that the distribution is over systems will be irrelevant. In particular,
the interaction with the systems and the complexity of (adaptive) environments
is completely avoided, as the potential failure event can be thought of as being
triggered before the interaction started.

Finally, in Sect. 5, we demonstrate how our coupling theorem can be used
to prove indistinguishability bounds. We present Theorem 3, stating that any
(k, n)-combiner is an amplifier for indistinguishability. A simplified variant of

6 Recall that a random system is an equivalence class of probabilistic discrete systems
with the same input-output behavior.
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the bound can be expressed as follows (see Corollary 1): If C is a (k, n)-combiner
for (F1, I1), . . . , (Fn, In) and Adv(Fi, Ii) ≤ ε for all i ∈ [n], then

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤ 1

2

(
n

k − 1

)
· (2ε)n−k+1.

The indistinguishability amplification results of [12] are a special case of this
corollary (for k = 1 and n = 2).

Moreover, we demonstrate how these indistinguishability results can be in-
stantiated by combiners transforming n independent random functions (random
permutations) into m < n random functions (random permutations), obtaining
indistinguishability amplification.

1.6 Related work

There exists a vast amount of literature on information-theoretic indistinguisha-
bility of various constructions, in particular for the analysis of symmetric key
cryptography. Prominent examples are constructions transforming uniform ran-
dom functions into uniform random permutations or vice-versa: the Luby-Rackoff
construction [6] (or Feistel construction), similar constructions by Naor and
Reingold [14], the truncation of a random permutation [5], and the XOR of
random permutations [2,7].

Random Systems. The characterization of random systems by their input-
output behavior in the form of a sequence of conditional distributions pYi|XiY i−1

(or pY i|Xi) was first described in [9].

Indistinguishability Proof Techniques. There exist various techniques for
proving information-theoretic indistinguishability bounds. A prominent approach
is to define a failure condition such that two systems are equivalent before said
condition is satisfied (see also [9]). Maurer, Pietrzak, and Renner proved in [12]
that there always exists such a failure condition that is optimal, showing that
this technique allows to prove perfectly tight indistinguishability bounds. At first
glance, the lemma of [12] seems to be similar to our coupling theorem. While
both statements are tight characterizations of the distinguishing advantage, the
crucial advantage of our result is that it allows to remove the complexity of
the adaptive interaction when reasoning about indistinguishability of random
systems. This enables reasoning at the level of probability distributions: one
can think of a failure event occurring or not before the interaction even begins.
The interactive hard-core lemma shown by Tessaro [17] in the computational
setting allows this kind of reasoning as well, though it only holds for so-called
“cc-stateless systems”.

More involved proof techniques include directly bounding the statistical dis-
tance of the transcript distributions, such as Patarin’s H-coefficient method [15],
and most recently, the Chi-squared method [4].
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Indistinguishability Amplification. Examples of previous indistinguishabil-
ity amplification results are the various computational XOR lemmas, Vaudenay’s
product theorem for random permutations [18,19], as well as the more abstract
product theorem for (stateful) random systems [12] (and so-called neutralizing
constructions). In [13], some of the results of [12] have been proved in the com-
putational setting.

A different type of indistinguishability amplification is shown in [11,12], where
the amplification is with respect to the distinguisher class, lifting non-adaptive
indistinguishability to adaptive indistinguishability.

2 Preliminaries

Notation. For n ∈ N, we let [n] denote the set {1, . . . , n} with the convention
[0] = ∅. The set of sequences (or strings) of length n over the alphabet A is
denoted by An. An element of An is denoted by an = (a1, . . . , an) for ai ∈ A.
The empty sequence is denoted by ε. The set of finite sequences over alphabet A
is denoted by A∗ := ∪i∈NAi and the set of non-empty finite sequences is denoted
by A+ := A∗ − {ε}. A set A ⊆ A∗ is prefix-closed if (a1, a2, . . . , ai) ∈ A implies
(a1, a2, . . . , aj) ∈ A for any j ≤ i. For two sequences xi ∈ X i and x̂j ∈ X j , the
concatenation xi|x̂j is the sequence (x1, . . . , xi, x̂1, . . . , x̂j) ∈ X i+j .

A (total) function from X to Y is a binary relation f ⊆ X × Y such that for
every x ∈ X there exists a unique y ∈ Y with (x, y) ∈ f . A partial function from
X to Y is a total function from X ′ to Y for a subset X ′ ⊆ X. The domain of
a function f is denoted by dom(f). The support of a function f : X → Y with
0 ∈ Y , for example a distribution, is defined by supp(f) := {x | x ∈ X, f(x) 6= 0}.

A multiset over A is a function M : A → N. We represent multisets in set
notation, e.g., M = {(a, 2), (b, 7)} denotes the multiset M with domain {a, b},
M(a) = 2, and M(b) = 7. The cardinality |M | of a multiset is

∑
a∈dom(M)M(a).

The union ∪, intersection ∩, sum +, and difference − of two multisets is defined
by the pointwise maximum, minimum, sum, and difference, respectively. Finally,
the symmetric difference M 4M ′ of two multisets is defined by M∪M ′−M∩M ′.

Throughout this paper, we use the following notion of a (finite) distribution.

Definition 1. A distribution (or measure) over A is a function X : A → R≥0
with finite support. The weight of a distribution is defined by

|X| :=
∑
a∈A

X(a).

A probability distribution is a distribution X with weight 1 (i.e., |X| = 1). More-
over, overloading the notation, we define for a distribution X over A and A ⊆ A

X(A) :=
∑
a∈A

X(a).
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In the following, we do not demand that a distribution has weight 1, i.e., we do
not assume probability distributions (unless stated explicitly). This is important,
as the proof of one of our main results (Theorem 1) relies on distributions of
arbitrary weight.

Definition 2. The marginal distribution Xi of a distribution X over A1× · · ·×
An is defined as

Xi(ai) =
∑

a′∈A1×···×An,a′i=ai

X(a′).

Lemma 1. Let X1, . . . ,Xn be distributions over A1, . . . , An, respectively, such
that all Xi have the same weight p ∈ R≥0. Then, there exists a (joint) distribution
X over A1 × · · · × An with weight p and marginals Xi.

Proof. A possible choice is X(a1, . . . , an) := p−(n−1)
∏
i∈[n] Xi(ai).

Definition 3. The statistical distance of two distributions X : A → R≥0 and
Y : A → R≥0 is

δ(X,Y) :=
∑
a∈A

max(0,X(a)− Y(a)) = |X| −
∑
a∈A

min(X(a),Y(a)).

Note that for distributions X and Y of different weight, i.e., |X| 6= |Y|, the statis-
tical distance is not symmetric (δ(X,Y) 6= δ(Y,X)). Moreover, for distributions
of the same weight, i.e., |X| = |Y|, we have δ(X,Y) = 1

2

∑
a∈A|X(a)− Y(a)|.

The following lemma, proved in Appendix A, is an immediate consequence
of the definition of the statistical distance.

Lemma 2. Let 〈Ai〉i∈[n] be a partition of a set A, and let X1, . . . ,Xn as well as

Y1, . . . ,Yn be distributions over A such that supp(Xi) ⊆ Ai and supp(Yi) ⊆ Ai
for all i ∈ [n]. For X :=

∑
i∈[n] Xi and Y :=

∑
i∈[n] Yi we have

δ(X,Y) =
∑
i∈[n]

δ(Xi,Yi).

Definition 4. For a distribution X : A → R≥0 and a function f : A → B, the
f -transformation of X, denoted by f(X), is the distribution over B defined by7

f(X) := X ◦ f−1.

