
Batch Verification for Statistical Zero
Knowledge Proofs?

Inbar Kaslasi1, Guy N. Rothblum2, Ron D. Rothblum1, Adam Sealfon3, and
Prashant Nalini Vasudevan3

1 Technion - Israel Institute of Technology
{inbark,rothblum}@cs.technion.ac.il

2 Weizmann Institute
rothblum@alum.mit.edu

3 UC Berkeley
{asealfon,prashvas}@berkeley.edu

Abstract. A statistical zero-knowledge proof (SZK) for a problem Π
enables a computationally unbounded prover to convince a polynomial-
time verifier that x ∈ Π without revealing any additional information
about x to the verifier, in a strong information-theoretic sense.

Suppose, however, that the prover wishes to convince the verifier that
k separate inputs x1, . . . , xk all belong to Π (without revealing anything
else). A naive way of doing so is to simply run the SZK protocol separately
for each input. In this work we ask whether one can do better – that is,
is efficient batch verification possible for SZK?

We give a partial positive answer to this question by constructing
a batch verification protocol for a natural and important subclass of
SZK – all problems Π that have a non-interactive SZK protocol (in the
common random string model). More specifically, we show that, for every
such problem Π, there exists an honest-verifier SZK protocol for batch
verification of k instances, with communication complexity poly(n) + k ·
poly(logn, log k), where poly refers to a fixed polynomial that depends
only on Π (and not on k). This result should be contrasted with the
naive solution, which has communication complexity k · poly(n).

Our proof leverages a new NISZK-complete problem, called Approx-
imate Injectivity, that we find to be of independent interest. The goal
in this problem is to distinguish circuits that are nearly injective, from
those that are non-injective on almost all inputs.

1 Introduction

Zero-knowledge proofs, introduced in the seminal work of Goldwasser, Micali and
Rackoff [GMR89], are a remarkable and incredibly influential notion. Loosely
speaking, a zero-knowledge proof lets a prover P convince a verifier V of the
validity of some statement without revealing any additional information.

In this work we focus on statistical zero-knowledge proofs. These proof-systems
simultaneously provide unconditional soundness and zero-knowledge:

? The full version is available on ECCC [KRR+20].

{inbark,rothblum}@cs.technion.ac.il
rothblum@alum.mit.edu
{asealfon,prashvas}@berkeley.edu

– Even a computationally unbounded prover P∗ cannot convince V to accept a
false statement (except with some negligible probability).

– Any efficient, but potentially malicious, verifier V∗ learns nothing in the
interaction (beyond the validity of the statement) in the following strong,
statistical, sense: there exists an algorithm, called the simulator, which can
efficiently simulate the entire interaction between V∗ and P based only on the
input x, so that the simulation is indistinguishable from the real interaction
even to a computationally unbounded distinguisher.

The class of promise problems4 having a statistical zero-knowledge proof is
denoted by SZK. This class contains many natural problems, including many of
the problems on which modern cryptography is based, such as (relaxations of)
integer factoring [GMR89], discrete logarithm [GK93,CP92] and lattice problems
[GG00,MV03,PV08,APS18].

Since the study of SZK was initiated in the early 80’s many surprising
and useful structural properties of this class have been discovered (see, e.g.,
[For89,AH91,Oka00,SV03,GSV98,GV99,NV06,OV08]), and several applications
have been found for hard problems in this (and related) classes (for example,
see [Ost91,OW93,BDRV18a,BDRV18b,KY18,BBD+20]). It is known to be con-
nected to various cryptographic primitives [BL13,KMN+14,LV16,PPS15] and
algorithmic and complexity-theoretic concepts [Dru15], and has consequently
been used to show conditional impossiblility results. In particular, a notable and
highly influential development was the discovery of natural complete problems
for SZK [SV03,GV99].

In this work we are interested in the following natural question. Suppose that
a particular problem Π has an SZK protocol. This means that there is a way to
efficiently prove that x ∈ Π in zero-knowledge. However, in many scenarios, one
wants to be convinced not only that a single instance belongs to Π but rather
that k different inputs x1, . . . , xk all belong to Π. One way to do so is to simply
run the underlying protocol for Π k times, in sequence, once for each input xi.

5

However, it is natural to ask whether one can do better. In particular, assuming
that the SZK protocol for Π has communication complexity m, can one prove (in
statistical zero-knowledge) that x1, . . . , xk ∈ Π with communication complexity
� k ·m? We refer to this problem as batch verification for SZK.

We view batch verification of SZK as being of intrinsic interest, and poten-
tially of use in the study of the structure of SZK. Beyond that, batch verification
of SZK may be useful to perform various cryptographic tasks, such as batch ver-
ification of digital signature schemes [NMVR94,BGR98,CHP12] or batch verifi-
cation of well-formedness of public keys (see, e.g., [GMR98]).

4 Recall that a promise problem Π consists of two ensembles of sets YES = (YESn)n∈N
and (NOn)n∈N, such that the YESn’s and NOn’s are disjoint. Instances in YES are
called YES instances and those in NO are called NO instances.

5 The resulting protocol can be shown to be zero-knowledge (analogously to the fact
that sequential repetition preserves statistical zero-knowledge).

1.1 Our Results

We show that non-trivial batch verification is possible for a large and natural
subset of languages in SZK. Specifically, we consider the class of promise prob-
lems having non-interactive statistical zero-knowledge proofs. A non-interactive
statistical zero-knowledge proof [BFM88] is a variant of SZK in which the verifier
and the prover are given access to a uniformly random common random string
(CRS). Given this CRS and an input x, the prover generates a proof string π
which it sends to the verifier. The verifier, given x, the CRS, and the proof string
π, then decides whether to accept or reject. In particular, no additional interac-
tion is allowed other than the proof π. Zero-knowledge means that it is possible
to simulate the verifier’s view (which consists of the CRS and proof π) so that
the simulation is statistically indistinguishable from the real interaction. The
corresponding class of promise problems is abbreviated as NISZK.

Remark 1.1 An NISZK for a problem Π is equivalent to a two-round public-
coin honest-verifier SZK protocol. Recall that honest-verifier zero-knowledge, means
that the honest verifier learns essentially nothing in the interaction, but a mali-
cious verifier may be able to learn non-trivial information.

The class NISZK contains many natural and basic problems such as: vari-
ants of the quadratic residuosity problem [BSMP91,DSCP94], lattice problems
[PV08,APS18], etc. It is also known to contain complete problems [SCPY98,GSV99],
related to the known complete problems for SZK.

Our main result is an honest-verifier statistical zero-knowledge protocol for
batch verification of any problem in NISZK. In order to state the result more
precisely, we introduce the following definition.

Definition 1.2 Let Π = (YES,NO) be a promise problem, where YES = (YESn)n∈N
and NO = (NOn)n∈N, and let k = k(n) ∈ N. We define the promise problem
Π⊗k =

(
YES⊗k,NO⊗k

)
, where YES⊗k = (YES⊗kn)n∈N, NO⊗k = (NO⊗kn)n∈N

and

YES⊗kn = (YESn)
k

and

NO⊗kn = (YESn ∪NOn)
k \ (YESn)

k
.

That is, instances of Π⊗k are k instances of Π, where the YES instances are all
in YES and the NO instances consist of at least one NO instances for Π.6

With the definition of Π⊗k in hand, we are now ready to formally state our
main result:

6 This notion of composition is to be contrasted with that employed in the closure the-
orems for SZK under composition with formulas [SV03]. There, a composite problem
similar to Π⊗k is considered that does not require in its NO sets that all k instances
satisfy the promise, but instead just that at least one of the instances is a NO
instance of Π.

Theorem 1.3 (Informally Stated, see Theorem 3.1). Suppose that Π ∈
NISZK. Then, for every k = k(n) ∈ N, there exists an (interactive) honest-
verifier SZK protocol for Π⊗k with communication complexity poly(n)+k·poly(log n, log k),
where n refers to the length of a single instance and poly refers to a fixed poly-
nomial independent of k.

The verifier’s running time is k · poly(n) and the number of rounds is O(k).

We emphasize that our protocol forΠ⊗k is interactive and honest-verifier sta-
tistical zero-knowledge (HVSZK). Since we start with an NISZK protocol (which
as mentioned above is a special case of HVSZK), it is somewhat expected that
the resulting batch verification protocol is only HVSZK. Still, obtaining a similar
result to Theorem 1.3 that achieves malicious-verifier statistical zero-knowledge
is a fascinating open problem (see Section 1.4 for additional open problems). We
mention that while it is known [GSV98] how to transform any HVSZK protocol
into a full-fledged SZK protocol (i.e., one that is zero-knowledge even wrt a mali-
cious verifier), this transformation incurs a polynomial overhead that we cannot
afford.

1.2 Related Works

Batch Verification via IP = PSPACE. A domain in which batch computing is
particularly easy is bounded space computation - if a language L can be decided
in space s then k instances of L can be solved in space s + log(k) (by reusing
space). Using this observation, the IP = PSPACE theorem [LFKN92,Sha92] yields
an efficient interactive proof for batch verification of any problem in PSPACE.
However, the resulting protocol has several major drawbacks. In particular, it
does not seem to preserve zero-knowledge, which makes it unsuitable for the
purposes of our work.

Batch Verification with Efficient Prover. Another caveat of the IP = PSPACE
approach is that it does not preserve the efficiency of the prover. That is, even if
we started with a problem that has an interactive proof with an efficient prover,
the batch verification protocol stemming from the IP = PSPACE theorem has an
inefficient prover.

