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Abstract. Knowledge extraction, typically studied in the classical set-
ting, is at the heart of several cryptographic protocols. The prospect of
quantum computers forces us to revisit the concept of knowledge extrac-
tion in the presence of quantum adversaries.
We introduce the notion of secure quantum extraction protocols. A se-
cure quantum extraction protocol for an NP relation R is a classical
interactive protocol between a sender and a receiver, where the sender
gets as input the instance y and witness w while the receiver only gets
the instance y as input. There are two properties associated with a se-
cure quantum extraction protocol: (a) Extractability: for any efficient
quantum polynomial-time (QPT) adversarial sender, there exists a QPT
extractor that can extract a witness w′ such that (y,w′) ∈ R and, (b)
Zero-Knowledge: a malicious receiver, interacting with the sender, should
not be able to learn any information about w.
We study and construct two flavors of secure quantum extraction proto-
cols.
– Security against QPT malicious receivers: First we consider

the setting when the malicious receiver is a QPT adversary. In this
setting, we construct a secure quantum extraction protocol for NP
assuming the existence of quantum fully homomorphic encryption
satisfying some mild properties (already satisfied by existing con-
structions [Mahadev, FOCS’18, Brakerski CRYPTO’18]) and quan-
tum hardness of learning with errors. The novelty of our construction
is a new non-black-box technique in the quantum setting. All previ-
ous extraction techniques in the quantum setting were solely based
on quantum rewinding.

– Security against classical PPT malicious receivers: We also
consider the setting when the malicious receiver is a classical prob-
abilistic polynomial time (PPT) adversary. In this setting, we con-
struct a secure quantum extraction protocol for NP solely based
on the quantum hardness of learning with errors. Furthermore, our
construction satisfies quantum-lasting security: a malicious receiver
cannot later, long after the protocol has been executed, use a quan-
tum computer to extract a valid witness from the transcript of the
protocol.

Both the above extraction protocols are constant round protocols.
We present an application of secure quantum extraction protocols to
zero-knowledge (ZK). Assuming quantum hardness of learning with er-
rors, we present the first construction of ZK argument systems for NP



in constant rounds based on the quantum hardness of learning with er-
rors with: (a) zero-knowledge against QPT malicious verifiers and, (b)
soundness against classical PPT adversaries. Moreover, our construction
satisfies the stronger (quantum) auxiliary-input zero knowledge property
and thus can be composed with other protocols secure against quantum
adversaries.

1 Introduction

Knowledge extraction is a quintessential concept employed to argue the security
of classical zero-knowledge systems and secure two-party and multi-party com-
putation protocols. The seminal work of Feige, Lapidot and Shamir [19] shows
how to leverage knowledge extraction to construct zero-knowledge protocols. The
ideal world-real world paradigm necessarily requires the simulator to be able to
extract the inputs of the adversaries to argue the security of secure computation
protocols.

Typically, knowledge extraction is formalized by defining a knowledge ex-
tractor that given access to the adversarial machine, outputs the input of the
adversary. The prototypical extraction technique employed in several crypto-
graphic protocols is rewinding. In the rewinding technique, the extractor, with
oracle access to the adversary, rewinds the adversary to a previous state to ob-
tain more than one protocol transcript which in turn gives the ability to the
extractor to extract from the adversary. While rewinding has proven to be quite
powerful, it has several limitations [22]. Over the years, cryptographers have
proposed novel extraction techniques to circumvent the barriers of rewinding.
Each time a new extraction technique was invented, it has advanced the field
of zero-knowledge and secure computation. As an example, the breakthrough
work of Barak [7] proposed a non-black-box extraction technique – where the
extractor crucially uses the code of the verifier for extraction – and used this to
obtain the first feasibility result on constant-round public-coin zero-knowledge
argument system for NP. Another example is the work of Pass [35] who in-
troduced the technique of super-polynomial time extraction and presented the
first feasibility result on 2-round concurrent ZK argument system albeit under
a weaker simulation definition.

Extracting from Quantum Adversaries. The prospect of quantum computers in-
troduces new challenges in the design of zero-knowledge and secure computation
protocols. As a starting step towards designing these protocols, we need to ad-
dress the challenge of knowledge extraction against quantum adversaries. So far,
the only technique used to extract from quantum adversaries is quantum rewind-
ing [42], which has already been studied by a few works [42, 27, 38, 3, 40] in the
context of quantum zero-knowledge protocols.

Rewinding a quantum adversary, unlike its classical counterpart, turns out
to be tricky due to two reasons, as stated in Watrous [42]: firstly, intermediate
quantum states of the adversary cannot be copied (due to the universal no-
cloning theorem) and secondly, if the adversary performs some measurements
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then this adversary cannot be rewound since measurements in general are irre-
versible processes. As a result, the existing quantum rewinding techniques tend
to be ”oblivious” [38], to rewind the adversary back to an earlier point, the ex-
traction should necessarily forget all the information it has learnt from that point
onwards. As a result of these subtle issues, the analysis of quantum rewinding
turns out to be quite involved making it difficult to use it in the security proofs.
Moreover, existing quantum rewinding techniques [42, 38] pose a bottleneck to-
wards achieving a constant round extraction technique; we will touch upon this
later.

In order to advance the progress of constructing quantum-secure (or post-
quantum) cryptographic protocols, it is necessary that we look beyond quantum
rewinding and explore new quantum extraction techniques.

1.1 Results

We introduce and study new techniques that enable us to extract from quantum
adversaries.

Our Notion: Secure Quantum Extraction Protocols. We formalize this by first
introducing the notion of secure quantum extraction protocols. This is a classical
interactive protocol between a sender and a receiver and is associated with a NP
relation. The sender has an NP instance and a witness while the receiver only
gets the NP instance. In terms of properties, we require the following to hold:

– Extractability: An extractor, implemented as a quantum polynomial time
algorithm, can extract a valid witness from an adversarial sender. We model
the adversarial sender as a quantum polynomial time algorithm that follows
the protocol but is allowed to choose its randomness; in the classical setting,
this is termed as semi-malicious and we call this semi-malicious quantum
adversaries3.

We also require indistinguishability of extraction: that is, the adversarial
sender cannot distinguish whether it’s interacting with the honest receiver
or an extractor. In applications, this property is used to argue that the
adversary cannot distinguish whether it’s interacting with the honest party
or the simulator.

– Zero-Knowledge: A malicious receiver should not be able to extract a valid
witness after interacting with the sender. The malicious receiver can either
be a classical probabilistic polynomial time algorithm or a quantum poly-
nomial time algorithm. Correspondingly, there are two notions of quantum
extraction protocols we study: quantum extraction protocols secure against
quantum adversarial receivers (qQEXT) and quantum extraction protocols
secure against classical adversarial receivers (cQEXT).

3 In the literature, this type of semi-malicious adversaries are also referred to as ex-
plainable adveraries.
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There are two reasons why we only study extraction against semi-malicious
adversaries, instead of malicious adversaries (who can arbitrarily deviate from
the protocol): first, even extracting from semi-malicious adversaries turns out to
be challenging and we view this as a first step towards extraction from malicious
adversaries and second, in the classical setting, there are works that show how
to leverage extraction from semi-malicious adversaries to achieve zero-knowledge
protocols [9, 11] or secure two-party computation protocols [4].

Quantum extraction protocols are interesting even if we only consider clas-
sical adversaries, as they present a new method for proving zero-knowledge. For
instance, to demonstrate zero-knowledge, we need to demonstrate a simulator
that has a computational capability that a malicious prover doesn’t have. Al-
lowing quantum simulators in the classical setting [28] is another way to achieve
this asymmetry between the power of the simulator and the adversary besides
the few mentioned before (rewinding, superpolynomial, or non-black-box). Fur-
thermore, quantum simulators capture the notion of knowledge that could be
learnt if a malicious verifier had access to a quantum computer.

