
CP-ABE for Circuits (and more)
in the Symmetric Key Setting

Shweta Agrawal1 and Shota Yamada2

1 IIT Madras,
shweta.a@cse.iitm.ac.in

2 National Institute of Advanced Industrial Science and Technology (AIST),
yamada-shota@aist.go.jp

Abstract. The celebrated work of Gorbunov, Vaikuntanathan and Wee [GVW13]
provided the first key policy attribute based encryption scheme (ABE) for circuits
from the Learning With Errors (LWE) assumption. However, the arguably more
natural ciphertext policy variant has remained elusive, and is a central primitive
not yet known from LWE.
In this work, we construct the first symmetric key ciphertext policy attribute based
encryption scheme (CP-ABE) for all polynomial sized circuits from the learning
with errors (LWE) assumption. In more detail, the ciphertext for a message m
is labelled with an access control policy f , secret keys are labelled with public
attributes x from the domain of f and decryption succeeds to yield the hidden
message m if and only if f(x) = 1. The size of our public and secret key do
not depend on the size of the circuits supported by the scheme – this enables
our construction to support circuits of unbounded size (but bounded depth). Our
construction is secure against collusions of unbounded size. We note that current
best CP-ABE schemes [BSW07, Wat11, LOS+10, OT10, LW12, RW13, Att14,
Wee14, AHY15, CGW15, AC17, KW19] rely on pairings and only support circuits
in the class NC1 (albeit in the public key setting).
We adapt our construction to the public key setting for the case of bounded size
circuits. The size of the ciphertext and secret key as well as running time of
encryption, key generation and decryption satisfy the efficiency properties desired
from CP-ABE, assuming that all algorithms have RAM access to the public key.
However, the running time of the setup algorithm and size of the public key
depends on the circuit size bound, restricting the construction to support circuits
of a-priori bounded size. We remark that the inefficiency of setup is somewhat
mitigated by the fact that setup must only be run once.
We generalize our construction to consider attribute and function hiding. The
compiler of lockable obfuscation upgrades any attribute based encryption scheme
to predicate encryption, i.e. with attribute hiding [GKW17, WZ17]. Since lockable
obfuscation can be constructed from LWE, we achieve ciphertext policy predicate
encryption immediately. For function privacy, we show that the most natural notion
of function hiding ABE for circuits, even in the symmetric key setting, is sufficient
to imply indistinguishability obfuscation. We define a suitable weakening of
function hiding to sidestep the implication and provide a construction to achieve
this notion for both the key policy and ciphertext policy case. Previously, the
largest function class for which function private predicate encryption (supporting
unbounded keys) could be achieved was inner product zero testing, by Shen, Shi
and Waters [SSW09].

1 Introduction

Attribute based encryption (ABE) [SW05] is a generalization of public key encryption
that enables fine grained access control on encrypted data. In attribute based encryption,
a message m is encrypted so that decryption succeeds if and only if the secret key holder
is authorized to learn the message. Here, authorization is enforced via an access control
policy modelled as a Boolean circuit f , which is computed over some public attributes
x associated with the data/user. The access control policy may be embedded either in
the key or the ciphertext, yielding key-policy (KP-ABE) or ciphertext-policy (CP-ABE)
respectively.

In more detail, in a CP-ABE scheme, a ciphertext for a message m is labelled with
an access control policy f , and secret keys are labelled with public attributes x from
the domain of f . Decryption succeeds to yield the hidden message m if and only if the
attribute satisfies the function, namely f(x) = 1. In a KP-ABE, the placement of f and
x are swapped.

Ciphertext Policy ABE for Circuits. Both KP-ABE[SW05, GPSW06, BW07, KSW08,
LOS+10, OT10, OT12, CW14, AFV11, LW11, LW12, Wat12, GVW13, Wee14, Att14,
BGG+14, GVW15, GV15, BV16, AF18] and CP-ABE schemes have received a lot
of attention [BSW07, Wat11, LOS+10, OT10, LW12, RW13, Att14, Wee14, AHY15,
CGW15, AC17, KW19] in the literature. While KP-ABE for the richest class of functions
rely on the Learning With Errors (LWE) assumption and can support all polynomial
sized circuits, the most general CP-ABE rely on pairings and can only support circuits in
NC1 [BSW07, Wat11, LOS+10, OT10, LW12, RW13, Att14, Wee14, AHY15, CGW15,
AC17, KW19].

Recently, Tsabary [Tsa19] provided a construction of (public key) CP-ABE from
Learning With Errors (LWE) for the very restricted class of t-CNF formulae, where t
is constant. However, for all polynomial sized circuits, any construction from standard
assumptions3 has remained elusive despite substantial research effort. Very recently,
Brakerski and Vaikuntanathan do provide a construction of (public key) CP-ABE using
lattice based techniques [BV20], but their construction lacks a security proof. Their work
further highlights the technical barriers to providing a construction from LWE. Indeed,
constructing CP-ABE for even NC1 from LWE is widely acknowledged as a central
problem in lattice based cryptography and would be considered a major breakthrough.

Function Hiding. An ABE scheme encodes an attribute vector x and a Boolean circuit
f . Hiding the attribute in these constructions, à la Predicate Encryption (PE) has met
with fantastic success – the celebrated work of Gorbunov, Vaikuntanathan and Wee
[GVW15] constructed a predicate encryption system for all circuits from LWE. More
recently, Goyal, Koppula and Waters [GKW17] as well as Wichs and Zirdelis [WZ17]
provided a powerful compiler for upgrading any ABE to PE by assuming LWE. However,

3 We note that from strong assumptions such as the the existence of multilinear maps [GGH13a],
witness encryption [GTKP+13a] or indistinguishability obfuscation [BGI+01, GGH+13b],
attribute based encryption (indeed, even its generalization functional encryption) has been
constructed for all circuits, but these are not considered standard assumptions.

2

much less is known about function hiding for ABE. For restricted functionalities such
as identity based encryption and subspace membership testing, function hiding has
received attention [BRS13a, BRS13b] in the public key setting, but serious technical
barriers present themselves for more general function classes. We refer the reader to
[BRS13a, BRS13b] for a detailed discussion.

In the symmetric key setting, function hiding for the stronger notion of functional
encryption has been studied extensively [GTKP+13b, BS15] – however, since functional
encryption is known to imply indistinguishability obfuscation [AJ15, BV15, BNPW16,
KNT18] even without function hiding, there is limited optimism about achieving this
notion for all circuits from standard assumptions, given current state of art. On the other
hand, for the restricted inner product functionality, function hiding functional encryption
can be achieved from standard assumptions [BJK15, KLM+16]. For the related (but
distinct) functionality of inner product zero testing, Shen, Shi and Waters [SSW09]
provided a construction of function hiding, symmetric key predicate encryption from
bilinear maps.

The above state of affairs is dissatisfying and reveals several gaps in our understand-
ing. Concretely, for general circuits and from standard assumptions, can we achieve
function hiding in the symmetric key setting? Note that while attribute based encryption
[GVW13, BGG+14] and predicate encryption [GVW15] are achievable from standard
assumptions for all circuits, the richest functionality for which function hiding predicate
encryption has been achieved is the inner product zero testing functionality [SSW09].
We emphasize that this question is not just of theoretical interest – as noted by Shen et al.
[SSW09], function private predicate encryption in the symmetric key setting has many
compelling applications. As an example [SSW09], a user may wish to store encrypted
files on an untrusted server, and later retrieve only files that satisfy a given predicate. It is
a natural security requirement that the server must learn nothing more about the predicate
than minimum possible. We refer the reader to [SSW09] for a detailed discussion.

1.1 Our Results

In this work, we make substantial progress on both questions discussed above. Our
results are summarized as follows:

1. We construct the first symmetric key ciphertext policy attribute based encryption
scheme (CP-ABE) for all polynomial sized circuits from the learning with errors
(LWE) assumption. The sizes of our public and secret key do not depend on the size
of the circuits supported by the scheme – this enables our construction to support
circuits of unbounded size (but bounded depth). Our construction is secure against
collusions of unbounded size in the multi-challenge ciphertext setting.4

This is the first construction of CP-ABE for polynomial circuits of unbounded size,
supporting unbounded collusions, from standard assumptions.

4 In the symmetric key setting, single-challenge ciphertext security and multi-challenge ciphertext
security are not equivalent. In our paper, we adopt the latter as the default security notion for
symmetric key ABE, since it is stronger and more natural.

3

2. We adapt our construction to the public key setting for the case of bounded size
circuits. The size of the ciphertext and secret key as well as the runtime of encryption,
key generation and decryption satisfy the efficiency properties desired from CP-ABE.
However, the running time of the setup algorithm and the size of the public key
depend on the circuit size bound, restricting the construction to support circuits of
a-priori bounded size. We remark that this inefficiency is mitigated by the fact that
setup must only run once. We summarize our results in Table 1.

Scheme Assumption PK/SK Setup
Time

|PK| Enc
Time

|CT| KeyGen
Time

|SK| Dec
Time

Circuit
Class

Ideal Standard PK 1 1 |f | |f | |x| |x| |f | P

Naive
(using
[BGG+14])

LWE PK |fmax| |fmax| |fmax| |fmax| |fmax| 1 |fmax| P

Naive
([BGG+14]
& [BV16])5

LWE PK 1 1 |fmax| |fmax| |fmax| 1 |fmax| P

Section 3 LWE SK 1 1 |f | |f | |x| |x| |f | P

Section 4 LWE PK |fmax| |fmax| |f | |f | |x| |x| |f | P

[KW19] Pairings PK 1 1 |f | |f | |x| |x| |f | NC1

Table 1 : |fmax| denotes the worst case size bound on circuit size, and |f | denotes the
input circuit size. All the entries hide poly(λ) and logarithmic factors in |fmax|. Due to
space constraints, we include only the most recent pairings based cpABE in the table.