The following lemma states that the statistical distance of two distributions
cannot increase if a function f is applied (to both distributions). This is well-
known for the case in which X and Y are probability distributions. We prove the
claim in Appendix A.

7 In the expression X◦f−1, the function X is such that X(A) =
∑

a∈A X(a) for A ⊆ A.
Moreover, f−1 denotes the preimage of f , i.e., f−1(b) := {a | a ∈ A, f(a) = b}.
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Lemma 3. For two distributions X and Y over A and any total function f :
A → B we have

δ(X,Y) ≥ δ(f(X), f(Y)).

Lemma 4 (Coupling Lemma, Lemma 3.6 of [1]). Let X,Y be probability
distributions over the same set.

1. For any joint distribution of X and Y we have

δ(X,Y) ≤ Pr(X 6= Y).

2. There exists a joint distribution of X and Y such that

δ(X,Y) = Pr(X 6= Y).

3 Discrete Random Systems

3.1 Deterministic Discrete Systems

A deterministic discrete (X ,Y)-system is a system with input alphabet X and
output alphabet Y. The system’s first output (or response) y1 ∈ Y is a function
of the first input (or query) x1 ∈ X . The second output y2 is a priori a function
of the first two inputs x1, x2 and the first output y1. However, since y1 is already
a function of x1, it is more minimal to define y2 as a function of the first two
inputs x2 = (x1, x2) ∈ X 2. In general, the i-th output yi ∈ Y is a function of the
first i inputs xi ∈ X i.

Definition 5. A deterministic discrete (X ,Y)-system (or (X ,Y)-DDS) is a par-
tial function

s : X+ → Y

with prefix-closed domain. An (X ,Y)-DDS s is finite if X is finite and dom(s) ⊆
∪i≤nX i for some n ∈ N. Moreover, we let dom1(s) denote the input alphabet for
the first query, i.e., dom1(s) = dom(s) ∩ X 1.

A DDS is an abstraction capturing exactly the input-output behavior of a de-
terministic system. Thus, it is independent of any implementation details that
describe how the outputs are produced. One can therefore think of a DDS as
an equivalence class of more explicit implementations. For example, different
programs (or Turing machines) can correspond to the same DDS. Moreover, the
fact that there is state is captured canonically by letting each output depend
on the previous sequence of inputs, as opposed to introducing an explicit state
space.

In this paper, we restrict ourselves to finite systems. We note that the defi-
nitions and claims can be generalized to infinite systems. Alternatively, one can
often interpret an infinite system as a parametrized family of finite systems.
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0 1
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01
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flip

Fig. 1. The four single-query ({0, 1}, {0, 1})-DDS zero, one, id, flip.

Example 4. Fig. 1 depicts the four single-query ({0, 1}, {0, 1})-DDS zero, one,
id, and flip, i.e., all total functions from {0, 1} to {0, 1}

zero(x) := 0, one(x) := 1, id(x) := x, flip(x) := 1− x.

An environment is an object (similar to a DDS) that interacts with a system s
by producing the inputs xi for s and receiving the corresponding outputs yi. En-
vironments are adaptive and stateful, i.e., a produced input xi is a function of all
the previous outputs yi−1 = (y1, . . . , yi−1). Moreover, we allow an environment
to stop at any time.

Definition 6. A deterministic discrete environment for an (X ,Y)-DDS (or
(Y,X )-DDE) is a partial function

e : Y∗ → X

with prefix-closed domain.

Definition 7. The transcript of a system s in environment e, denoted by tr(s, e),
is the sequence of pairs (x1, y1), (x2, y2), . . . , (xl, yl), defined for i ≥ 1 by

xi = e(y1, . . . , yi−1) and yi = s(x1, . . . , xi).

We require the environment e to be compatible with s, i.e., the environment
must not query s outside of the system’s domain. Formally, this means that yi =
s(x1, . . . , xi) is defined whenever xi = e(y1, . . . , yi−1) is defined. If e(y1, . . . , yi−1)
is undefined (the environment stops), the transcript ends and has length l = i−1.

3.2 Probabilistic Discrete Systems

We define probabilistic systems (environments) as distributions over determinis-
tic systems (environments). Note that even though we use the term probabilistic,
we do not assume that the corresponding distributions are probability distribu-
tions (i.e., they do not need to sum up to 1, unless explicitly stated).
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Definition 8. A probabilistic discrete (X ,Y)-system S (or (X ,Y)-PDS) is a
distribution over (X ,Y)-DDS such that all DDS in the support of S have the
same domain, denoted8 by dom(S). We always assume that S is finite, i.e., X is
finite and dom(S) ⊆ ∪i≤nX i for some n ∈ N.

Definition 9. A probabilistic discrete environment for an (X ,Y)-PDS (or
(Y,X )-PDE) is a distribution over (Y,X )-DDE.

Observe that a PDS contains all information for a system that can be executed
arbitrarily many times, i.e., a system that can be rewound and then queried
again on the same randomness. We consider the standard setting in which a
system can only be executed once (see Definition 7). In this setting, there exist
different PDS that behave identically from the perspective of any environment,
i.e., they exhibit the same behavior. The following example demonstrates this.

Example 5. Let V be the uniform probability distribution over the set of all
single-query ({0, 1}, {0, 1})-DDS {zero, one, id, flip} (see Figure 1), i.e.,

V := {(zero, 1/4), (one, 1/4), (id, 1/4), (flip, 1/4)}.

For any input x ∈ {0, 1}, the system V outputs a uniform random bit. Formally,
the transcript distribution tr(V, ex) for an environment ex that inputs x ∈ {0, 1}
(i.e., ex(ε) = x) is

tr(V, ex) = {((x, 0), 1/2), ((x, 1), 1/2)}.

The PDS V represents a system that samples the answers for both possible inputs
x ∈ {0, 1} independently (even though only one query is answered). Clearly, the
exact same behavior can be implemented by sampling a uniform bit and using
it for whatever query is asked, resulting in the PDS

V′ := {(zero, 1/2), (one, 1/2), (id, 0), (flip, 0)}.

It is easy to verify that for any α ∈ [0, 1/2], the following PDS Vα has the same
behavior as V:

Vα := {(zero, α), (one, α), (id, 1/2− α), (flip, 1/2− α)}.

Actually, it is not difficult to show that every PDS with the behavior of V is of
the form Vα. Thus, we can think of the random system V (that responds for
every input x ∈ {0, 1} with a uniform random bit) as the equivalence class

[V] = {Vα | α ∈ [0, 1/2]}.

More generally, we define two PDS to be equivalent if their transcript distribu-
tions are the same in all environments. It is easy to see that considering only
deterministic environments results in the same equivalence notion that is ob-
tained when considering probabilistic environments.

8 Note that we are overloading the notation of dom(·), as S is a function from deter-
ministic systems to R≥0.
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Definition 10. Two (X ,Y)-PDS S and T are equivalent, denoted by S ≡ T, if
they have the same domain and9

tr(S, e) = tr(T, e) for all compatible (Y,X )-DDE e.

The equivalence class of a PDS S is denoted by [S] := {S′ | S′,S ≡ S′}.

The following lemma, proved in Appendix A, states that for S and T to be
equivalent it suffices that the transcript distribution tr(S, e) is equal to tr(T, e)
for all non-adaptive10 deterministic environments e.

Lemma 5. For any two (X ,Y)-PDS S and T with the same domain we have
S ≡ T if and only if

tr(S, e) = tr(T, e) for all compatible non-adaptive (Y,X )-DDE e.