Quantum-Lasting Security. A potential concern regarding the security of cQEXT
protocols is that the classical malicious receiver participating in the cQEXT
protocol could later, long after the protocol has been executed, use a quantum
computer to learn the witness of the sender from the transcript of the protocol
and its own private state. For instance, the transcript could contain an ElGamal
encryption of the witness of the sender; while a malicious classical receiver cannot
break it, after the protocol is completed, it could later use a quantum computer
to learn the witness. This is especially interesting in the event (full-fledged)
quantum computers might become available in the future. First introduced by
Unruh [39], we study the concept of quantum-lasting security; any quantum
polynomial time (QPT) adversary given the transcript and the private state of
the malicious receiver, should not be able to learn the witness of the sender. Our
construction will satisfy this security notion and thus our protocol is resilient
against the possibility of quantum computers being accessible in the future.

Result #1: Constant Round qQEXT protocols. We show the following result.

Theorem 1 (Informal). Assuming quantum hardness of learning with errors
and a quantum fully homomorphic encryption scheme (for arbitrary poly-time
computations)4, satisfying, (1) perfect correctness for classical messages and, (2)
ciphertexts of poly-sized classical messages have a poly-sized classical description,
there exists a constant round quantum extraction protocol secure against quantum
poly-time receivers.

We clarify what we mean by perfect correctness. For every public key, every
valid fresh ciphertext of a classical message can always be decrypted correctly.
Moreover, we require that for every valid fresh ciphertext, of a classical message,
the evaluated ciphertext can be decrypted correctly with probability negligibly

4 As against leveled quantum FHE, which can be based on quantum hardness of LWE.
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close to 1. We note that the works of [31, 14] give candidates for quantum fully
homomorphic encryption schemes satisfying both the above properties.

En route to proving the above theorem, we introduce a new non black ex-
traction technique in the quantum setting building upon a classical non-black
extraction technique of [11]. We view identifying the appropriate classical non-
black-box technique to also be a contribution of our work. A priori it should
not be clear whether classical non-black-box techniques are useful in construct-
ing their quantum analogues. For instance, it is unclear how to utilize the well
known non-black-box technique of Barak [7]; at a high level, the idea of Barak [7]
is to commit to the code of the verifier and then prove using a succinct argument
system that either the instance is in the language or it has the code of the veri-
fier. In our setting, the verifier is a quantum circuit which means that we would
require succinct arguments for quantum computations which we currently don’t
know how to achieve.

Non-black-box extraction overcomes the disadvantage quantum rewinding
poses in achieving constant round extraction; the quantum rewinding employed
by [42] requires polynomially many rounds (due to sequential repetition) or
constant rounds with non-negligible gap between extraction and verification er-
ror [38].

This technique was concurrently developed by Bitansky and Shmueli [12]
(see “Comparison with [12]” paragraph) and they critically relied upon this to
construct a constant-round zero-knowledge argument system for NP and QMA,
thus resolving a long-standing open problem in the round complexity of quan-
tum zero-knowledge.

Subsequent Work. Many followup works have used the non-black-box extraction
technique we introduce in this work to resolve other open problems in quantum
cryptography. For instance, our technique was adopted to prove that quantum
copy-protection is impossible [6]; resolving a problem that was open for more
than a decade. It was also used to prove that quantum VBB for classical circuits
is impossible [6, 2]. In yet another exciting follow up work, this technique was
developed further to achieve the first constant round post-quantum secure MPC
protocol [1].

Result #2: Constant Round cQEXT protocols. We also present a construction
of quantum extraction protocols secure against classical adversaries (cQEXT).
This result is incomparable to the above result; on one hand, it is a weaker
setting but on the other hand, the security of this construction can solely be
based on the hardness of learning with errors.

Theorem 2 (Informal). Assuming quantum hardness of learning with errors,
there exists a constant round quantum extraction protocol secure against classical
PPT adversaries and satisfying quantum-lasting security.

Our main insight is to turn the “test of quantumness” protocol introduced in [15]
into a quantum extraction protocol using cryptographic tools. In fact, our tech-
niques are general enough that they might be useful to turn any protocol that
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can verify a quantum computer versus a classical computer into a quantum
extraction protocol secure against classical adversaries; the transformation ad-
ditionally assumes quantum hardness of learning with errors. Our work presents
a new avenue for using “test of quantumness” protocols beyond using them just
to test whether the server is quantum or not.

We note that it is conceivable to construct ”test of quantumness” protocols
from DDH (or any other quantum-insecure assumption). The security of the re-
sulting extraction protocol would then be based on DDH and quantum hardness
of learning with errors – the latter needed to argue quantum-lasting security.
However, the security of our protocol is solely based on the quantum hardness
of learning with errors.

Result #3: Constant Round QZK for NP with Classical Soundness. As an ap-
plication, we show how to construct constant quantum zero-knowledge argument
systems secure against quantum verifiers based on quantum hardness of learning
with errors; however, the soundness is still against classical PPT adversaries.

Moreover, our protocol satisfies zero-knowledge against quantum verifiers
with arbitrary quantum auxiliary state. Such protocols are also called auxiliary-
input zero-knowledge protocols [24] and are necessary for composition. Specifi-
cally, our ZK protocol can be composed with other protocols to yield new pro-
tocols satisfying quantum security.

Theorem 3 (Constant Round Quantum ZK with Classical Soundness;
Informal). Assuming quantum hardness of learning with errors, there exists a
constant round black box quantum zero-knowledge system with negligible sound-
ness against classical PPT algorithms. Moreover, our protocol satisfies (quan-
tum) auxiliary-input zero-knowledge property.

A desirable property from a QZK protocol is if the verifier is classical then
the simulator is also classical. While our protocol doesn’t immediately satisfy
this property, we show, nonetheless, that there is a simple transformation that
converts into another QZK protocol that has this desirable property.

Application: Authorization with Quantum Cloud. Suppose Eva wants to convince
the cloud services offered by some company that she has the authorization to ac-
cess a document residing in the cloud. Since the authorization information could
leak sensitive information about Eva, she would rather use a zero-knowlede pro-
tocol to prove to the cloud that she has the appropriate authorization. While we
currently don’t have scalable implementations of quantum computers, this could
change in the future when organizations (e.g. governments, IBM, Microsoft, etc)
could be the first ones to develop a quantum computer. They could in principle
then use this to break the zero-knowledge property of Eva’s protocol and learn
sensitive information about her. In this case, it suffices to use a QZK protocol
but only requiring soundness against malicious classical users; in the nearby fu-
ture, it is reasonable to assume that even if organizations with enough resources
get to develop full-fledged quantum computers, it’ll take a while before everyday
users will have access to one.
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1.2 Related Work

Quantum Rewinding. Watrous [42] introduced the quantum analogue of the
rewinding technique. Later, Unruh [38] introduced yet another notion of quan-
tum rewinding with the purpose of constructing quantum zero-knowledge proofs
of knowledge. Unruh’s rewinding does have extractability, but it requires that
the underlying protocol to satisfy strict soundness. Furthermore, the probability
that the extractor succeeds is not negligibly close to 1. The work of [3] shows
that relative to an oracle, many classical zero-knowledge protocols are quantum
insecure, and that the strict soundness condition from [38] is necessary in order
for a sigma protocol to be a quantum proofs of knowledge.

Quantum and Classical Zero-Knowledge. Zero-knowledge against quantum ad-
versaries was first studied by Watrous [42]. He showed how the GMW proto-
col [23] for graph 3-colorability is still zero-knowledge against quantum verifiers.
Other works [26, 18, 27, 29, 33, 38] have extended the study of classical protocols
that are quantum zero-knowledge, and more recently, Broadbent et al. [17] ex-
tended the notion of zero-knowledge to QMA languages. By using ideas from [32]
to classically verify quantum computation, the protocol in [17] was adapted to
obtained classical argument systems for quantum computation in [41]. All known
protocols, with non-negligible soundness error, take non-constant rounds.

On the other hand, zero knowledge proof and argument systems have been
extensively studied in classical cryptography. In particular, a series of recent
works [9, 8, 10, 11] resolved the round complexity of zero knowledge argument
systems.