3. We study the notion of function hiding attribute based encryption for circuits, in
the symmetric key setting. In Section 5.3, we show that the most natural notion
of function hiding ABE, even in the symmetric key setting is sufficient to imply
indistinguishability obfuscation. We define a suitable weakening of function hiding
to sidestep the implication and provide a construction in Section 5 to achieve this
notion for both key policy and ciphertext policy predicate encryption. We instantiate
our compiler with known constructions of PE to obtain the following theorems:

Theorem 1.1. (Informal) Assuming subexponential LWE, we have function hiding,
semi-adaptively secure predicate encryption for all polynomial circuits.

Theorem 1.2. (Informal) Assuming subexponential LWE and DLIN, we have
function hiding, adaptively secure predicate encryption for NC1 circuits.

Please see Section 5.1 for details.

5 This construction can be further improved by combining this with the “powers of 2” trick where
we run parallel instances of the scheme that can deal with circuits with size at most 2i for
i = 1, 2, . . . log |fmax| and use appropriate instance when encrypting a message depending
on the size of the circuit. As a result, the encryption time, the ciphertext size, and the (RAM
efficiency of the) decryption algorithm can be reduced to be |f | from |fmax|.

4

1.2 Our Techniques

In this section, we provide an overview of our techniques.

CP-ABE for Circuits. For this construction, we leverage techniques developed recently
by Agrawal, Maitra and Yamada [AMY19] to handle inputs of unbounded size in the
context of ABE for finite automata. We notice that these techniques are quite a bit more
general than discussed in that work and can be adapted to the setting of ciphertext policy
ABE supporting unbounded collusions.

Folklore Approach. We begin with a folklore transformation of KP-ABE to CP-ABE –
namely, via the universal circuit. In more detail, let U(·, ·) be the universal circuit such
that f(x) = U(x, f). Next, let U [x] be the universal circuit with the input x hard-wired.
Then, we may construct a CP-ABE scheme, denoted by cpABE using a KP-ABE scheme,
denoted by kpABE as follows: the cpABE encryptor, given a message m and circuit f
may compute kpABE ciphertext for (m, f) where f is viewed as a bit string representing
kpABE attributes. The cpABE key generator, given an attribute string x, may compute a
kpABE function key for the circuit U [x]. Decryption is straightforward using kpABE
decryption as U [x](f) = U(x, f) = f(x).

The above generic compiler has the drawback that the input of circuit U [x] is the
circuit f . This limits the construction to only support circuits of a-priori bounded size
|fmax| (say) and forces the size of the public key, ciphertext as well as runtime of setup,
key generation, encryption and decryption to grow with |fmax| (please see Table 1). We
emphasize that even the encryption and decryption algorithms, which must take time
proportional to circuit size, now degrade with the worst case bound |fmax|, rather than
with input circuit |f |. The hit taken by key generation is significantly worse6.

Re-distributing Computation. Note that the only algorithms which are allowed to
depend on the size of the circuit length are the encryption and decryption algorithms.
Hence, inspired by [AMY19], we re-distribute the computation of kpABE.KeyGen(U [x])
between the key generator and the encryptor to ensure that each algorithm satisfies the
efficiency requirements of CP-ABE.

In more detail, the key generator may depend on the size of x but not on the
size of f , while the encryptor and decryptor may depend on the size of f . In order
to redistribute computation, we rely on single-key functional encryption (FE), which
can be constructed based on the LWE assumption [GKP+13]. Now, the ciphertext of
cpABE is kpABE.CT(f,m) where f is treated as the attribute string. Additionally, the
ciphertext contains FE.KeyGen(C) where the circuit C(·) = kpABE.KeyGen(U(·)).
The secret key of cpABE is FE.Enc(x). Decryption in the cpABE scheme proceeds by
first computing FE decryption to obtain kpABE.SK(U [x]) and then computing kpABE
decryption with kpABE.CT(f,m) to obtain m iff f(x) = 1. Care must be taken that
single key security of the underlying FE scheme is not violated. For this, we ensure that
the function key is generated for the same circuit C(·) = kpABE.KeyGen(U(·)) and

6 Although using the scheme by [BGG+14] allows for a small function key size.

5

using the same randomness (as specified in the master secret key), across all invocations
of FE key generation.

In order to argue that the key generation algorithm does not depend on |f |, we rely
on special properties of the FE scheme. Recall that the FE scheme of Goldwasser et al.
is succinct which means that the running time of the encryption algorithm depends on
the depth and output length of the circuits supported by the scheme but is independent
of their size. The depth of the circuits supported by our construction is bounded by
assumption and the depth of the kpABE key generation circuit is at most a polynomial
factor larger than the depth of the circuit it supports. Hence, it remains to argue that
the output length may be similarly bounded. To see this, note that in our construction,
the function key is generated for circuit C(·) = kpABE.KeyGen(U(·)), whose output
length depends on the size of the underlying kpABE function key. Fortunately, by using
the kpABE scheme of Boneh et al. [BGG+14], we may bound the size of the kpABE
scheme by a fixed polynomial.

Supporting Circuits of Unbounded Size. A detail brushed under the carpet in the above
description is that the kpABE scheme which is used to encrypt f as an attribute string
must be initialized with the length of f during the setup phase. Moreover, this input
length is passed to all other kpABE algorithms, notably the key generation algorithm.
Since we wish to support f of unbounded size, this poses a dilemma. An immediate
question that arises is which algorithm of cpABE should invoke the setup algorithm of
kpABE? Evidently, the setup of cpABE does not have the size of f , so it must be the
encrypt algorithm. Hence, the cpABE encrypt algorithm samples the kpABE scheme
and provides an FE secret key for the circuit kpABE.KeyGen(U(·)). A subtlety is that
the kpABE key generation algorithm must depend on the length of f as discussed
above. Then, if f is of varying size across different ciphertexts, the description of
kpABE.KeyGen(U(·)) and hence FE.SK varies with the size of f . This is problematic –
since FE only satisfies single key security!

We resolve the above conundrum by running λ+ 1 instances of FE and kpABE in
parallel – each to support f of length 2i where i ∈ [0, λ]. The circuit size is padded to
the next power of two – a trick used in many works, beginning with [GTKP+13a] – so
that we only need to deal with λ+ 1 possible FE, each of which supports the issuing of
a single secret key, which will compute the kpABE key generation circuit for inputs of
length 2i. The cpABE key generator does not know which instance of FE it must encrypt
with, so it encrypts with all of them. For details, please see Section 3.

Security. Our cpABE scheme achieves selective, indistinguishability based security. At
a high level, security relies on the security of the instances of the single key FE schemes
and kpABE schemes. Similarly to [AMY19], we begin by showing that by security
of FE adversary cannot get anything beyond {FE.Dec(FE.ski,FE.cti) = kpABE.ski}
for i ∈ [0, λ]. Next, we rely on the security of kpABE to argue that the message bit is
not revealed. As discussed above, we need to ensure that only single FE secret key is
revealed to the adversary for each instance of FE. Fortunately, this can be guaranteed by
the fact that for a given instance of FE, we must only release a secret key (of the FE) for
the key generation algorithm of the corresponding kpABE.

6

Public Key Setting. Next, we construct a public key ciphertext policy ABE scheme for
bounded sized circuits, where |fmax| is set as an upper bound on circuit size. In our
construction, the size of the secret key and ciphertext satisfy the efficiency properties
desired from CP-ABE (Definition 2.4). Additionally, the running time of the keygen,
encrypt and decrypt algorithms depend only on the size of the input circuit f and not
on the worst case circuit size |fmax|, assuming that they have RAM access to the public
key. However, the running time of the setup algorithm and the size of PK grows with
the size |fmax| of the circuits supported by the scheme. We note that this inefficiency is
mitigated since it must be only run once.

The construction is similar to the secret key cpABE provided in Section 3 but has
some important differences. Let us try to adapt the secret key construction of Section 3
to the public key setting. Since the construction makes modular use of single key
succinct FE [GKP+13] and key policy ABE [BGG+14], and both these schemes can be
instantiated in the public key setting from LWE, a first attempt would be to use public
key versions of these building blocks and compile a public key version of the secret
key cpABE scheme. However this naive approach runs into multiple difficulties. For
the key generation algorithm to be independent of the circuit size, it may not compute
the circuit U [x] – indeed, this would render the role of FE useless and collapse back
into the naive transformation of a kpABE to cpABE scheme via universal circuits. To
avoid the dependence of keygen on circuit size, it is necessary for the encrypt algorithm
to compute the FE secret key for the kpABE key generation algorithm, which in turn
requires that the encrypt algorithm possess the master secret key FE.msk.

However, a crucial and useful property of the construction is that it only uses FE
for a single fixed circuit – hence, to remove the dependence of Enc on FE.msk, an idea
is to let setup compute the FE function key itself and provide it as part of the public
key. The cpABE public key can contain the public keys of FE as well as kpABE, along
with the FE function key for the kpABE key generation algorithm. Now, the encryptor,
given input circuit f and message µ, can use the kpABE public key to compute a kpABE
ciphertext for (f, µ). The key generator can compute the FE ciphertext for x and the
decryptor can decrypt as before, by performing FE decryption to recover the kpABE
function key, followed by kpABE decryption.

An immediate drawback is that this approach forces the circuit size to be fixed
at setup time. Additionally, even if we assume an upper bound |fmax| on the size of
supported circuits, this approach has the significant disadvantage that the runtime of
encryption and decryption as well as the size of the ciphertext to depend on the upper
bound |fmax| rather than the actual size of the circuit. When the input circuit is much
smaller, this is a significant price to pay in terms of both communication and computation.
Another disadvantage is that the size of the public key now grows with the upper bound
|fmax|. To see this, note that the kpABE public key in general depends on the size of the
inputs supported by the scheme, which in this case can be as large as |fmax|. There do
exist clever ideas to make the size of the kpABE public key independent of the input size
[BV16, GKW16], but they do so, unfortunately, at the expense of making the function
key depend linearly on input size |fmax|. But if the kpABE function key is large, then
the size of the FE ciphertext would degrade to support this, making the cpABE function
key large, which is precisely what we are trying to avoid!