Reingold et al. [RRR16,RRR18] considered the question of whether batch
verification of NP proofs with an efficiency prover is possible, assuming that the
prover is given the NP witnesses as an auxiliary input. These works construct
such an interactive batch verification protocol for all problems in UP ⊆ NP (i.e.,
languages in NP in which YES instances have a unique proof). In particular, the
work of [RRR18] yields a batch verification protocol for UP with communication
complexity kδ · poly(m), where m is the original UP witness length and δ > 0 is
any constant.

Note that it seems unlikely that the [RRR16,RRR18] protocols preserve zero-
knowledge. Indeed, these protocols fundamentally rely on the so-called unambi-
guity (see [RRR16]) of the underlying UP protocol, which, at least intuitively,
seems at odds with zero-knowledge.

Batch Verification with Computational Soundness. Focusing on protocols achiev-
ing only computational soundness, we remark that interactive batch verification
can be obtained directly from Kilian’s [Kil92] highly efficient protocol for all of
NP (assuming collision resistant hash functions). A non-interactive batch verifi-
cation protocol was given by Brakerski et al. [BHK17] assuming the hardness of
learning with errors. Non-interactive batch verification protocols also follow from
the existence of succinct non-interactive zero-knowledge arguments (zkSNARGs),
which are known to exist under certain strong, and non-falsifiable, assumptions
(see, e.g. [Ish], for a recent survey).

Randomized Iterates. The randomized iterate is a concept introduced by Goldre-
ich, Krawczyk, and Luby [GKL93], and further developed by later work [HHR11,YGLW15],
who used it to construct pseudorandom generators from regular one-way func-
tions. Given a function f , its randomized iterate is computed on an input x
and descriptions of hash functions h1, . . . , hm by starting with x0 = f(x) and
iteratively computing xi = f(hi(xi−1)). The hardcore bits of these iterates were
then used to obtain pseudorandomness. While the randomized iterate was used
for a very different purpose, this process of alternating the evaluation of a given
function with injection of randomness (which is what the hash functions were
for) is strongly reminiscent of our techniques. It would be very interesting if there
is a deeper connection between our techniques and the usage of these iterates in
relation to pseudorandom generators.

1.3 Technical Overview

Batch Verification for Permutations. As an initial toy example, we first consider
batch verification for a specific problem in NISZK. Let PERM be the promise
problem defined as follows. The input to PERM is a description of a Boolean
circuit C : {0, 1}n → {0, 1}n. The YES inputs consist of circuits that define
permutations over {0, 1}n whereas the NO inputs are circuits so that every
element in the image has at least two preimages.7 It is straightforward to see
that PERM ∈ NISZK.8

Our goal is, given as input k circuits C1, . . . , Ck, to distinguish (via a zero-
knowledge proof) the case that all of the circuits are permutations from the case

7 PERM can be thought of as a variant of the collision problem (see [Aar04, Chapter
6]) in which the goal is to distinguish a permutation from a 2-to-1 function.

8 A two round public-coin honest-verifier perfect zero-knowledge protocol for PERM
can be constructed as follows. The verifier sends a random string y ∈ {0, 1}n and
the prover sends x = C−1(y). The verifier needs to check that indeed y = C(x). It is
straightforward to check that this protocol is honest-verifier perfect zero-knowledge
and has soundness 1/2, which can be amplified by parallel repetition (while noting
that honest-verifier zero-knowledge is preserved under parallel repetition).

This protocol can be viewed as a NIPZK by viewing the verifier’s coins as the
common random string. On the other hand, assuming that NISZK 6= NIPZK, PERM
is not NISZK-complete.

that one or more is 2-to-1. Such a protocol can be constructed as follows: the ver-
ifier chooses at random x1 ∈ {0, 1}n, computes xk+1 = Ck(Ck−1(. . . C1(x1) . . .))
and sends xk+1 to the prover. The prover now responds with the preimage
x′1 = C−11 (C−12 (. . . C−1k (xk+1) . . .)). The verifier checks that x1 = x′1 and if
so it accepts, otherwise it rejects.9

Completeness follows from the fact that the circuits define permutations and
so x1 = x′1. For soundness, observe that for a NO instance, xk+1 has at least
two preimages under the composed circuit Ck ◦ · · · ◦ C1. Therefore, a cheating
prover can guess the correct preimage x0 with probability at most 1/2 (and the
soundness error can be reduced by repetition). Lastly observe that the protocol
is (perfect) honest-verifier zero-knowledge: the simulator simply emulates the
verifier while setting x′1 = x1.

The Approximate Injectivity Problem. Unfortunately, as mentioned above, PERM
is presumably not NISZK-complete and so we cannot directly use the above pro-
tocol to perform batch verification for arbitrary problems in NISZK. Instead,
our approach is to identify a relaxation of PERM that is both NISZK-complete
and amenable to batch verification, albeit via a significantly more complicated
protocol.

More specifically, we consider the Approximate Injectivity (promise) problem.
The goal here is to distinguish circuits that are almost injective, from ones that
are highly non-injective. In more detail, let δ ∈ [0, 1] be a parameter. We define
AIδ to be a promise problem in which the input is again a description of a
Boolean circuit C mapping n input bits to m ≥ n output bits. YES instances are
those circuits for which all but δ fraction of the inputs x have no collisions (i.e.,
Prx[|C−1(C(x))| > 1] < δ). NO instances are circuits for which all but δ fraction
of the inputs have at least one colliding input (i.e., Prx[|C−1(C(x))| = 1] < δ).

Our protocol for batch verification of any problem Π ∈ NISZK consists of
two main steps:

– First, we show that AIδ is NISZK-hard: i.e., there exists an efficient Karp
reduction from Π to AIδ.

– Our second main step is showing an efficient HVSZK batch verification pro-
tocol for AIδ. In particular, the communication complexity of the protocol
scales (roughly) additively with the number of instances k.

Equipped with the above, an HVSZK protocol follows by having the prover and
verifier reduce the instances x1, . . . , xk for Π to instances C1, . . . , Ck for AIδ,
and then engage in the batch verification protocol for AIδ on common input
(C1, . . . , Ck).

9 A related but slightly different protocol, which will be less useful in our eventual
construction, can be obtained by observing that (1) the mapping (C1, . . . , Ck) 7→
Ck ◦ · · · ◦ C1 is a Karp-reduction from an instance of PERM⊗k to an instance of
PERM with n input/output bits, and (2) that PERM has an NISZK protocol with
communication complexity that depends only on n.

Before describing these two steps in detail, we remark that we find the identi-
fication of AIδ as being NISZK-hard (in fact, NISZK-complete) to be of indepen-
dent interest. In particular, while AIδ bears some resemblance to problems that
were already known to be NISZK-complete, the special almost-injective nature
of the YES instances of AIδ seems very useful. Indeed, this additional structure
is crucial for our batch verification protocol.

AIδ is NISZK-hard. We show that AIδ is NISZK-hard by reducing to it from
the Entropy Approximation problem (EA), which is known to be complete for
NISZK [GSV99].10 An instance of EA is a circuit C along with a threshold k ∈
R+, and the problem is to decide whether the Shannon entropy of the output
distribution of C when given uniformly random inputs (denoted H(C)) is more
than k + 10 or less than k − 10.11

For simplicity, suppose we had a stronger promise on the output distribution
of C — that it is a flat distribution (in other words, it is uniform over some
subset of its range). In this case, for any output y of C, the promise of EA tells
us something about the number of pre-images of y. To illustrate, suppose C
takes n bits of input. Then, in a YES instance of EA, the size of the set

∣∣C−1(y)
∣∣

is at most 2n−(k+10), and in the NO case it is at least 2n−(k−10). Recall that
for a reduction to AIδ, we need to make the sizes of most inverse sets 1 for YES
instances and more than 1 for NO instances. This can now be done by using a
hash function to shatter the inverse sets of C.

That is, consider the circuit Ĉ that takes as input an x and also the de-
scription of a hash function h from, say, a pairwise-independent hash family H,
and outputs (C(x), h, h(x)). If we pick H so that its hash functions have output
length (n − k), then out of any set of inputs of size 2n−(k+10), all but a small
constant fraction will be mapped injectively by a random h from H. On the
other hand, out of any set of inputs of size 2n−(k−10), only a small constant
fraction will be mapped injectively by a random h. Thus, in the YES case, it
may be argued that all but a small constant fraction of inputs (x, h) are mapped

injectively by Ĉ, and in the NO case only a small constant fraction of inputs
are. So for some constant δ, this is indeed a valid reduction from EA to AIδ. For
smaller functions δ, the reduction is performed by first amplifying the gap in the
promise of EA and then proceeding as above.

Finally, we can relax the simplifying assumption of flatness using the asymp-
totic equipartition property of distributions. In this case, this property states
that, however unstructured C may be, its t-fold repetition C⊗t (that takes an
input tuple (x1, . . . , xt) and outputs (C(x1), . . . , C(xt))) is “approximately flat”
for large enough t. That is, with increasingly high probability over the output
distribution of C⊗t, a sample from it will have a pre-image set of size close to
its expectation, which is 2t·(n−H(C)). Such techniques have been previously used

10 In fact, we also show that AIδ is in NISZK, and thus is NISZK-complete, by reducing
back from it to EA.

11 In the standard definition of EA [GSV99], the promise is that H(C) is either more
than k+ 1 or less than k−1, but this gap can be amplified easily by repetition of C.

for similar purposes in the SZK literature and elsewhere, for example as the
flattening lemma of Goldreich et al. [GSV99] (see the full version for details and
the proof).