Comparison with [12]. In a recent exciting work, [12] construct a constant round
QZK with soundness against quantum adversaries for NP and QMA.

– The non-black-box techniques used in their work was concurrently developed
and are similar to the techniques used in our QEXT protocol secure against
quantum receivers5.

– Subsequent to their posting, using completely different techniques, we devel-
oped QEXT secure against classical receivers and used it to build a constant
round QZK system with classical soundness. There are a few crucial differ-
ences between our QZK argument system and theirs:

1. Our result is based on quantum hardness of learning with errors while
their result is based on the existence of quantum fully homomorphic en-
cryption for arbitrary polynomial computations and quantum hardness
of learning with errors.

2. The soundness of their argument system is against quantum polynomial
time algorithms while ours is only against classical PPT adversaries.

5 A copy of our QEXT protocol secure against quantum receivers was privately com-
municated to the authors of [12] on the day of their public posting and our paper
was posted online in about two weeks from then [5].
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1.3 Quantum extraction with security against classical receivers:
Overview

We start with the overview of quantum extraction protocols with security against
classical receivers.

Starting Point: Noisy Trapdoor Claw-Free Functions. Our main idea is to turn
the ”test of quantumness” from [15] into an extraction protocol. Our starting
point is a noisy trapdoor claw-free function (NTCF) family [31, 32, 15], param-
eterized by key space K, input domain X and output domain Y. Using a key
k ∈ K, NTCFs allows for computing the functions, denoted by fk,0(x) ∈ Y and
fk,1(x) ∈ Y 6, where x ∈ X . Using a trapdoor td associated with a key k, any
y in the support of fk,b(x), can be efficiently inverted to obtain x. Moreover,
there are ”claw” pairs (x0, x1) such that fk,0(x0) = fk,1(x1). Roughly speaking,
the security property states that it is computationally hard even for a quantum
computer to simultaneously produce y ∈ Y, values (b, xb) and (d, u) such that
fk,b(xb) = y and 〈d, J(x0)⊕J(x1)〉 = u, where J(·) is an efficienctly computable
injective function mapping X into bit strings. What makes this primitive inter-
esting is its quantum capability that we will discuss when we recall below the
test of [15].

Test of Quantumness [15]. Using NTCFs, [15] devised the following test7:

– The classical client, who wants to test whether the server it’s interacting
with is quantum or classical, first generates a key k along with a trapdoor td
associated with a noisy trapdoor claw-free function (NTCF) family. It sends
k to the server.

– The server responds back with y ∈ Y.
– The classical client then sends a challenge bit a to the server.
– If a = 0, the server sends a pre-image xb along with bit b such that fk,b(xb) =
y. If a = 1, the server sends a vector d along with a bit u satisfying the
condition 〈d, J(x0) ⊕ J(x1)〉 = u, where x0, x1 are such that fk,0(x0) =
fk,1(x1) = y.

The client can check if the message sent by the server is either a valid pre-image
or a valid d that is correlated with respect to both the pre-images.

Intuitively, since the (classical) server does not know, at the point when it
sends y, whether it will be queried for (b, xb) or (d, u), by the security of NTCFs,
it can only answer one of the queries. While the quantum capability of NTCFs
allows for a quantum server to maintain a superposition of a claw at the time it
sent y and depending on the query made by the verifier it can then perform the
appropriate quantum operations to answer the client; thus it will always pass
the test.

6 The efficient implementation of f only approximately computes f and we denote
this by f ′. We ignore this detail for now.

7 As written, this test doesn’t have negligible soundness but we can achieve negligible
soundness by parallel repetition.
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From Test of Quantumness to Extraction. A natural attempt to achieve extrac-
tion is the following: the sender takes the role of the client and the receiver takes
the role of the server and if the test passes, the sender sends the witness to the
receiver. We sketch this attempt below.

– Sender on input instance-witness pair (y,w) and receiver on input instance
y run a “test of quantumness” protocol where the receiver (taking the role
of the server) needs to convince the sender (taking the role of the classical
client) that it is a quantum computer.

– If the receiver succeeds in the “test of quantumness” protocol then the sender
sender w, else it aborts.

Note that a quantum extractor can indeed succeed in the test of quantumness
protocol and hence, it would receive w while a malicious classical adversary will
not.

However, the above solution is not good enough for us. It does not satisfy
indistinguishability of extraction: the sender can detect whether it’s interacting
with a quantum extractor or an honest receiver.

Achieving Indistinguishability of Extraction. To ensure indistinguishability of
extraction, we rely upon a tool called secure function evaluation [21, 9] that
satisfies quantum security. A secure function evaluation (SFE) allows for two
parties P1 and P2 to securely compute a function on their inputs in a such a
way that only one of the parties, say P2, receives the output of the function.
In terms of security, we require that: (i) P2 doesn’t get information about P1’s
input beyond the output of the function and, (ii) P1 doesn’t get any information
about P2’s input (in fact, even the output of the protocol is hidden from P1).

The hope is that by combining SFE and test of quantumness protocol, we
can guarantee that a quantum extractor can still recover the witness by passing
the test of quantumness as before but the sender doesn’t even know whether
the receiver passed or not. To implement this, we assume a structural property
from the underlying test of quantumness protocol: until the final message of
the protocol, the client cannot distinguish whether it’s talking to a quantum
server or a classical server. This structural property is satisfied by the test of
quantumness protocol [15] sketched above.

Using this structural property and SFE, here is another attempt to construct
a quantum extraction protocol: let the test of quantumness protocol be a k-round
protocol.

– Sender on input instance-witness pair (y,w) and receiver on input instance
y run the first (k− 1) rounds of the test of quantumness protocol where the
receiver (taking the role of the server) needs to convince the sender (taking
the role of the receiver) that it can perform quantum computations.

– Sender and receiver then run a SFE protocol for the following functionality
G: it takes as input w and the first (k−1) rounds of the test of quantumness
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protocol from the sender, the kth round message from the receiver8 and
outputs w if indeed the test passed, otherwise output ⊥. Sender will take
the role of P1 and the receiver will take the role of P2 and thus, only the
receiver will receive the output of G.

Note that the security of SFE guarantees that the output of the protocol is
hidden from the sender and moreover, the first (k − 1) messages of the test of
quantumness protocol doesn’t reveal the information about whether the receiver
is a quantum computer or not. These two properties ensure the sender doesn’t
know whether the receiver passed the test or not. Furthermore, the quantum
extractor still succeeds in extracting the witness w since it passes the test.

The only remaining property to prove is zero-knowledge.

Challenges in Proving Zero-Knowledge. How do we ensure that a malicious
classical receiver was not able to extract the witness? The hope would be to
invoke the soundness of the test of quantumness protocol to argue this. However,
to do this, we need all the k messages of the test of quantumness protocol.

To understand this better, let us recall how the soundness of the test of
quantumness works: the client sends a challenge bit a = 0 to the server who
responds back with (b, xb), then the client rewinds the server and instead sends
the challenge bit a = 1 and it receives (d, u): this contradicts the security of
NTCFs since a classical PPT adversary cannot simultaneously produce both a
valid pre-image (b, xb) and a valid correlation vector along with the prediction
bit (d, u).

Since the last message is fed into the secure function evaluation protocol and
inaccessible to the simulator, we cannot use this rewinding strategy to prove the
zero-knowledge of the extraction protocol.

Final Template: Zero-Knowledge via Extractable Commitments [37, 36]. To over-
come this barrier, we force the receiver to commit, using an extractable com-
mitment scheme, to the kth round of the test of quantumness protocol before
the SFE protocol begins. An extractable commitment scheme is one where there
is an extractor who can extract an input x being committed from the party
committing to x. Armed with this tool, we give an overview of our construction
below.

– Sender on input instance-witness pair (y,w) and receiver on input instance
y run the first (k− 1) rounds of the test of quantumness protocol where the
receiver (taking the role of the server) needs to convince the sender (taking
the role of the receiver) that it can perform quantum computations.