7

These issues may be overcome if we assume that every algorithm has RAM access
to cpABE.mpk. For simplicity, let us assume that circuit sizes come in powers of 2 –
this assumption can be easily removed by padding circuits appropriately. In this case,
we run η := dlog |fmax|e instances of kpABE in parallel, and let the ith instance handle
inputs of length 2i, for i ∈ [η]. Now, we have η public keys for kpABE, each of length
2i, which together (along with FE.mpki and FE.ski) comprise the final public key. If
every algorithm has RAM access to this public key, then it may choose the component
according to the actual input length of the circuit, namely it may choose i∗ such that
|f | = 2i

∗
and access only the i∗th component of the public key. Then, the runtime of

the encrypt and decrypt algorithm depend on |f | rather than |fmax|. For more details,
please see Section 4.

Function Hiding Predicate Encryption. Next, we generalize our construction to
consider attribute and function hiding. The compiler of lockable obfuscation upgrades
any attribute based encryption scheme to predicate encryption, i.e. with attribute hiding
[GKW17, WZ17]. Since lockable obfuscation can be constructed from LWE, we achieve
ciphertext policy predicate encryption immediately. We then turn to the question of
function hiding predicate encryption for circuits. Here, we show that the natural notion
of function hiding predicate encryption, i.e. that considered by [SSW09], when applied to
all polynomial sized circuits, is strong enough to imply indistinguishability obfuscation.

Consider a function private ciphertext-policy attribute based encryption scheme
cpABE7. The ciphertext is associated with a circuit f and a message m and the key is
associated with an attribute vector x. Intuitively, since the scheme is function hiding, x is
hidden. Note that the attribute f is not hidden, since this an ABE scheme. A natural game
of function hiding would allow an adversary to output challenge key queries (x0i,x1i)
and ciphertext queries (fj , µj) so that fj(x0i) = fj(x1i) for all i, j. The challenger
responds by choosing a random bit b and returning the corresponding secret keys for xbi,
along with ciphertexts for (fj , µj). The adversary wins if she guesses the bit correctly8.

We now show a reduction from secret key functional encryption (FE) to function
hiding cpABE. Recall that in functional encryption, the ciphertext is associated with
a vector x, the secret key is associated with a circuit f and decryption enables the
decryptor to recover f(x). In the security game, the adversary must distinguish between
encryptions of x0 and x1 given an arbitrary number of secret keys for circuits fi where
fi(x0) = fi(x1). In our reduction, if cpABE supports unbounded ciphertext queries,
then FE supports unbounded key queries. Such a functional encryption scheme is known
to imply indistinguishability obfuscation (iO) [AJ15, BV15, BNPW16, KNT18].

It remains to outline the reduction. The reduction is remarkably simple: suppose
that FE.Enc(x,msk) = cpABE.KeyGen(x,msk) and that FE.KeyGen(f,msk) =
(m, cpABE.Enc(f,m,msk)) where m is a random bit. FE.Dec computes cpABE.Dec
and outputs 1 if it recovers m correctly. Now, when the FE adversary outputs x0,x1 as
challenge messages, the reduction outputs outputs x0,x1 as challenge keys and obtains

7 Note that we are starting with a weaker object – this only strengthens our result.
8 Note that (fj , µj) are ciphertext queries, not challenge ciphertexts, so the adversary is allowed

to have decrypting keys for these in a function hiding game.

8

the cpABE key for xb. When the FE adversary makes a key request for fi, the reduction
obtains the cpABE ciphertext for (fi,mi) where mi is randomly chosen, and uses these
to respond to the FE adversary. It is evident that if the FE adversary is legitimate, then
so is the cpABE function hiding adversary. Also, clearly if the cpABE adversary wins
the game, this translates to a win for the FE adversary.

To avoid the implication to FE, we weaken the function hiding definition. We provide
a restricted definition of function hiding (Definition 2.14), in which the adversary is
disallowed from making queries for vectors x0,x1 such that fi(x0) = fi(x1) = 1
for any requested fi. The definition insists that fi(x0) = fi(x1) = 0 for all requests.
Note that an admissible FE adversary may request keys for any circuits fi as long as
fi(x0) = fi(x1), regardless of whether this value is 0 or 1. However, with the restriction
on the function hiding definition, the above reduction fails and we fall back into “one
sided security” that characterizes PE and is known to be achievable from standard
assumptions. Please see Section 5.3 for the detailed argument.

In Section 5, we provide a construction of predicate encryption for circuits which
achieves the above notion of function hiding. Our compiler is analogous to the compiler
of Goldwasser et al. [GKP+13], which converts succinct functional encryption to
reusable garbled circuits. In more detail, we construct function hiding PE from PE
and a symmetric key encryption scheme SKE. For simplicity, we consider the key-policy
setting, we show how to extend the argument to the ciphertext-policy setting in Section 5.

Since we are in the symmetric key setting, the SKE secret key SK (say) is known both
to the key generation and the encrypt algorithms. Now, the encryptor uses PE to encrypt
its message with attribute (SK,x). The key generator, given input circuit f , computes
the SKE encryption f̂ of f provides a key for an augmented circuit Uf̂ (·), which given

input (SK,x), first decrypts f̂ to obtain f and then computes f(x). Intuitively, since PE

is attribute hiding, SK remains hidden, and since the key only reveals the encryption f̂ ,
the circuit f remains hidden. The formal argument is provided in Section 5.

1.3 Perspective and Open Problems.

CP-ABE from LWE, for all polynomial sized circuits (or even NC1) is a long standing
open problem. Our work settles the question in the symmetric key case, and makes
significant progress in the public key case. Our constructions use prior constructions
of KP-ABE [BGG+14] and FE [GTKP+13a] as building blocks and combine them
carefully to obtain the desired efficiency for CP-ABE. These building blocks satisfy
certain special properties such as succinctness of ciphertext [GTKP+13a] and short secret
key [BGG+14]. By noticing that the efficiency properties of these schemes compose
in a fortuitous way, we achieve the required efficiency of CP-ABE by doing very little
work9! Similar tricks were used by [AMY19] in the context of constructing ABE for
finite automata – indeed, our constructions are simpler than theirs.

An obvious open problem is to close the “efficiency” gap in setup time that remains
open in our public key construction. The chief hurdle in doing so is that the computation
of the FE secret key is a secret key operation but the only algorithms in the construction

9 Beyond what is already done by the “heavy hammers” of [BGG+14, GTKP+13b]

9

that are allowed the time required by this computation, namely encrypt and decrypt, are
public key algorithms. An approach may be to delegate the FE secret key generation
using garbled circuits, as in [DG17] but a natural implementation of this idea turns out
to be insecure. We conjecture that new techniques may be required to overcome this
hurdle. In the context of function privacy, we obtain the first attribute based encryption
schemes for circuits with function hiding, in the symmetric key setting. A natural open
question is to provide constructions in the public key setting. However, as observed by
[BRS13a], function privacy in the public key setting is significantly more challenging,
with even the right definition being unclear. We conjecture that this problem may require
significantly new ideas to resolve.

2 Preliminaries

Notation. We begin by defining the notation that we will use throughout the paper. We
use bold letters to denote vectors and the notation [a, b] to denote the set of integers
{k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n]. Concatenation is denoted by
the symbol ‖. Vectors will be column vectors unless stated otherwise.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n)
to denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some
constant c > 0, and we use poly(n) to denote a polynomial function of n. We use
the abbreviation PPT for probabilistic polynomial-time. We say an event occurs with
overwhelming probability if its probability is 1− negl(n). The function log x is the base
2 logarithm of x. For any finite set S we denote P(S) to be the power set of S. For a
circuit C : {0, 1}`1+`2 → {0, 1} and a string x ∈ {0, 1}`1 , C[x] : {0, 1}`2 → {0, 1}
denotes a circuit that takes y and outputs C(x,y). We construct C[x] in the following
specified way. Namely, C[x] is the circuit that takes as input y and sets

zi =

{
y1 ∧ ¬y1 if xi = 0

y1 ∨ ¬y1 if xi = 1

and then computes C(z,y), where xi, yi, and zi are the i-th bit of x, y, and z,
respectively. In the above, it is clear that zi = xi and we have C(z,y) = C(x,y).
Furthermore, it is also easy to see that depth(C[x]) ≤ depth(C) +O(1) holds.

Circuit Classes of Interest. For λ ∈ N, let Cinp,d,s denote a family of circuits with
inp bit inputs, bounded depth d, bounded size s and binary output. When the size s is
unspecified, it means that the circuit family Cinp,d can have unbounded size.

2.1 Attribute Based Encryption for circuits

Attribute based encryption comes in two flavours: key policy or ciphertext policy,
depending on where the policy (represented as a Boolean circuit) is embedded. We
define these next.

10

Ciphertext Policy Attribute based Encryption for Circuits. Let C = {Cinp(λ),d(λ)}λ∈N.
A ciphertext policy attribute-based encryption (ABE) scheme cpABE for C over a
message spaceM = {Mλ}λ∈N consists of four algorithms:

– cpABE.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary representation
of the security parameter, the length inp = inp(λ) of the input, the depth d = d(λ)
of the circuit family C to be supported. It outputs the master public key and the
master secret key (cpABE.mpk, cpABE.msk).

– cpABE.Enc(cpABE.mpk, C,m) is a PPT algorithm that takes as input the master
public key cpABE.mpk, circuit C ∈ Cinp(λ),d(λ) and a message m ∈M. It outputs
a ciphertext cpABE.ct.

– cpABE.KeyGen(cpABE.mpk, cpABE.msk,x) is a PPT algorithm that takes as input
the master public key cpABE.mpk, the master secret key cpABE.msk, and a a string
x ∈ {0, 1}inp and outputs a corresponding secret key cpABE.skx.

– cpABE.Dec(cpABE.mpk, cpABE.skx,x, cpABE.ct, C) is a deterministic algorithm
that takes as input the secret key cpABE.skx, its associated attribute string x, a
ciphertext cpABE.ct, and its associated circuit C and outputs either a message m′

or ⊥.