Batch Verification for Exact Injectivity. For sake of simplicity, for this overview
we focus on batch verification of the exact variant of AIδ, that is, when δ = 0. In
other words, distinguishing circuits that are truly injective from those in which
every image y has at least two preimages (with no exceptions allowed). We
refer to this promise problem as INJ. Modulo some technical details, the batch
verification protocol for INJ, presented next, captures most of the difficulty in
our batch verification protocol for AIδ.

Before proceeding we mention that the key difference between INJ and PERM
is that YES instances of the former are merely injective whereas for the latter
they are permutations. Interestingly, this seemingly minor difference causes sig-
nificant complications.

Our new goal is, given as input circuits C1, . . . , Ck : {0, 1}n → {0, 1}m, with
m ≥ n, to distinguish the case that all of the circuits are injective from the case
that at least one is entirely non-injective.

Inspired by the batch verification protocol for PERM, a reasonable approach
is to choose x1 at random but then try to hash the output yi = Ci(xi) ∈ {0, 1}m,
of each circuit Ci, into an input xi+1 ∈ {0, 1}n for Ci+1. If a hash function could
be found that was injective on the image of Ci then we would be done. However,
it seems that finding such a hash function is, in general, extremely difficult.

Rather, we will hash each yi by choosing a random hash function from a small
hash function family. More specifically, for every iteration i ∈ [k] we choose a

random seed zi for a (seeded) randomness extractor Ext : {0, 1}m × {0, 1}d →
{0, 1}n and compute xi+1 = Ext(yi, zi). See Fig. 1 for a diagram describing this
sampling process.

In case all the circuits are injective (i.e., a YES instance), a simple inductive
argument can be used to show that each yi is (close to) a distribution having
min-entropy n, and therefore the output xi+1 = Ext(yi, zi) of the extractor is
close to uniform in {0, 1}n. Note that for this to be true, we need a very good
extractor that essentially extracts all of the entropy. Luckily, constructions of
such extractors with a merely poly-logarithmic seed length are known [GUV07].

This idea leads us to consider the following strawman protocol. The verifier
chooses at random x1 ∈ {0, 1}n and k seeds z1, . . . , zk. The verifier then computes
inductively: yi = Ci(xi) and xi+1 = Ext(yi, zi), for every i ∈ [k]. The verifier
sends (xk+1, z1, . . . , zk) to the prover, who in turn needs to guess the value of
x1.

The major difficulty that arises in this protocol is in completeness: the honest
prover’s probability of predicting x1 is very small. To see this, suppose that all
of the circuits C1, . . . , Ck are injective. Consider the job of the honest prover:
given (xk+1, z1, . . . , zk) the prover needs to find x1. The difficulty is that xk+1

is likely to have many preimages under Ext(·, zk). While this statement depends
on the specific structure of the extractor, note that even in a “dream scenario”

Fig. 1: The sampling process

in which Ext(·, zk) were a random function, a constant fraction of xk+1’s would
have more than one preimage (in the image of Ck).

A similar type of collision in the extractor is likely to occur in most of the
steps i ∈ [k]. Therefore, the overall number of preimages x′1 that are consistent
with (xk+1, z1, . . . , zk) is likely to be 2Ω(k) and the prover has no way to guess the
correct one among them. The natural remedy for this is to give the prover some
additional information, such as a hash of x1, in order to help pick it correctly
among the various possible options. However, doing so also helps a cheating
prover find x1 in the case where one of the circuits is non-injective. And it turns
out that the distribution of the number of x1’s in the two cases – where all the
Ci’s are injective and where one is non-injective – are similar enough that it is
not clear how to make this approach work as is.

Isolating Preimages via Interaction. We circumvent the issue discussed above
by employing interaction. The key observation is that, even though the number
of pre-images x1 of the composition of all k circuits is somewhat similar in the
case of all YES instance and the case of one NO instance among them, if we look
at this composition circuit-by-circuit, the number of pre-images in an injective
circuit is clearly different from that in a non-injective circuit. In order to exploit
this, we have the verifier gradually reveal the yi’s rather than revealing them all
at once.

Taking a step back, let us consider the following naive protocol:

1. For i = k, . . . , 1:
(a) The verifier chooses at random xi ∈ {0, 1}n and sends yi = Ci(xi) to the

prover.
(b) The (honest) prover responds with x′i = C−1i (yi).
(c) The verifier immediately rejects if the prover answered incorrectly (i.e.,

x′i 6= xi).

It is not difficult to argue that this protocol is indeed an HVSZK protocol (with
soundness error 1/2, which can be reduced by repetition). Alas, the communi-
cation complexity is at least k · n, which is too large.

However, a key observation is that this protocol still works even if we generate
the yi’s as in the strawman protocol. Namely, xi+1 = Ext(yi, zi) and yi = Ci(xi),
for every i ∈ [k], where the zi’s are fresh uniformly distributed (short) seeds.
This lets us significantly reduce the randomness complexity of the above naive
protocol. Later we shall use this to also reduce the communication complexity,
which is our main goal.

To see that the “derandomized” variant of the naive protocol works, we first
observe that completeness and zero-knowledge indeed still hold. Indeed, since
in a YES case all the circuits are injective, the honest prover always provides
the correct answer - i.e., x′i = xi. Thus, not only does the verifier always accept
(which implies completeness), but it can also easily simulate the messages sent
by the prover (which guarantees honest-verifier statistical zero-knowledge).12

Arguing soundness is slightly more tricky. Let i∗ ∈ [k] be the smallest integer
so that Ci∗ is a NO instance. Recall that in the i∗-th iteration of the protocol,
the prover is given yi∗ and needs to predict xi∗ . If we can argue that xi∗ is (close
to) uniformly distributed then (constant) soundness follows, since Ci∗ is a NO
instance and therefore non-injective on every input.

We argue that xi∗ is close to uniform by induction. For the base case i = 1
this is obviously true since x1 is sampled uniformly at random. For the inductive
step, assume that xi−1 is close to uniform, with i ≤ i∗. Since Ci−1 is injective
(since i− 1 < i∗), this means that yi−1 = Ci−1(xi−1) is close to uniform in the
image of C1, a set of size 2n. Thus, Ext(yi−1, zi−1) is applied to a source (that is
close to a distribution) with min-entropy n. Since Ext is an extractor, this means
that xi is close to uniform, concluding the induction.

Reducing Communication Complexity via Hashing. Although we have reduced
the randomness complexity of the protocol, we have not reduced the communi-
cation complexity (which is still k · n). We shall do so by, once more, appealing
to hashing.

Let us first consider the verifier to prover communication. Using hashing, we
show how the verifier can specify each yi to the prover by transmitting only a
poly-logarithmic number of bits. Consider, for example, the second iteration of
the protocol. In this iteration the verifier is supposed to send yk−1 to the prover
but can no longer afford to do so. Notice however that at this point the prover
already knows xk. We show that with all but negligible probability, the number
of candidate pairs (yk−1, zk−1) that are consistent with xk (and so that yk−1
is in the image of Ci−1) is very small. This fact (shown in Proposition 4.4 in
Section 4), follows from the fact that Ext is an extractor with small seed length.13

In more detail, we show that with all but negligible probability, the number of

12 Actually the protocol as described achieves perfect completeness and perfect honest-
verifier zero-knowledge. However, the more general AIδ problem will introduce some
(negligible) statistical errors.

13 This observation is simple in hindsight but we nevertheless find it somewhat surpris-
ing. In particular, it cannot be shown by bounding the expected number of collisions
and applying Markov’s inequality since the expected number of collisions in Ext is
very large (see [Vad12, Problem 6.4]).

candidates is roughly (quasi-)polynomial. Thus, it suffices for the verifier to
send a hash of poly-logarithmic length (e.g., using a pairwise independent hash
function) to specify the correct pair (yk−1, zk−1). This idea extends readily to
all subsequent iterations.

Thus, we are only left with the task of reducing the communication from the
prover to the verifier (which is currently n · k). We yet again employ hashing.
The observation is that rather than sending xi in its entirety in each iteration, it
suffices for the prover to send a short hash of xi. The reason is that, in the case of

soundness, when we reach iteration i∗, we know that yi has two preimages: x
(0)
i

and x
(1)
i . The prover at this point has no idea which of the two is the correct

one and so as long as the hashes of x
(0)
i and x

(1)
i differ, the prover will only

succeed with probability 1/2. Thus, it suffices to use a pairwise independent
hash function.

To summarize, after an initial setup phase in which the verifier specifies yk
and the different hash functions, the protocol simply consists of a “ping pong” of
hash values between the verifier and the prover. In each iteration the verifier first
reveals a hash of the pair (yi, zi), which suffices for the prover to fully recover
yi. In response, the prover sends a hash of xi, which suffices to prove that the
prover knows the correct preimage of yi. For further details, a formal description
of the protocol, and the proof, see Section 4.

1.4 Discussion and Open Problems

Theorem 1.3 gives a non-trivial batch verification protocol for any problem in
NISZK. However, we believe that it is only the first step in the study of batch
verification of SZK. In particular, and in addition to the question of obtaining
malicious verifier zero-knowledge that was already mentioned, we point out
several natural research directions:

1. As already pointed out, Theorem 1.3 only gives a batch verification protocol
for problems in NISZK. Can one obtain a similar result for all of SZK?