Stated differently, an equivalence class [S] of PDS can be characterized by the
transcript distributions for all non-adaptive deterministic environments. Since
a non-adaptive deterministic environment is uniquely described by a sequence
xk ∈ X k of inputs and the corresponding transcript distribution tr(S, e) is essen-
tially the distribution of observed outputs under the input sequence xk, it follows
immediately that an equivalence class of PDS describes exactly a random sys-
tem as introduced in [9] (where a characterization in the form of a sequence of
conditional distributions pYi|XiY i−1 or pY i|Xi was used).

Notation 1. We use bold-face font S to denote a random system, an equivalence
class of PDS. Since the transcript distribution tr(S, e) does (by definition) only
depend on the random system S and not on the concrete element S ∈ S of the
equivalence class, we write

tr(S, e)

to denote the transcript distribution of the random system S in environment e.

4 Coupling Theorem for Discrete Systems

4.1 Distance of Equivalence Classes and the Coupling Theorem

The optimal distinguishing advantage is widely-used in the (cryptographic) lit-
erature to quantify the distance between random systems. It can be defined as
the supremum statistical distance of the transcripts under all compatible (Y,X )
-DDE. In the information-theoretic setting, this is equivalent to the classical
definition as the supremum difference of the probability that a (probabilistic)
distinguisher outputs 1 when interacting with each system.

9 tr(S, e) denotes the tr(·, e)-transformation of the distribution S (see Definition 4).
10 A non-adaptive environment must choose every query xi independently of the previ-

ous outputs y1, . . . , yi−1. Formally, e(yi) only depends on the length i of the sequence
yi, i.e., we have e(yi) = e(ŷi) for any i ∈ N and yi, ŷi ∈ Yi.
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Definition 11. For two random (X ,Y)-systems S and T with the same domain,
the optimal distinguishing advantage Adv(S,T) is defined by

Adv(S,T) := sup
e
δ(tr(S, e), tr(T, e)),

where the supremum is over all compatible (Y,X )-DDE.

Understanding a random system as an equivalence class of probabilistic discrete
systems gives rise to the following distance notion ∆:

Definition 12. For two random (X ,Y)-systems S and T with the same domain
we define

∆(S,T) := inf
S∈S
T∈T

δ(S,T).

Note that since there exist PDS S and S′ that are equivalent (S ≡ S′) even
though δ(S,S′) = 1 (for example V0 and V1/2 from Example 5), taking the
infimum seems to be necessary to quantify the distance of random systems in a
meaningful way. We can now state the first theorem.

Theorem 1. For any two random (X ,Y)-systems S and T with the same do-
main we have

∆(S,T) = Adv(S,T),

and there exist PDS S ∈ S and T ∈ T such that δ(S,T) = ∆(S,T).

The coupling theorem for random systems is an immediate consequence of The-
orem 1 and the classical Coupling Lemma (Lemma 4).

Theorem 2 (Coupling Theorem for Random Systems). For any two ran-
dom systems S and T there exist PDS S ∈ S and T ∈ T with a joint distribution
(or coupling) such that

Adv(S,T) = Pr(S 6= T).

4.2 Proof of Theorem 1

The Single-Query Case. We start by proving Theorem 1 for single-query
random systems. Let S and T be two single-query (X ,Y)-systems, represented
by the two (X ,Y)-PDS S ∈ S and T ∈ T. Observe that a single-query (X ,Y)
-DDS s is a function from X to Y, and can thus be represented by a tuple

(yx1
, yx2

, . . . , yxn
) ∈ Yn, where X = {x1, . . . , xn} and s(xi) = yxi

.

Hence, we can represent S and T as distributions over Yn for n = |X |. If Si and
Ti are the marginal distributions of the i-th index of S and T, respectively, then
an environment that inputs the value xi ∈ X will observe either Si or Ti. From
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Definition 11 it follows that an optimal environment chooses i such that δ(Si,Ti)
is maximized, so we have

Adv(S,T) = max
i∈[n]

δ(Si,Ti).

The following lemma directly implies that there exist PDS S′ ∈ S and T′ ∈ T
such that δ(S′,T′) = Adv(S,T). This proves Theorem 1 for single-query systems.

Lemma 6. For each i ∈ [n], let Xi and Yi be distributions over Ai, such that all
Xi have the same weight pX ∈ R≥0 and all Yi have the same weight pY ∈ R≥0.
Then there exist (joint) distributions X and Y over A1×· · ·×An with marginals
Xi and Yi, respectively, such that

δ(X,Y) = max
i∈[n]

δ(Xi,Yi).

Proof. As δ(Xi,Yi) = pX −
∑
a∈Ai

min(Xi(a),Yi(a)), we have

max
i∈[n]

δ(Xi,Yi) = pX − min
i∈[n]

∑
a∈Ai

min(Xi(a),Yi(a)).

Let τ := mini∈[n]
∑
a∈Ai

min(Xi(a),Yi(a)). Clearly, for every i ∈ [n], there exist
distributions Ei, X

′
i, and Y′i such that Ei has weight τ (i.e., |Ei| = τ) and

Xi = Ei + X′i and Yi = Ei + Y′i.

By invoking Lemma 1 three times, we obtain the joint distributions E, X′, and Y′

of all Ei, X
′
i, and Y′i, respectively. We let X := E+X′ and Y := E+Y′. It is easy

to verify that X has the marginals Xi and Y has the marginals Yi. Moreover,∑
v∈A1×···×An

min(X(v),Y(v)) ≥
∑

v∈A1×···×An

E(v) = |E| = τ,

which implies δ(X,Y) ≤ pX − τ = maxi∈[n] δ(Xi,Yi).
Finally, we have δ(X,Y) ≥ δ(Xi,Yi) for all i ∈ [n] due to Lemma 3 and thus

δ(X,Y) ≥ maxi∈[n] δ(Xi,Yi), concluding the proof. ut

The General Case. Before proving the general case of Theorem 1, we introduce
the following notion of a successor system.

Notation 2. For an (X ,Y)-DDS s and any first query x ∈ dom1(s), we let s↑x

denote the (X ,Y)-DDS that behaves like s after the first query x has been input.
That is, if s answers at most q queries, s↑x answers at most (q − 1) queries.
Formally,

s↑x(x̂i) := s(x|x̂i).

Analogously, we define for a (Y,X )-DDE e the successor e↑y(ŷi) := e(y|ŷi).
Finally, for an (X ,Y)-PDS S, we let S↑x↓y denote the transformation of S with
the partial function s 7→ s↑x↓y (see Definition 4), where s↑x↓y is equal to s↑x if
s(x) = y and undefined otherwise.
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We stress that if S is a probability distribution (i.e., it sums to 1), S↑x↓y is in gen-
eral not a probability distribution anymore: the weight

∣∣S↑x↓y∣∣ is the probability
that S responds with y to the query x.

Proof (of Theorem 1). We prove the theorem using (arbitrary) representatives
S and T of the equivalence classes, i.e., S and T correspond to [S] and [T],
respectively. First, observe that ∆(S,T) ≥ Adv(S,T), since we have for any
environment e and any S′ ∈ [S] and T′ ∈ [T]

δ(S′,T′) ≥ δ(tr(S′, e), tr(T′, e)) = δ(tr(S, e), tr(T, e)).