– The kth round of the test of quantumness protocol is then committed by the
receiver, call it c, using the extractable commitment scheme9.

8 It follows without loss of generality that the server (and thus, the receiver of the
quantum extraction protocol) computes the final message of the test of quantumness
protocol.

9 In the technical sections, we use a specific construction of extractable commitment
scheme by [37, 36] since we additionally require security against quantum adversaries.
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– Finally, the sender and the receiver then run a SFE protocol for the following
functionality G: it takes as input w and the first (k − 1) rounds of the test
of quantumness protocol from the sender, the decommitment of c from the
receiver and outputs w if indeed the test passed, otherwise output ⊥. Sender
will take the role of P1 and the receiver will take the role of P2 and thus,
only the receiver will receive the output of G.

Let us remark about zero-knowledge since we have already touched upon the
other properties earlier. To argue zero-knowledge, construct a simulator that
interacts honestly with the malicious receiver until the point the extraction pro-
tocol is run. Then, the simulator runs the extractor of the commitment scheme to
extract the final message of the test of quantumness protocol. It then rewinds the
test of quantumness protocol to the point where the simulator sends a different
challenge bit (see the informal description of [15] given before) and then runs
the extractor of the commitment scheme once again to extract the kth round
message of the test of quantumness protocol. Recall that having final round
messages corresponding to two different challenge bits is sufficient to break the
security of NTCFs; the zero-knowledge property then follows.

A couple of remarks about our simulator. Firstly, the reason why our simu-
lator is able to rewind the adversary is because the adversary is a classical PPT
algorithm. Secondly, our simulator performs double rewinding – not only does
the extractor of the commitment scheme perform rewinding but also the test of
quantumness protocol is rewound.

1.4 Constant Round QZK Argument Systems with Classical
Soundness

We show how to use the above quantum extraction protocol secure against clas-
sical receivers (cQEXT) to construct an interactive argument system satisfying
classical soundness and quantum ZK.

From Quantum Extraction to Quantum Zero-Knowledge. As a starting point, we
consider the quantum analogue of the seminal FLS technique [19] to transform
a quantum extraction protocol into a quantum ZK protocol. A first attempt to
construct quantum ZK is as follows: let the input to the prover be instance y
and witness w while the input to the verifier is y.

– The verifier commits to some trapdoor td. Call the commitment c and the
corresponding decommitment d.

– The prover and verifier then execute a quantum extraction protocol with the
verifier playing the role of the sender, on input (c,d), while the prover plays
the role of the receiver on input c.

– The prover and the verifier then run a witness-indistinguishable protocol
where the prover convinces the verifier that either y belongs to the language
or it knows td.
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At first sight, it might seem that the above template should already give us
the result we want; unfortunately, the above template is insufficient. The veri-
fier could behave maliciously in the quantum extraction protocol but the quan-
tum extraction protocol only guarantees security against semi-malicious senders.
Hence, we need an additional mechanism to protect against malicious receivers.
Of course, we require witness-indistinguishability to hold against quantum ver-
ifiers and we do know candidates satisfying this assuming quantum hardness of
learning with errors [13, 30].

Handling Malicious Behavior in QEXT. To check that the verifier behaved hon-
estly in the quantum extraction protocol, we ask the verifier to reveal the inputs
and random coins used in the quantum extraction protocol. At this point, the
prover can check if the verifier behaved honestly or not. Of course, this would
then violate soundness: the malicious prover upon receiving the random coins
from the verifier can then recover td and then use this to falsely convince the
verifier to accept its proof. We overcome this by forcing the prover to commit
(we again use the extractable commitment scheme of [36]) to some string td′

just before the verifier reveals the inputs and random coins used in the quantum
extraction protocol. Then we force the prover to use the committed td′ in the
witness-indistinguishable protocol; the prover does not gain any advantage upon
seeing the coins of the verifier and thus, ensuring soundness.

One aspect we didn’t address so far is the aborting issue of the verifier: if the
verifier aborts in the quantum extraction protocol, the simulator still needs to
produce a transcript indistinguishable from that of the honest prover. Luckily
for us, the quantum extraction protocol we constructed before already allows for
simulatability of aborting adversaries.

To summarise, our ZK protocol consists of the following steps: (i) first, the
prover and the verifier run the quantum extraction protocol, (ii) next the prover
commits to a string td′ using [36], (iii) the verifier then reveals the random coins
used in the extraction protocol and, (iv) finally, the prover and the verifier run
a quantum WI protocol where the prover convinces the verifier that it either
knows a trapdoor td′ or that y is a YES instance.

1.5 Quantum extraction with security against quantum receivers:
Overview

We show how to construct extraction protocols where we prove security against
quantum receivers. At first sight, it might seem that quantum extraction and
quantum zero-knowledge properties are contradictory since the extractor has the
same computational resources as the malicious receiver. However, we provide
more power to the extractor by giving the extractor non-black-box access to the
semi-malicious sender. There is a rich literature on non-black-box techniques in
the classical setting starting with the work of [7].
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Quantum Extraction via Circular Insecurity of QFHE. The main tool we employ
in our protocol is a fully homomorphic encryption qFHE scheme10 that allows
for public homomorphic evaluation of quantum circuits. Typically, we require
a fully homomorphic encryption scheme to satisfy semantic security. However,
for the current discussion, we require that qFHE to satisfy a stronger security
property called 2-circular insecurity:

Given qFHE.Enc(PK1, SK2) (i.e., encryption of SK2 under PK1), qFHE.Enc(PK2,SK1),
where (PK1,SK1) and (PK2, SK2) are independently generated public
key-secret key pairs, we can efficiently recover SK1 and SK2.

Later, we show how to get rid of 2-circular insecurity property by using lock-
able obfuscation [25, 43]. Here is our first attempt to construct the extraction
protocol:

– The sender, on input instance y and witness w, sends three ciphertexts:
CT1 ← qFHE.Enc(PK1, td), CT2 ← qFHE.Enc(PK1,w) and CT3 ← qFHE.Enc(PK2,
SK1).

– The receiver sends td′.
– If td′ = td then the sender sends SK2.

A quantum extractor with non-black-box access to the private (quantum) state
of the semi-malicious sender S does the following:

– It first encrypts the private (quantum) state of S under public key PK1.
– Here is our main insight: the extractor can homomorphically evaluate the

next message function of S on CT1 and the encrypted state of S. The result
is CT∗1 = qFHE.Enc(PK1, S(td)). But note that S(td) is nothing but SK2;
note that S upon receiving td′ = td outputs SK2. Thus, we have CT∗1 =
qFHE.Enc(PK1, SK2).

– Now, the extractor has both CT3 = qFHE.Enc(PK2,SK1) and CT∗1 = qFHE.Enc(PK1,
SK2). It can then use the circular insecurity of qFHE to recover SK1, SK2.

– Finally, it decrypts CT2 to obtain the witness w!

The correctness of extraction alone is not sufficient; we need to argue that the
sender cannot distinguish whether it’s interacting with the honest receiver or
the extractor. This is not true in our protocol since the extractor will always
compute the next message function of S on td′ = td whereas an honest receiver
will send td′ = td only with negligible probability.

Indistinguishability of Extraction: SFE strikes again. We already encountered a
similar issue when we were designing extraction protocols with security against
classical receivers and the tool we used to solve that issue was secure function
evaluation (SFE); we will use the same tool here as well.

Using SFE, we make another attempt at designing the quantum extraction
protocol.

10 Recall that a classical FHE scheme [20, 16] allows for publicly evaluating an encryp-
tion of a message x using a circuit C to obtain an encryption of C(x).
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– The sender, on input instance y and witness w, sends three ciphertexts:
CT1 ← qFHE.Enc(PK1, td), CT2 ← qFHE.Enc(PK1,w) and CT3 ← qFHE.Enc(
PK2,SK1).

– The sender and the receiver executes a secure two-party computation pro-
tocol, where the receiver feeds td′ and the sender feeds in (td,w). After the
protocol finishes, the receiver recovers w if td′ = td, else it recovers ⊥. The
sender doesn’t receive any output.