As a special interesting case, consider the problem of batch verification for
the graph non-isomorphism problem: deciding whether or not there exists a
pair of isomorphic graphs among k such pairs. Theorem 1.3 yields an effi-
cient batch verification protocol for this problem under the assumption that
the graphs have no non-trivial automorphisms. Handling the general case
remains open and seems like a good starting point for a potential general-
ization of Theorem 1.3 to all of SZK.

2. Even though we started off with an NISZK protocol for Π, the protocol for
Π⊗k is highly interactive. As a matter of fact, the number of rounds is O(k).
Is there an NISZK batch verification protocol for any Π ∈ NISZK?

3. While the communication complexity in the protocol for Π⊗k only depends
(roughly) additively on k, this additive dependence is still linear. Is a simi-

lar result possible with a sub-linear dependence on k?14 For example, with
poly(n, log k) communication?

4. A different line of questioning follows from looking at prover efficiency. While
in general one cannot expect provers in interactive proofs to be efficient, it
is known that any problem in SZK ∩ NP has an SZK protocol where the
honest prover runs in polynomial-time given the NP witness for the statement
being proven [NV06]. Our transformations, however, make the prover quite
inefficient. This raises the interesting question of whether there are batch
verification protocols for languages in SZK ∩NP (or even NISZK ∩NP) that
are zero-knowledge and also preserve the prover efficiency. This could have
interesting applications in, say, cryptographic protocols where the honest
prover is the party that generated the instance in the first place and so has
a witness for it (e.g., in a signature scheme where the signer wishes to prove
the validity of several signatures jointly).

While the above list already raises many concrete directions for future work,
one fascinating high-level research agenda that our work motivates is a fine-
grained study of SZK. In particular, optimizing and improving our understanding
of the concrete polynomial overheads in structural study of SZK.

Remark 1.4 (Using circuits beyond random sampling) To the best of our
knowledge, all prior works studying complete problems for SZK and NISZK only
make a very restricted usage of the given input circuits. Specifically, all that is
needed is the ability to generate random samples of the form (r, C(r)), where r
is uniformly distributed random string and C is the given circuit (describing a
probability distribution).

In contrast, our protocol leverages the ability to feed a (hash of an) output of
one circuit as an input to the next circuit. This type of adaptive usage escapes
the “random sampling paradigm” described above. In particular, our technique
goes beyond the (restrictive) black box model of Holenstein and Renner [HR05],
who showed limitations for statistical distance polarization within this model (see
also [BDRV19]).

1.5 Organization

We start with preliminaries in Section 2. The batch verification result for NISZK
is formally stated in Section 3 and proved therein, based on results that are
proved in the subsequent sections. In Section 4 we show a batch verification
protocol for AIδ. Due to lack of space, we defer the proof that AIδ is NISZK-
complete to the full version.

14 While a linear dependence on k seems potentially avoidable, we note that a poly-
nomial dependence on n seems inherent (even for just a single instance, i.e., when
k = 1).

2 Preliminaries

2.1 Probability Theory Notation and Background

Given a random variable X, we write x ← X to indicate that x is sampled
according to X. Similarly, given a finite set S, we let s ← S denote that s is
selected according to the uniform distribution on S. We adopt the convention
that when the same random variable occurs several times in an expression, all
occurrences refer to a single sample. For example, Pr[f(X) = X] is defined to be
the probability that when x← X, we have f(x) = x. We write Un to denote the
random variable distributed uniformly over {0, 1}n. The support of a distribution
D over a finite set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}.

The statistical distance of two distributions P and Q over a finite set U , de-
noted as ∆(P,Q), is defined as maxS⊆U (P (S)−Q(S)) = 1

2

∑
u∈U |P (u)−Q(u)|.

We recall some standard basic facts about statistical distance.

Fact 2.1 (Data processing inequality for statistical distance) For any two
distributions X and Y , and every (possibly randomized) process f :

∆ (f(X), f(Y)) ≤ ∆ (X,Y)

Fact 2.2 For any two distributions X and Y , and event E:

∆ (X,Y) ≤ ∆ (X|E , Y) + Pr
X

[¬E],

where X|E denotes the distribution of X conditioned on E.

Proof. Let pu = Pr[X = u] and qu = Pr[Y = u]. Also, let pu|E = PrX [X = u|E]
and pu|¬E = PrX [X = u|¬E].

∆ (X,Y) =
1

2

∑
u

∣∣pu − qu∣∣
=

1

2

∑
u

∣∣∣Pr
X

[E] · pu|E + Pr
X

[¬E] · pu|¬E − Pr
X

[E] · qu − Pr
X

[¬E] · qu
∣∣∣

≤1

2

∑
u

(∣∣∣Pr
X

[E] · pu|E − Pr
X

[E] · qu
∣∣∣+
∣∣∣Pr
X

[¬E] · pu|¬E − Pr
X

[¬E] · qu
∣∣∣)

= Pr
X

[E] ·∆ (X|E , Y) + Pr
X

[¬E] ·∆ (X|¬E , Y)

≤∆ (X|E , Y) + Pr
X

[¬E].

We also recall Chebyshev’s inequality.

Lemma 2.3 (Chebyshev’s inequality) Let X be a random variable. Then,
for every α > 0:

Pr
[
|X − E [X] | ≥ α

]
≤ Var [X]

α2
.

2.2 Zero-Knowledge Proofs

We use (P,V)(x) to refer to the transcript of an execution of an interactive
protocol with prover P and verifier V on common input x. The transcript includes
the input x, all messages sent by P to V in the protocol and the verifier’s random
coin tosses. We say that the transcript τ = (P,V)(x) is accepting if at the end of
the corresponding interaction, the verifier accepts.

Definition 2.4 (HVSZK) Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z =
z(n) ∈ [0, 1]. An Honest Verifier SZK Proof-System (HVSZK) with complete-
ness error c, soundness error s and zero-knowledge error z for a promise problem
Π = (ΠYES, ΠNO), consists of a probabilistic polynomial-time verifier V and a
computationally unbounded prover P such that following properties hold:

– Completeness: For any x ∈ ΠYES:

Pr [(P,V)(x) is accepting] ≥ 1− c(|x|).

– Soundness: For any (computationally unbounded) cheating prover P∗ and
any x ∈ ΠNO:

Pr [(P∗,V)(x) is accepting] ≤ s(|x|).

– Honest Verifier Statistical Zero Knowledge: There is a probabilistic
polynomial-time algorithm Sim (called the simulator) such that for any x ∈
ΠYES:

∆ ((P,V)(x),Sim(x)) ≤ z(|x|).

If the completeness, soundness and zero-knowledge errors are all negligible, we
simply say that Π has an HVSZK protocol. We also use HVSZK to denote the
class of promise problems having such an HVSZK protocol.

We also define non-interactive zero knowledge proofs as follows.

Definition 2.5 (NISZK) Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈
[0, 1]. An non-interactive statistical zero-knowledge proof (NISZK) with complete-
ness error c, soundness error s and zero-knowledge error z for a promise problem
Π = (ΠYES, ΠNO), consists of a probabilistic polynomial-time verifier V, a com-
putationally unbounded prover P and a polynomial ` = `(n) such that following
properties hold:

– Completeness: For any x ∈ ΠYES:

Pr
r∈{0,1}`(|x|)

[V(x, r, π) accepts] ≥ 1− c(|x|),

where π = P(x, r).
– Soundness: For any x ∈ ΠNO:

Pr
r∈{0,1}`(|x|)

[∃π∗ s.t. V(x, r, π∗) accepts] ≤ s(|x|).

– Honest Verifier Statistical Zero Knowledge: There is a probabilistic
polynomial-time algorithm Sim (called the simulator) such that for any x ∈
ΠYES:

∆ ((U`,P(x, U`)),Sim(x)) ≤ z(|x|).

As above, if the errors are negligible, we say that Π has a NISZK protocol and
use NISZK to denote the class of all such promise problems.

2.3 Many-wise Independent Hashing

Hash functions offering bounded independence are used extensively in the lit-
erature. We use a popular variant in which the output of the hash function is
almost uniformly distributed on the different points. This relaxation allows us
to save on the representation length of functions in the family.

Definition 2.6 (δ-almost `-wise Independent Hash Functions) For ` =
`(n) ∈ N, m = m(n) ∈ N and δ = δ(n) > 0, a family of functions F = (Fn)n,
where Fn =

{
f : {0, 1}m → {0, 1}n

}
is δ-almost `-wise independent if for every

n ∈ N and distinct x1, x2, . . . , x` ∈ {0, 1}m the distributions:

– (f(x1), . . . , f(x`)), where f ← Fn; and
– The uniform distribution over ({0, 1}n)`,

are δ-close in statistical distance.

When δ = 0 we simply say that the hash function family is `-wise independent.
Constructions of (efficiently computable) many-wise hash function families with
a very succinct representation are well known. In particular, when δ = 0 we have
the following well-known construction:

Lemma 2.7 (See, e.g., [Vad12, Section 3.5.5]) For every ` = `(n) ∈ N and

m = m(n) ∈ N there exists a family of `-wise independent hash functions F (`)
n,m =

{f : {0, 1}m → {0, 1}n} where a random function from F (`)
n,m can be selected using

O
(
` ·max(n,m)

)
bits, and given a description of f ∈ F (`)

n.m and x ∈ {0, 1}m, the
value f(x) can be computed in time poly(n,m, `).