Definition 2.1 (Correctness).
A ciphertext policy ABE scheme for circuits cpABE is correct if for all λ ∈ N,

polynomially bounded inp and d, all circuits C ∈ Cinp(λ),d(λ), all x ∈ {0, 1}inp such that
C(x) = 1 and for all messages m ∈M,

Pr

(cpABE.mpk, cpABE.msk)← cpABE.Setup(1λ, 1inp, 1d),
cpABE.skx ← cpABE.KeyGen(cpABE.mpk, cpABE.msk,x),
cpABE.ct← cpABE.Enc(cpABE.mpk, C,m) :

cpABE.Dec
(
cpABE.mpk, cpABE.skx,x, cpABE.ct, C

)
6= m

 = negl(λ)

where the probability is taken over the coins of cpABE.Setup, cpABE.KeyGen, and
cpABE.Enc.

Definition 2.2. [Selective Security for cpABE] The ABE scheme cpABE for a circuit
family C = {Cinp(λ),d(λ)}λ∈N and a message space {Mλ}λ∈N is said to satisfy selective
security if for any stateful PPT adversary A, there exists a negligible function negl(·)
such that

AdvcpABE,A(1
λ) =

∣∣∣Pr[Exp(0)cpABE,A(1
λ) = 1]− Pr[Exp

(1)
cpABE,A(1

λ) = 1]
∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the experiment
Exp

(b)
cpABE,A, modeled as a game between adversary A and a challenger, is defined as

follows:

1. Setup phase: On input 1λ,A submits (1inp, 1d) and the target circuit set ChalC ⊂
Cinp(λ),d(λ) (of possibly varying sizes), to the challenger. The challenger samples
(cpABE.mpk, cpABE.msk) ← cpABE.Setup(1λ, 1inp, 1d) and replies to A with
cpABE.mpk.

11

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order and unbounded many times.
(a) Key Queries: A chooses an attribute string x ∈ {0, 1}inp that satisfies

C(x) = 0 for all C ∈ ChalC. For each such query, the challenger replies
with cpABE.skx ← cpABE.KeyGen(cpABE.mpk, cpABE.msk,x).

(b) Challenge Queries: A submits a circuit C ∈ ChalC and a pair of equal length
messages (m0,m1) ∈ (M)2 to the challenger. The challenger replies to A with
cpABE.ct← cpABE.Enc(cpABE.mpk, C,mb).

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 2.3. The above definition allows an adversary to make challenge queries
multiple times. A more standard (equivalent) notion of the security for an ABE restricts
the adversary to make only single challenge query. As in [AMY19], we adopt the above
definition since it is convenient for our purpose.

Symmetric Key Setting. In the symmetric key setting, the encryption algorithm
additionally takes the master secret key as input and the adversary is permitted to
make encryption queries in the security game. As for the security definition, we modify
the above game so that the adversary is allowed to make the following type of queries in
the query phase:

(c) Encryption Queries: A submits a circuit C ∈ Cinp(λ),d(λ) and a pair of equal
length messages m ∈ M to the challenger. The challenger replies to A with
cpABE.ct← cpABE.Enc(cpABE.msk, C,m).

Unlike challenge queries, there is no restriction on C and the returned ciphertext may
be decryptable by the adversary. Note that we did not have to consider above type of
queries in the public key setting since the adversary can encrypt any message by itself.
We also note that in the symmetric key setting, single-challenge ciphertext security and
multi-challenge ciphertext security are not equivalent. We adopt the latter definition as
the default security notion since it is stronger and more natural.

Definition 2.4 (Efficiency.). For λ ∈ N, let Cinp,d denote a family of circuits with inp
bit inputs, bounded depth d and binary output. Let C = {Cinp(λ),d(λ)}λ∈N. We say a
ciphertext policy attribute based encryption scheme cpABE for circuit class C is efficient
if:

1. Setup. The runtime of the setup algorithm, and the size of the public key depends
only on the input length inp and depth bound d of the supported circuits.

2. Key Generation. For an attribute x, the runtime of the key generation and size of
SK depends on the attribute size |x| and (possibly) on circuit depth d.

3. Encryption and Decryption. The runtime of the encrypt and decrypt algorithms,
as well as the size of ciphertext depend on the size of the given input circuit |C|.

Our scheme presented in Section 3 supports unbounded circuits with the above efficiency
properties.

12

Relaxation for Bounded Circuits. We also define a relaxed variant of efficiency for
circuits of bounded size. In more detail, for λ ∈ N, let Cinp,d,s denote a family of
circuits with inp bit inputs, bounded depth d, bounded size s and binary output. Let
C = {Cinp(λ),d(λ),s}λ∈N. Then cpABE for circuit class C allows the setup algorithm to
take circuit size bound 1s as input and its runtime depends on this. However, the runtime
of the key generation and size of SK depends on the attribute size |x| and (possibly) on
circuit depth d but not circuit size bound s. Similarly, the runtime of the encrypt and
decrypt algorithms, as well as the size of ciphertext depend on the size of the given
input circuit |C|, and not on worst case size bound s. Our scheme presented in Section 4
supports bounded circuits with the aforementioned relaxation in the efficiency properties.

Key Policy Attribute based Encryption for Circuits. The definition of key policy
attribute based encryption (kpABE) is exactly as above, with the role of the circuit C
and the attribute x switched. For completeness, we provide this definition below.

For λ ∈ N, let Cinp,d denote a family of circuits with inp bit inputs, an a-priori
bounded depth d, and binary output and C = {Cinp(λ),d(λ)}λ∈N. An attribute-based
encryption (ABE) scheme kpABE for C over a message spaceM = {Mλ}λ∈N consists
of four algorithms:

– kpABE.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary representa-
tion of the security parameter, the length inp = inp(λ) of the input and the depth
d = d(λ) of the circuit family Cinp(λ),d(λ) to be supported. It outputs the master
public key and the master secret key (kpABE.mpk, kpABE.msk).

– kpABE.Enc(kpABE.mpk,x,m) is a PPT algorithm that takes as input the master
public key kpABE.mpk, a string x ∈ {0, 1}inp and a message m ∈M. It outputs a
ciphertext kpABE.ct.

– kpABE.KeyGen(kpABE.mpk, kpABE.msk, C) is a PPT algorithm that takes as
input the master secret key kpABE.msk and a circuit C ∈ Cinp(λ),d(λ) and outputs a
corresponding secret key kpABE.skC .

– kpABE.Dec(kpABE.mpk, kpABE.skC , C, kpABE.ct,x) is a deterministic algo-
rithm that takes as input the secret key kpABE.skC , its associated circuit C, a
ciphertext kpABE.ct, and its associated string x and outputs either a message m′ or
⊥.

Definition 2.5 (Correctness).
An ABE scheme for circuits kpABE is correct if for all λ ∈ N, polynomially bounded

inp and d, all circuits C ∈ Cinp(λ),d(λ), all x ∈ {0, 1}inp such that C(x) = 1 and for all
messages m ∈M,

Pr

(kpABE.mpk, kpABE.msk)← kpABE.Setup(1λ, 1inp, 1d),
kpABE.skC ← kpABE.KeyGen(kpABE.mpk, kpABE.msk, C),
kpABE.ct← kpABE.Enc(kpABE.mpk,x,m) :

kpABE.Dec
(
kpABE.mpk, kpABE.skC , C, kpABE.ct,x

)
6= m

 = negl(λ)

where the probability is taken over the coins of kpABE.Setup, kpABE.KeyGen, and
kpABE.Enc.

13

Definition 2.6 (Selective Security for kpABE). The ABE scheme kpABE for a circuit
family C = {Cinp(λ),d(λ)}λ∈N and a message space {Mλ}λ∈N is said to satisfy selective
security if for any stateful PPT adversary A, there exists a negligible function negl(·)
such that

AdvkpABE,A(1
λ) =

∣∣∣Pr[Exp(0)kpABE,A(1
λ) = 1]− Pr[Exp

(1)
kpABE,A(1

λ) = 1]
∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the experiment
Exp

(b)
kpABE,A, modeled as a game between adversary A and a challenger, is defined as

follows:

1. Setup phase: On input 1λ,A submits (1inp, 1d) and the target X ⊂ {0, 1}inp, which
is a set of binary strings of length inp, to the challenger. The challenger samples
(kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ, 1inp, 1d) and replies to A with
kpABE.mpk.

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order and unbounded many times.
(a) Key Queries: A chooses a circuit C ∈ Cinp,d that satisfies C(x) = 0 for

all x ∈ X . For each such query, the challenger replies with kpABE.skC ←
kpABE.KeyGen(kpABE.mpk, kpABE.msk, C).

(b) Challenge Queries: A submits a string x ∈ X and a pair of equal length
messages (m0,m1) ∈ (M)2 to the challenger. The challenger replies to A with
kpABE.ct← kpABE.Enc(kpABE.mpk,x,mb).

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 2.7. The above definition allows an adversary to make challenge queries
multiple times. More standard notion of the security for an ABE restricts the adversary
to make only a single challenge query. It is well-known that they are actually equivalent,
which is shown by a simple hybrid argument. We adopt the above definition since it is
convenient for our purpose.

Boneh et al. [BGG+14] provided a construction of kpABE which we will use in our
construction of cpABE. The following theorem, provided in [AMY19] summarizes the
efficiency properties of their construction.

Theorem 2.8 (Adapted from [BGG+14]). There exists a selectively secure ABE
scheme kpABE = (kpABE.Setup, kpABE.KeyGen, kpABE.Enc, kpABE.Dec) with the
following properties under the LWE assumption.

1. The circuit kpABE.Setup(·, ·, ·; ·), which takes as input 1λ, 1inp, 1d, and a ran-
domness r and outputs kpABE.msk = kpABE.Setup(1λ, 1inp, 1d; r), can be
implemented with depth poly(λ, d). In particular, the depth of the circuit is
independent of inp and the length of the randomness r.