The inequality is due to Lemma 3 and the equality is due to Definition 10. Thus,
it only remains to prove that for all q-query PDS S and T with the same domain
there exist S′ ∈ [S] and T′ ∈ [T] such that

δ(S′,T′) = sup
e
δ(tr(S, e), tr(T, e)). (1)

The proof of (1) is by induction over the maximal number of answered queries
q ∈ N. If q = 0, the claim follows immediately. Otherwise (q ≥ 1), let X ′ ⊆ X be
the input alphabet for the first query, i.e., X ′ = dom1(S) = dom1(T). We have

sup
e
δ(tr(S, e), tr(T, e)) = max

x∈X ′
sup
e

e(ε)=x

δ(tr(S, e), tr(T, e))

= max
x∈X ′

sup
e

e(ε)=x

∑
y∈Y

δ(tr(S↑x↓y, e↑y), tr(T↑x↓y, e↑y))

= max
x∈X ′

∑
y∈Y

sup
e′
δ(tr(S↑x↓y, e′), tr(T↑x↓y, e′)).

The second step is due to Lemma 2. In the last step, we used that the environ-
ment is adaptive: for each possible value y ∈ Y, the subsequent query strategy
may be chosen separately.

As S↑x↓y and T↑x↓y are systems answering at most q − 1 queries, we can
invoke the induction hypothesis to obtain Sxy ∈ [S↑x↓y] and Txy ∈ [T↑x↓y] for
each (x, y) ∈ X ′ × Y such that

sup
e′
δ(tr(S↑x↓y, e′), tr(T↑x↓y, e′)) = δ(Sxy,Txy).

For each (x, y) ∈ X ′×Y, we prepend an initial query to the deterministic systems
in the support of Sxy to obtain the q-query PDS S′xy that answers the first query
x (deterministically) with y, that is undefined for all x′ 6= x as first query, and
S′↑x↓yxy = Sxy. T′xy is defined analogously. This does not change the statistical
distance: we have for every (x, y) ∈ X ′ × Y

δ(Sxy,Txy) = δ(S′xy,T
′
xy).
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Next, we define the PDS S′x :=
∑
y∈Y S

′
xy and T′x :=

∑
y∈Y T

′
xy. We obtain via

Lemma 2 that ∑
y∈Y

δ(S′xy,T
′
xy) = δ(S′x,T

′
x).

By Lemma 6, there exists a joint distribution11 S′ of all S′x and a joint distribution
T′ of all T′x such that

max
x∈X ′

δ(S′x,T
′
x) = δ(S′,T′).

Finally, observe that S′ ∈ [S] and T′ ∈ [T], which concludes the proof. ut

5 Indistinguishability Amplification from Combiners

The goal of indistinguishability amplification is to construct an object which is
ε-close to its ideal from objects which are only ε′-close to their ideal for ε much
smaller than ε′. The most basic type of this construction is to XOR two inde-
pendent bits B1 and B2. It is easy to verify that if B1 and B2 are ε1- and ε2-close
(in statistical distance) to the uniform bit U, respectively, then B1 ⊕ B2 will be
2ε1ε2-close to the uniform bit. The crucial property of the XOR construction is
the following: if at least one of the bits B1 or B2 is perfectly uniform, then their
XOR is perfectly uniform as well. This property is satisfied not only for single
bits, but actually also for bitstrings (with bitwise XOR) and even for any quasi-
group. Interestingly, it was shown in [12] that an analogous indistinguishability
amplification result to the XOR of two bits holds for constructions based on
(stateful) random systems, and it is sufficient to assume only such a combiner
property of a construction.

In this section, we prove that indistinguishability amplification is obtained
from more general combiners. All of the above examples are special cases of
such a combiner. In particular, Theorem 1 of [12] is a simple corollary to our
Theorem 3.

5.1 Constructions and Combiners

Usually (see for example [12]), an n-ary construction C is defined as a system
communicating with component systems S1, . . . ,Sn and providing an outer com-
munication interface. This means that C(S1, . . . ,Sn) is a system for any (com-
patible) component systems S1, . . . ,Sn. In this paper, we use a more abstract
notion of a construction, ignoring the details of the interfaces and messages. The

11 It is easy to see that a DDS s which is defined for first inputs from the set {x1, . . . , xq}
can be represented equivalently as a tuple (sx1 , . . . , sxq ), where sxi is a DDS which
is only defined for xi as first input. Analogously, a probabilistic discrete system can
be understood as a joint distribution of PDS Sxi . Clearly, such a representation does
not influence the statistical distance.
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amplification statements we make are independent of these details, and thereby
simpler and stronger. Nevertheless, it may be easier for the reader to simply
think of a construction C as a random system.

Definition 13. Let S1, . . . ,Sn,Sn+1 be sets of (X ,Y)-DDS such that for all
i ∈ [n+ 1], the elements of Si have the same domain. An n-ary construction C
is a probability distribution over functions from S1 × · · · × Sn to Sn+1 such that
for any probability distributions Si and S′i over Si with Si ≡ S′i we have12

C(S1, . . . ,Sn) ≡ C(S′1, . . . ,S
′
n).

In many settings (especially in cryptography), we have a pair of random systems
(F, I), where F is the real system, and I is the ideal system. A combiner is a
construction that combines component systems S1, . . . ,Sn such that only some
of the component systems Si need to be ideal for the whole resulting system
C(S1, . . . ,Sn) to behave as if all component systems were ideal. The following
definition makes this rigorous.

Definition 14. Let A ⊆ {0, 1}n be a monotone13 set. An n-ary construction C
is an A-combiner for (F1, I1), . . . , (Fn, In) if for any choice of bits bn ∈ A we
have

C(〈F1/I1, . . . ,Fn/In〉bn) ≡ C(I1, . . . , In),

where 〈x1/y1, . . . , xn/yn〉bn = (z1, . . . , zn) where zi = xi if bi = 0 and zi = yi
otherwise.

A special case of an A-combiner is a threshold construction where the whole
system behaves as if all component systems were ideal if only k (arbitrary)
component systems are ideal. We call such a construction a (k, n)-combiner.

Definition 15. An A-combiner C is a (k, n)-combiner for (F1, I1), . . . , (Fn, In)
if {bn | bn ∈ {0, 1}n,

∑
i bi ≥ k} ⊆ A.

For example, it is easy to see that for any two random functions14 F1 and F2

and the uniform15 random functions R and R′ on n-bit strings, we have

F1 ⊕ R′ ≡ R⊕ F2 ≡ R⊕ R′ ≡ R,

12 In the following, all distributions are probability distributions (i.e., all distributions
sum up to 1). Moreover, certain expressions involving multiple distributions make
only sense if a joint distribution is defined. For all such expressions, we mean the
independent joint distribution.

13 A set A ⊆ {0, 1}n is monotone if for every bn ∈ A we have b̂n ∈ A for every
b̂n ∈ {0, 1}n with b̂i ≥ bi.

14 A random function from X to Y is a system that answers queries consistently, i.e., if
a query xi ∈ X is answered with yi ∈ Y, the system answers any subsequent query
xj = xi again with the same value yj = yi.

15 A uniform random function from X to Y is a random function that answers every
query xi that has not been asked before with an independent uniform response
yi ∈ Y.

19



where ⊕ is the binary construction that forwards every query xi to both com-
ponent systems and returns the bitwise XOR of both answers. Thus, ⊕ is a
(deterministic) (1, 2)-combiner for (F1,R) and (F2,R

′). Note that in [12], a (1, 2)-
combiner is called “neutralizing construction”.