For δ > 0, the seminal work of Naor and Naor [NN93] yields a highly succinct
construction.

Lemma 2.8 ([NN93, Lemma 4.2]) For every ` = `(n) ∈ N, m = m(n) ∈ N
and δ = δ(n) > 0, there exists a family of δ-almost `-wise independent hash

functions F (`)
n,m = {f : {0, 1}m → {0, 1}n} where a random function from F (`)

n,m

can be selected using O
(
` · n + log(m) + log(1/δ)

)
bits, and given a descrip-

tion of f ∈ F (`)
n.m and x ∈ {0, 1}m, the value f(x) can be computed in time

poly(n,m, `, log(1/δ)).

2.4 Seeded Extractors

The min-entropy of a distribution X over a set X is defined as H∞(X) =
minx∈X log(1/Pr[X = x]). In particular, if H∞(X) = k then, Pr[X = x] ≤ 2−k,
for every x ∈ X .

Definition 2.9 ([NZ96]) Let k = k(n) ∈ N, m = m(n) ∈ N, d = d(n)
and ε = ε(n) ∈ [0, 1]. We say that the family of functions Ext = (Extn)n∈N,

where Extn : {0, 1}n × {0, 1}d → {0, 1}m, is a (k, ε)-extractor if for every n ∈
N and distribution X supported on {0, 1}n with H∞(X) ≥ k, it holds that
∆
(
Ext(X,Ud), Um

)
≤ ε, where Ud (resp., Um) denotes the uniform distribution

on d (resp., m) bit strings.

Lemma 2.10 ([GUV07, Theorem 4.21]) Let k = k(n) ∈ N, m = m(n) ∈ N
and ε = ε(n) ∈ [0, 1] such that k ≤ n, m ≤ k + d − 2 log(1/ε) − O(1), d =
log(n) + O(log(k) · log(k/ε)) and the functions k, m and ε are computable in
poly(n) time. Then, there exists a polynomial-time computable (k, ε)-extractor

Ext = (Extn)n∈N such that Extn : {0, 1}n × {0, 1}d → {0, 1}m.

3 Batch Verification for NISZK

In this section we formally state and prove our main result.

Theorem 3.1. Let Π ∈ NISZK and k = k(n) ∈ N such that k(n) = 2n
o(1)

.
Then, Π⊗k has an O(k)-round HVSZK protocol with communication complexity
k · poly(log n, log k) + poly(n) and verifier running time k · poly(n).

The proof of Theorem 3.1 is divided into two main steps:

1. As our first main step, we introduce a new NISZK-hard problem, called
approximate injectivity. The problem is defined formally in Definition 3.2
below and its NISZK hardness is established by Lemma 3.3. Due to space
restrictions, the proof of Lemma 3.3 is deferred to the full version.

2. The second step is constructing a batch verification protocol for approximate
injectivity, as given in Theorem 3.4. The proof of Theorem 3.4 appears in
Section 4.

We proceed to define the approximate injectivity problem and state its NISZK-
hardness.

Definition 3.2 Let δ = δ(n)→ [0, 1] be a function computable in poly(n) time.
The Approximate Injectivity problem with approximation δ, denoted by AIδ, is
a promise problem (YES,NO), where YES = (YESn)n∈N and NO = (NOn)n∈N
are sets defined as follows:

YESn =

{
(1n, C) : Pr

x←{0,1}n

[∣∣C−1(C(x))
∣∣ > 1

]
< δ(n)

}
NOn =

{
(1n, C) : Pr

x←{0,1}n

[∣∣C−1(C(x))
∣∣ > 1

]
> 1− δ(n)

}

where, in both cases, C is a circuit that takes n bits as input. The size of an
instance (1n, C) is n.

Lemma 3.3 Let δ = δ(n) ∈ [0, 1] be a non-increasing function such that δ(n) >

2−o(n
1/4). Then, AIδ is NISZK-hard.

As mentioned above, the proof of Lemma 3.3 appears in the full version. Our
main technical result is a batch verification protocol for AIδ.

Theorem 3.4. For any k = k(n) ∈ N, δ = δ(n) ∈ [0, 1
100k2] and security pa-

rameter λ = λ(n), the problem AI⊗kδ has an HVSZK protocol with communica-
tion complexity O(n) + k · poly(λ, logN, log k), where N is an upper bound on
the size of each of the given circuits (on n input bits). The completeness and
zero-knowledge errors are O(k2 · δ + 2−λ) and the soundness error is a constant
bounded away from 1.

The verifier running time is k · poly(N, log k, λ) and the number of rounds is
O(k).

The proof of Theorem 3.4 appears in Section 4. With Lemma 3.3 and Theo-
rem 3.4 in hand, the proof of Theorem 3.1 is now routine.

Proof (Proof of Theorem 3.1). Let Π ∈ NISZK. We construct an HVSZK pro-
tocol for Π⊗k as follows. Given as common input (x1, . . . , xk), the prover and
verifier each first employ the Karp reduction of Lemma 3.3 to each instance to
obtain circuits (C1, . . . , Ck) wrt δ = 1

2poly(logn,log k)
. The size of each circuit, as

well as the number of inputs bits, is poly(n).

The parties then emulate a poly(log n, log k) parallel repetition of the SZK
protocol of Theorem 3.4 on input (C1, . . . , Ck) and security parameter λ =
poly(log n, log k). Completeness, soundness and honest-verifier zero-knowledge
follow directly from Lemma Lemma 3.3 and Theorem 3.4, with error O(k · δ +
2−λ) = negl(n, k), where we also use the fact that parallel repetition of interac-
tive proofs reduces the soundness error at an exponential rate, and that parallel
repetition preserves honest verifier zero-knowledge.

To analyze the communication complexity and verifier running time, ob-
serve that the instances Ci that the reduction of Lemma 3.3 generates have
size poly(n). The batch verification protocol of Theorem 3.4 therefore has com-
munication complexity poly(n) + k · poly(log n, log k) and verifier running time
k · poly(n).

4 Batch Verification for AI

In this section we prove Theorem 3.4 by constructing an HVSZK protocol for
batch verification of the approximate injectivity problem AIδ (see Definition 3.2
for the definition of AIδ). For convenience, we restate Theoren 3.4 next.

Theorem 3.4. For any k = k(n) ∈ N, δ = δ(n) ∈ [0, 1
100k2] and security pa-

rameter λ = λ(n), the problem AI⊗kδ has an HVSZK protocol with communica-
tion complexity O(n) + k · poly(λ, logN, log k), where N is an upper bound on
the size of each of the given circuits (on n input bits). The completeness and
zero-knowledge errors are O(k2 · δ + 2−λ) and the soundness error is a constant
bounded away from 1.

The verifier running time is k · poly(N, log k, λ) and the number of rounds is
O(k).

Let k, δ and λ be as in the statement of Theorem 3.4. In order to prove
the theorem we need to present an HVSZK protocol for AI⊗kδ with the specified
parameters. The protocol is presented in Fig. 2. The rest of this section is devoted
to proving that the protocol indeed satisfies the requirements of Theorem 3.4.

Section Organization. First, in Section 4.1 we prove several lemmas that will
be useful throughout the analysis of the protocol. Using these lemmas, in Sec-
tions 4.2 to 4.4, we, respectively, establish the completeness, honest-verifier sta-
tistical zero-knowledge and soundness properties of the protocol. Lastly, in Sec-
tion 4.5 we analyze the communication complexity and verifier runtime.

4.1 Useful Lemmas

Let C1, . . . , Ck : {0, 1}n → {0, 1}m be the given input circuits (these can cor-
respond to either a YES or NO instance of AIδ). Throughout the proof we use
i∗ ∈ [k + 1] to denote the index of the first NO instance circuit, if such a cir-
cuit exists, and i∗ = k + 1 otherwise. That is, i∗ = min

(
{k + 1} ∪ {i ∈ [k] :

Ci is a NO instance}
)
.

For every i ∈ [k] we introduce the following notations:

– We denote by Xi the distribution over the string xi ∈ {0, 1}n as sampled in
the verifier’s setup phase. That is, X1 = Un and for every i ∈ [k], it holds
that Yi = Ci(Xi) and Xi+1 = Ext(Yi, Zi), where each Zi is an iid copy of Ud.

– We denote the subset of strings in {0, 1}m having a unique preimage under
Ci by Si (i.e., Si =

{
yi :

∣∣C−1i (yi)
∣∣ = 1

}
). Abusing notation, we also use Si

to refer to the uniform distribution over the corresponding set.

For a function f , we define νf as νf (x) = |{x′ : f(x′) = f(x)}|. We say that
x ∈ {0, 1}n has siblings under f , if νf (x) > 1. When f is clear from the context,
we omit it from the notation.

Lemma 4.1 For every i ≤ i∗ it holds that ∆ (Xi, Un) ≤ 1
k·2λ + k · δ.

Proof. We show by induction on i that ∆ (Xi, Un) ≤ (i − 1) ·
(

1
k2·2λ + δ

)
. The

lemma follows by the fact that i ≤ k.
For the base case (i.e., i = 1), since X1 is uniform in {0, 1}n we have that

∆ (X1, Un) = 0. Let 1 < i ≤ i∗ and suppose that the claim holds for i− 1. Note
that i− 1 < i∗ and so Ci−1 is a YES instance circuit.

HVSZK Batch Verification Protocol for AIδ

Input: Circuits C1, . . . , Ck : {0, 1}n → {0, 1}m and security parameter λ, where
all circuits have size at most N , input length n, and output length m ≤ N .