2. We have |kpABE.skC | ≤ poly(λ, d) for any C ∈ Cinp,d, where
(kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ, 1inp, 1d) and kpABE.skC ←
kpABE.KeyGen(kpABE.mpk, kpABE.msk, C). In particular, the length of the
secret key is independent of the input length inp and the size of the circuit C.

14

3. Let C : {0, 1}inp+` → {0, 1} be a circuit such that we have C[v] ∈ Cinp,d for
any v ∈ {0, 1}`. Then, the circuit kpABE.KeyGen(·, ·, C[·]; ·), that takes as input
kpABE.mpk, kpABE.msk, v, and randomness R̂ and outputs kpABE.KeyGen(

kpABE.mpk, kpABE.msk, C[v]; R̂), can be implemented with depth depth(C) ·
poly(λ, d).

2.2 Key Policy Functional Encryption for Circuits

For λ ∈ N, let Cinp,d,out denote a family of circuits with inp bit inputs, depth d, and
output length out and C = {Cinp(λ),d(λ),out(λ)}λ∈N. A functional encryption (FE) scheme
FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for C consists of four algorithms:

– FE.Setup(1λ, 1inp, 1d, 1out) is a PPT algorithm takes as input the unary representa-
tion of the security parameter, the length inp = inp(λ) of the input, depth d = d(λ),
and the length of the output out = out(λ) of the circuit family Cinp(λ),d(λ),out(λ) to
be supported. It outputs the master public key FE.mpk and the master secret key
FE.msk.

– FE.KeyGen(FE.mpk,FE.msk, C) is a PPT algorithm that takes as input the master
public key FE.mpk, master secret key FE.msk, and a circuit C ∈ Cinp(λ),d(λ),out(λ)
and outputs a corresponding secret key FE.skC . We assume that FE.skC contains C
and FE.mpk.

– FE.Enc(FE.mpk,x) is a PPT algorithm that takes as input the master public key
FE.mpk and an input message x ∈ {0, 1}inp(λ) and outputs a ciphertext FE.ct.

– FE.Dec(FE.mpk,FE.skC ,FE.ct) is a deterministic algorithm that takes as input the
master public key FE.mpk, a secret key FE.skC and a ciphertext FE.ct and outputs
C(x).

Definition 2.9 (Correctness). A functional encryption scheme FE is correct if for all
C ∈ Cinp(λ),d(λ),out(λ) and all x ∈ {0, 1}inp(λ),

Pr

 (FE.mpk,FE.msk)← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ));
ct← FE.Enc(FE.mpk,x);

FE.Dec
(
FE.mpk,FE.KeyGen(FE.mpk,FE.msk, C), ct

)
6= C(x)

 = negl(λ)

where the probability is taken over the coins of FE.Setup, FE.KeyGen, FE.Enc and,
FE.Dec).

We then define full simulation based security for single key FE as in [GKP+13, Defn
2.13].

Definition 2.10 (FULL-SIM Security). Let FE be a functional encryption scheme for a
circuits. For a stateful PPT adversary A and a stateless PPT simulator Sim, consider
the following two experiments:

15

ExprealFE,A(1
λ): ExpidealFE,Sim(1

λ):

1: (1inp, 1d, 1out)← A(1λ)
2: (FE.mpk,FE.msk)
← FE.Setup(1λ, 1inp, 1d, 1out)

3: C ← A(FE.mpk)
4: FE.skC
← FE.KeyGen(FE.mpk,FE.msk, C)

5: α← AFE.Enc(FE.mpk,·)(FE.mpk,FE.skC)

1: (1inp, 1d, 1out)← A(1λ)
2: (FE.mpk,FE.msk)
← FE.Setup(1λ, 1inp, 1d, 1out)

3: C ← A(FE.mpk)
4: FE.skC
← FE.KeyGen(FE.mpk,FE.msk, C)

5: α← AO(·)(FE.mpk,FE.skC)

Here, O(·) is an oracle that on input x from A, runs Sim with inputs (FE.mpk, skC , C, C(x), 1
inp)

to obtain a ciphertext FE.ct and returns it to the adversary A.
The functional encryption scheme FE is then said to be single query FULL-SIM

secure if there exists a PPT simulator Sim such that for every PPT adversary A, the
following two distributions are computationally indistinguishable:{

ExprealFE,A(1
λ)

}
λ∈N

c
≈
{
ExpidealFE,Sim(1

λ)

}
λ∈N

Remark 2.11. Our definition of FULL-SIM security game for FE differs from [GKP+13]
in that we allow the adversary to access challenge oracle (either O(·) or FE.Enc(FE.mpk, ·))
as many times as it wants whereas they only allow one-time access. However, it can
be seen that these definitions are equivalent by a simple hybrid argument because the
simulation of FE.Enc(·) and O(·) does not require any secret information.

Gorbunov et al. [GKP+13] provided a construction of single key functional
encryption from the learning with errors assumption. The following theorem summarizes
the efficiency properties of their construction.

Theorem 2.12 ([GKP+13]). There exists an FE scheme FE = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) with the following properties.

1. For any polynomially bounded inp(λ), d(λ), out(λ), all the algorithms in FE run in
polynomial time. Namely, the running time of FE.Setup and FE.Enc do not depend
on the size of circuit description to be supported by the scheme.

2. Assuming the subexponential hardness of the LWE problem, the scheme satisfies
full-simulation-based security.

We note that the first property above is called succinctness or semi-compactness of FE. A
stronger version of the efficiency property called compactness requires the running time
of the encryption algorithm to be dependent only on the length of input message x. An
FE with compactness is known to imply indistinguishability obfuscation [AJ15, BV15].

IND Based Security for Unbounded Keys. A functional encryption scheme FE for a
function family C is secure in the adaptive indistinguishability game, denoted as ind
secure, if for all probabilistic polynomial-time adversaries Adv, the advantage of Adv in
the following experiment is negligible in the security parameter λ:

16

1. Public Key. Challenger Ch returns FE.mpk to Adv.
2. Pre-Challenge Key Queries. Adv may adaptively request keys for any circuits
C1, . . . , C` ∈ C. In response, Adv is given the corresponding keys FE.skCi

.
3. Challenge. Adv outputs the challenges (x0,x1) to the challenger, subject to the

restriction that Ci(x0) = Ci(x1) for all i ∈ [`]. The challenger chooses a random
bit b, and returns the ciphertext CTxb

.
4. Post-Challenge Key Queries. The adversary may continue to request keys for

additional functions Ci, subject to the restriction that Ci(x0) = Ci(x1) for all i. In
response, Adv is given the corresponding keys FE.skCi .

5. Guess. Adv outputs a bit b′, and succeeds if b′ = b.

The advantage of Adv is the absolute value of the difference between its success
probability and 1/2. In the selective game, the adversary must announce the challenge
in the first step, before receiving the public key. Note that without loss of generality, in
the selective game, the challenge ciphertext can be returned along with the public key.
In the semi-adaptive game, the adversary must announce the challenge after seeing the
public key but before making any key requests.

Symmetric Key Variant. The symmetric key variant of the above definition follows
naturally by removing the public key FE.mpk from all the algorithms, and providing the
encryptor the master secret key FE.msk. In the security definition, the adversary may
request encryption queries in addition to the key queries.

2.3 Predicate Encryption for Circuits

A (Key-Policy) Predicate Encryption scheme PE for an attribute universe X , a predicate
universe C, and a message spaceM, consists of four algorithms
(PE.Setup,PE.Enc,PE.KeyGen,PE.Dec):

PE.Setup(1λ,X , C,M) → (PE.mpk,PE.msk). The setup algorithm gets as input
the security parameter λ and a description of (X , C,M) and outputs the public
parameter PE.mpk, and the master key PE.msk.

PE.Enc(PE.mpk,x, µ) → CT. The encryption algorithm gets as input PE.mpk, an
attribute x ∈ X and a message µ ∈M. It outputs a ciphertext CT.

PE.KeyGen(PE.msk, C)→ SKC . The key generation algorithm gets as input PE.msk
and a predicate C ∈ C. It outputs a secret key SKC .

PE.Dec((SKC , C),CT) → µ ∨ ⊥. The decryption algorithm gets as input the secret
key SKC , a predicate C, and a ciphertext CT. It outputs a message µ ∈M or ⊥.

Correctness. We require that for all (PE.mpk,PE.msk)← PE.Setup(1λ,X , C,M), for
all (x, C) ∈ X × C and for all µ ∈M,

– For 1-queries, namely C(x) = 1,
[
PE.Dec

(
(SKC , C),CT

)
= µ

]
≥ 1− negl(λ)

– For 0-queries, namely C(x) = 0,
[
PE.Dec

(
(SKC , C),CT

)
= ⊥

]
≥ 1− negl(λ)

17

Semi-Adaptive Simulation Security. Below, we define the SA-SIM security experi-
ment for predicate encryption (PE) similarly to Gorbunov et al. [GVW15].

Definition 2.13 (SA-SIM Security).
Let PE be a predicate encryption scheme for a circuit family C. For every stateful

p.p.t. adversary Adv and a stateful p.p.t. simulator Sim, consider the following two
experiments:

ExprealPE,Adv(1
λ): ExpidealPE,Sim(1

λ):

1: (PE.mpk,PE.msk)← PE.Setup(1λ)
2: x← Adv(PE.mpk)

3: µ← AdvPE.KeyGen(PE.msk,·)(PE.mpk)
4: CT← PE.Enc

(
PE.mpk,x, µ

)
5: α←AdvPE.KeyGen(PE.msk,·)(CT)
6: Output (x, µ, α)

1: PE.mpk← Sim(1λ)
2: x← Adv(PE.mpk)
3: µ← AdvSim(PE.mpk)
4: CT← Sim (PE.mpk, 1|x|, 1|µ|)
5: α←AdvSim(CT)
6: Output (x, µ, α)

We say an adversary Adv is admissible if for all queries C that it makes, it holds that
C(x) = 0.

