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Abstract. Blockchains are gaining traction and acceptance, not just
for cryptocurrencies, but increasingly as an architecture for distributed
computing. In this work we seek solutions that allow a public blockchain
to act as a trusted long-term repository of secret information: Our goal
is to deposit a secret with the blockchain, specify how it is to be used
(e.g., the conditions under which it is released), and have the blockchain
keep the secret and use it only in the specified manner (e.g., release
only it once the conditions are met). This simple functionality enables
many powerful applications, including signing statements on behalf of the
blockchain, using it as the control plane for a storage system, performing
decentralized program-obfuscation-as-a-service, and many more.
Using proactive secret sharing techniques, we present a scalable solution
for implementing this functionality on a public blockchain, in the
presence of a mobile adversary controlling a small minority of the
participants. The main challenge is that, on the one hand, scalability
requires that we use small committees to represent the entire system,
but, on the other hand, a mobile adversary may be able to corrupt the
entire committee if it is small. For this reason, existing proactive secret
sharing solutions are either non-scalable or insecure in our setting.
We approach this challenge via “player replaceability”, which ensures the
committee is anonymous until after it performs its actions. Our main
technical contribution is a system that allows sharing and re-sharing
of secrets among the members of small dynamic committees, without
knowing who they are until after they perform their actions and erase
their secrets. Our solution handles a fully mobile adversary corrupting
roughly 1/4 of the participants at any time, and is scalable in terms of
both the number of parties and the number of time intervals.

Keywords. Blockchain, Evolving-Committee Proactive Secret Sharing, Mobile
Adversary, Player Replaceability

1 Introduction

Imagine publishing a puzzle and handing over the solution to a public blockchain,
to keep secret for a while and reveal it if no one solves the puzzle within
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a week. More generally, consider using the blockchain as a secure storage
solution, allowing applications and clients to deposit secret data and specify
the permissible use of that data. A blockchain providing such secret storage can
enable a host of novel applications (Section 1.3). For example, the secret can be
a signature key, enabling the blockchain to sign on behalf of some client or on
behalf of the blockchain itself. Alternatively, the secret can provide a root of trust
for key-management and certification solutions, allowing users and programs to
enforce policies specifying how their private data can be used. Or the secret
can be a decryption key for a fully homomorphic encryption scheme, enabling,
in a sense, program-obfuscation-as-a-service via encrypted computation and
consensus-enforced conditional decryption.

In this work we investigate the functionality of keeping a secret on a public
blockchain. We seek a scalable solution, whose complexity is bounded by a fixed
polynomial in the security parameter, regardless of how long the secret must be
kept for or how many nodes participate in the blockchain. To achieve scalability,
the work of maintaining the secret must be handled by a small committee. At
the same time, the solution must remain secure even against a mobile adversary
that can corrupt different participants at different times, as long as it corrupts no
more than a small fraction of the participants at any given time.7 Thus, the small
size of the committee presents a challenge for security. An adversary would have
enough “corruption budget” to corrupt all of the members of the committee;
even if the committee is dynamic, the mobile adversary could corrupt it as soon
as its known.

A beautiful approach for addressing the vulnerability of working with small
committees is player replaceability, introduced by Chen and Micali [14] in the
setting of reaching consensus in the Algorand blockchain. In such systems,
committees are selected to do some work (such as agreeing on a block), but each
committee member is charged with sending a single message. Most importantly,
the member remains completely anonymous until it sends that message. The
attacker, not knowing the identities of the selected members, cannot target them
for corruption until after they complete their job. For example, the committee
can be chosen by having parties self-select by locally solving moderately hard
puzzles, or using “cryptographic sortition” [14] based on verifiable random
functions (VRFs) [42].

Using this approach for our purpose is far from simple. How can one share
a secret among the members of an unknown committee? In some contexts, one
can devise solutions using the cryptographic sledgehammer of witness encryption
[23], as sketched in [26]: In systems such as proof-of-stake blockchains, the
statement “the committee votes to open the secret” can be expressed as an NP-
statement, and so one can use witness-encryption relative to that statement.
While this approach shows polynomial-time feasibility, we are interested in
solutions that can plausibly be used in practice, and therefore explore approaches
that do not require obfuscation-like tools. Moreover, it is not clear how to extend

7 This could mean a small fraction of the stake in a proof-of-stake blockchain, or of
the computing power in a proof-of-work blockchain.
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this solution to systems such as proof-or-work blockchains, where it is unknown
how to encode committee membership as an NP statement (because committee
membership depends on statements such as “longest chain” or “first player to
present a solution to the puzzle”).

1.1 Using Proactive Secret Sharing

Our solution relies on proactive secret sharing (PSS) techniques [44,13,34], using
well-coordinated messages and erasures to deal with mobile adversaries. Early
work on proactive secret sharing assumed a fixed committee (say of size N),
where parties are occasionally corrupted by the adversary and later recover and
re-join the honest set. A drawback of these protocols in our context is that
they require all the members to participate in every handover protocol, and
are therefore not sufficiently scalable. Proactive secret sharing with dynamic
committees (DPSS) was addressed in a number of previous works (e.g., [45,2,41]).

Crucial to our solution is a new variant of proactive secret-sharing, that we
call evolving-committee PSS (ECPSS). This variant is similar to DPSS, but with
one important difference: DPSS schemes treat the committee membership as
external input to the protocol, and rely on the promise that all these committees
have honest majority. In contrast, in ECPSS the committee-selection is part of
the construction itself, and it is up to protocol to ensure that the committees
that are chosen maintain honest majority.

We show how to implement ECPSS using the approach of player replace-
ability. Our solution ensures that the committee members remain anonymous,
until after they hand over fresh shares to a new committee and erase their
own. This requires a method of selecting the members of the next committee
and sending messages to them, without the senders knowing who the recipients
are. Moreover, communication in our model must be strictly one way, since the
adversary learns a node’s identity once it sends a message. Committee members
are not even allowed to know the identities of their peers (since some of them
may be adversarial), so interactive protocols among the current members are
also not allowed. Designing a solution in this challenging context is the main
contribution of this work.

1.2 Overview of Our Solution

As common in PSS, the timeline of the system is partitioned into epochs, with
a handover protocol at the beginning of each one. In each epoch i, the secret
is shared among members of an epoch-i committee, and the committee changes
from one epoch to the next, erasing its secret state once it passed the secret
to the next committee. The committee in every epoch is small, consisting of
ci = O(λ) members out of the entire universe of N users. This lets us reduce the
complexity of the handover protocol from Ω(N) to O(ci) broadcast messages.
Our proactive solution is based on Shamir’s secret sharing scheme [47], and uses
the following components:
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– We use the blockchain itself to provide synchrony, authenticated broadcast,
and PKI. See Section 2.1.

– We use cryptographic sortition for choosing random but verifiable commit-
tees. See Section 2.3.8

– We use two public-key encryption (PKE) schemes, one for long-term keys
and the other for ephemeral committee-specific keys. The long-term PKE
needs to be anonymous [3]: namely, ciphertexts must not disclose the public
keys that were used to generate them. Both anonymity and secrecy for
these schemes must hold even under receiver-selected-opening attacks, see
Section 2.4. (We note that these tools also require erasures.)

– We use non-interactive zero-knowledge (NIZK) proofs for statements about
encrypted values lying on a low-degree polynomial (under the ephemeral
scheme). The number of encrypted values in each one of these statements is
small, essentially the size ci of the committees from above.

Our solution uses anonymous public-key encryption to establish a communi-
cation mechanism that allow anyone to post a message to an unknown receiver.
We refer to this communication mechanism as “target-anonymous channels.”
Once target-anonymous channels to the next-epoch committee are established,
the current-epoch committee can use them to re-share the secret to the next-
epoch committee.

Establishing target-anonymous channels to the next-epoch committee with-
out revealing the committee to the adversary is a difficult problem. We solve it
by using special-purpose committees, separate from the ones holding the secret.
Namely, we have two types of committees:

– A holding committee that holds shares of the secret.
– A nominating committee whose role is to establish the target-anonymous

channels, thereby “nominating” the members of the next holding committee.