– Wlog we assume that all the circuits have the same output length m ≤ N .
This can be achieved by padding.

Ingredients:

– Let Ext = Extn be the explicit extractor from Lemma 2.10, where Extn :
{0, 1}m × {0, 1}d → {0, 1}n, so that Extn supports min-entropy n − 1, has
error ε = 1

k2·2λ and the seed length d is as guaranteed by Lemma 2.10.

– Let Hn be the explicit family of 1
22λ+d+2 log k -almost pairwise-independent

hash functions of Lemma 2.8, where Hn : {0, 1}m×{0, 1}d → {0, 1}2λ+d+2 log k

and d is the seed length of the extractor as specified above.
– Let Gn be the explicit family of pairwise-independent hash functions of

Lemma 2.7, where Gn : {0, 1}n → {0, 1}` and ` = O(1) (e.g., ` = 3 suf-
fices).

The Protocol:

1. Setup for V:
(a) Sample h← Hn and g ← Gn.
(b) Sample x1 ← {0, 1}n.
(c) For i = 1, ..., k:

i. Compute yi = Ci(xi).
ii. Sample zi ← {0, 1}d.

iii. Compute xi+1 = Ext(yi, zi).
2. V sends h, g, and xk+1 to P.
3. P sets x′k+1 = xk+1.
4. For i = k, ..., 1:

(a) V sends βi = h(yi, zi) to P.
(b) P computes y′i by finding the unique pair (y′i, z

′
i) s.t. Ext(y′i, z

′
i) = x′i+1

and h(y′i, z
′
i) = βi. If such a pair (y′i, z

′
i) does not exist or is not unique,

P sends a special abort symbol to V.
(c) P computes x′i by inverting Ci at y′i and sends αi = g(x′i) to V. If an

inverse of y′i does not exist or is not unique, P sends a special abort
symbol to V.

(d) If V got an abort symbol or if αi 6= g(xi), then it rejects and aborts.
5. If all previous tests passed then V accepts.

Fig. 2: A Batch SZK Protocol for AI

Claim 4.1.1 ∆
(
Ext(Si−1, Ud), Un

)
≤ 1

k2·2λ .

Proof. By definition of AIδ, the set Si−1 has cardinality at least (1 − δ) · 2n.
Since δ < 1/2, this means that the min-entropy of (the uniform distribution
over) Si is at least n− 1. The claim follows by the fact that Ext is an extractor
for min-entropy n− 1 with error ε = 1

k2·2λ .

We denote by Wi the distribution obtained by selecting (xi−1, zi−1) uniformly

in {0, 1}n × {0, 1}d and outputting Ext
(
Ci−1(xi−1), zi−1

)
.

Claim 4.1.2 ∆ (Wi, Un) ≤ 1
k2·2λ + δ.

Proof. Consider the event that Xi−1 has a sibling (under Ci−1). Since Ci−1 is
a YES instance, this event happens with probability at most δ. On the other
hand, the distribution of Ci(Xi−1), conditioned on Xi−1 not having a sibling, is
simply uniform in Si. The claim now follows by Claim 4.1.1 and Fact 2.2.

We are now ready to bound ∆ (Xi, Un), as follows:

∆ (Xi, Un) ≤ ∆ (Xi,Wi) + ∆ (Wi, Un)

= ∆
(

Ext(Ci−1(Xi−1), Ud),Ext(Ci−1(Un), Ud)
)

+ ∆ (Wi, Un)

≤ ∆ (Xi−1, Un) +
1

k2 · 2λ
+ δ

≤ (i− 1) ·
(

1

k2 · 2λ
+ δ

)
,

where the first inequality is by the triangle inequality, the second inequality is by
Fact 2.1 and Claim 4.1.2 and the third inequality is by the inductive hypothesis.

Definition 4.2 We say that the tuple (x1, h, z1, ...zk) is good if the following
holds, where we recursively define yi = Ci(xi) and xi+1 = Ext(yi, zi), for every
i < i∗:

1. For every i < i∗, there does not exist x′i 6= xi s.t. Ci(xi) = Ci(x
′
i) (i.e., xi

has no siblings).
2. For every i < i∗, there does not exist (y′i, z

′
i) 6= (yi, zi) such that y′i ∈ Si,

Ext(y′i, z
′
i) = Ext(yi, zi) and h(y′i, z

′
i) = h(yi, zi).

Lemma 4.3 The tuple (x1, h, z1, ...zk) sampled by the verifier V is good with
probability at least 1−O(k2 · δ + 2−λ).

In order to prove Lemma 4.3, we first establish the following proposition, which
bounds the number of preimages of a random output of the extractor.

Proposition 4.4 For any S ⊆ {0, 1}m with 2n−1 ≤ |S| ≤ 2n and any security
parameter λ > 1, it holds that:

Pr
y←S,z←Ud

[
νExt(y, z) > 2d+λ

]
≤ ε+

1

2λ
.

Proof. Throughout the current proof we use ν as a shorthand for νExt. Abusing
notation, we also use S to refer to the uniform distribution over the set S.

For a given security parameter λ > 1, denote by H (for “heavy”) the set

of all (y, z) ∈ S × {0, 1}d that have ν(y, z) > |S| · 2d−n+λ, and by Ext(H) the
set {Ext(y, z) : (y, z) ∈ H}. By definition, for any z ∈ Ext(H), we have that
Pr [Ext(S,Ud) = z] > 2−n+λ. This implies that:

|Ext(H)| < 2n−λ.

Note again that for any z ∈ Ext(H), the above probability is more than 2−n,
which is the probability assigned to z by the uniform distribution Un. It then
follows from the definition of statistical distance that:

∆ (Ext(S,Ud), Un) ≥
∑

z∈Ext(H)

(
Pr [Ext(S,Ud) = z]− 2−n

)
= Pr [Ext(S,Ud) ∈ Ext(H)]− |Ext(H)| · 2−n

> Pr [Ext(S,Ud) ∈ Ext(H)]− 2−λ.

Since |S| ≥ 2n−1, the min entropy of S is at least n−1, and therefore, it holds that
∆ (Ext(S,Ud), Un) ≤ ε. Together with the fact that Pr [Ext(S,Ud) ∈ Ext(H)] =
Pr [(S,Ud) ∈ H], we have:

Pr
y←S,z←Ud

[
ν(y, z) > |S| · 2d−n+λ

]
≤ ε+

1

2λ
.

And since |S| ≤ 2n we have

Pr
y←S,z←Ud

[
ν(y, z) > 2d+λ

]
≤ ε+

1

2λ
.

Using Proposition 4.4 we are now ready to prove Lemma 4.3.

Proof (Proof of Lemma 4.3).
For any i < i∗, let Ei denote the event that either (1) there exists x′i 6= xi

such that Ci(xi) = Ci(x
′
i), or (2) there exists (y′i, z

′
i) 6= (yi, zi) such that y′i ∈ Si,

Ext(y′i, z
′
i) = Ext(yi, zi) and h(y′i, z

′
i) = h(yi, zi), where (x1, . . . , xk+1, y1, . . . , yk, z1, . . . , zk)

are as sampled by the verifier.
Lemma 4.3 follows from the following claim, and a union bound over all

i ∈ [k].

Claim 4.4.1 Pr[Ei] ≤ (k + 1) · δ + 4
k·2λ , for every i ∈ [k].

Proof. We first analyze the probability for the event Ei when xi is sampled
uniformly at random. By definition of AIδ:

Pr
xi←Un

[xi has siblings] ≤ δ.

Let us condition on xi with no siblings being chosen. Under this conditioning,
Ci(xi) is uniform in Si. We note that |Si| ≥ (1 − δ) · 2n ≥ 2n−1 and |Si| ≤ 2n.
Thus, by Proposition 4.4 (using security parameter λ+ log k) it holds that:

Pr
yi←Si,z←Ud

[
νExt(y, z) > k · 2λ+d

]
≤ ε+

1

k · 2λ
≤ 2

k · 2λ
,

where the last inequality follows from the fact that ε = 1
k2·2λ .

Let us therefore assume that the pair (yi, zi) has at most k·2λ+d siblings under
Ext. We wish to bound the probability that there exists a preimage that collides
with (yi, zi) under h. Since h is 2−(2λ+d+2 log k)-almost pairwise-independent (into
a range of size 22λ+d+2 log k), for any pair (y′, z′), the probability that it collides
with (yi, zi) under h is at most 2

22λ+d+2 log k . Since yi has at most k · 2λ+d siblings
(under Ext), by a union bound, the probability that any of them collide with
(yi, zi) (under h) is at most k · 2λ+d · 2−(2λ+d+2 log k) = 1

k·2λ .
Thus, when xi is sampled uniformly at random, the probability that it has

a sibling (under Ci) or that there exist (y′, z′) such that Ext(y′, z′) = Ext(yi, zi),
where y′i ∈ Si and h(y′, z′) = h(yi, zi), is at most:

δ +
2

k · 2λ
+

1

k · 2λ
= δ +

3

k · 2λ
.

The claim follows by the fact that, by Lemma 4.1, the actual distribution of xi
is
(

1
k·2λ + k · δ

)
-close to uniform.

This concludes the proof of Lemma 4.3.