The predicate encryption scheme PE is said to be SA-SIM-attribute hiding if there
exists a p.p.t. simulator Sim such that for every admissible p.p.t. adversary Adv, the
following two distributions are computationally indistinguishable:{

ExprealPE,Adv(1
λ)

}
λ∈N

c
≈
{
ExpidealPE,Sim(1

λ)

}
λ∈N

Symmetric Key Variant. The symmetric key variant of the above definition follows
naturally by removing the public key PE.mpk from all the algorithms, and providing the
encryptor the master secret key PE.msk. In the security definition, the adversary is given
access to the encryption oracle in addition to the key generation oracle.

Ciphertext Policy Variant. The ciphertext policy variant of the above definition reverses
the role of the ciphertext and key. In more detail, the ciphertext encodes the circuit C
along with message µ, and the secret key contains the attribute x. We require that the
running time of the key generation algorithm does not depend on the size of the circuit
|C| (but may depend on its depth).

2.4 Function Hiding Symmetric Key Predicate Encryption

A Function Hiding Symmetric Key Predicate Encryption scheme FHPE for an attribute
universe X , a predicate universe C, and a message spaceM, consists of four algorithms
(FHPE.Setup,FHPE.Enc,FHPE.KeyGen,FHPE.Dec):

FHPE.Setup(1λ,X , C,M) → FHPE.msk. The setup algorithm gets as input the
security parameter λ and a description of (X , C,M) and outputs the master key
FHPE.msk.

18

FHPE.Enc(FHPE.msk,x, µ)→ CT. The encryption algorithm gets as input FHPE.msk,
an attribute x ∈ X and a message µ ∈M. It outputs a ciphertext CT.

FHPE.KeyGen(FHPE.msk, C) → SKC . The key generation algorithm gets as input
FHPE.msk and a predicate C ∈ C. It outputs a secret key SKC .

FHPE.Dec(SKC ,CT)→ µ ∨ ⊥. The decryption algorithm gets as input the secret key
SKC and a ciphertext CT. It outputs a message µ ∈M or ⊥.

Correctness. We require that for all (FHPE.msk) ← FHPE.Setup(1λ,X , C,M), for
all (x, C) ∈ X × C and for all µ ∈M,

– For 1-queries, namely C(x) = 1, Pr
[
PE.Dec

(
SKC ,CT

)
= µ

]
≥ 1− negl(λ)

– For 0-queries, namely C(x) = 0, Pr
[
PE.Dec

(
SKC ,CT

)
= ⊥

]
≥ 1− negl(λ)

Function Hiding IND Security. The standard function hiding indistinguishability
game for secret key predicate encryption may be defined as follows.

Definition 2.14 (Function hiding IND Security). A symmetric key predicate encryp-
tion scheme PE is function-hiding, if every admissible PPT adversary Adv has negligible
advantage in the following game:

1. Key Generation. The challenger Ch samples msk← FHPE.Setup(1λ).
2. The challenger Ch chooses a random bit b and repeats the following with Adv for

an arbitrary number of times determined by Adv:
– Function Queries. Upon Adv choosing a pair of functions (C0, C1), Ch sends
Adv a function key SK← FHPE.KeyGen(msk, Cb).

– Message Queries. Upon Adv choosing a pair of attribute vectors (x0,x1) and
a message µ, Ch sends Adv a ciphertext CT← FHPE.Enc(msk,xb, µ).

3. The adversary outputs a guess b′ for the bit b and wins if b = b′.

We say an adversary is admissible if for all function and message queries, it holds that
C0(x0) = C1(x1) = 0.

On Ciphertext Queries. A natural game would also allow the adversary to request
ciphertexts for attribute vectors x0,x1 and message µ0 = µ1 = µ such that C0(x0) =
C1(x1) = 1, enabling the adversary to recover µ. However, as we show in Section 5.3,
such a game renders the primitive strong enough to imply symmetric key functional
encryption, which in turn is sufficient to imply iO [BNPW16].

Function Hiding SIM Security. Below, we define attribute and function hiding SA-SIM
security for predicate encryption (FHPE).

Definition 2.15 (Function Hiding SA-SIM Security).
Let FHPE be a function hiding, symmetric key predicate encryption scheme for a

circuit family C. For every stateful p.p.t. adversary Adv and a stateful p.p.t. simulator
Sim, consider the following two experiments:

19

ExprealPE,Adv(1
λ): ExpidealPE,Sim(1

λ):

1: FHPE.msk← FHPE.Setup(1λ)
2: {x∗i }i∈poly ← Adv(1λ)

3: {µ∗i }i∈poly, {C∗i }i∈poly ← AdvO(msk,·)

4: {CTi ← FHPE.Enc
(
msk,xi, µ

∗
i

)
}i

5: {SKC∗
i
← FHPE.KeyGen(msk, C∗i)}i

6: α←AdvO(msk,·)({CT}i, {SKC∗
i
}i)

7: Output ({x∗i , µ∗i }i, {C∗i }i, α)

1: {x∗i }i∈poly ← Adv(1λ)

2: {µ∗i }i∈poly, {C∗i }i∈poly ← AdvSim

3: {CT}i, {SKC∗
i
}i

← Sim ({1|x∗
i |, 1|µ

∗
i |}i, {1|C

∗
i |}i)

4: α←AdvSim({CTi}i, {SKC∗
i
}i)

5: Output ({x∗i , µi}i, {C∗i }i, α)

Above, O is an oracle that upon receiving attribute and circuit queries from the
adversary, returns ciphertexts and keys by running FHPE.Enc and FHPE.KeyGen
respectively.

We say an adversary Adv is admissible if for all circuit queries Ci and challenge
circuits C∗i , and for all attribute queries xj and challenge attributes x∗j , it holds that
Ci(xj) = C∗i (xj) = Ci(x

∗
j) = C∗i (x

∗
j) = 0.

The symmetric key predicate encryption scheme PE is said to be SA-SIM secure with
attribute and function hiding if there exists a p.p.t. simulator Sim such that for every
admissible p.p.t. adversary Adv, the following two distributions are computationally
indistinguishable: {

ExprealPE,Adv(1
λ)

}
λ∈N

c
≈
{
ExpidealPE,Sim(1

λ)

}
λ∈N

Adaptive Variant of Security. We can consider stronger variant of the above security
definition where the adversary interleaves the challenge queries x∗i and C∗i in an arbitrary
order instead of submitting them at the beginning of the game. We call this security
notion adaptive simulation function hiding security.

On Ciphertext Queries. We note that the above definition restricts the adversary in its
encryption queries. A more natural game would allow an adversary to request a key for a
circuit C and encryption for pair (x, µ) such that C(x) = 1. This enables the adversary
to recover µ but intuitively does not violate security since µ was picked by the adversary.
However, as discussed in the case of IND based function hiding, such a game renders
the primitive strong enough to imply symmetric key functional encryption, which in turn
is sufficient to imply iO [BNPW16].

3 Secret Key CP-ABE for Unbounded Circuits

We construct a secret key ciphertext policy ABE scheme for a family of circuits Cn,d
with n bit inputs, an a-priori bounded depth d, and binary output. Our scheme is
denoted by cpABE = (cpABE.Setup, cpABE.KeyGen, cpABE.Enc, cpABE.Dec) and
is constructed using the following ingredients:

20

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key K←
PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We denote
the length of K by |K|.

2. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme
for circuit with the efficiency property described in Item 1 of Theorem 2.12. We can
instantiate FE with the scheme proposed by Goldwasser et al. [GKP+13].

3. kpABE = (kpABE.Setup, kpABE.KeyGen, kpABE.Enc, kpABE.Dec): An ABE
scheme that satisfies the efficiency properties described in Theorem 2.8. We can
instantiate kpABE with the scheme proposed by Boneh et al. [BGG+14].

4. U(·, ·): a universal circuit [CH85] that takes as input a circuit C of fixed depth and
size and an input x to the circuit and outputs C(x). We will denote by Uy(·, ·) the
above circuit when the size of the first input C is y. We denote by Uy[x](·) = U(·,x)
the above circuit with the second input x being hardwired. By the construction of
universal circuit [CH85], we have depth(U) ≤ O(depth(C)).

Below we provide our construction for secret key CP-ABE for circuits. Below, we
overload notation and denote the randomness used in a PPT algorithm by a key K of
a pseudorandom function PRF. Namely, for a PPT algorithm (or circuit) A that takes
as input x and a randomness r ∈ {0, 1}` and outputs y, A(x;K) denotes an algorithm
that computes r := PRF.Eval(K, 1)‖PRF.Eval(K, 2)‖ · · · ‖PRF.Eval(K, `) and runs
A(x; r).

cpABE.Setup(1λ, 1n, 1d): On input the security parameter 1λ and the input length n
and depth d of the circuit family, do the following:

1. For all j ∈ [0, λ], sample PRF keys K̂j ,Rj ← PRF.Setup(1λ).
2. For all j ∈ [0, λ], sample (FE.mpkj ,FE.mskj)← FE.Setup(1λ, 1inp(λ), 1out(λ),

1d(λ)).
Here, we generate λ+1 instances of FE. Note that all instances support a circuit
class with input length inp(λ) = n+2|K|, output length out(λ), and depth d(λ),
where out(λ) and d(λ) are polynomials in the security parameter that will be
specified later.

3. Output cpABE.msk = ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).
cpABE.Enc(cpABE.msk, C,m): On input the master secret key cpABE.msk, a circuit
C ∈ Cn,d, and a message m ∈M, do the following:

1. Parse the master secret key as cpABE.msk→ ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).
2. Pad the circuit length to the next power of two: Let ` = |C| and i = dlog `e.

Set Ĉ = C‖⊥2i−`.
3. Sample a fresh kpABE scheme to support inputs of size |Ĉ|: Compute a kpABE

key pair

(kpABE.mpki, kpABE.mski) = kpABE.Setup(1λ, 12
i

, 1d̂; K̂i)

Here K̂i is the randomness and d̂ is a parameter chosen later.
4. Compute kpABE.ct← kpABE.Enc(kpABE.mpki, Ĉ,m) as an kpABE cipher-

text for the message m under attribute Ĉ.