Crucially, the nominating committee does not hold shares, and hence its
members can self-select (because no channels to them need to be established).
The self-selection can be accomplished, for example, by using cryptographic
sortition. Once self-selected, each nominator chooses one member of the next
holding committee, and publishes on the blockchain information that lets the
current holding committee send messages to that member, without revealing its
identity.

In more detail, after randomly choosing its nominee for the future holding
committee, the nominator chooses and posts to the blockchain a new ephemeral
public key, along with an encryption of the corresponding ephemeral secret key
under the nominee’s long-term public key. We use anonymous encryption to
ensure that the ephemeral keys and ciphertexts do not betray the identities (or
long-term keys) of the nominees. Note that the ephemeral keys themselves may
use a different encryption scheme, that need not be anonymous.

8 An alternative realization in the context of proof-of-work blockchains could use
solving moderately-hard puzzles for that purpose.
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Once the ephemeral keys of the next committee are posted, everyone knows
the size of that committee (call it ci+1). Each member of the current holding
committee re-shares its share using a t-of-ci+1 Shamir secret sharing (with t ≈
ci+1/2), uses the j-th ephemeral key to encrypt the j-th share, and broadcasts
all these encrypted shares along with a proof that the sharing was done properly.

Members of the next holding committee recover their ephemeral secret keys
by decrypting the posted ciphertexts with their long-term keys. Each member
then collects all the shares that were encrypted under its ephemeral key and uses
them to compute its share of the global secret in the new committee. Note that all
these ciphertexts are publicly known, so they can serve also as a commitment to
the share, enabling the holding committee members to prove correct re-sharing
in the next iteration of the protocol.9

An important feature of this solution is that it does not require the nominating
committee members to prove anything about how they chose their nominees or
how the ephemeral keys were generated. Note that proving the selection would
be of limited value, since even if we force corrupted members of the nominating
committee to abide by the protocol, they can corrupt their nominees as soon as
those are chosen. Moreover, asking the nominating committee to prove anything
about their choice while maintaining anonymity would require that they prove
size-N statements (i.e. proving that the receiver is one of the N parties in the
system).10

In contrast, holding-committee members must prove that they re-share their
shares properly. But the statements being proven (and their witnesses) are all
short: Their size depends only on the committee size, and does not grow with
the total number of parties or the history of the blockchain. Hence the NIZK
complexity in our solution is just polynomial in the security parameter, even if
we were to use the most naive NIZKs.

The lack of proofs by the nominating committee comes at a price, as it
allows the adversary to double dip: An adversary controlling an f fraction of the
parties will have roughly an f fraction of the nominating committee members (all
of which can choose to nominate corrupted parties to the holding committee),
and another f fraction of the holding committee members nominated by honest
parties. Hence, our solution can only tolerate adversaries that control less than
29% of the total population. (In the appendix of the long version [6] we mention
a variant of the protocol that does require proofs and is resilient to a higher
percentage of adversarial parties, but in a weaker adversary model.)

We also comment that members of the holding committee must replace the
secret key for their long-term keys and erase the old secret key before they
post their message in the protocol. Otherwise the adversary can corrupt them
(because they will reveal themselves when posting messages) and use the old
secret key to decrypt everything that was sent to them (in particular the shares

9 If the ephemeral PKE scheme is also linearly-homomorphic, it may be possible to
compress this commitment to a single ciphertext encrypting the share of that party.

10 The communication can still be kept small using SNARKs, but the computation
would have to be at least linear in N .
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that they received). This means that the term of “long-term keys” is also limited:
these keys are used once and then discarded.

Aside: anonymous PKE and selective-opening. In our setting, the
anonymous PKE needs to provide security against selective-opening attacks (see
discussion in Section 2.4). While it is well understood that semantic-security does
not imply secrecy against selective-opening, the same is not true of anonymity. In
Section 5 we show strong evidence that anonymity is preserved under selective-
opening attacks. However, we do not fully resolve this question, and it remains
an interesting problem for future work.

Aside: parties vs. stake or computing power. The description so far
glossed over the question of what exactly is a party in the context of blockchains.
Throughout this manuscript we mostly ignore this issue and think of parties as
discrete entities, even though reality may be more complex. In a proof-of-stake
(PoS) blockchain, parties are weighted by the amount of stake that they hold,
with rich parties having more power than poor ones. Hence the sortition-based
solution above must also be weighted accordingly, giving the rich more seats
on the various committees. Similarly, in proof-of-work (PoW) blockchains, the
parties with more computing power should get more seats on the committees.
See Section 4 for more discussion about using stake to represent parties, and
about the effect of parties sending tokens to each other (and hence changing
their stake).

1.3 Applications

The solutions in this work can form the basis of many applications, both in
blockchain-specific contexts and for traditional uses of threshold cryptography.
Perhaps the most natural application is for signing global blockchain state,
making it easy to verify without having to inspect the entire blockchain history.
This is useful both for fast catch-up (when a new party joins the blockchain)
and for a cross-blockchain token bridge (when one blockchain needs to verify
statements about the state of another).

The secrets held by committee can more generally be used for “threshold
cryptography as a service”: for example, a threshold signature scheme deployed
to support certification authorities, or authentication of credentials, or nota-
rization services, etc. Another application is a verifiable randomness beacon,
e.g., as used in [1,30]. Yet another versatile primitive is threshold Oblivious
PRF, which can be used to implement a variety of secure storage systems,
such as password-authenticated secrets (e.g., custodial services) [36], cloud key
management [37], private information retrieval and search on encrypted data
[20], oblivious pseudonyms [39], password managers [48], and more.

Even more generally, we can implement generic secure computation, letting
the current committee pass to the next one the sum/product of two secrets rather
than just passing the individual secrets themselves. (As it happens, our handover



Can a Public Blockchain Keep a Secret? 7

protocol is similar in many ways to the information-theoretic multiplication
protocol from [24], making it rather easy to extend to secure computation.) A
particularly powerful form of MPC-as-a-service is using threshold decryption of
homomorphic encryption [10], which would enable applications akin to program
obfuscation: Clients can encrypt their programs, anyone could apply these
encrypted programs to arbitrary inputs, and the blockchain could decrypt the
result (when accompanied by appropriate proofs). More limited in scope but with
more practical implementations, threshold decryption of linearly-homomorphic
encryption enables varied applications such as private set intersection [21], asset
management and fraud prevention [29], and many more.

1.4 Related Work

Secret sharing was introduced in the works of Shamir [47] and Blakley [7]. The
proactive setting stems from the mobile adversary model of Ostrovsky and Yung
[44] followed by works of Canetti-Herzberg and Herzberg et al. in the static-
committee setting [13,34,33]. The dynamic setting where the set of shareholders
changes over time was contemplated in several works, such as [17,46,18,2]. We
refer the reader to Maram et al. [41] for a detailed comparison of these works
(in particular, see their Section 8 and Table 4).

Several works also deal with dynamic shareholder sets in the context of
blockchain. The Ekiden design [15] provides privacy in smart contracts using
a trusted execution environment (TEE). They also use threshold PRFs to
derive periodic contract-specific symmetric keys for encrypting smart-contracts.
Their scheme is described using a static committee but they suggest the use of
proactive secret sharing and rotating committees for increased security. Calypso
[38] uses blockchain and threshold encryption to build an auditable access control
system for the management of keys and confidential data, and contemplates
the possibility of shareholder committees changing periodically. Helix [1] selects
per-block committees who agree on the next block in the chain using a PBFT
protocol, and use threshold decryption with a fixed static committee to recover
the transactions only after the block is finalized (and also to implement a
verifiable source of randomness). Dfinity [30] also uses threshold cryptography
(signatures in their case) and dynamic shareholder committees for implementing
a randomness beacon, but the shared secret changes with each new committee.