The above template guarantees indistinguishability of extraction property11.
We next focus on zero-knowledge. To do this, we need to argue that the

td′ input by the malicious receiver can never be equal to td. One might falsely
conclude that the semantic security of qFHE would imply that td is hidden from
the sender and hence the argument follows. This is not necessarily true; the
malicious receiver might be able to “maul” the ciphertext CT1 into the messages
of the secure function evaluation protocol in such a way that the implicit input
committed by the receiver is td′. We need to devise a mechanism to prevent
against such mauling attacks.

Preventing Mauling Attacks. We prevent the mauling attacks by forcing the
receiver to commit to random strings (r1, . . . , r`) in the first round, where |td| =
`, even before it receives the ciphertexts (CT1,CT2,CT3) from the sender. Once
it receives the ciphertexts, the receiver is supposed to commit to every bit of the
trapdoor using the randomness r1, . . . , r`; that is, the ith bit of td is committed
using ri.

Using this mechanism, we can then provably show that if the receiver was able
to successfully maul the qFHE ciphertext then it violates the semantic security
of qFHE using a non-uniform adversary.

Replacing Circular Insecurity with Lockable Obfuscation [25, 43]. While the
above protocol is a candidate for quantum extraction protocol secure against
quantum receivers; it is still unsatisfactory since we assume a quantum FHE
scheme satisfying 2-circular insecurity. We show how to replace 2-circular in-
secure QFHE with any QFHE scheme (satisfying some mild properties already
satisfied by existing candidates) and lockable obfuscation for classical circuits. A
lockable obfuscation scheme is an obfuscation scheme for a specific class of func-
tionalities called compute-and-compare functionalities; a compute-and-compare
functionality is parameterized by C,α (lock), β such that on input x, it outputs
β if C(x) = α. As long as α is sampled uniformly at random and independently
of C, lockable obfuscation completely hides the circuit C, α and β. The idea to
replace 2-circular insecure QFHE with lockable obfuscation12 is as follows: obfus-
cate the circuit, with secret key SK2, ciphertext qFHE.Enc(SK2, r) hardwired,

11 There is a subtle point here that we didn’t address: the transcript generated by
the extractor is encrypted under qFHE. But after recovering the secret keys, the
extractor could decrypt the encrypted transcript.

12 It shouldn’t be too surprising that lockable obfuscation can be used to replace cir-
cular insecurity since one of the applications [25, 43] of lockable obfuscation was to
demonstrate counter-examples for circular security,
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that takes as input qFHE.Enc(PK1, SK2), decrypts it to obtain SK ′2, then de-
crypts qFHE.Enc(SK2, r) to obtain r′ and outputs SK1 if r′ = r. If the adversary
does not obtain qFHE.Enc(PK1, SK2) then we can first invoke the security of
lockable obfuscation to remove SK1 from the obfuscated circuit and then it can
replace qFHE.Enc(PK1,w) with qFHE.Enc(PK1,⊥). The idea of using fully ho-
momorphic encryption along with lockable obfuscation to achieve non-black-box
extraction was first introduced, in the classical setting, by [11].

Unlike our cQEXT construction, the non-black-box technique used for qQEXT
does not directly give us a constant round quantum zero-knowledge protocol for
NP. This is because an adversarial verifier that aborts can distinguish between
the extractor or the honest prover (receiver in qQEXT). The main issue is that
the extractor runs the verifier homomorphically, so it cannot detect if the veri-
fier aborted at any point in the protocol without decrypting. But if the verifier
aborted, the extractor wouldn’t be able to decrypt in the first place – it could
attempt to rewind but then this would destroy the initial quantum auxiliary
state.

2 Preliminaries

We denote the security parameter by λ. We denote (classical) computational
indistiguishability of two distributions D0 and D1 by D0 ≈c,ε D1. In the case
when ε is negligible, we drop ε from this notation.

Languages and Relations. A language L is a subset of {0, 1}∗. A relation R is a
subset of {0, 1}∗ × {0, 1}∗. We use the following notation:

– Suppose R is a relation. We define R to be efficiently decidable if there exists
an algorithm A and fixed polynomial p such that (x,w) ∈ R if and only if
A(x,w) = 1 and the running time of A is upper bounded by p(|x|, |w|).

– Suppose R is an efficiently decidable relation. We say that R is a NP relation
if L(R) is a NP language, where L(R) is defined as follows: x ∈ L(R) if and
only if there exists w such that (x,w) ∈ R and |w| ≤ p(|x|) for some fixed
polynomial p.

2.1 Learning with Errors

In this work, we are interested in the decisional learning with errors (LWE)
problem. This problem, parameterized by n,m, q, χ, where n,m, q ∈ N, and
for a distribution χ supported over Z is to distinguish between the distributions

(A,As+e) and (A,u), where A
$←− Zm×nq , s

$←− Zn×1q , e
$←− χm×1 and u← Zm×1q .

Typical setting of m is n log(q), but we also consider m = poly(n log(q)).

We base the security of our constructions on the quantum hardness of learn-
ing with errors problem.
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2.2 Notation and General Definitions

For completeness, we present some of the basic quantum definitions, for more
details see [34].

Quantum states and channels. LetH be any finite Hilbert space, and let L(H) :=
{E : H → H} be the set of all linear operators from H to itself (or endomor-
phism). Quantum states over H are the positive semidefinite operators in L(H)
that have unit trace. Quantum channels or quantum operations acting on quan-
tum states over H are completely positive trace preserving (CPTP) linear maps
from L(H) to L(H′) where H′ is any other finite dimensional Hilbert space.

A state over H = C2 is called a qubit. For any n ∈ N, we refer to the quantum
states over H = (C2)⊗n as n-qubit quantum states. To perform a standard basis
measurement on a qubit means projecting the qubit into {|0〉, |1〉}. A quantum
register is a collection of qubits. A classical register is a quantum register that
is only able to store qubits in the computational basis.

A unitary quantum circuit is a sequence of unitary operations (unitary gates)
acting on a fixed number of qubits. Measurements in the standard basis can be
performed at the end of the unitary circuit. A (general) quantum circuit is a
unitary quantum circuit with 2 additional operations: (1) a gate that adds an
ancilla qubit to the system, and (2) a gate that discards (trace-out) a qubit
from the system. A quantum polynomial-time algorithm (QPT) is a uniform
collection of quantum circuits {Cn}n∈N.

Quantum Computational Indistinguishability. When we talk about quantum dis-
tinguishers, we need the following definitions, which we take from [42].

Definition 1 (Indistinguishable collections of states). Let I be an infinite
subset I ⊂ {0, 1}∗, let p : N→ N be a polynomially bounded function, and let ρx
and σx be p(|x|)-qubit states. We say that {ρx}x∈I and {σx}x∈I are quantum
computationally indistinguishable collections of quantum states if for
every QPT E that outputs a single bit, any polynomially bounded q : N→ N, and
any auxiliary q(|x|)-qubits state ν, and for all x ∈ I, we have that

|Pr [E(ρx ⊗ ν) = 1]− Pr [E(σx ⊗ ν) = 1]| ≤ ε(|x|)

for some negligible function ε : N→ [0, 1]. We use the following notation

ρx ≈Q,ε σx

and we ignore the ε when it is understood that it is a negligible function.

Definition 2 (Indistinguishability of channels). Let I be an infinite subset
I ⊂ {0, 1}∗, let p, q : N → N be polynomially bounded functions, and let Dx,Fx
be quantum channels mapping p(|x|)-qubit states to q(|x|)-qubit states. We say
that {Dx}x∈I and {Fx}x∈I are quantum computationally indistinguishable
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collection of channels if for every QPT E that outputs a single bit, any poly-
nomially bounded t : N → N, any p(|x|) + t(|x|)-qubit quantum state ρ, and for
all x ∈ I, we have that

|Pr [E ((Dx ⊗ Id)(ρ)) = 1]− Pr [E ((Fx ⊗ Id)(ρ)) = 1]| ≤ ε(|x|)

for some negligible function ε : N→ [0, 1]. We will use the following notation

Dx(·) ≈Q,ε Fx(·)

and we ignore the ε when it is understood that it is a negligible function.