5.2 Proving Indistinguishability Amplification Results

Due to the coupling theorem for random systems, we can think of the distin-
guishing advantage Adv(Fi, Ii) as a failure probability of Fi, i.e., the probability
that Fi is not equal to Ii. Since an A-combiner behaves as if all component sys-
tems were ideal if the component systems described by any a ∈ A are ideal, one
might (naively) hope that the failure probability of C(F1, . . . ,Fn) was at most
the probability that certain component systems fail, i.e.,

Adv(C(F1, . . . ,Fn),C(I1, . . . , In))
?
≤ Pr(X /∈ A), (2)

where X = (X1, . . . , Xn) for independent Bernoulli random variables Xi with
Pr(Xi = 0) = Adv(Fi, Ii). However, the reasoning behind this is unsound because
it assumes the real system Fi to behave ideally (as Ii) with probability 1 −
Adv(Fi, Ii). This is too strong (and not true): when we condition on the event
(with probability 1−Adv(Fi, Ii)) in which the real and ideal systems are equal,
we also condition the ideal system, changing its original behavior.

Not only is the above reasoning unsound, the bound (2) simply does not
hold, since it would for example imply that

δ(B1 ⊕ · · · ⊕ Bn,U)
?
≤

n∏
i=1

δ(Bi,U)

for independent bits Bi and the uniform bit U. However, it is easy to verify that
δ(B1 ⊕ · · · ⊕ Bn,U) = 2n−1

∏n
i=1 δ(Bi,U), i.e., there is an extra factor 2n−1.

The following technical lemma describes a general proof technique and can
be used as a tool to prove indistinguishability amplification results for any A-
combiner. The key idea is to consider distributions B and B′ over A ∪ {0n},
inducing distributions C(〈F1/I1, . . . ,Fn/In〉B) and C(〈F1/I1, . . . ,Fn/In〉B′) (recall
Definition 14 for the notation). We then use Theorem 1 to exhibit a coupling in
which systems Fi and Ii are equal with probability 1−Adv(Fi, Ii) and argue that
the two constructions are equal (in the coupling) unless for one of the indices
i ∈ [n] where Fi 6= Ii we have Bi 6= B′i. The proof of Theorem 3 shows how to
instantiate this lemma, choosing suitable distributions B and B′.

Lemma 7. Let C be an A-combiner for (F1, I1), . . . , (Fn, In) and let B,B′ be any
probability distributions over A ∪ {0n} such that B(0n) > 0 and B′(0n) = 0.
Then,

Adv(C(F1, . . . ,Fn), C(I1, . . . , In))

≤ B(0n)−1 ·
∑

e∈{0,1}n
δ(blind(B, e),blind(B′, e)) · Pr(E = e),
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where blind(x,m) is the tuple derived from x by removing all elements at the in-
dices at which mi = 0, and E = (E1, . . . , En) for independent Bernoulli random
variables Ei with Pr(Ei = 1) = Adv(Fi, Ii).

Proof. By Lemma 9 (see Appendix A) we have for probability distribution B′′

over {0, 1} with B′′(0) = B(0n)

Adv(C(F1, . . . ,Fn),C(I1, . . . , In))

= B(0n)−1 ·Adv(〈C(F1, . . . ,Fn)/C(I1, . . . , In)〉B′′ ,C(I1, . . . , In)).

Observe that we have 〈C(F1, . . . ,Fn)/C(I1, . . . , In)〉B′′ ≡ C(〈F1/I1, . . . ,Fn/In〉B)
and C(I1, . . . , In) ≡ C(〈F1/I1, . . . ,Fn/In〉B′), since C is an A-combiner. Thus,

Adv(〈C(F1, . . . ,Fn)/C(I1, . . . , In)〉B′′ ,C(I1, . . . , In))

= Adv(C(〈F1/I1, . . . ,Fn/In〉B),C(〈F1/I1, . . . ,Fn/In〉B′)).

According to Theorem 1 there exist (F′i, I
′
i) ∈ [Fi]× [Ii] for every i ∈ [n] such that

δ(F′i, I
′
i) = Adv(Fi, Ii). Thus,

Adv(C(〈F1/I1, . . . ,Fn/In〉B),C(〈F1/I1, . . . ,Fn/In〉B′))
= Adv(C(〈F′1/I′1, . . . ,F′n/I′n〉B),C(〈F′1/I′1, . . . ,F′n/I′n〉B′))
≤ δ(C(〈F′1/I′1, . . . ,F′n/I′n〉B),C(〈F′1/I′1, . . . ,F′n/I′n〉B′))
≤ δ(〈F′1/I′1, . . . ,F′n/I′n〉B, 〈F

′
1/I
′
1, . . . ,F

′
n/I
′
n〉B′),

where the last step is due to Lemma 3.

We exhibit a random experiment E with random variables16 F ′i ∼ F′i, I
′
i ∼ I′i,

B ∼ B, and B′ ∼ B′, such that L := 〈F ′1/I ′1, . . . , F ′n/I ′n〉B ∼ 〈F′1/I′1, . . . ,F′n/I′n〉B
and R := 〈F ′1/I ′1, . . . , F ′n/I ′n〉B′ ∼ 〈F′1/I′1, . . . ,F′n/I′n〉B′ . Define Ei := [F ′i 6= I ′i]
and E := (E1, . . . , En).

Observe that the joint distribution of F ′i and I ′i as well as B and B′ can be
chosen arbitrary (as long as the marginal distributions are respected). Let Cδ(·, ·)
denote the joint distribution described in Lemma 4, and let the joint distribution
of F ′i and I ′i be Cδ(F′i, I′i). Moreover, the joint distribution of B and B′ is chosen
such that17

PrE(blind(B, e) = b,blind(B′, e) = b′, E = e)

= Cδ(blind(B, e),blind(B′, e))(b, b′) · PrE(E = e).

16 We write X ∼ X to denote that the random variable X is distributed according to
the distribution X.

17 Note that even though the joint distribution of B and B′ depends on E, the random
variable B is still independent of ((F ′1, I

′
1), . . . , (F ′n, I

′
n)).
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Thus we have by Lemma 4

δ(〈F′1/I′1, . . . ,F′n/I′n〉B,〈F
′
1/I
′
1, . . . ,F

′
n/I
′
n〉B′)

≤ PrE(L 6= R)

=
∑

e∈{0,1}n
PrE(L 6= R,E = e)

=
∑

e∈{0,1}n
PrE(blind(B, e) 6= blind(B′, e), E = e)

=
∑

e∈{0,1}n
δ(blind(B, e),blind(B′, e)) · PrE(E = e),

which concludes the proof. ut

Observe that Lemma 7 by itself does not imply indistinguishability amplifica-
tion for any combiner. In particular, one needs to prove the existence of suitable
distributions B and B′ such that the distance δ(blind(B, e),blind(B′, e)) is small
for many e ∈ {0, 1}n (ideally it is zero for all e /∈ A, where e is the bitwise com-
plement of e). We show the following indistinguishability amplification theorem
for all (k, n)-combiners.

Theorem 3. If C is a (k, n)-combiner for (F1, I1), . . . , (Fn, In), then

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤
n∑

i=n−k+1

ξi−(n−k),i · Pr

∑
j∈[n]

Ej = n− k + 1

,
where

ξl,m :=
1

2
·

(
1 +

m∑
j=l

(
m

j

)
·
(
j − 1

l − 1

))
,

and the Ei are jointly independent Bernoulli random variables with Pr(Ei = 1) =
Adv(Fi, Ii).