21

5. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Fn,2i ;Ri), where Fn,2i is a
circuit described in Figure 1.

6. Output cpABE.ct = (FE.ski, kpABE.mpki, kpABE.ct).

Function Fn,2i

1. Parse the input w = (x, K̂, R̂), where x is an input string of length n and K̂ and R̂ are PRF
keys.

2. Compute (kpABE.mpk, kpABE.msk) = kpABE.Setup(1λ, 12
i

, 1d̂; K̂).
3. Compute and output

kpABE.skU
2i

[x] = kpABE.KeyGen(kpABE.mpk, kpABE.msk, U2i [x]; R̂)

Fig. 1

cpABE.KeyGen(cpABE.msk,x): On input the master secret key cpABE.msk and the
attribute vector x, do the following:

1. Parse the master secret key as cpABE.msk→ ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).
2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].
3. Compute FE.ctj = FE.Enc(FE.mpkj , (x, K̂j , R̂j)) for all j ∈ [0, λ].
4. Output cpABE.skx = {FE.ctj}j∈[0,λ].

cpABE.Dec(cpABE.skx,x, cpABE.ct, C): On input a secret key for attribute vector x
and a ciphertext encoded for circuit C, do the following:

1. Parse the secret key as cpABE.skx = {FE.ctj}j∈[0,λ] and the ciphertext as
cpABE.ct = (FE.ski, kpABE.mpki, kpABE.ct).

2. Set ` = |C| and choose FE.cti from cpABE.skx = {FE.ctj}j∈[0,λ] such that
i = dlog `e < λ.

3. Compute y = FE.Dec(FE.mpki,FE.ski,FE.cti).
4. Compute and output z = kpABE.Dec(kpABE.mpki, y, U2i [x], kpABE.cti, Ĉ),

where we interpret y as an ABE secret key and Ĉ = C‖⊥2i−`.

Efficiency. The following theorem asserts that our scheme is efficient.

Theorem 3.1. For appropriately chosen d̂(λ), out(λ), and d(λ), each algorithm of our
scheme cpABE runs in polynomial time of input length.

Correctness. Intuitively, correctness follows directly from the correctness of kpABE
and FE. The following theorem shows that our scheme is correct.

Theorem 3.2. For appropriately chosen d̂(λ), out(λ), and d(λ), our scheme cpABE is
correct for any polynomially bounded n(λ).

22

Security. We can prove that if FE and kpABE are secure then so is the cpABE defined
above. Formally, we have the following theorem.

Theorem 3.3. Assume that FE satisfies full simulation based security, kpABE is
selectively secure, and that PRF is a secure pseudorandom function. Then, cpABE
satisfies selective security.

The proof of the above theorems will appear in the full version.

4 Public Key CP-ABE for Bounded Circuits

In this section, we construct a public key ciphertext policy ABE scheme for bounded
sized circuits Cn,d,s, where n is the input length, d is the depth and s is the upper bound of
the size . In our construction, the size of the secret key and ciphertext satisfy the efficiency
properties desired from CP-ABE (Definition 2.4). Additionally, the running time of the
encrypt and decrypt algorithms depend only on the size of the circuit C and not on the
worst case circuit size s. However, the running time of the setup algorithm grows with
the size s of the circuits supported by the scheme. We note that the inefficiency of setup
is mitigated since it is only run once.

We provide the construction next.

cpABE.Setup(1λ, 1n, 1d, 1s): On input the security parameter λ and the input length n,
depth d and the upper bound of the size s of the circuit family, set η := dlog se and
do the following:

1. For all j ∈ [0, η], sample PRF keys K̂j ,Rj ← PRF.Setup(1λ).
2. For all j ∈ [0, η], sample (kpABE.mpkj , kpABE.mskj) = kpABE.Setup(1λ, 12

j

, 1d̂; K̂j).
Here, d̂ is the depth of the universal circuit U(·, ·) for circuits of size s ≥ 2j and
depth d.

3. For all j ∈ [0, η], sample (FE.mpkj ,FE.mskj)← FE.Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)).
Here, input length inp = n+2|K|, output length out is the length of the kpABE
secret key, and depth d̃ is the depth of the kpABE.KeyGen algorithm.

4. For all j ∈ [0, η], obtain FE.skj = FE.KeyGen(FE.mpkj ,FE.mskj , Fn,2j ;Rj),
where Fn,2j is a circuit described in Figure 2.

5. Output cpABE.mpk = ({FE.mpkj , kpABE.mpkj ,FE.skj}j∈[0,η]) and cpABE.msk =

({K̂j}j∈[0,η]).

cpABE.Enc(cpABE.mpk, C,m): On input the master public key cpABE.mpk, a circuit
C of size |C| = `, and a message m ∈M, do the following:

1. Parse the master public key as cpABE.mpk→ ({FE.mpkj , kpABE.mpkj ,FE.skj}j∈[0,η]).
2. Pad the circuit length to the next power of two: Set i = dlog `e and Ĉ =

C‖⊥2i−`.
3. Compute kpABE.ct← kpABE.Enc(kpABE.mpki, Ĉ,m) as an kpABE cipher-

text for the message m under attribute Ĉ.
4. Output cpABE.ct = kpABE.ct.

23

Function Fn,2i

(a) Parse the input w = (x, K̂, R̂), where x is an input string of length n and K̂ and R̂ are PRF
keys.

(b) Compute (kpABE.mpk, kpABE.msk) = kpABE.Setup(1λ, 12
i

, 1d̂; K̂).
(c) Compute and output

kpABE.skU
2i

[x] = kpABE.KeyGen(kpABE.mpk, kpABE.msk, U2i [x]; R̂)

Fig. 2

cpABE.KeyGen(cpABE.mpk, cpABE.msk,x): On input the master secret key cpABE.msk
and the attribute vector x, do the following:

1. Parse the master public key as cpABE.mpk→ ({FE.mpkj , kpABE.mpkj ,FE.skj}j∈[0,η])
and the master secret key as cpABE.msk→ ({K̂j}j∈[0,η]).

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, η].
3. Compute FE.ctj = FE.Enc(FE.mpkj , (x, K̂j , R̂j)) for all j ∈ [0, η].
4. Output cpABE.skx = {FE.ctj}j∈[0,η].

cpABE.Dec(cpABE.mpk, cpABE.skx,x, cpABE.ct, C): On input a secret key for
attribute vector x and a ciphertext encoded for circuit C, do the following:

1. Parse the secret key as cpABE.skx = {FE.ctj}j∈[0,λ] and the ciphertext as
cpABE.ct = kpABE.ct.

2. Compute y = FE.Dec(FE.mpki,FE.ski,FE.cti).
3. Compute and output z = kpABE.Dec(kpABE.mpki, y, U2i [x], kpABE.ct, C),

where we interpret y as an ABE secret key.

Correctness and Efficiency. Correctness is evident from correctness of FE and kpABE.
By correctness of FE, we get that y = kpABE.skU2i [x]

. By correctness of kpABE we
get that z = m iff U2i [x](C) = C(x) = 1.

Next, we discuss the efficiency of the above scheme. We assume that each algorithm
has RAM access to cpABE.mpk. Note that the encryption algorithm runs in time that
depends only on the size of the input circuit |C| and not on s. The key generation
algorithm runs in polynomial time in |x| and λ, and the decryption algorithm runs
in polynomial time in |C|, |x|, and λ. Thus, the above scheme satisfies the relaxed
efficiency of Definition 2.4. Note that this efficiency property does not hold if we remove
the assumption that each algorithm has RAM access to cpABE.mpk, since the length of
cpABE.mpk, which is input to these algorithms, is polynomially dependent on s.

Security. The proof of security directly follows from the secret key case (Section 3). In
more detail, we have the following theorem. The proof of the theorem will appear in the
full version.

Theorem 4.1. Assume that FE satisfies full simulation based security (Definition
2.10), kpABE satisfies selectively security (Definition 2.6), and that PRF is a secure

24

pseudorandom function. Then, the public key cpABE described above satisfies selective
security (Definition 2.2).

5 Function Hiding Predicate Encryption for Circuits

In this section, we provide a construction for function hiding predicate encryp-
tion in the symmetric key setting. Let the attribute universe be X , the predi-
cate universe be C, the message space be M. Then, we construct the algorithms
(FHPE.Setup,FHPE.Enc,FHPE.KeyGen,FHPE.Dec) as follows:

FHPE.Setup(1λ,X , C,M): The setup algorithm gets as input the security parameter
λ and a description of (X , C,M) and does the following:
1. Sample a symmetric key encryption scheme SKE. Let SKE.SK← SKE.Setup(1λ).
2. Sample a symmetric key predicate encryption scheme PE without function

hiding. Let PE.msk← PE.Setup(1λ).
3. Output FHPE.msk = (PE.msk,SKE.SK).

FHPE.Enc(FHPE.msk,x, µ): The encryption algorithm gets as input FHPE.msk, an
attribute x ∈ X , a message µ ∈M, and does the following:
1. Interpret FHPE.msk = (PE.msk,SKE.SK).
2. Define a = (x,SKE.SK) and compute CT← PE.Enc(PE.msk,a, µ).
3. Output CT.

FHPE.KeyGen(FHPE.msk, C): The key generation algorithm gets as input FHPE.msk,
a predicate C ∈ C and does the following:
1. Let Ĉ = SKE.Enc(SKE.SK, C).
2. Define the circuit UĈ(·) as in Figure 3.

Function UĈ

(a) Parse the input a = (x,k), where x ∈ X is an input string and k is an SKE secret key of
length λ.

(b) Compute C = SKE.Dec(Ĉ,k)
(c) Compute and output C(x)

Fig. 3

3. Compute SKC = PE.KeyGen(PE.msk, UĈ) and output it.

FHPE.Dec(SKC ,CT): The decryption algorithm gets as input the secret key SKC and
a ciphertext CT, runs PE.Dec(SKC ,CT) and outputs it.