Interactive Models. We model an interactive protocol between a prover, Prover,
and a verifier, Verifier, as follows. There are 2 registers RProver and RVerifier corre-
sponding to the prover’s and the verifier’s private registers, as well as a message
register, RM, which is used by both Prover and Verifier to send messages. In other
words, both prover and verifier have access to the message register. We denote
the size of a register R by |R| – this is the number of bits or qubits that the
register can store. We will have 2 different notions of interactive computation.
Our honest parties will perform classical protocols, but the adversaries will be
allowed to perform quantum protocols with classical messages.

1. Classical protocol: An interactive protocol is classical if RProver, RVerifier,
and RM are classical, and Prover and Verifier can only perform classical com-
putation.

2. Quantum protocol with classical messages: An interactive protocol is
quantum with classical messages if either one of RProver or RVerifier is a quan-
tum register, and RM is classical. Prover and Verifier can perform quantum
computations if their respective private register is quantum, but they can
only send classical messages.

When a protocol has classical messages, we can assume that the adversarial party
will also send classical messages. This is without loss of generality, because the
honest party can enforce this condition by always measuring the message register
in the computational basis before proceeding with its computations.

Non-Black-Box Access. Let S be a QPT party (e.g. either prover or verifier in
the above descriptions) involved in specific quantum protocol. In particular, S
can be seen as a collection of QPTs, S = (S1, ..., S`), where ` is the number of
rounds of the protocol, and Si is the quantum operation that S performs on the
ith round of the protocol.

We say that a QPT Q has non-black-box access to S, if Q has access to an
efficient classical description for the operations that S performs in each round,
(S1, ..., S`), as well as access to the initial auxiliary inputs of S.
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Interaction Channel. For a particular protocol (Prover,Verifier), the interaction
between Prover and Verifier on input y induces a quantum channel Ey acting
on their private input states, ρProver and σVerifier. We denote the view of Verifier
when interacting with Prover by

ViewVerifier (〈Prover (y, ρProver) ,Verifier (y, σVerifier)〉) ,

and this view is defined as the verifiers output. Specifically,

ViewVerifier (〈Prover (y, ρProver) ,Verifier (y, σVerifier)〉) := TrRProver
[Ey (ρProver ⊗ σVerifier)] .

From the verifier’s point of view, the interaction induces the channel Ey,V (σ) =
Ey(σ ⊗ ρProver) on its private input state.

3 Secure Quantum Extraction Protocols

We define the notion of quantum extraction protocols below. An extraction pro-
tocol, associated with an NP relation, is a classical interactive protocol between a
sender and a receiver.The sender has an NP instance and a witness; the receiver
only has the NP instance.

In terms of properties, we require the property that there is a QPT extractor
that can extract the witness from a semi-malicious sender (i.e., follows the pro-
tocol but is allowed to choose its own randomness) even if the sender is a QPT
algorithm. Moreover, the semi-malicious sender should not be able to distinguish
whether it’s interacting with the extractor or the honest receiver.

In addition, we require the following property (zero-knowledge): the inter-
action of any malicious receiver with the sender should be simulatable without
the knowledge of the witness. The malicious receiver can either be classical or
quantum and thus, we have two notions of quantum extraction protocols corre-
sponding to both of these cases.

In terms of properties required, this notion closely resembles the concept of
zero-knowledge argument of knowledge (ZKAoK) systems. There are two impor-
tant differences:

– Firstly, we do not impose any completeness requirement on our extraction
protocol.

– In ZKAoK systems, the prover can behave maliciously (i.e., deviates from the
protocol) and the argument of knowledge property states that the probability
with which the extractor can extract is negligibly close to the probability
with which the prover can convince the verifier. In our definition, there is no
guarantee of extraction if the sender behaves maliciously.

Definition 3 (Quantum extraction protocols secure against quantum
adversaries). A quantum extraction protocol secure against quantum
adversaries, denoted by qQEXT is a classical protocol between two classical
PPT algorithms, sender S and a receiver R and is associated with an NP relation
R. The input to both the parties is an instance y ∈ L(R). In addition, the sender
also gets as input the witness w such that (y,w) ∈ R. At the end of the protocol,
the receiver gets the output w′. The following properties are satisfied by qQEXT:
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– Quantum Zero-Knowledge: Let p : N → N be any polynomially bounded
function. For every (y,w) ∈ R, for any QPT algorithm R∗ with private
quantum register of size |RR∗ | = p(λ), for any large enough security param-
eter λ ∈ N, there exists a QPT simulator Sim such that,

ViewR∗
(
〈S(1λ,y,w),R∗(1λ,y, ·)〉

)
≈Q Sim(1λ,R∗,y, ·).

– Semi-Malicious Extractability: Let p : N → N be any polynomially
bounded function. For any large enough security parameter λ ∈ N, for every
(y,w) ∈ L(R), for every semi-malicious13 QPT S∗ with private quantum
register of size |RS∗ | = p(λ), there exists a QPT extractor Ext = (Ext1,Ext2)
(possibly using the code of S∗ in a non-black box manner), the following
holds:
• Indistinguishability of Extraction: ViewS∗

(
〈S∗(1λ,y,w, ·),R(1λ,y)〉

)
≈Q

Ext1
(
1λ,S∗,y, ·

)
• The probability that Ext2 outputs w′ such that (y,w′) ∈ R is negligibly

close to 1.

Definition 4 (Quantum extraction protocols secure against classical
adversaries). A quantum extraction protocol secure against classical
adversaries cQEXT is defined the same way as in Definition 3 except that in-
stead of quantum zero-knowledge, cQEXT satisfies classical zero-knowledge prop-
erty defined below:

– Classical Zero-Knowledge: Let p : N → N be any polynomially bounded
function. For any large enough security parameter λ ∈ N, for every (y,w) ∈
R, for any classical PPT algorithm R∗ with auxiliary information aux ∈
{0, 1}poly(λ), there exists a classical PPT simulator Sim such that

ViewR∗
(
〈S(1λ,y,w),R∗(1λ,y, aux)〉

)
≈c Sim(1λ,R∗,y, aux).

Quantum-Lasting Security. A desirable property of cQEXT protocols is that a
classical malicious receiver, long after the protocol has been executed cannot use
a quantum computer to learn the witness of the sender from the transcript of the
protocol along with its own private state. We call this property quantum-lasting
security; first introduced by Unruh [39]. We formally define quantum-lasting
security below.

Definition 5 (Quantum-Lasting Security). A cQEXT protocol is said to be
quantum-lasting secure if the following holds: for any large enough security
parameter λ ∈ N, for any classical PPT R∗, for any QPT adversary A∗, for any
auxiliary information aux ∈ {0, 1}poly(λ), for any auxiliary state of polynomially
many qubits, ρ, there exist a QPT simulator Sim∗ such that:

A∗
(
ViewR∗

〈
S(1λ,y,w),R∗(1λ,y, aux)

〉
, ρ
)
≈Q Sim∗(1λ,y, aux, ρ)

13 A QPT algorithm is said to be semi-malicious in the quantum extraction protocol if
it follows the protocol but is allowed to choose the randomness for the protocol.
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4 QEXT Secure Against Classical Receivers

In this section, we show how to construct quantum extraction protocols secure
against classical adversaries based solely on the quantum hardness of learning
with errors.

Tools.

– Quantum-secure computationally-hiding and perfectly-binding non-interactive
commitments, Comm.

We instantiate the underlying commitment scheme in [36] using Comm to
obtain a quantum-secure extractable commitment scheme. Instead of pre-
senting a definition of quantum-secure extractable commitment scheme and
then instantiating it, we directly incorporate the construction of [36] in the
construction of the extraction protocol.