Closest to our work are the works of Maram et al. (CHURP) [41] and Goyal
et al. [27] that build proactive secret sharing over dynamic groups in a blockchain
environment. The crucial difference between these works and ours is that they
assume a bound of t corrupted committee members, without regard to how to
ensure that such a bound holds. In fact their techniques are inapplicable in our
setting, as they crucially build on active participation of the receiving committee
in the handover protocol. As a result, in the mobile adversary model that we
consider, their protocol is either non-scalable (requiring participation of all the
stakeholders) or insecure (if using small committees). In contrast, our main goal
is to maintain absolute secrecy of the new committee members during handover,
to enable the use of small committees.
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A concurrent independent work of Choudhuri et al. [16] deals with MPC
in a “fluid” model where parties come and go and cannot be counted on to
maintain state from one step to the next. This model share some commonalities
with ours, but the solutions are very different. In particular their solution only
provides security with abort, which is not enough for our purposes (as we need
assurance of reconstruction). Their solution uses DPSS, where the composition
of the committees is treated as input (under the promise that they are mostly
honest), whereas a crucial part of our solution is choosing the committees.

Finally, our techniques are somewhat reminiscent of the protocol of Garay
et al. [22] for MPC with sublinear communication (and indeed the resilience
constant 1−

√
0.5 from Section 3.2 appears in their work as well).

2 Background and Definitions

2.1 Synchrony, Broadcast, PKI, and Adversary

We use the blockchain as a synchronization mechanism, an authenticated
broadcast channel, and a PKI. For synchrony, we assume that all parties know
what is the current block number on the blockchain. For communication, any
party can broadcast a message to the blockchain at round i, and be assured that
everyone will receive it no later than round i + δ (where δ is a known bound).
Moreover, a party that received a message on the blockchain in round i is assured
of its sender, and can also trust that all other parties received the same message
at the same round.

This (authenticated) broadcast channel is the only communication mecha-
nism in our model, and it is fully public. This means that anyone (including the
adversary) can see who posts messages on it. We stress that we do not assume or
use sender-anonymous channels, such channels may make the problem of keeping
a secret on the blockchain much easier, but establishing them is notoriously hard,
(if not impossible).

The same broadcast channel is also used for PKI, each party in our system
periodically broadcasts a public key on the authenticated broadcast channel,
hence letting everyone else know about that key.

Finally, we consider a mobile adversary that sees the messages on the
broadcast channel and can corrupt any sender of any message at will. The power
of the adversary is measured by its “corruption budget,” which is defined as
follows: The lifetime of the system is partitioned into epochs, and we assume
that the PKI system have each party broadcasts a new key at least once per
epoch. After corrupting a party, the adversary may decide to leave that party
alone. If that happens then this party will broadcast a new key in the next
epoch, and then it will no longer be under the adversary’s control. In other
words, the adversary controls a party from the time that it decides to corrupt it,
until that party — after being left alone — broadcasts a new key (and have that
key appears on the broadcast channel). The adversary’s “corruption budget” is
the largest percentage of parties that it controls at any point during the lifetime
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of the system. Our solutions in this work ensure security only against attackers
whose corruption budget stays below some fraction f∗ of the overall population.
Specifically our main solution in Section 3 has f∗ = 1−

√
0.5 ≈ 0.29. (We sketch

in the appendix of the long version [6] a variant with resilience 3−
√
5

2 ≈ 0.38, but
under a weaker adversary model.)

Importantly, our model assumes that parties can security erase their state,
this requirement is inherent in all proactive protocols.

2.2 Evolving-Committee Proactive Secret Sharing

A t-of-n secret-sharing scheme [47,7] consists of sharing and reconstruction
procedures, where a secret σ is shared among n parties, in a way that lets
any t (or more) of them reconstruct the secret from their shares. In its simplest
form, we only require the following secrecy and reconstruction properties against
efficient adversaries that corrupt up to t− 1 parties:

Definition 1 (Secret Sharing). A t-of-n secret-sharing scheme must provide
the following two properties.

Semantic security: An efficient adversary chooses two secrets σ0, σ1, then the
sharing procedure is run and the adversary can see the shares held by all
that parties that it corrupts. The adversary must have at most a negligible
advantage in guessing if the value shared was σ0 or σ1.

Reconstruction: After receiving their shares from an honest dealer, the recon-
struction protocol run by ≥ t honest parties will output the correct secret σ
(except for negligible probability).

In this work we use Shamir secret sharing [47], where the secret σ is shared
among the n parties by choosing a random degree-(t − 1) polynomial F whose
free term is σ (over some field F of size at least n+ 1), associating publicly with
each party i a distinct point αi ∈ F , then giving that party the value σi = F (αi).
Thereafter, collection of t parties or more can interpolate and recover the free
term of F .

Robust secret sharing. In addition to the basic secrecy and reconstruction
properties above, many applications of secret-sharing requires also robust
reconstruction, namely that reconstruction succeeds in outputting the right
secret whenever there are t or more correct shares, even if it is given some
additional corrupted shares.

Definition 2. A t-of-n secret-sharing scheme has robust reconstruction if
polynomial-time adversaries can only win the following game with negligible
probability (in n):

– The adversary specifies a secret σ, which is shared among the share holders;
– Later the adversary specifies a reconstruction set R of parties, consisting of

at least t honest parties (and as many corrupted parties as it wants). The
reconstruction procedure is run on the shares of the honest parties in R, as
well as shares chosen by the adversary for the corrupted parties in R.
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The adversary wins if the reconstruction procedure fails to output the original
secret σ.

Proactive secret sharing (PSS). A PSS scheme [44,13,34] is a method of
maintaining a shared secret in the presence of a mobile adversary. The adversary
model is that of Ostrovsky and Yung [44], with parties that are occasionally
corrupted by the adversary and can later recover and re-join the honest set.
PSS includes share-refresh protocol, which is run periodically in such a way that
shares from different periods cannot be combined to recover the secret.

A PSS scheme provides the same secrecy and (robust) reconstruction
properties from Definitions 1 and 2, and the power of the adversary is measured
by the number of parties that it can corrupt between two runs of the share-refresh
protocol. Typically, the requirement is that over an epoch from the beginning
of one refresh operation until the end of the next one, the adversary controls at
most t− 1 of the n parties.

Dynamic PSS (DPSS). DPSS is a proactive scheme where the set of n secret
holders may change from one epoch to the next. The share-refresh protocol is
replaced by a share-handover protocol run between two (possibly overlapping)
sets of n parties each, allowing the old set of holders to transfer the secret to
the new set. DPSS still provides the same secrecy and (robust) reconstruction
properties from Definitions 1 and 2 against a mobile adversary, this time under
the assumption that the adversary controls at most t−1 of the n parties in each
set.

Evolving-Committee PSS (ECPSS). Prior work on DPSS ignored the question
of how these committee are formed. In all prior work the composition of the
committee was treated as external input, and the restriction of ≤ t−1 corrupted
parties in each committee was a promise. In this work we take the next step,
incorporating the committee-selection into the protocol itself, and proving that
at most t − 1 parties are corrupted whp (in our adversary model). We call this
augmented notion Evolving-Committee PSS (ECPSS),

Definition 3. An evolving-committee proactive secret sharing scheme (with
parameters t ≤ n < N) consists of the following procedures:

Trusted Setup (optional). Provide initial state for a universe of N parties;
Sharing. Shares a secret σ among an initial holding committee of size n;
Committee-selection. Select the next n-party holding committee, this protocol

runs among all N parties;
Handover. An n-party protocol, takes the output of committee-selection and the

current shares, and re-shares them among the next holding committee;
Reconstruction. Takes t or more shares from the current holding committee

and reconstructs the secret σ (or outputs ⊥ on failure.)

An ECPSS protocol is scalable if the messages sent during committee-selection
and handover are bounded in total size by some fixed poly(n, λ), regardless of N .
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A run of the ECPSS scheme consists of initial (setup and) sharing, followed
by periodic runs of committee-selection and handover, and concludes with
reconstruction. Note that some variations are possible, for example n, t may
vary from one committee to the next and even N could change over time.

In terms of security, we require that ECPSS provides the same secrecy and
(robust) reconstruction properties from Definitions 1 and 2, within whatever
adversary model that is considered. The main difference with DPSS is that
ECPSS no longer enjoys the DPSS “promise” of mostly-honest committees,
instead we have to prove that committees can keep a secret (i.e. that they
are mostly honest) within the given adversary model. In our case, this is
a traditional mobile-adversary model that only assumes some limit on the
adversary’s corruption power in the overall universe (as in Section 2.1 above).