4.2 Completeness

Let C1, . . . , Ck ∈ AIδ. Assume first that V generates a good tuple (x1, h, z1, . . . , zk)
(as per Definition 4.2). Observe that in such a case, by construction of the pro-
tocol, it holds that x′i = xi and y′i = yi, for every i ∈ [k]. Therefore, the verifier
accepts in such a case (with probability 1).

By Lemma 4.3, the tuple (x1, h, g, z1, . . . , zk) is good with all butO
(
k2 · δ + 2−λ

)
probability. Thus, the completeness error is upper bounded by O

(
k2 · δ + 2−λ

)
.

4.3 Honest-Verifier Statistical Zero-Knowledge

The simulator is presented in Fig. 3.
The generation of (x1, h, g, z1, ..., zk) is identical for the verifier and for the

simulator. Assuming that the tuple (x1, h, z1, ..., zk) is good, by construction the
prover does not abort in the honest execution (as in the case of completeness).
Moreover, in this case, each x′i (resp., (y′i, z

′
i)) found by the prover is equal to

xi (resp., (yi, zi)) chosen by the verifier. Therefore, conditioned on the tuple
(x1, h, z1, ..., zk) being good, the distributions of (1) the transcript generated
in the honest execution, and (2) the simulated transcript are identically dis-
tributed. The fact that the protocol is honest-verifier statistical zero-knowledge
now follows from Lemma 4.3, and by applying Fact 2.2 twice.

Simulator for the AIδ Batch Verification Protocol

Input: C1, . . . , Ck

The Simulator:

1. Sample h← Hn, g ← Gn and x1 ∈ {0, 1}n.
2. For i = 1, ..., k:

(a) Compute yi = Ci(xi).
(b) Sample zi ← {0, 1}d.
(c) Compute αi = g(xi).
(d) Compute βi = h(yi, zi).
(e) Compute xi+1 = Ext(yi, zi).

3. Output transcript =
((
C1, . . . , Ck

)
,
(
x1, z1, . . . , zk, h, g

)
,
(
αk, . . . , α1

))
.

Fig. 3: Simulator for AIδ Batch Verification

4.4 Soundness

Let C1, ..., Ck : {0, 1}n → {0, 1}m be such that one of them is a NO instance of
AIδ. Recall that i∗ ∈ [k] denotes the index of the first such NO instance circuit
(i.e., Ci∗ is a NO instance of AIδ but for every i < i∗, it holds that Ci is a YES
instance).

We first make two simplifying assumptions. First, recall that value of yi∗ is
specified by the verifier by having it send xk+1, βk, . . . , βi∗ to the prover. Instead,
we will simply assume that the verifier sends yi∗ directly to the prover. Since yi∗

can be used to generate the verifier’s distribution consistently, revealing yi∗ only
makes the prover’s job harder and therefore can only increase the soundness
error. Second, we modify the protocol so that the verifier merely checks that
αi∗ = g(xi∗) – if so it accepts and otherwise it rejects. Once again having removed
the verifier’s other tests can only increase the soundness error.

Thus, it suffices to bound the soundness error of the following protocol. The
verifier samples xi∗ as in the real protocol, sends yi∗ = Ci∗(xi∗) and the hash
function g to the prover and expects to get in response g(xi∗). We show that the
prover’s probability of making the verifier accept is bounded by a constant.

In order to bound the prover’s success probability in the foregoing exper-
iment, we first give an upper bound assuming that xi∗ is uniform in {0, 1}n,
rather than as specified by the protocol (and, as usual, yi∗ = Ci∗(xi∗)). Later
we shall remove this assumption using Lemma 4.1, which guarantees that xi∗ is
actually close to uniform.

Let P∗ be the optimal prover strategy. Namely, given g and yi∗ , the prover
P∗ outputs the hash value αi∗ ∈ {0, 1}` with the largest probability mass (i.e.,
that maximizes |C−1i∗ (yi∗) ∩ g−1(α)|).

Let Ŷi∗ denote the distribution obtained by sampling x ∈ {0, 1}n uniformly
at random, conditioned on x have a sibling under Ci∗ and outputting Ci∗(x).

Using elementary probability theory we have that:

Pr
g←Gn

xi∗←{0,1}n

[
P∗(g, yi∗) = g(xi∗)

]
≤ Pr

g←Gn
xi∗←{0,1}n

[
P∗(g, yi∗) = g(xi∗) | xi∗ has siblings

]
+ Pr[xi∗ has no siblings]

≤ Pr
g←Gn
yi∗←Ŷi∗

xi∗←C−1
i∗ (yi∗)

[
P∗(g, yi∗) = g(xi∗)

]
+ δ

= E
yi∗←Ŷi∗

 Pr
g←Gn

xi∗←C−1
i∗ (yi∗)

[
P∗(g, yi∗) = g(xi∗)

]+ δ,

(1)

where the second inequality follows from the fact that Ci∗ is a NO instance.
Fix yi∗ in the support of Ŷi∗ (i.e., |C−1i∗ (yi∗)| ≥ 2) and let u = |C−1i∗ (yi∗)|.

We show that Prg∈Gn,xi∗←C−1
i∗ (yi∗)

[P∗(g, yi∗) = g(xi∗)] is upper bounded by a

constant.
Let E be the event (defined only over the choice of g) that for every hash

value α ∈ {0, 1}`, it holds that |C−1i∗ (yi∗) ∩ g−1(α)| ≤ 7
8u. That is, the event E

means that no hash value has more than 7/8 fraction of the probability mass
(when sampling xi∗ uniformly in C−1i∗ (yi∗) and outputting g(xi∗)).

15

Claim 4.4.2 The event E occurs with probability a least 1/10.

Proof. Fix a hash value α ∈ {0, 1}`, and let X = |C−1i∗ (yi∗)∩g−1(α)| be a random
variable (over the randomness of g). Observe that X can be expressed as a sum
of u pairwise independent Bernoulli random variables, each of which is 1 with
probability 2−` and 0 otherwise. Thus, the expectation of X is u/2` and the
variance is u · 2−` · (1− 2−`) ≤ u · 2−`. By Chebyshev’s inequality (Lemma 2.3),
it holds that

Pr

[
X >

7

8
u

]
≤ Pr

[∣∣∣X − u

2`

∣∣∣ > 3

4
u

]
≤ Var [X]

(3/4)2 · u2

≤ 16

9u
· 1

2`
,

where the first inequality follows from the fact that ` is a sufficiently large con-
stant. Taking a union bound over all α’s we have that the probability that there
exists some α with more than 7/8 fraction of the preimages in U (under g) is
less than 16

9u < 0.9, where we use the fact that u ≥ 2.

15 We remark that the choice of 7/8 is somewhat but not entirely arbitrary. In partic-
ular, in case u is very small (e.g., u = 2) there may very well be a hash value that
has 50% of the probability mass.

Observe that conditioned on the event E, the probability (over xi∗ ← C−1i∗ (yi∗))
that P∗(g, yi∗) = g(xi∗) is at most 7/8. Thus, by Claim 4.4.2 we obtain that:

Pr
g,xi∗←C−1

i∗ (yi∗)

[
P∗(g, yi∗) 6= g(xi∗)

]
≥ Pr[E] · Pr

g,xi∗←C−1
i∗ (yi∗)

[
P∗(g, yi∗) 6= g(xi∗)|E

]
≥ 1/80.

Plugging this into Eq. (1), we have that the prover convinces the verifier to
accept with probability at most 1 − 1

80 + δ, when xi∗ is sampled uniformly at
random in {0, 1}n.

By Lemma 4.1 it holds that ∆ (Xi∗ , Un) ≤ 1
k·2λ + k · δ. Therefore (using

Fact 2.2), the probability that the verifier accepts when xi∗ is sampled as in the
protocol is at most 1 − 1

80 + 1
k·2λ + (k + 1) · δ, which is bounded away from 1

since δ < 1
100k2 and λ is sufficiently large.

4.5 Communication Complexity and Verifier Run Time

We first bound the amount of bits sent during the interaction:

– Sending xk+1 costs n bits.
– By Lemma 2.10, the seed length of the extractor is d = log(m) + O(log n ·

log(nε)) = log(N)+λ·polylog(n, k) and therefore, the cost of sending z1, ..., zk
is k · (log(N) + λ · polylog(n, k)).

– By Lemma 2.8, the description length of h : {0, 1}m×{0, 1}d → {0, 1}2λ+d+2 log k
,

a 1
22λ+d+2 log k -almost pairwise-independent hash function, is O(log(N) + λ+

polylog(k)). The cost of sending the hashes β1, ..., βk is k ·O(λ+d+ log k) =
k · (log(N) + λ · polylog(n, k)).

– By Lemma 2.7, the description length of g ∈ {0, 1}n → {0, 1}`, a pairwise
independent hash function, is O(n). The cost of sending the hashes α1, ..., αk
is O(k).

In total, the communication complexity is O(n)+k·(log(N)+λ·polylog(n, k)).
As for the verifier run time, For each iteration i the verifier running time is as
follows:

– Evaluating the circuit Ci takes time poly(N).
– By Lemma 2.10, evaluating Ext takes time poly(m, d) = poly(N, log k, λ).
– By Lemma 2.8, evaluating h on an input of sizem+d takes time poly(N, log k, λ).
– By Lemma 2.7, evaluating g on an input of size n takes time poly(n).

In total, the verifier running time is k · poly(N, log k, λ).

Acknowledgments

We thank an anonymous TCC reviewer for pointing that our techniques fall
outside the scope of the Holenstein-Renner [HR05] blackbox model (see Re-
mark 1.4).