– Noisy trapdoor claw-free functions {fk,b : X → DY}k∈K,b∈{0,1}.
– Quantum-secure secure function evaluation protocol SFE = (SFE.S,SFE.R).

Construction. We present the construction of the quantum extraction protocol
(S,R) in Figure 2 for an NP language L.

We prove the following lemma in the full version.

Lemma 1. Assuming the quantum security of Comm,SFE and NTCFs, the pro-
tocol (S,R) is a quantum extraction protocol secure against classical adversaries
for NP. Moreover, (S,R) satisfies quantum-lasting security.

5 Application: Classical ZK arguments secure against
quantum verifiers

In this section, we show how to construct a quantum zero-knowledge, classical
prover, argument system for NP secure against quantum verifiers; that is, the
protocol is classical, the malicious prover is also a classical adversary but the
malicious verifier can be a polynomial time quantum algorithm. To formally
define this notion, consider the following definition.

Definition 6 (Classical arguments for NP). A classical interactive protocol
(Prover,Verifier) is a classical ZK argument system for an NP language L,
associated with an NP relation L(R), if the following holds:

– Completeness: For any (y,w) ∈ L(R), we have that Pr[〈Prover(1λ,y,w),Verifier(1λ,y)〉 =
1] ≥ 1− negl(λ), for some negligible function negl.

– Soundness: For any y /∈ L, any classical PPT adversary Prover∗, and any
polynomial-sized auxiliary information aux, we have that Pr[〈Prover∗(1λ,y, aux),Verifier(1λ,y)〉 =
1] ≤ negl(λ), for some negligible function negl.
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Input of sender:
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}
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)

– If for any i, j ∈ [k], c
(j)
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1λ, (sh
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)′; (d
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)′
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(j)
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6=

Comm
(

1λ, sh
(j)
i,wi

; d
(j)
i,wi

)
, output ⊥.

– For every i ∈ [k], let (xi,0, xi,1)← Inv(ki, tdi, yi).
• Check if the commitments commit to the same message: Output ⊥ if the

following does not hold: for every j, j′ ∈ [k], we have
(
sh

(j)
i,wi

)′
⊕ sh(j)i,wi

=(
sh

(j′)
i,wi

)′
⊕ sh(j

′)
i,wi

.

• If vi = 0: let (bi, J(x′i,bi)) = (sh
(j)
i,wi

)′ ⊕ sh(j)i,wi
, where J(·) is the injection in

the definition of NTCF. Since J(·) can be efficiently inverted, recover x′i,bi .
If x′i,bi 6= xi,bi , output ⊥.

• If vi = 1: let (ui, di) =
(
sh

(j)
i,wi

)′
⊕ sh(j)i,wi

. If 〈di, J(xi,0)⊕ J(xi,1)〉 6= ui, or if

di /∈ Gki,0,xi,0 ∩Gki,1,xi,1 output ⊥.

– Otherwise, output w.

Fig. 1. Description of the function F associated with the SFE.

We say that a classical argument system for NP is a QZK (quantum zero-
knowledge) classical argument system for NP if in addition to the above prop-
erties, a classical interactive protocol satisfies zero-knowledge against malicious
receivers.

Definition 7 (QZK classical argument system for NP). A classical in-
teractive protocol (Prover,Verifier) is a quantum zero-knowledge classical
argument system for a language L, associated with an NP relation L(R) if
both of the following hold.

– (Prover,Verifier) is a classical argument for L (Definition 6).
– Quantum Zero-Knowledge: Let p : N → N be any polynomially bounded

function. For any QPT Verifier∗ that on instance y ∈ L has private register
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Input of sender: (y,w).
Input of receiver: y

– S: Compute ∀i ∈ [k], (ki, tdi)← Gen(1λ; ri), where k = λ. Send
(
{ki}i∈[k]

)
.

– R: For every i ∈ [k], choose a random bit bi ∈ {0, 1} and sample a random yi ←
f ′ki,bi

(xi,bi), where xi,bi
$←− X . Send {yi}i∈[k]. (Recall that f ′

k,b(x) is a distribution

over Y.)

– S: Send bits (v1, . . . , vk), where vi
$←− {0, 1} for i ∈ [k].

– R: For every i, j ∈ [k], compute the commitments c
(j)
i,0 ← Comm(1λ, sh

(j)
i,0 ; d

(j)
i,0 )

and c
(j)
i,1 ← Comm(1λ, sh

(j)
i,1 ; d

(j)
i,1 ), where sh

(j)
i,0 , sh

(j)
i,1

$←− {0, 1}poly(λ) for i, j ∈ [k].

Send

({
c
(j)
i,0 , c

(j)
i,1

}
i,j∈[k]

)
.

Note: The reason why we have k2 commitments above is because we repeat (in
parallel) the test of quantumness protocol k times and for each repetition, the
response of the receiver is committed using k commitments; the latter is due
to [36].

– S: For every i, j ∈ [k], send random bits w
(j)
i ∈ {0, 1}.

– R: Send

({
(sh

(j)
i,wi

)′, (d
(j)
i,wi

)′
}
i,j∈[k]

)
.

– S and R run SFE, associated with the two-party functionality F defined in Fig-
ure 1; S takes the role of SFE.S and R takes the role of SFE.R. The input to

SFE.S is

({
c
(j)
i,0 , c

(j)
i,1 , (sh

(j)
i,wi

)′, (d
(j)
i,wi

)′, tdi,ki, yi, vi, w
(j)
i

}
i,j∈[k]

,w

)
and the in-

put to SFE.R is

({
sh

(j)
i,wi

,d
(j)
i,wi

}
i,j∈[k]

)
.

Fig. 2. Quantum Extraction Protocol (S,R) secure against classical receivers.

of size |RVerifier∗ | = p(|y|), there exist a QPT Sim such that the following two
collections of quantum channels are quantum computationally indistinguish-
able,
• {Sim(y,Verifier∗, ·)}y∈L
• {ViewVerifier∗(〈Prover(y, aux1),Verifier∗(y, ·)〉)}y∈L.

In other words, that for every y ∈ L, for any bounded polynomial q : N→ N,
for any QPT distinguisher D that outputs a single bit, and any p(|y|)+q(|y|)-
qubits quantum state ρ,
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∣∣Pr [D (Sim(y,Verifier∗, ·)⊗ I)(ρ)) = 1]

−Pr [D ((ViewVerifier∗(〈Prover(y, aux1),Verifier∗(y, ·)〉)⊗ I)(ρ)) = 1]
∣∣ ≤ ε(|y|)

Witness-Indistinguishability against quantum verifiers. As a building block, we
also consider witness indistinguishable (WI) argument systems for NP languages
secure against quantum verifiers. We define this formally below.

Definition 8 (Quantum WI for an L ∈ NP). A classical protocol (Prover,Verifier)
is a quantum witness indistinguishable argument system for an NP lan-
guage L if both of the following hold.

– (Prover,Verifier) is a classical argument for L (Definition 6).
– Quantum WI: Let p : N → N be any polynomially bounded function. For

every y ∈ L, for any two valid witnesses w1 and w2, for any QPT Verifier∗

that on instance y has private quantum register of size |RVerifier∗ | = p(|y|),
we require that

ViewVerifier∗(〈Prover(y,w1),Verifier∗(y, ·)〉) ≈Q ViewVerifier∗(〈Prover(y,w2),Verifier∗(y, ·)〉).

If (Prover,Verifier) is a quantum proof system (sound against unbounded provers),
we say that (Prover,Verifier) is a quantum witness indistinguishable proof
system for L.

Instantiation. By suitably instantiating the constant round WI argument sys-
tem of Blum [13] with perfectly binding quantum computational hiding com-
mitments, we achieve a constant round quantum WI classical argument system
assuming quantum hardness of learning with errors.

Construction We present a construction of constant round quantum zero-
knowledge classical argument system for NP.

Tools.

– Perfectly-binding and quantum-computational hiding non-interactive com-
mitments Comm.