As discussed before, one might (naively) hope for threshold combiners to achieve
the indistinguishability bound

Adv(C(F1, . . . ,Fn),C(I1, . . . , In))
?
≤ Pr

∑
j∈[n]

Ej ≥ n− k + 1

.
This bound does not hold and thus correction factors as in Theorem 3 (i.e., the
factors ξi−(n−k),i) are in general unavoidable. As we have ξ1,2 = 2, Theorem 1
of [12] is an immediate corollary of Theorem 3 (for k = 1 and n = 2). More
generally we have ξ1,n = 2n−1, which is tight due to the above discussed example.
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Proof (of Theorem 3). For k ≥ 1 and n ≥ k we represent distributions Bk,n,B
′
k,n

using multisets Ak,n, A
′
k,n over A ∪ {0n}, with the natural understanding that

Bk,n (B′k,n) is the probability distribution with Bk,n(a) = Ak,n(a)/|Ak,n|.
Let

A′k,n :=
⋃

j∈{k,k+2,...,n}

{(
b,

(
j − 1

k − 1

)) ∣∣∣∣∣ b ∈ {0, 1}n,∑
i∈[n]

bi = j

}
and

Ak,n := {(0n, 1)} ∪
⋃

j∈{k+1,k+3,...,n}

{(
b,

(
j − 1

k − 1

)) ∣∣∣∣∣ b ∈ {0, 1}n,∑
i∈[n]

bi = j

}
.

For a multiset M over {0, 1}n, let blindm(M) be the multiset over {0, 1}n−m
derived from M by removing the bits at m fixed positions, say the first m
bits, for every element. We only consider multisets for which blindm(M) is well-
defined, i.e., it does not matter at which m positions the bits are removed. We
prove below the following statement:

∀k ≥ 1, ∀n ≥ k : |Ak,n| = |A′k,n| = ξk,n

∧ ∀j ≥ k : blindj(Ak,n) = blindj(A
′
k,n)

∧ ∀j < k : |blindj(Ak,n)4blindj(A
′
k,n)| = 2ξk−j,n−j .

(3)

This implies the claim via Lemma 7, since we have

Adv(C(F1, . . . ,Fn),C(I1, . . . , In))

≤ Bk,n(0n)−1 ·
∑

e∈{0,1}n
δ(blind(Bk,n, e),blind(B′k,n, e)) · Pr(E = e)

= |Ak,n| ·
n∑
i=0

|blindn−i(Ak,n)4blindn−i(A
′
k,n)|

2|Ak,n|
· Pr

(∑
j∈[n]

Ej = i

)

=

n∑
i=n−k+1

ξi−(n−k),i · Pr

(∑
j∈[n]

Ej = i

)
.

In the second step we have used that for any two multisets M,M ′ representing
probability distributions M,M′ we have δ(M,M′) = |M 4M ′|/(2|M |) if |M | =
|M ′| .

We prove (3) by induction over n. Observe that

blind1(A′k,n) =
⋃

j∈{k,k+2,...,n−1}

{(
b,

(
j − 1

k − 1

)) ∣∣∣∣∣ b ∈ {0, 1}n−1,∑
i∈[n]

bi = j

}

∪
⋃

j∈{k−1,k+1,...,n−1}

{(
b,

(
j

k − 1

)) ∣∣∣∣∣ b ∈ {0, 1}n−1,∑
i∈[n]

bi = j

}
.
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Similarly, we see that

blind1(Ak,n) = {(0n−1, 1)}

∪
⋃

j∈{k+1,k+3,...,n−1}

{(
b,

(
j − 1

k − 1

)) ∣∣∣∣∣ b ∈ {0, 1}n−1,∑
i∈[n]

bi = j

}

∪
⋃

j∈{k,k+2,...,n−1}

{(
b,

(
j

k − 1

)) ∣∣∣∣∣ b ∈ {0, 1}n−1,∑
i∈[n]

bi = j

}
.

If k = 1, it is easy to see that |Ak,n| = |A′k,n| = ξk,n, as well as blind1(A′k,n) =
blind1(Ak,n) and |blind0(Ak,n)4blind0(A′k,n)| = 2ξk,n (since Ak,n and A′k,n are

disjoint). Otherwise (k ≥ 2), we use the identity
(
j

k−1
)
−
(
j−1
k−1
)

=
(
j−1
k−2
)

to obtain

blind1(A′k,n)− blind1(Ak,n) ∩ blind1(A′k,n)

=
⋃

j∈{k−1,k+1,...,n−1}

{(
b,

(
j − 1

k − 2

)) ∣∣∣∣∣ b ∈ {0, 1}n−1,∑
i∈[n]

bi = j

}
= A′k−1,n−1.

Analogously, we see that

blind1(Ak,n)− blind1(Ak,n) ∩ blind1(A′k,n)

= {(0n−1, 1)} ∪
⋃

j∈{k,k+2,...,n−1}

{(
b,

(
j − 1

k − 2

)) ∣∣∣∣∣ b ∈ {0, 1}n−1,∑
i∈[n]

bi = j

}
= Ak−1,n−1.

As by induction hypothesis blindk−1(Ak−1,n−1) = blindk−1(A′k−1,n−1), we have
blindk(Ak,n) = blindk(A′k,n). Since blinding does not change the cardinality of
a multiset, it follows |Ak,n| = |A′k,n| = ξk,n. Moreover, as Ak,n and A′k,n are
disjoint we have |blind0(Ak,n)4blind0(A′k,n)| = 2ξk,n. Finally, for j ≥ 1 and
j < k we have

|blindj(Ak,n)4blindj(A
′
k,n)| = |blindj−1(Ak−1,n−1)4blindj−1(A′k−1,n−1)|

(I.H.)
= 2ξ(k−1)−(j−1),(n−1)−(j−1) = 2ξk−j,n−j ,

which concludes the proof. ut

The following corollary to Theorem 3 provides simpler (but worse) bounds.

Corollary 1. If C is a (k, n)-combiner for (F1, I1), . . . , (Fn, In), then

(i)

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤

2n−k
n∑

j=n−k+1

(
j − 1

n− k

)
· Pr

(∑
i∈[n]

Ei = j

)
,
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where the Ei are jointly independent Bernoulli random variables with
Pr(Ei = 1) = Adv(Fi, Ii).

(ii) if Adv(Fi, Ii) ≤ ε for all i ∈ [n] we have

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤ 1

2

(
n

k − 1

)
· (2ε)n−k+1.

(iii) if Adv(Fi, Ii) ≤ ε for all i ∈ [n] we have

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤
(

2e
n

n− k + 1
· ε
)n−k+1

.

Proof. Lemma 10 in Appendix A states that ξl,m ≤ 2m−l
(
m−1
l−1
)
. This immedi-

ately implies the bound (i) via Theorem 3.
We use bound (i) to obtain the bound (ii) as follows

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤ 2n−k
n∑

j=n−k+1

(
j − 1

n− k

)
· Pr

(∑
i∈[n]

Ei = j

)

≤ 2n−k
n∑

j=n−k+1

(
j − 1

n− k

)
·
(
n

j

)
εj(1− ε)n−j

≤ 2n−k
n∑

j=n−k+1

(
j

n− k + 1

)
·
(
n

j

)
εj(1− ε)n−j

= 2n−k
(

n

n− k + 1

)
εn−k+1

=
1

2

(
n

k − 1

)
· (2ε)n−k+1.

The first equality is due to the identity
∑n
j=m

(
j
m

)(
n
j

)
εj(1 − ε)n−j =

(
n
m

)
εm.