Inbar Kaslasi and Ron Rothblum were supported in part by a Milgrom family
grant, by the Israeli Science Foundation (Grants No. 1262/18 and 2137/19), and
the Technion Hiroshi Fujiwara cyber security research center and Israel cyber
directorate.

Guy Rothblum has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 819702).

Adam Sealfon was a PhD student at MIT for part of the duration of this
project, and was supported in part by NSF CNS-1413920, Sloan/NJIT 996698,
MIT/IBM W1771646, and NSF CNS-1804794.

Prashant Vasudevan was supported in part by AFOSR Award FA9550-19-1-
0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA and SPAWAR
under contract N66001-15-C-4065, a Hellman Award and research grants by the
Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC,
UC Berkeley). The views expressed are those of the authors and do not reflect
the official policy or position of the funding agencies.

References

Aar04. Scott Aaronson. Limits on efficient computation in the physical world.
CoRR, abs/quant-ph/0412143, 2004.

AH91. William Aiello and Johan Hastad. Statistical Zero-knowledge Languages
can be recognized in two rounds. Journal of Computer and System Sci-
ences, 42(3):327–345, 1991.

APS18. Navid Alamati, Chris Peikert, and Noah Stephens-Davidowitz. New (and
old) proof systems for lattice problems. In Michel Abdalla and Ricardo Da-
hab, editors, Public-Key Cryptography - PKC 2018 - 21st IACR Interna-
tional Conference on Practice and Theory of Public-Key Cryptography, Rio
de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part II, volume 10770
of Lecture Notes in Computer Science, pages 619–643. Springer, 2018.

BBD+20. Marshall Ball, Elette Boyle, Akshay Degwekar, Apoorvaa Deshpande, Alon
Rosen, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Cryptog-
raphy from information loss. In Thomas Vidick, editor, 11th Innovations
in Theoretical Computer Science Conference, ITCS 2020, January 12-14,
2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 81:1–81:27.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

BDRV18a. Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini
Vasudevan. From laconic zero-knowledge to public-key cryptography - ex-
tended abstract. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part III, volume 10993 of Lecture Notes in Computer Science, pages
674–697. Springer, 2018.

BDRV18b. Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini
Vasudevan. Multi-collision resistant hash functions and their applications.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryp-
tology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,

April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes
in Computer Science, pages 133–161. Springer, 2018.

BDRV19. Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini
Vasudevan. Statistical difference beyond the polarizing regime. In Dennis
Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th Interna-
tional Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019,
Proceedings, Part II, volume 11892 of Lecture Notes in Computer Science,
pages 311–332. Springer, 2019.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 103–112, 1988.

BGR98. Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for
modular exponentiation and digital signatures. In Kaisa Nyberg, editor,
Advances in Cryptology - EUROCRYPT ’98, International Conference on
the Theory and Application of Cryptographic Techniques, Espoo, Finland,
May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Com-
puter Science, pages 236–250. Springer, 1998.

BHK17. Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive
delegation and batch NP verification from standard computational assump-
tions. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
474–482. ACM, 2017.

BL13. Andrej Bogdanov and Chin Ho Lee. Limits of provable security for homo-
morphic encryption. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, vol-
ume 8042 of Lecture Notes in Computer Science, pages 111–128. Springer,
2013.

BSMP91. Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

CHP12. Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen.
Batch verification of short signatures. J. Cryptology, 25(4):723–747, 2012.

CP92. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 16-20, 1992,
Proceedings, pages 89–105, 1992.

Dru15. Andrew Drucker. New limits to classical and quantum instance compres-
sion. SIAM J. Comput., 44(5):1443–1479, 2015.

DSCP94. Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. The
knowledge complexity of quadratic residuosity languages. Theor. Comput.
Sci., 132(2):291–317, 1994.

For89. Lance Jeremy Fortnow. Complexity-theoretic aspects of interactive proof
systems. PhD thesis, Massachusetts Institute of Technology, 1989.

GG00. Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability
of lattice problems. J. Comput. Syst. Sci., 60(3):540–563, 2000.

GK93. Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof
system for a problem equivalent to the discrete logarithm. J. Cryptology,
6(2):97–116, 1993.

GKL93. Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of
pseudorandom generators. SIAM J. Comput., 22(6):1163–1175, 1993.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):186–208,
1989.

GMR98. Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-
interactive statistical zero-knowledge proof system for quasi-safe prime
products. In Li Gong and Michael K. Reiter, editors, CCS ’98, Proceedings
of the 5th ACM Conference on Computer and Communications Security,
San Francisco, CA, USA, November 3-5, 1998, pages 67–72. ACM, 1998.

GSV98. Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-verifier statistical
zero-knowledge equals general statistical zero-knowledge. In STOC, 1998.

GSV99. Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero
knowledge be made non-interactive? or on the relationship of SZK and
NISZK. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 467–484. Springer, 1999.

GUV07. Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbal-
anced expanders and randomness extractors from parvaresh-vardy codes.
In 22nd Annual IEEE Conference on Computational Complexity (CCC
2007), 13-16 June 2007, San Diego, California, USA, pages 96–108. IEEE
Computer Society, 2007.

GV99. Oded Goldreich and Salil P. Vadhan. Comparing entropies in statistical
zero knowledge with applications to the structure of SZK. In CCC, 1999.

HHR11. Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the
randomized iterate. SIAM J. Comput., 40(6):1486–1528, 2011.

HR05. Thomas Holenstein and Renato Renner. One-way secret-key agreement
and applications to circuit polarization and immunization of public-key
encryption. In CRYPTO, pages 478–493, 2005.

Ish. Yuval Ishai. Zero-knowledge proofs from information-theoretic proof
systems. https://zkproof.org/2020/08/12/information-theoretic-proof-
systems/.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada,
pages 723–732. ACM, 1992.

KMN+14. Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and
Eylon Yogev. One-way functions and (im)perfect obfuscation. In 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014, pages 374–383. IEEE
Computer Society, 2014.

KRR+20. Inbar Kaslasi, Guy N. Rothblum, Ron D. Rothblum, Adam Sealfon, and
Prashant Nalini Vasudevan. Batch verification for statistical zero knowl-
edge proofs. Electronic Colloquium on Computational Complexity (ECCC),
2020.

KY18. Ilan Komargodski and Eylon Yogev. On distributional collision resistant
hashing. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 303–
327. Springer, 2018.

LFKN92. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. J. ACM, 39(4):859–868,
1992.

LV16. Tianren Liu and Vinod Vaikuntanathan. On basing private information
retrieval on np-hardness. In Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceed-
ings, Part I, pages 372–386, 2016.

MV03. Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs
with efficient provers: Lattice problems and more. In Advances in Cryptol-
ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, pages
282–298, 2003.

NMVR94. David Naccache, David M’Räıhi, Serge Vaudenay, and Dan Raphaeli. Can
D.S.A. be improved? complexity trade-offs with the digital signature stan-
dard. In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT
’94, Workshop on the Theory and Application of Cryptographic Techniques,
Perugia, Italy, May 9-12, 1994, Proceedings, volume 950 of Lecture Notes
in Computer Science, pages 77–85. Springer, 1994.

NN93. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient con-
structions and applications. SIAM J. Comput., 22(4):838–856, 1993.

NV06. Minh-Huyen Nguyen and Salil P. Vadhan. Zero knowledge with efficient
provers. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, Seattle, WA, USA, May 21-23, 2006, pages 287–295, 2006.

NZ96. Noam Nisan and David Zuckerman. Randomness is linear in space. J.
Comput. Syst. Sci., 52(1):43–52, 1996.

Oka00. Tatsuaki Okamoto. On relationships between statistical zero-knowledge
proofs. J. Comput. Syst. Sci., 60(1):47–108, 2000.

Ost91. Rafail Ostrovsky. One-way functions, hard on average problems, and statis-
tical zero-knowledge proofs. In Structure in Complexity Theory Conference,
pages 133–138, 1991.

OV08. Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge
and commitments. In Theory of Cryptography, Fifth Theory of Cryptog-
raphy Conference, TCC 2008, New York, USA, March 19-21, 2008, pages
482–500, 2008.

OW93. Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for
non-trivial zero-knowledge. In ISTCS, pages 3–17, 1993.

PPS15. Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based
non-black-box simulation and four message concurrent zero knowledge for
NP. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryp-
tography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part II, volume 9015 of Lecture
Notes in Computer Science, pages 638–667. Springer, 2015.

PV08. Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-
knowledge proofs for lattice problems. In Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 536–553, 2008.

RRR16. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round
interactive proofs for delegating computation. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 49–62, 2016.

RRR18. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch
verification for UP. In 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA, pages 22:1–22:23, 2018.

SCPY98. Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti
Yung. Image density is complete for non-interactive-szk (extended ab-
stract). In Automata, Languages and Programming, 25th International
Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings,
pages 784–795, 1998.

Sha92. Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
SV03. Amit Sahai and Salil Vadhan. A complete problem for statistical zero

knowledge. Journal of the ACM (JACM), 50(2):196–249, 2003.
Vad12. Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoret-

ical Computer Science, 7(1-3):1–336, 2012.
YGLW15. Yu Yu, Dawu Gu, Xiangxue Li, and Jian Weng. The randomized iterate,

revisited - almost linear seed length prgs from a broader class of one-way
functions. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory
of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, volume 9014 of
Lecture Notes in Computer Science, pages 7–35. Springer, 2015.

	Batch Verification for Statistical Zero Knowledge Proofs