– Quantum extraction protocol secure against classical adversaries cQEXT =
(S,R) associated with the relation REXT as constructed in Section 6.

– Quantum witness indistinguishable classical argument systemΠWI = (ΠWI.Prover,
ΠWI.Verifier) (Definition 8) for the relation Rwi (Figure 3).

Construction. Let L be an NP language. We describe a classical interactive
protocol (Prover,Verifier) for L in Figure 4.

We prove following lemma in the full version.

Lemma 2. Assuming the security of Comm, cQEXT and ΠWI, the classical in-
teractive protocol (Prover,Verifier) is a quantum zero-knowledge classical argu-
ment system for NP.

23



Instance:

(
y, td,

{
(c

(j)
0 )∗, (c

(j)
1 )∗

}
j∈[k]

)
Witness:

(
w,
{

(sh
(j)
0 ,d

(j)
0 , sh

(j)
1 ,d

(j)
1 )
}
j∈[k]

)
NP verification: Accept if one of the following two conditions are satisfied:

– (y,w) ∈ R.
– If for every j ∈ [k], it holds that

• (c
(j)
0 )∗ = Comm(1λ, sh

(j)
0 ; d

(j)
0 )

• (c
(j)
1 )∗ = Comm(1λ, sh

(j)
1 ; d

(j)
1 )

• td = sh
(j)
0 ⊕ sh

(j)
1

Fig. 3. Relation Rwi associated with ΠWI.

6 QEXT Secure Against Quantum Adversaries

6.1 Construction of QEXT

We present a construction of quantum extraction protocols secure against quan-
tum adversaries, denoted by qQEXT. First, we describe the tools used in this
construction.

– Quantum-secure computationally-hiding and perfectly-binding non-interactive
commitments Comm.

– Quantum fully homomorphic encryption scheme with some desired proper-
ties, (qFHE.Gen, qFHE.Enc, qFHE.Dec, qFHE.Eval).
• It admits homomorphic evaluation of arbitrary computations,
• It admits perfect correctness,
• The ciphertext of a classical message is also classical.

We show in the full version that there are qFHE schemes satisfying the above
properties.

– Quantum-secure two-party secure computation SFE with the following prop-
erties:
• Only one party receives the output. We designate the party receiving the

output as the receiver SFE.R and the other party to be SFE.S.
• Security against quantum passive senders.
• IND-Security against quantum malicious receivers.

– Quantum-secure lockable obfuscation LObf = (Obf,ObfEval) for C, where
every circuit C, parameterized by (r,k,SK1,CT∗), in C is defined in Figure 5.
Note that C is a compute-and-compare functionality.
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– Trapdoor Committment by Verifier: Verifier: sample td← {0, 1}λ. Compute
c ← Comm(1λ, td; d), where d ← {0, 1}poly(λ) is the randomness used in the
commitment. Send c to Prover.

– Trapdoor Extraction Phase: Prover and Verifier run the quantum extraction
protocol cQEXT with Verifier taking the role of the sender cQEXT.S and Prover
taking the role of the receiver cQEXT.R. The input of cQEXT.S is (1λ, c,d; rqext)
and the input of cQEXT.R is

(
1λ, c

)
, where rqext is the randomness used by the

sender in cQEXT. Let the transcript generated during the execution of cQEXT be
TVerifier→Prover.
Note: The trapdoor extraction phase will be used by the simulator, while proving
zero-knowledge, to extract the trapdoor from the malicious verifier.

– Trapdoor Commitment by Prover:

• Let k = λ. For every j ∈ [k], Prover sends (c
(j)
0 )∗ = Comm(1λ, sh

(j)
0 ; d

(j)
0 ) and

(c
(j)
1 )∗ = Comm(1λ, sh

(j)
1 ; d

(j)
1 ), where sh

(j)
0 , sh

(j)
1

$←− {0, 1}poly(λ).

• For every j ∈ [k], Verifier sends bit b(j)
$←− {0, 1} to Prover.

• Prover sends

{(
sh

(j)

b(j)
,d

(j)

b(j)

)
j∈[k]

}
to Verifier.

– Check if Verifier cheated in Trapdoor Extraction Phase: Verifier sends
rqext,d, td to Prover. Then Prover checks the following:
• Let TVerifier→Prover be (mS

1 ,m
R
1 , . . . ,m

S
t′ ,m

R
t′ ), where the message mR

i (resp.,
mS
i ) is the message sent by the receiver (resp., sender) in the ith round

and t′ is the number of rounds of cQEXT. Let the message produced by
S
(
1λ, c,d; rqext

)
in the ith round be m̃S

i .

• If for any i ∈ [t′], m̃S
i 6= mS

i then Prover aborts. If c 6= Comm(1λ, td; d) then
Prover aborts.

– Quantum WI: Prover and Verifier run ΠWI with Prover taking the role
of ΠWI prover ΠWI.Prover and Verifier taking the role of ΠWI verifier
ΠWI.Verifier. The input to ΠWI.Prover is the security parameter 1λ, instance(

y, td,
{

(c
(j)
0 )∗, (c

(j)
1 )∗

}
j∈[k]

)
and witness (w,⊥). The input to ΠWI.Verifier is

the security parameter 1λ and instance

(
y, td,

{
(c

(j)
0 )∗, (c

(j)
1 )∗

}
j∈[k]

)
.

– Decision step: Verifier computes the decision step of ΠWI.Verifier.

Fig. 4. (Classical Prover) Quantum Zero-Knowledge Argument Systems for NP.
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C

Input: CT
Hardwired values: r (lock),k,SK1,CT∗.

– SK′2 ← qFHE.Dec(SK1,CT)

– r′ ← qFHE.Dec(SK′2,CT∗)

– If r′ = r, output k. Else, output ⊥.

Fig. 5. Circuits used in the lockable obfuscation

f

Input of sender: (td, c, c∗1, . . . , c
∗
` ,SK2)

Input of receiver: (d, r1, . . . , r`)

– If
(
c← Comm

(
1λ, (r1, . . . , r`); d

))∧ (
∀i ∈ [`], c∗i ← Comm

(
1λ, tdi; ri

))
, output

SK2. Here, tdi denotes the ith bit of td.

– Otherwise, output ⊥.

Fig. 6. Description of the function f associated with the SFE.

Construction. We construct a protocol (S,R) in Figure 7 for a NP language L,
and the following lemma shows that (S,R) is a quantum extraction protocol.

We prove the following lemma in the full version.

Lemma 3. Assuming the quantum security of Comm, SFE, qFHE and LObf ,
(S,R) is a quantum extraction protocol for L secure against quantum adversaries.
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Input of sender: (y,w).
Input of receiver: y

– R: sample (r1, . . . , r`)
$←− {0, 1}`·poly(λ). Compute c ← Comm

(
1λ, (r1, . . . , r`); d

)
,

where ` = λ and d is the randomness used to compute c. Send c to S.

– S:
• Compute the qFHE.Setup twice; (PKi,SKi)← qFHE.Setup(1λ) for i ∈ {1, 2}.

• Compute CT1 ← qFHE.Enc(PK1, (td||w)), where td
$←− {0, 1}λ.

• Compute C̃← Obf(1λ,C[r,k,SK1,CT∗]), where r
$←− {0, 1}λ and k

$←− {0, 1}λ,
CT∗ is defined below and C[r,k,SK1,CT∗] is defined in Figure 5.
∗ CT∗ ← qFHE.Enc (PK2, r)

Send msg1 =
(

CT1, C̃, otp := k⊕ SK1

)
.

– R: compute c∗i ← Comm
(
1λ, 0; ri

)
for i ∈ [`]. Send (c∗1, . . . , c

∗
` ) to S.

– S and R run SFE, associated with the two-party functionality f defined in Figure 6;
S takes the role of SFE.S and R takes the role of SFE.R. The input to SFE.S is
(td, c, c∗1, . . . , c

∗
` ,SK2) and the input to SFE.R is (d, r1, . . . , r`).

Fig. 7. Quantum Extraction Protocol (S,R)
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