An easy proof of the identity is by considering n independent Bernoulli random
variables Xi with Pr(Xi = 1) = ε and their sum X := X1 + · · · + Xn. The
left-hand expression of the identity is simply the expected value

E
[(
X

m

)]
= E

 ∑
I⊆[n]
|I|=m

[∧
i∈I

(Xi = 1)

] =
∑
I⊆[n]
|I|=m

Pr

(∧
i∈I

(Xi = 1)

)
=

(
n

m

)
εm.

Finally, bound (iii) is derived from bound (ii) via the well-known inequality(
n
k

)
≤ (2en/k)k. ut

The bound

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤
(

2e
n

n− k + 1
· ε
)n−k+1

from Corollary 1 (iii) is perhaps suited best (even though it is the loosest) in
order to intuitively understand the behavior of the obtained indistinguishability
amplification.
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On the Number of Queries. Many indistinguishability bounds are presented
with a dependency on the number of queries q the adversary is allowed to ask.
For reasons of simplicity, we understand the number of queries as a property
of a discrete system, i.e., the number of queries that a system answers. This
is only a conceptual difference, and all of our results can still be used with
the former perspective. For example, this means that if the indistinguishability
of the component systems is for distinguishers asking up to q queries, our re-
sults can be applied to the corresponding systems that answer only q queries.
Usually, if the component systems F1, . . . ,Fn answer only q queries, then the
overall constructed system C(F1, . . . ,Fn) will answer only up to q′ queries, for
some q′ depending on q. As a consequence, the resulting indistinguishability
bound Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) holds for any distinguisher asking up to
q′ queries.

5.3 A Simple (k, n)-Combiner for Random Functions

We present a simple (k, n)-combiner for arbitrary k and n ≥ k. For a finite field
F, let A ∈ Fk×n be a (k × n)-matrix with k ≤ n, and let A ⊆ {0, 1}n be the
(monotone) set containing all v ∈ {0, 1}n with vi1 = · · · = vik = 1 for k distinct
indices, such that the columns i1, . . . , ik of A are linearly independent. Consider
the deterministic n-ary construction C : Fn → Fk defined by18

C(x1, . . . , xn) := A · (x1, . . . , xn)T.

It is easy to see that C is an A-combiner for (X1,U), . . . , (Xn,U), where Xi are
arbitrary probability distributions over F and U is the uniform distribution over
F. Moreover, if A is an MDS matrix19, it is straightforward to verify using basic
linear algebra that C is a (k, n)-combiner. Assuming the field F has sufficiently
many elements (|F| ≥ k + n) such a matrix is easy to construct (for example,
one can take a Vandermonde matrix or a Cauchy matrix [8]).

The above construction can be generalized to a (k, n)-combiner C′ which
combines n independent random functions F1, . . . ,Fn (from X to F) to k random
functions F′1, . . . ,F

′
k as depicted in Fig. 2. By the argument above, C′ is a (k, n)-

combiner for (F1,R), . . . , (Fn,R), where the Fi are arbitrary random functions
and R is a uniform random function (assuming A is an MDS matrix).

Assuming Adv(Fi,R) ≤ ε, Corollary 1 implies that

Adv((F′1, . . . ,F
′
k),Rk) ≤ 1

2

(
n

k − 1

)
(2ε)n−k+1,

where Rk are k independent parallel uniform random functions.

18 One can think of an element of Fl as a single-query DDS with unary input alphabet
{�} and output alphabet Fl.

19 Recall that an MDS (maximum distance separable) matrix [16,8] is a matrix over a
finite field for which every square submatrix is non-singular.
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F1 F2 Fn−1 Fn

(i, x) x

A

y =
∑n

j=1Aij · yj

i

y1 y2 yn−1 yn

Fig. 2. Construction C′ transforms the n random functions F1, . . . ,Fn to k random
functions, where k is the number of rows of the matrix A. For an input x ∈ F to
the i-th constructed function F′i, the output is the dot product

∑n
j=1Aij · yj , where

yi = Fi(x).

5.4 Combining Systems Forming a Quasi-Group

We consider the setting of combining random systems forming a quasigroup20

with some construction �. Examples of such systems include one- or both-sided
stateless random permutations with the cascade ◦, or (possibly stateful) random
functions with the elementwise XOR ⊕. Given n independent such systems, the
goal is to obtain m < n systems that are (jointly) close to m independent uni-
form systems. The known results from [12] lead to the following straightforward
construction: we partition the n systems into m sets of size n/m, and then use
the (1, n/m)-combiner � to combine each set into one system (see Example 1).
Assuming that each component system is ε-close to uniform, this will yield an
indistinguishability bound of21

m

2
(2ε)n/m.

In the following, we show that by sharing a few systems among the m com-
bined sets, much stronger indistinguishability amplification is obtained, roughly
squaring the above bound. As a result, only about half as many systems need
to be combined in order to obtain the same indistinguishability as with the
straightforward construction.

Lemma 8. Assume a set of deterministic discrete systems Q forming a quasi-
group with the construction �. Let Q1, . . . ,Qn be PDS over Q with Adv(Qi,U) ≤
ε, where U is the uniform distribution over Q. Let 〈Si〉i∈[m+1] be a partition of

[n] with |Si| = n
m+1 for all22 i. Then, the deterministic construction C defined

20 A quasigroup is a set X with a binary operation �: X 2 → X such that for any
a, b ∈ X there exist unique x, y ∈ X such that a� x = b and y � a = b.

21 The factor m accounts for the joint indistinguishability of the m systems.
22 This requires n to be divisible by m+ 1.
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by23

C(q1, . . . , qn) :=


(
⊙

j∈S1
qj)�

⊙
j∈Sm+1

qj
(
⊙

j∈S2
qj)�

⊙
j∈Sm+1

qj
. . .

(
⊙

j∈Sm
qj)�

⊙
j∈Sm+1

qj


satisfies

Adv(C(Q1, . . . ,Qn),Un) ≤ m(m+ 1)

4
(2ε)2n/(m+1),

where Un are n independent parallel instances of U.

Proof. We rewrite C as the application of multiple combiners

C(Q1, . . . ,Qn) = C′m,m+1

(⊙
j∈S1

Qj , . . . ,
⊙

j∈Sm+1

Qj
)
, (4)

where C′m,m+1 is the (m,m+ 1)-combiner defined by

C′m,m+1(q1, . . . , qm+1) := (q1 � qm+1, . . . , qm � qm+1).

Since each inner argument (
⊙

j∈Si
·) to the construction C′m,m+1 in (4) is a

(1, n/(m+ 1))-combiner, we have by Corollary 1 for any i ∈ [m+ 1]

Adv
(⊙
j∈Si

Qj ,U
)
≤ 1

2
(2ε)n/(m+1).

Again invoking Corollary 1 for c′m,m+1 yields

Adv(C(Q1, . . . ,Qn),Un) ≤ 2 ·
(
m+ 1

2

)(
max

i∈[m+1]
Adv

(⊙
j∈Si

Qj ,U

))2

≤ m(m+ 1)

4
(2ε)2n/(m+1).

ut

6 Conclusions and Open Problems

We presented a simple systems theory of random systems. The key insight was
to interpret a random system as probability distribution over deterministic sys-
tems, and to consider equivalence classes of probabilistic systems induced by the
behavior equivalence relation. We demonstrated how this perspective on random

23 Since a quasigroup operation may be non-commutative and non-associative, we as-
sume a fixed combination tree to be defined with each set Si.
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systems provides an elementary characterization of the classical distinguishing
advantage and is also a useful tool to prove indistinguishability bounds.
Finally, we have shown a general indistinguishability amplification theorem for
any (k, n)-combiner. We demonstrated how the theorem can be instantiated to
combine n stateless random permutations (one- or both-sided), which are only
moderately close to uniform random permutations, into m < n random permu-
tations that are jointly very close to uniform random permutations. For random
functions, we have shown that even stronger indistinguishability amplification
can be obtained. Several open questions remain:

(i) Any A-combiner is also a (k, n)-combiner for sufficiently large k. In this
sense, the bound of Theorem 3 applies also to any A-combiner. A natural
question is whether significantly better indistinguishability amplification
is possible for general (non-threshold) A-combiners. In particular, can the
presented technique (Lemma 7) be used to prove such a bound? It seems
that a new idea is necessary to prove such a bound, considering that the
current proof strongly relies on the symmetry in the threshold case.