An important feature of scalable ECPSS is that most parties neither send
messages during committee-selection nor take part in the handover protocol. In
our mobile-adversary model, this begs the question of how can such “passive”
parties recover from compromise. Our EPSS must therefore rely on some external
mechanism to let passive parties recover, a mechanism which is not part of
the ECPSS protocol itself. In our setting we rely on the PKI component from
Section 2.1 above, where each party broadcasts a new public key at least once
per epoch, letting it recover from an exposure of its old secret key. When proving
ECPSS security, however, we need not worry about this mechanism, we simply
assume that such mechanism exists, and consider a party “magically recovered”
if it is left alone by the adversary for a full epoch.

Finally, while it is convenient to consider the same epochs for both the
ECPSS protocol and the underlying adversary model (and indeed we assume
so in Section 3), it is not really required. The refresh protocol can run more
often than the PKI-induced epochs. In our context such frequent secret-refresh
may be required, indeed the secret must be refreshed every time that it is used by
a higher-level application, since any use lets the adversary learn who was holding
the secret. Such frequent refresh operations make it even more important to use
efficient protocols, and in particular motivate our insistence on scalability.

2.3 Verifiable Random Functions and Cryptographic Sortition

A verifiable random function (VRF) [42] is a pseudorandom function that enables
the key holder to prove (input, output) pairs. We refer the reader to [42] for the
formal definition.11 Constructions of VRFs are known under various number
theoretic assumptions (such as RSA, DDH, or hardness in paring groups), with
or without the random-oracle heuristic.

VRFs can be used to implement cryptographic sortition, which is essentially
a verifiable lottery [14] that the parties can use to self-select themselves to
committees. Each party has a VRF key pair, the parties all know each other’s
public keys, and there is a publicly known input value that they all agree on.

11 A convenient way of thinking about VRFs is as a hash of the signature in a unique-
signature scheme.
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Each party computes the VRF on the public input using its secret key, thereby
obtaining a random value that it can use to determine whether or not it was
selected to the committee. Moreover the party can prove its self-selection to
everyone by exhibiting the random value with the VRF proof.

In many settings (including ours) the adversary has some influence over the
public input. In such settings, the VRF implementation sketched above falls short
of implementing a “perfect” lottery, since the adversary can try many inputs
until it finds one that it likes. We therefore consider a sortition functionality
with initial phase where the adversary can reset the lottery, each time getting
the lottery choices corresponding to the parties that it controls. Eventually
the adversary decides that it is happy with its choices, and then the lottery
functionality is activated for everyone. This functionality is described in Fig. 1.

Cryptographic Sortition

Parameters are probability p ∈ (0, 1) and a set of N parties P1, . . . , PN .

1. Initialization. For each i = 1, . . . , N choose a random independent bit bi with
Pr[bi = 1] = p. The adversary can repeatedly request to see all the bits for the
corrupted parties, and can ask that all the bits will be chosen afresh. Once it is
happy with its bits, the adversary can end this phase and move to Phase 2.

2a. Lottery. Once initialization ends, every party Pi can ask for its state, getting
the bit bi.

2b. Verification. All parties begin in private mode, and any party can ask at any
time for its mode to be changed to public mode. A party Pi can ask for the state
of any other party Pj , getting ⊥ if Pj is still in private mode or the bit bj if Pj

is in public mode.

Fig. 1. The cryptographic sortition functionality.

2.4 Selective-Opening Security of Public-Key Encryption

Our solution relies crucially on implementing “target-anonymous” secure chan-
nels by broadcasting encrypted messages. In the mobile-adversary model, this
means that the adversary gets to see public keys and encrypted messages, then
decide on the nodes that it wants to corrupt, exposing their secret keys. This
attack is known as the receiver selective-opening attack (cf. [19,11,5,4,32]), and
it poses many challenges. In particular, it is known that secrecy under receiver
selective-opening attack does not follow from semantic security [25,5,4,35],
and implementing schemes that provably maintain secrecy in this setting is
challenging. In our setting, we need schemes that provide both secrecy and
anonymity in this model, and these two aspects seem to behave very differently.
We begin with the secrecy aspect, which was researched more in the literature
and is better understood.
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Secrecy under selective opening attacks We follow Hazay et al.’s definitions
of indistinguishability-based receiver-selective-opening security (RIND-SO) [32],
which build on [19,4]. In the RIND-SO security game, the adversary sees a vector
of ciphertexts, encrypting messages that are drawn from some distribution D.
It obtains the opening of a selected subset of them (by obtaining secret keys),
then receives from the challenger either the actual remaining plaintexts, or fake
remaining plaintexts that are drawn afresh from D conditioned on the opened
plaintexts. (This game requires that D be efficiently resamplable [9], namely it
should be feasible to draw from D conditioned on the opened plaintexts.) RIND-
SO security require that the adversary only has negligible advantage in telling
these cases apart, see [32] for a formal definition.

While not following from standard semantic security (even for semi-adaptive
adversaries), selective-opening security can be obtained from exponentially CPA-
secure encryption via complexity leveraging. Encryption schemes with selective-
opening security can also be built from receiver-non-committing encryption
(RNCE) [11], but Nielsen [43] showed that an RNCE scheme must have secret-
key at least as long as the total size of plaintexts that are encrypted to it.
However, Hazay et al. [32] showed that RIND-SO security can be obtained from
a weaker “tweaked” notion of RNCE, and that a construction due to Canetti
et al. [12] achieves the desired notion under the Decision-Composite-residuosity
(DCR) assumption.

Anonymity under selective opening attacks. Bellare et al. defined in [3]
anonymity for static adversaries via indistinguishability between two keys, but in
our setting we need anonymity also against selective opening. We are not aware
of previous work that examined anonymity in this setting, and even defining
what it means takes some care. In our setting it makes sense to require that the
adversary’s decision to open a key (i.e. corrupt its holder) is not significantly
impacted by whether or not that key was used to encrypt a ciphertext. We
consider adversary that can see public keys and ciphertexts and can open some
fraction f of the public keys and learn the corresponding secret keys. We require
that the adversary cannot learn the secret keys of much more than an f fraction
of the keys that are actually used to encrypt the ciphertexts. This is defined
via the following game between the adversary and a challenger, with parameters
ε,m, t, n such that ε > 0 is a constant and λ ≤ m, t ≤ n(1− ε):
1. The challenger runs the key generation n times to get (pki, ski)← Gen(1λ, $)

for i = 1, . . . , n, and sends pk1, . . . , pkn to the adversary;
2. The adversary chooses m plaintext messages x1, . . . , xm;
3. The challenger chooses m distinct random indexes A = {i1, . . . , im} ⊂ [n],

uses pkij to encrypt xj , and sends to the adversary the ciphertexts ctj ←
Encpkij (xj) (j = 1, . . . ,m).

4. The adversary adaptively chooses indexes k1, k2, . . . , kt one at a times, and
for each kj it receives from the challenger the secret key skkj .

The adversary wins this game if it opens more than t/n + ε fraction of the
ciphertext-encrypting keys indexed by A.
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Definition 4 (Adaptive Anonymous PKE). A PKE scheme E = (Gen,Enc,Dec)
is anonymous against selective-opening, if for every constant ε > 0 and λ ≤
m, t ≤ n(1−ε), no feasible adversary can win the above game with non-negligible
probability (in λ).

In the long version [6] we recall the static-adversary definition of Bellare et al. [3]
and discuss its relations to our selective-opening notion. We show some evidence
that our notion is implied by the definition from [3], hence we make the following
conjecture:

Conjecture 1. An anonymous PKE against static adversaries is also selective-
opening anonymous as per Definition 4.

2.5 Non-Interactive Zero-Knowledge Proofs

We use the standard definition of NIZK [8] using a common reference string.