Correctness. Correctness follows directly from the correctness of PE and SKE. Note
that, by correctness of PE we have that PE.Dec(SKC ,CT) = UĈ(x,SKE.SK). Next,
by correctness of SKE we have SKE.Dec(Ĉ,SKE.SK) = C. Hence decryption outputs
µ if and only if UĈ(x,SKE.SK) = C(x) = 1.

25

Security. Next, we prove that the above construction satisfies function hiding as defined
in Section 2.4. In more detail, we have:

Theorem 5.1. Suppose that PE is a symmetric key predicate encryption scheme
satisfying SA-SIM10 attribute hiding (Definition 2.13) and SKE is a semantically secure
symmetric key encryption scheme. Then the function hiding predicate encryption scheme
FHPE described above satisfies SA-SIM attribute and function hiding (Definition 2.15).

The proof of the theorem will appear in the full version.

5.1 Instantiating Function Hiding PE from Concrete Assumptions.

In this section, we provide instantiations of function hiding predicate encryption from
concrete assumptions.

Semi-adaptively Secure Constructions for Circuits from LWE. Here, we explain that
we can construct adaptively secure function hiding PE scheme for circuits from LWE.
To do so, we start with semi-adaptively secure ABE for circuits [BV16, GKW16]. This
construction can be upgraded to be PE by using lockable obfuscation [GKW17, WZ17].
Plugging the obtained PE scheme into our construction, we obtain the following theorem:

Theorem 5.2. Assuming LWE, we have function hiding SA-SIM secure predicate
encryption for all polynomial sized circuits.

Adaptive Simulation Secure Constructions for NC1 Circuits from Bilinear Maps and
LWE. The above construction only achieves selective security. Here, we explain that we
can construct adaptive simulation secure function hiding PE scheme for NC1 circuits
by additionally using bilinear maps. To do so, we start with adaptively secure KP-ABE
scheme for NC1 circuits [CGW15, KW19] from the decisional linear (DLIN) assumption
on bilinear groups. By applying the ABE-to-PE conversion using lockable obfuscation
[GKW17, WZ17], we obtain an adaptively secure (key-policy) PE scheme for NC1

circuits from the DLIN assumption and the LWE assumption. We can further upgrade its
security to adaptive simulation security by the conversion shown by [GKW17, Appendix
F]. We then instantiate our construction with this PE scheme. To do so, we need that UĈ
is implementable by an NC1 circuit. It suffices to show that we can implement Step 2a
and 2c of UĈ by an NC1 circuit. The former is possible by instantiating the underlying
SKE scheme with the secret key version of the Regev encryption scheme [Reg09], which
has NC1 decryption circuit. The latter is also possible by using the depth-preserving
universal circuit [CH85] that takes as input C and x and outputs C(x) and whose depth
is only constant time deeper than the depth of C. Summarizing the above discussion, we
have the following theorem.

Theorem 5.3. Assuming LWE assumption and DLIN, we have function hiding adaptive
simulation secure predicate encryption for NC1 circuits.
10 We note that for PE, IND based security can be bootstrapped into SIM based security as shown

by [GKW17, Appendix F].

26

5.2 Ciphertext Policy Predicate Encryption with Function Hiding

Above, we presented a construction for function hiding predicate encryption in the
key policy setting. Now, we leverage this to provide a construction for function hiding
predicate encryption in the ciphertext policy setting. Note that the construction for
cpABE presented in Section 3 constructions uses a single key functional encryption
scheme (FE) along with a key policy attribute based encryption scheme (kpABE) in a
modular way. We claim that if we replace the kpABE scheme with a function hiding
predicate encryption scheme constructed above, then the resultant scheme achieves
attribute and function hiding as well. We refer the reader to the full version for more
details.

5.3 Strong Function Hiding Implies iO

The function hiding predicate encryption scheme we constructed above achieves the
weaker notion of security of definition 2.14. As discussed in Section 1, if we have a
scheme that satisfies a stronger, more natural version of the security, we can construct an
iO from this scheme. We refer the reader to the full version for more details.

Acknowledgements. We would like to thank the anonymous reviewers of TCC 2020 for
helpful comments. We would also like to thank the Simons Institute for the Theory of
Computing, for hosting both authors during the program entitled Lattices: Algorithms,
Complexity, and Cryptography. Dr. Agrawal is supported by the DST “Swarnajayanti”
fellowship, an Indo-French CEFIPRA project and an “Indo-Israel” ISF-UGC project.
The first author thanks Zvika Brakerski for suggesting that CP-ABE is interesting even
for the case of bounded sized circuits which led to the construction of Section 4. The
second author is supported by JST CREST Grant Number JPMJCR19F6 and JSPS
KAKENHI Grant Number 19H01109.

References

AC17. S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate
encryption schemes. In EUROCRYPT, pages 627–656, 2017.

AF18. Prabhanjan Ananth and Xiong Fan. Attribute based encryption with sublinear
decryption from lwe. Cryptology ePrint Archive, Report 2018/273, 2018. https:
//eprint.iacr.org/2018/273.

AFV11. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Asiacrypt,
2011.

AHY15. Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. Conversions
among several classes of predicate encryption and applications to ABE with various
compactness tradeoffs. In ASIACRYPT, pages 575–601, 2015.

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, pages 308–326, 2015.

27

https://eprint.iacr.org/2018/273
https://eprint.iacr.org/2018/273

AMY19. Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption
(and more) for nondeterministic finite automata from learning with errors. In Crypto,
2019.

Att14. Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more. In
Eurocrypt, 2014.

BGG+14. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT, pages
533–556, 2014.

BGI+01. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

BJK15. Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product
encryption. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology –
ASIACRYPT 2015, 2015.

BNPW16. Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From
cryptomania to obfustopia through secret-key functional encryption. In Proceedings,
Part II, of the 14th International Conference on Theory of Cryptography - Volume
9986, page 391?418, 2016.

BRS13a. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based
encryption: Hiding the function in functional encryption. In CRYPTO, 2013.

BRS13b. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-
membership encryption and its applications. In Asiacrypt, 2013.

BRS13c. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-
membership encryption and its applications. In Proc. of ASIACRYPT 2013, Part I,
2013.

BS15. Zvika Brakerski and Gil Segev. Function-private functional encryption in the
private-key setting. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of
Cryptography, 2015.

BSW07. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. FOCS, 2015:163, 2015.

BV16. Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from lwe: Unbounded
attributes and semi-adaptive security. In Crypto, 2016.

BV20. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption
and succinct ciphertext-policy abe. Cryptology ePrint Archive, Report 2020/191,
2020. https://eprint.iacr.org/2020/191.

BW07. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, pages 535–554, 2007.

CGW15. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order
groups via predicate encodings. In EUROCRYPT, pages 595–624, 2015.

CH85. Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM J. Comput.,
14(4):833–839, 1985.

CW14. Jie Chen and Hoeteck Wee. Semi-adaptive attribute-based encryption and improved
delegation for boolean formula. In SCN 2014, 2014.

DG17. Nico Dottling and Sanjam Garg. Identity-based encryption from the diffie-hellman
assumption. In Crypto, 2017.

GGH13a. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

28

https://eprint.iacr.org/2020/191

GGH+13b. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013. http://eprint.iacr.org/.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption.
In STOC, pages 555–564, 2013.

GKW16. Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and
bundling functionalities made generic and easy. In TCC, 2016.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In FOCS,
2017.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference on
Computer and Communications Security, pages 89–98, 2006.

GTKP+13a. S. Goldwasser, Y. Tauman Kalai, R. Popa, V. Vaikuntanathan, and N. Zeldovich.
How to run turing machines on encrypted data. In CRYPTO (2), pages 536–553,
2013.

GTKP+13b. S. Goldwasser, Y. Tauman Kalai, R. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proc. of STOC,
pages 555–564. ACM Press, 2013.

GV15. Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient
abe for branching programs. In Proceedings, Part I, of the 21st International
Conference on Advances in Cryptology – ASIACRYPT 2015 - Volume 9452, 2015.

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute based
encryption for circuits. In STOC, 2013.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from lwe. In Crypto, 2015.

KLM+16. Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David
Wu. Function-hiding inner product encryption is practical. In SCN, 07 2016.

KNT18. Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-
key functional encryption. In Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages
603–648, 2018.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146–162, 2008.

KW19. Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for \mathsf
ncˆ1 from k-lin. In Eurocrypt, 2019.

LOS+10. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

LW11. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based
encryption. In Eurocrypt, pages 547–567, 2011.

LW12. Allison B. Lewko and Brent Waters. New proof methods for attribute-based
encryption: Achieving full security through selective techniques. In Crypto, pages
180–198, 2012.

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In CRYPTO, pages
191–208, 2010.

29

http://eprint.iacr.org/

OT12. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding
(hierarchical) inner product encryption. In Advances in Cryptology EUROCRYPT
2012, pages 591–608. 2012. Full version available at http://eprint.iacr.
org/2011/543.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J.ACM, 56(6), 2009. extended abstract in STOC’05.

RW13. Yannis Rouselakis and Brent Waters. Practical constructions and new proof methods
for large universe attribute-based encryption. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, pages 463–474, 2013.

SSW09. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.
In TCC, pages 457–473, 2009.

SW05. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

Tsa19. Rotem Tsabary. Fully secure attribute-based encryption for t-cnf from LWE. In
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I,
pages 62–85, 2019.

Wat11. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, Public Key Cryptography – PKC 2011, 2011.

Wat12. Brent Waters. Functional encryption for regular languages. In Crypto, 2012.
Wee14. Hoeteck Wee. Dual system encryption via predicate encodings. In TCC, pages

616–637, 2014.
WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs

under LWE. In FOCS, 2017.

30

http://eprint.iacr.org/2011/543
http://eprint.iacr.org/2011/543

	CP-ABE for Circuits (and more) in the Symmetric Key Setting