(ii) It is easy to see that the proved indistinguishability bound for (k, n)-
combiners is perfectly tight for the case k = 1. Is it also tight for general
k? For special cases, such as (k, n) = (2, 3), it is not too difficult to show
that the presented bound is very close to tight.

(iii) We have shown how MDS matrices allow to combine n independent random
functions over a field to m random functions. However, the same technique
does not immediately apply to random permutations. The bounds shown
in Lemma 8 are the first non-trivial ones in the more general setting of
combining systems forming a quasigroup. It may be possible to improve
substantially over said bounds, possibly also by making stronger assump-
tions (e.g., explicitly assuming permutations). In particular, one might hope
to improve the exponent 2n/(m+ 1).

(iv) Our treatment is in the information-theoretic setting. A natural question
is whether our results can be extended to the computational setting. Un-
der certain assumptions on the component systems, the special case of a
(1, n)-combiner was shown to provide computational indistinguishability
amplification in [13].

(v) Can the coupling theorem be used to prove amplification results that
strengthen the distinguisher class? For example, can we get more general
lifting of non-adaptive indistinguishability to adaptive indistinguishability
than what is shown in [11,12]?
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Appendix

A Proofs of Basic Lemmas

Proof (of Lemma 2). By the definition of the statistical distance we have

δ(X,Y) =
∑
a∈A

max(0,X(a)− Y(a))

=
∑
i∈[k]

∑
a∈Ai

max(0,X(a)− Y(a))

=
∑
i∈[k]

∑
a∈Ai

max(0,Xi(a)− Yi(a))

=
∑
i∈[k]

δ(Xi,Yi).

ut

Proof (of Lemma 3). We have

δ(f(X), f(Y)) =
∑
b∈B

max(0, f(X)(b)− f(Y)(b))

=
∑
b∈B

max(0,
∑

a∈f−1(b)

X(a)− Y(a))

≤
∑
b∈B

∑
a∈f−1(b)

max(0,X(a)− Y(a))

=
∑
a∈A

max(0,X(a)− Y(a))

= δ(X,Y).

In the fourth step, we used that f is a total function from A to B. ut

Proof (of Lemma 5). It suffices to show that if we have

tr(S, e) = tr(T, e) for all compatible non-adaptive (Y,X )-DDE e,

then the same is true for all compatible (Y,X )-DDE e (even adaptive ones).
Assume there exists an adaptive (Y,X )-DDE e such that

tr(S, e) 6= tr(T, e),

implying that there exists a transcript t̂ = (x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂l, ŷl) such
that24 tr(S, e)(t̂) 6= tr(T, e)(t̂). Let e′ be the environment which queries the

24 Recall that tr(S, e) denotes the transcript distribution of the interaction between S
and e, so tr(S, e)(t̂) is the probability of transcript t̂ in this interaction.
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inputs of t̂, i.e., (x̂1, x̂2, . . . , x̂l). Clearly, e′ is non-adaptive and deterministic.
Observe moreover that for any (X ,Y)-DDS s and any compatible (Y,X )-DDE
ẽ, the transcript tr(s, ẽ) is t̂ if and only if s(x̂i) = ŷi and ẽ(ŷi−1) = x̂i for all
i ∈ [l]. Since we have e(ŷi−1) = e′(ŷi−1) = x̂i for all i ∈ [l], we obtain

tr(S, e′)(t̂) = S({s | s ∈ dom(S),∀i ∈ [l] : s(x̂i) = ŷi}) = tr(S, e)(t̂) and

tr(T, e′)(t̂) = T({s | s ∈ dom(T),∀i ∈ [l] : s(x̂i) = ŷi}) = tr(T, e)(t̂).

Hence, tr(S, e′)(t̂) 6= tr(T, e′)(t̂) and therefore tr(S, e′) 6= tr(T, e′), concluding the
proof. ut

Lemma 9 (cf. Lemma 3 of [12]). For any two compatible PDS S,T and any
probability distribution B over {0, 1}

Adv(〈S/T〉B,T) = B(0) ·Adv(S,T).

Proof. Observe that

AdvD(〈S/T〉B,T) = PrDT(Z = 1)− PrD〈S/T〉B(Z = 1)

= B(0) ·
(

PrDT(Z = 1)− PrDS(Z = 1)
)

+ B(1) ·
(

PrDT(Z = 1)− PrDT(Z = 1)
)

= B(0) ·
(

PrDT(Z = 1)− PrDS(Z = 1)
)

= B(0) ·AdvD(S,T).

ut

Lemma 10. Let ξl,m for l,m ∈ N\{0} be defined by

ξl,m :=
1

2
·

1 +

m∑
j=l

(
m

j

)
·
(
j − 1

l − 1

).
Then,

(i)

ξl,m = 2 · ξl,m−1 + ξl−1,m−1 − 1

(ii)

2m−l ·
(
m− 1

l − 1

)
∈ [ξl,m, 2ξl,m − 1].

Proof. Consider the expression tl,m :=
∑m
j=l

(
m
j

)(
j−1
l−1
)
. Observe that tl,m is the

number of possibilities to select a first subset of [m] with size at least l and
then selecting exactly l − 1 elements (but never the smallest one) of the first
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subset for a second subset. Consider the element m ∈ [m]. There are tl−1,m−1
possibilities for it to be in the second subset (and thus also in the first), and
2tl,m−1 possibilities for it not to be in the second subset (either it is in the first
subset or not). Thus, we have tl,m = 2tl,m−1 + tl−1,m−1.

We have ξl,m = 1
2 (1 + tl,m), and therefore

2 · ξl,m−1 + ξl−1,m−1 − 1 = (1 + tl,m−1) +
1

2
(1 + tl−1,m−1)− 1

=
1

2
(1 + 2tl,m−1 + tl−1,m−1)

=
1

2
(1 + tl,m)

= ξl,m.

The bound (ii) can be proved by induction over m. For m = 1 or m = l, the
claim trivially holds. For m > 1 and l < m we have (using (i))

ξl,m = 2ξl,m−1 + ξl−1,m−1 − 1

≤ 2 · 2m−1−l
(
m− 2

l − 1

)
+ 2m−l

(
m− 2

l − 2

)
= 2m−l ·

((
m− 2

l − 1

)
+

(
m− 2

l − 2

))
= 2m−l

(
m− 1

l − 1

)
.

Moreover,

2ξl,m − 1 = 2(2ξl,m−1 + ξl−1,m−1 − 1)− 1

= 2(2ξl,m−1 − 1) + (2ξl−1,m−1 − 1)

≥ 2 · 2m−1−l
(
m− 2

l − 1

)
+ 2m−l

(
m− 2

l − 2

)
= 2m−l ·

((
m− 2

l − 1

)
+

(
m− 2

l − 2

))
= 2m−l

(
m− 1

l − 1

)
.

This concludes the proof. ut
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