2.6 Instantiating the Building Blocks for Our Solution

As we sketched in the introduction, our solution uses two PKE schemes, external
one for the long-term keys and internal one for the ephemeral keys. Denote these
schemes by E1 (external) and E2 (internal), and denote their combination by
E3 = E1 ◦E2. Namely, E3 uses long-term keys from E1, and encrypts a message by
choosing an ephemeral key pair for E2, encrypting the ephemeral secret key by
the long-term public key, and encrypting the message by the ephemeral public
key. The properties of these schemes that we need are:

– E1 is anonymous under selective-opening, as per Definition 4.

– The combination E3 = E1 ◦ E2 is RIND-SO secure as in [32].

In addition we would like the internal scheme E2 to be “secret-sharing friendly”,
in the sense that it allow efficient NIZK proofs that multiple values encrypted
under multiple keys lie on a low-degree polynomial.12 Below we sketch some
plausible instantiations.

Achieving anonymity for E1. Since our solution does not require proving any-
thing about the external scheme, we can use random-oracle-based instantiations,
which makes it easier to deal with selective opening attacks. Moreover, under our
Conjecture 1 it is enough to ensure static anonymity against static adversaries to
get also anonymity under selective-opening. It is well known that most DL-based
schemes and most LWE-based schemes are statically anonymous, and there are
many variations of factoring-based schemes that are also anonymous.

12 The witness for such proof consists of the secret key for one of the keys and the
encryption randomness for all the others.
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Achieving secrecy for E3. To get RIND-SO security for E3 we need both E1 and
E2 to provide secrecy under selective opening. For E1 we may use random-oracle-
based hybrid constructions, but for E2 we need efficient NIZK proofs and hence
prefer not to use random oracles.

DCR-based instantiation. To get RIND-SO security for E2, we can use the
“tweaked” receiver-noncommitting encryption from [32]. This method can be
instantiated based on the decision-composite-residuosity (DCR) assumption.
We begin with the DCR-based RNCE scheme of Canetti et al. [12], and apply
the usual anonymization methods for factoring-based scheme to make it also
anonymous (e.g., add a random multiple of n, see [31]).

This instantiation is also reasonably sharing-friendly, we can have a secret
holder provide a Pedersen commitment to its secret, and prove that the
encrypted shares are consistent with the commitment. A detailed description
of such a scheme including the necessary zero-knowledge proofs can be found
in [40, Sec. 6.2.4], and can be made non-interactive using the Fiat-Shamir
heuristic.

DDH-based instantiation. A variation of the above can also be instantiated
under DDH. In this variant, we roughly replace Shamir secret sharing with
a Shamir-in-the-exponent sharing (hence the secret is a random group
element gs). This means that the share holders can recover gs, but not s
itself. This supports applications that recover an individual secret but may
not suffice for more complex threshold functions. We can then use the DDH-
based RCNE scheme from [12], and since we do not expect to recover s
itself then we do not have the limitation from [12] of only encrypting short
messages. This DDH-based scheme can be easily made anonymous, and also
allow simple NIZK proofs via the Fiat-Shamir heuristic.

(We note that this approach does not work for the external E1, since there
we need to recover the actual plaintext.)

It is likely that one could also exhibit plausible instantiations based on LWE,
but we have not worked out the details of such instantiations.

3 Our Evolving-Committee PSS Scheme

Below let N denote the total number of parties in the system, and let C, t be
two parameters denoting the expected size of the holding committee and the
threshold, to be determined later (roughly t ≈ C/2 = O(λ)). In the description
below we assume that these parameters are fixed, but it is easy to adjust the
protocol to a more dynamic setting.

We assume the model from Section 2.1, including the availability of a
broadcast channel (with all parties having access to the entire broadcast history).
We also assume access to one instance of the sortition functionality per epoch,
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a CRS known to all (fir the NIZK), and the PKI. For PKI we assume that every
party has a “long-term”13 public key for an anonymous PKE.

3.1 The Construction

Initial Setup and Sharing. For setup, we assume that all parties are given
access to a common reference string for the NIZK, as well as the broadcast
channel and the PKI. We also assume that the dealer is honest, and for simplicity
we assume that sharing is run during initial setup.

1. On secret σ, the dealer chooses a random degree-(t− 1) polynomial F0 with
F0(0) = σ.

2. The dealer also choose a random size-C committee C0 ⊂ [N ], associates with
each party j in the first committee C0 an evaluation point αj , and give that
party αj and the share F0(αj). (To save a bit on notations, we identify each
index j with a point αj in the secret-sharing field and write Fi(j) rather
than Fi(αj).)

3. Finally, the dealer also broadcast the α’s and commitments to all the shares,
and give each party in C0 the decommitment string for its share.

We remark that an alternative sharing procedure can instead just use the same
mechanism as the handover protocol below (with the honest dealer playing all
the roles in the protocol).

Thereafter, we assume that at the end of every epoch i we have an ci-member
holding committee Ci holding a Shamir sharing of the global secret σ, and it needs
to pass that secret to the next holding committee Ci+1. We also assume that the
broadcast channel includes commitments to all the shares, and that each party
in Ci can open the commitment of its share.

Committee-Selection. Run by every party in the system p ∈ [N ]:

1. Use the sortition functionality with HEAD probability C/N to draw a
verifiable bit bp. If bp = 0 go to step 5. (We say that a party with bp = 1 has
a seat on the nominating committee, and note that the expected number of
seats is C.)

2. Choose at random a nominee q ∈ [N ] and get from the PKI its “long-term”
public key pkq for the anonymous PKE E1.

3. Generates a new ephemeral key pair (esk, epk)← E2.Keygen($), and use pkq
to encrypt the ephemeral secret key, ct← E1.Encpkq (esk).

4. Erase esk, set your sortition state to public, and broadcast (epk, ct).
5. Watch the broadcast channel, let (epk1, ct1), . . . , (epkci+1

, ctci+1
) be those

broadcast pairs that were sent by parties with public sortition bits bp′ = 1,
ordered lexicographically by the public key values epk?. (Note that all honest
parties have a consistent view of this list and in particular agree on the
value ci+1.)

13 “Long-term” in quote since it is replaced at least once per epoch, we use the name
to distinguish these keys from the “ephemeral” keys of E2 that are only used once
in the protocol.
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6. For each such pair (epkj , ctj), try to decrypt ct with your long-term secret
key skp and see if the result is the secret key eskj corresponding to epkj .
If so then store eskj locally, it represents the j’th seat on the holding
committee Ci+1.

We note that each (epk, ct) establishes a “target-anonymous communication
channel” to some party q. We also note that as part of the implementation
of sortition, setting the sortition state to public would involve broadcasting the
sortition proof together with (epk, ct).

The Handover Protocol. We use a technique similar to [24] to re-share the
secret among the seats on the holding committee Ci+1.

Previous-epoch holding committee members. By induction, the shares held by Ci
define a degree-(t− 1) polynomial Fi with Fi(0) = σ, where each seat j holds a
share σj = Fi(j). Let I = {1, 2, . . . , ci+1} be the non-zero evaluation points used
for a t-of-ci+1 Shamir secret-sharing scheme. A party q holding seat j does the
following:

1. Choose a random degree-(t− 1) polynomial Gj with Gj(0) = σj .
2. For each k ∈ I Set σj,k = Gj(k) and use the k’th ephemeral public key to

encrypt it, setting ctj,k = Encepkk(σj,k).
3. Let comj be the commitment from the previous round to the share σj .

Generates a NIZK proof for the statement that (comj , ctj,1, . . . , ctj,ci+1)
are commitment/encryptions of values on a degree-(t − 1) polynomial
w.r.t evaluation points (0, 1, . . . , ci+1) (and public keys epk1, . . . , epkci+1

)

respectively.14 Denote this proof by πj .
4. Choose a new long-term key-pair, (sk′q, pk

′
q) ← E1.Keygen($), and erase the

previous skq as well as all the protocol secrets (including all shares and
ephemeral secret keys).

5. Broadcast a message that includes pk′q (for the PKI) and
(
ctj,1, . . . , ctj,ci+1

, πj
)
.

Next-epoch holding committee members. Let (~ct1, π1), . . . , (~ctci , πci) be the
messages boradcast by prior-epoch committee members that include valid NIZK
proofs, ordered lexicographically. Note again that all honest parties will agree on
these messages and their respective prior-epoch evaluation points j1, . . . , jci . Let
λj1 , . . . , λjt be the Lagrange coefficients for the first t points j1, . . . , jt. Namely

F (0) =
∑t
k=1 λjk · F (jk) holds for every polynomial F of degree (t− 1).

Each party p with seat k on the holding committee Ci+1 does the following:

1. Choose the first t ciphertext vectors ~ct1, . . . , ~ctt, and extract the k’th
ciphertext from each ct1,k, . . . , ctt,k.

2. Use the ephemeral secret key eskk to decrypt them to get the values σj1,k =
Gj1(k) through σjt,k = Gjt(k).

14 The witness for this NIZK proof consists of the ephemeral secret key eskj that was
used to decrypt comj , and the randomness that was used to encrypt the ctj,k’s.
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3. Compute the share of the global secret corresponding to seat k as∑
j∈{j1,...,jt}

λj · σj,k.

Moreover, the ciphertexts ctj1,k, . . . , ctjt,k are kept and used as the commitment
value to this share (with the decommitment information being the ephemeral
secret key eskk).

Handover correctness. To see that the values computed by the holding committee
members in the handover protocols are indeed shares of the global secret, let us
define the polynomial

Fi+1 =
∑

j∈{j1,...,jt}

λj ·Gj ,

where Gj is the polynomial chosen by the (holder of) the j’th seat on the holding-
committee of period i. Since the Gj ’s all have degree-(t − 1), then so is Fi+1,
and moreover we have

Fi+1(0) =
∑

j∈{j1,...,jt}

λj ·Gj(0) =
∑

j∈{j1,...,jt}

λj · Fi(j) = Fi(0) = σ.

On the other hand, for each seat k on the holding committee of period (i + 1),
we have ∑

j∈{j1,...,jt}

λj · σj,k =
∑

j∈{j1,...,jt}

λj ·Gj(k) = Fi+1(k).

Reconstruction. We use Shamir reconstruction, after checking validity relative
to the commitments in the broadcast channel. Specifically, each party in the
reconstruction set R provides its evaluation point and share of the global
secret, as well as an NP-witness showing that this share is consistent with the
relevant ciphertexts from the broadcast channel.15 The procedure takes the first
t evaluation points that have valid proofs, and uses interpolation to recover the
secret from the corresponding shares.

3.2 The parameters C and t

Below we analyze the parameters of our scheme vs. the fraction of corrupted
parties that it can withstand. Jumping ahead, our scheme can withstand a
fraction f of corrupted parties strictly below f∗ = 1 −

√
0.5 ≈ 0.29, the

committee-size parameter needs to be C = Ω
(

λ
f(1−f)(f∗−f)2

)
, and the threshold

can be set as t ≈ C/2. The process that we analyze is not very different from the
one in [22, Thm 3] (and indeed we can tolerate the same fraction f∗ = 1−

√
0.5

as there). The main difference is that in our case the adversary can reset the

15 These NP witness is just the secret key of the ephemeral key that was used to send
the shares to it.which need not be hidden anymore now that the secret is revealed.
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sortition choice many times, which gives it some additional power but does not
change the asymptotic behavior.

Our analysis uses tail bounds for the binomial distribution, so we begin by
stating some properties of these bounds in the regime of interest. Let p ∈ (0, 1)
and let k, n be integers with pn < k ≤ n, Our analysis is concerned with a
setting where p = o(1) (in the scheme we have p = C/N), and we use following
Chernoff bounds:

Pr [Bin(n, p) > pn(1 + ε)] < exp(−npε2/(2 + ε)), and

Pr [Bin(n, p) < pn(1− ε)] < exp(−npε2/2). (1)

In this analysis we ignore computational issues and assume that the
adversary selects the keys to open without any information about membership
in the nominating- and holding-committees. Our computational assumptions in
Section 3.3 ensure that poly-time adversaries cannot do much better even if they
do see the various keys and ciphertexts. In this information-theoretic analysis
we can make the following simplifying assumptions:

– The adversary is computationally unbounded, but still can only reset the
sortition functionality from Fig. 1 a bounded number of times, and it is
subject to a budget of corrupting at most fN parties.

– Corrupted members of the nominating committee choose only corrupted
members for the holding committee, and

– The adversary corrupts all the fN parties at the beginning of the handover
protocol and these remain unchanged throughout.

To see why we can make the last assumption (in this information-theoretic
setting), observe that any change in the number of corrupted seats that happens
because the adversary make later choice of whom to corrupt implies in particular
that the adversary gained information about the not-yet-corrupted members of
the holding committee.

If we let c denote the number of seats on the holding committee, φ denote the
number of corrupted seats, and t denote the threshold, then we need φ < t (for
secrecy) and c−φ ≥ t (for liveness). We show below how to set the parameter C
(that determines the expected committee size) and the threshold t so as to get
secrecy and liveness with high probability.

Recalling that our model of sortition from Section 2.3 allows the adversary
to reset its choice many times, the process that we want to analyze is as follows:

1. The adversary corrupts f ·N parties;

2. The adversary resets the sortition functionality a polynomial number of
times, until it is happy that enough of its corrupted parties are selected to
the nominating committee;

3. With the sortition so chosen, the honest (and corrupt) parties are selected
to the nominating committee;
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4. Each member of the nominating committee selects a holding-committee
member, with the honest ones selecting at random (and corrupted members
always selecting other corrupted members).

Let k1, k2, k3 be three security parameters for the analysis, as follows. We
will assume the adversary can reset the sortition functionality in the process
above at most 2k1 times.16 We want to ensure secrecy except with probability
2−k2 and liveness except with probability 2−k3 . We will use parameters ε1, ε2, ε3,
whose values we will fix later.

Let B1 = fC(1 + ε1); B1 represents the maximum tolerable number of
corrupted members in the nominating committee (note that the expected number
is fC). Let B2 = f(1 − f)C(1 + ε2); B2 represents the number of additional
corrupted members in the holding committee (note that the expected number is
f(1−f)C). We will set the threshold at t = B1 +B2 +1. Thus, ε1 and ε2 control
the probability that secrecy fails. The parameter ε3, discussed below, will control
the probability that liveness fails. We will now discuss how to set C, ε1, ε2, ε3 to
satisfy the following two conditions:

– Secrecy: Pr[φ ≥ t] ≤ 2−k2 ;
– Liveness: Pr[c− φ < t] ≤ 2−k3 .

The parameter ε1. As described above, the adversary corrupts fN parties, and
then resets the sortition functionality at most 2k1 times to try to get as many
of these parties selected to the nominating committee as it can. The number of
corrupted parties in the nominating committee for each of these 2k1 tries is a
binomial random variable Bin(n = fN, p = C

N ). We can set the parameters C
and ε1 so as to ensure that

Pr
[
Bin(fN, CN ) > B1

]
< 2−k1−k2−1,

in which case the union bound implies that

Pr [∃ try with more than B1 corrupted parties selected] < 2−k2−1 .

Using Equation 1, a sufficient condition for ensuring the bound above is to

set ε1 and C large enough so as to get exp
(
−fN · CN ·

ε1
2

2+ε1

)
< 2−k1−k2−1, or

equivalently

C >
(k1 + k2 + 1)(2 + ε1) ln 2

fε12
. (2)

The parameter ε2. We next bound the number of additional corrupted parties
in the holding committee due to Step 4 above. Here we have a total of (1− f)N
honest parties, each one is selected to the nominating committee with probability
C/N and then each selected honest party chooses a corrupted party to the
holding committee with probability f . Hence the number of additional corrupted

16 Since in practice the adversary has very limited time in which to reset the sortition
(e.g. less than 5 seconds in the Algorand network), it may be sufficient to use k1 = 64.
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party is a binomial random variable with n = (1 − f)N and p = fC/N (and,
unlike in the analysis of ε1, this time the adversary gets only one attempt—there
is no resetting, because the adversary cannot predict how sortition will select
honest parties). The expected number of additional corrupted parties is therefore
f(1− f)C, and we get a high-probability bound on it by setting C and ε2 so as
to get

Pr
[
Bin((1− f)N, fCN ) > B2

]
< 2−k2−1.

Here too, we get a sufficient condition by applying Equation 1. For this we need

to set ε2 and C large enough to get exp
(
−(1− f)N · fCN ) · ε2

2

2+ε2

)
< 2−k2−1, or

equivalently

C >
(k2 + 1)(2 + ε2) ln 2

f(1− f)ε22
. (3)

The parameter ε3 and the liveness condition. The conditions from Eqs. (2)
and (3) ensure the secrecy condition except with probability 2−k2 . It remains
to set ε3 and C to ensure liveness. Recall that the liveness condition holds as
long as the number of honest members (c − φ) on the holding committee is at
least t. Honest members come to the holding committee as follows: an honest
party (out of (1 − f)N total) gets chosen to the nominating committee (with
probability C/N), and then chooses an honest party (with probability 1 − f)
to the holding committee. Thus, the number of honest members is a binomial
random variable with n = (1− f)N and p = (1− f)C/N . (Again, the adversary
gets only one attempt, because the adversary cannot predict how sortition will
select honest parties, so resetting doesn’t help.) Since the expected value of this
random variable is (1− f)2C, it is sufficient to ensure that t ≤ (1− f)2C(1− ε3)
for some ε3 > 0 such that

Pr[Bin((1− f)N, (1− f)C/N) < (1− f)2C(1− ε3)] < 2−k3 .

By Equation 1, this holds when exp
(
−(1−f)N ·(1−f)C/N ·ε32/2

)
< 2−k3,

i.e.,

C >
2k3 ln 2

(ε3(1− f))2
. (4)

Recalling that our threshold was set to

t = B1 +B2 + 1 = fC(1 + ε1) + f(1− f)C(1 + ε2) + 1 (5)

= C ·
(
(2 + ε1 + ε2)f − (1 + ε2)f2

)
+ 1,

the condition t ≤ (1− f)2C(1− ε3) is equivalent to:

ε3 ≤
1− (4 + ε1 + ε2)f + (2 + ε2)f2 − 1

C

(1− f)2
. (6)
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Putting it all together. Given the fraction f of corrupted parties and the
security parameters k1, k2, k3, we need to find some positive values for the other
parameters C, ε1, ε2, ε3, t that satisfy the bounds in Eqs. (2) to (6).

Clearly such positive values that satisfy Eq. (6) only exist when 1− 4f + 2f2

is bounded away from zero, which means that f must be strictly smaller than
f∗ = 1 −

√
0.5 ≈ 0.29. When f is bounded below f∗, we can satisfy Eq. (6) by

setting the ε’s to (f∗− f)/c for some moderate constant c, and then by Eqs. (2)
to (4) we get C = Θ((k1 + k2 + k3)/f(1− f)(f∗ − f)2).

For example, the following table lists values of C and t that work for security
parameters k1 = 64 and k2 = k3 = 128 and different values of f (along with the
ε’s that were used to obtain these C and t values).

f 5% 10% 15% 20% 25% 30%
C 889 1556 3068 7759 38557 impossible
t 425 788 1590 4028 19727
ε1 4.3835 1.8099 0.9216 0.46059 0.173688
ε2 3.3734 1.4936 0.8001 0.41728 0.163585
ε3 0.4703 0.3752 0.2829 0.18904 0.090453

3.3 Analysis

Complexity. It is easy to see that the communication complexity of all
the protocols in our construction (sharing, committee-selection, handover, and
reconstruction) is some fixed polynomial in the security parameter, regardless
of the number of epochs or the total number or parties N . Indeed there are
only some c = O(λ) parties in every committee, and each of them sends a single
message including at most encryption nd proofs about size-O(c) vectors.

Regarding computation, the only parts of the protocol that involve O(N)
objects are random selection of keys from a size-N public table (provided by
the PKI). Every other operation involves at most size-O(c) objects. Hence in
a RAM model also the computation performed by each party depends only
logarithmically on N .

Security. Below we denote by E3 = E1◦E2 the combination of the PKE schemes
E1, E2 as in our scheme: E3 uses the keys from E1 and encrypts a message by
choosing a fresh key pair for E2, encrypting the E2 secret key by the E1 public
key, and encrypting the message by the E2 public key.

Theorem 1. Let f < 1 −
√

0.5 be a constant, and consider the parameters
C = C(λ), t = t(λ) satisfying equations 2 through 6.

Let E1, E2 be two public-key encryption schemes, E1 is anonymous as per
Definition 4 and the combination E3 = E1 ◦ E2 is RIND-SO secure. Also let Π
be a NIZK argument system and assume the sortition functionality from Fig. 1.

Then the construction in Section 3.1 with parameters C, t is a scalable ECPSS
scheme satisfying secrecy and robust reconstruction (Definitions 1 and 2), in a
model with erasures and the broadcast channel and PKI from Section 2.1, against
polynomial-time mobile adversaries with corruption budget bounded by f ·N .
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Proof sketch. Below we only sketch the secrecy argument, which includes
in particular a proof that the committees are mostly-honest. The robust-
reconstruction argument is similar (but simpler).

Consider an adversary that specifies two secrets σ0, σ1 and then interacts
with our ECPSS scheme, and we need to argue that it only has a negligible
advantage in guessing which of σ0, σ1 was shared. As usual, the proof involves a
game between the adversary and a challenger, and a sequence of hybrids that are
proven indistinguishable via reductions to the secrecy of the various components.
Below we tag each of these hybrids with the security property that is used to
prove their indistinguishability from the previous hybrid in the sequence.

H0 (The real protocol). This is a game where the challenger plays the role
of all the honest parties, and in particular knows the global secret and all
the shares.

H1 (NIZK Soundness). In the next hybrid, the challenger aborts if at any
point the honest parties accept a proof from the adversary even though
the encrypted quantities in question do not lie on a degree-t polynomial.
The challenger can detect this because it knows all the shares and it sees
everything that the honest parties see. It follows from the NIZK soundness
that the challenger only aborts with negligible probability.

H2 (Zero-knowledge). Next the challenger uses the NIZK simulator to gener-
ate the honest-party proofs. Since it is zero-knowledge, the adversary cannot
detect the difference.

H3 (Anonymous PKE). In this hybrid the challenger aborts if the holding
committee contains t or more corrupted seats, or fewer than t honest seats.
We use the anonymity property of the long-term PKE to argue that this
happens only with a negligible probability.

For this argument, first note that the set of corrupter nominators depends
only on the sortition “ideal functionality,” hence the bound B1 from
Section 3.2 holds for it. Next let S be the set of holding-committee members
that were nominated by honest nominators. (More specifically, nominators
that were honest at the time they broadcast their nomination message.) In
Section 3.2 we bounded whp the number of corrupted members from S by the
bound B2 in an information-theoretic model, but now the adversary’s view
contains information about the set S (since the ephemeral keys are encrypted
under their long-term public keys). Nonetheless, due to the anonymity of the
PKE scheme E1, with overwhelming probability the adversary only corrupts
B2(1 + o(1)) members of this set.

H4 (PKE secrecy). In this hybrid honest parties switch to encrypting a
randomly chosen secret σ$ rather than the right one σb. We argue that
the adversary cannot distinguish these hybrids by reduction to the hiding
property of the combined PKE scheme E1 ◦ E2. Note that in this hybrid
we already know that the adversary corrupts less than t members of each
holding committees, so we can re-sample the shares of the honest parties
conditioned on those of the corrupted ones.
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Finally we can undo the changes in these hybrids, arriving at a game where the
adversary gets σ1−b rather than σb.

4 Parties vs. Stake

In this paper we described the protocol in terms of individual parties, and the
adversary’s power in terms of corruption a fixed fraction of these parties. Our
main application domain, however, is public proof-of-stake blockchains where the
adversary’s corruption budget is measured in stake. In this world every actual
party holds some number of tokens, and the corruption budget of the adversary
is expressed in tokens rather than in parties.

The easiest way of defining the adversary model and protocol actions in this
world is to have a party with x tokens play the role of x parties in the protocol,
and leave everything else as-is. If the party-to-stake mapping was static, then
the stake-based adversary model would have been a weakening of the standard
adversary, and hence every protocol that was secure in the party model against
some f -fraction of corrupted parties would remains secure also in the stake model
against f -fraction of corrupted stake. To see that, note that if a party owns x
tokens and the adversary corrupts it, then the adversary is forced to corrupt all
the x tokens at once, reducing its ability to corrupt different parties.

The thing that makes the stake model harder is that the stake assignment
is not static, parties can move the stake among them dynamically. (This can
be formulated using a UC-like environment that provides parties with tokens
and move those tokens between them.) In this environment, it is not a priory
clear that the proactive model makes sense at all: This model stipulates that
corrupted parties can recover and join the ranks of honest parties. But when the
adversary corrupts a party holding some stake, can’t it just “take the money and
run”? That is, can’t the adversary simply transfer all the stake of a corrupted
party into the adversary’s own coffers, thereafter forever controlling it?

Making sense of party’s recovery in the stake model hinges on the distinction
between keys that control tokens (called spending/withdrawal keys) and keys that
are used in the consensus (called participation/validation keys): PoS blockchain
usually assume that stake-controlling keys are kept highly secure (e.g., offline,
in a hardware device, or using some secret-sharing mechanism), and are only
accessed infrequently. The cryptographic keys used for the protocol, on the
other hand, must be accessed frequently and kept online. This model therefore
assumes that the token-controlling keys are (almost) never compromised, but
the consensus keys are easier to corrupt. In that model a corrupted party is one
whose protocol key was compromised, but it can later recover by (cleaning up
the node and) using the token-controlling key to choose and broadcast a new
protocol key. It is instructive to consider the type of corruptions we are likely to
confront in a PoS blockchain and their characteristics.

– Mostly static adversarial base. There may be a set of token keys that are
held by the adversary, and hence their consensus keys remain adversarial
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throughout. While that set (and the stake that it holds) is not completely
static, it changes rather slowly.

– Somewhat dynamic node corruptions. A second type of adversarial parties
represent nodes where the stake key is held by honest participants but the
consensus keys are subject to compromise due to security breaches. These
tend to be more dynamic from the first set, but corruptions still require
significant effort on the part of the attacker. It may be reasonable to assume
that corruption of new nodes usually takes significant time.

– Fully dynamic fail-stop. A third set of “adversarial” nodes are fail-stop
nodes, that are just knocked off due to denial-of-service (DoS) attacks. It
seems reasonable to assume that the adversary can mount a DoS attack
almost instantaneously and keep it going for a while.

Hence realistic protocols in PoS blockchains must be resilient to very dynamic
DoS attacks, but can perhaps assume a mobile-but-slow-moving adversary when
it comes to malicious corruptions. The next section sketches a protocol that can
tolerate higher corrupted fraction in the face of such slow-moving adversary.

5 Static vs. Adaptive Anonymous PKE

Recall the definition of Bellare et al. for anonymous PKE against static
adversaries:

Definition 5 (Anonymity [3]). A PKE scheme E = (Gen,Enc,Dec) is
anonymous if polynomial-time adversaries have at most a negligible advantage
in the following game with a challenger:

1. The challenger runs the key generation twice to get (pki, ski) ← Gen(1λ, $)
for i = 0, 1, and sends pk0, pk1 to the adversary.

2. The adversary responds with a plaintext message m. 17

3. The challenger chooses a secret bit b, encrypts m relative to pkb to get ct←
Encpkb(m), and sends ct to the adversary.

4. The adversary outputs a guess b′ for the bit b.

The advantage of the adversary is 2 · |Pr[b = b′]− 1
2 |.

We would like to prove Conjecture 1, that every PKE that satisfies
Definition 5 also satisfies Definition 4. While we were not able to prove this
conjecture, below we prove a special case of it for restricted class of adversaries
that “open” all the keys at once. That is, given the n public keys and m
ciphertexts (λ ≤ m < n), the adversary outputs a set D of ` = f · n keys that it
wants to open, and it gets all the secret keys for it at once. Note that this “semi-
adaptive” adversary already exhibits all the problems with selective opening in

17 This message need not be in the plaintext space relative to these keys. Note that
in that case the anonymity property implies that the scheme could also “encrypt”
things outside of its plaintext space (although the result may not be decryptable).
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the context of secrecy. In particular the examples showing that semantic security
does not imply security under selective opening, apply also to these restricted
adversaries.

Lemma 1. Fix a constant ε > 0. If there is an efficient semi-adaptive adversary
that opens at most ` = fn keys but is able to open t∗ = (1 + ε)fm keys in A
with a noticeable probability α = α(λ), then the PKE in use does not satisfy
Definition 5.

Proof. Fix an adversary A, denote by A the set of public keys under which
messages were encrypted and by D the set of keys that A opens, and let pi be
the probability of |D ∩ A| = i for that adversary (for all i = 0, 1, . . . ,m). The
premise of the lemma is that

∑
i≥t∗ pi = α = 1/poly(m).

We describe a reduction that uses this adversary in the anonymous-PKE
game from Definition 5. The reduction has a parameter τ ≤ m − 1, and it gets
two keys pk0, pk1 and a ciphertext ct encrypted under one of them. It chooses
n − 2 more keys, selects a random subset A′ ⊂ [n] of size m − 1, and encrypts
messages under the keys in A′. The reduction then gives the adversary the n keys
and m ciphertexts (in random order), and gets from the adversary the set D of
` keys to open. If |A′∩D| ≥ τ and in addition pk1 is opened but pk0 is not, then
the reduction outputs 1. Otherwise the reduction outputs 0.

Let x denote the key under which the message is encrypted and y denote the
other key. The crux of the proof is showing that when the probability distribution
(p0, p1, . . . , pm) is far from an (n,m, `)-hypergeometric distribution, there must
exist some τ for which

δτ
def
= Pr[reductionτ outputs 1|x = pk1]− Pr[reductionτ outputs 1|x = pk0]

is non-negligible (in m). Recall that the (n,m, `)-hypergeometric distribution is

(p∗0, p
∗
1, . . . , p

∗
m) such that p∗i

def
=
(
i
m

)(
`−i
n−m

)
/
(
n
`

)
.

Observe that when x = pk1, the reduction with τ outputs 1 if |D∩A| ≥ τ+1
(i.e., ≥ τ for A′ and one more for pk1), and in addition x = pk1 ∈ D and
y = pk0 /∈ D. Hence

Pr[reductionτ outputs 1|x = pk1] =

m∑
i=τ+1

pi ·
i

m
·
(
1− `− i

n−m
)
. (7)

On the other hand when x = pk0, the reduction with τ outputs 1 if |D∩A| ≥ τ ,
and in addition y = pk1 ∈ D and x = pk0 /∈ D. Hence

Pr[reductionτ outputs 1|x = pk0] =

m∑
i=τ

pi ·
(
1− i

m

)
· `− i
n−m

. (8)

Let us denote ui = i
m · (1−

`−i
n−m ) and vi = (1− i

m ) · `−in−m . From Eqs. 7 and 8
we have

δτ = −pτvτ+

m∑
i=τ+1

pi(ui−vi) =

(
−pτ

(
1− τ

m

)
+

m∑
i=τ+1

pi
( i
m
− `

n

))
· m

n−m
,

(9)
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where the last equality follows because

ui − vi =
i

m
· n−m− `+ i

n−m
− m− i

m
· `− i
n−m

=
( i
m
− `

n

)
· m

n−m
.

Equation 9 yields a set of linear equations for expressing ~δ = (δ0, δ1, . . . , δm−1)
in terms of ~p = (p0, p1, . . . pm). Let B be the m × (m + 1) matrix representing

these equations, namely ~δ = ~p ·B. While it is not hard to show that the (n,m, `)-
hypergeometric distribution is the only one yielding ~p∗B = ~0, we still need to
show that whenever ~p is noticeably far from ~p∗ then δ is noticeably away from
zero. To that end, we look again at Equation 9 and give a name to the sum at
the right-hand side. For every τ we denote:

γτ
def
=

m∑
i=τ

pi
( i
m
− `

n

)
=

m∑
i=τ

pi
( i
m
− f

)
and similarly γ∗τ

def
=

m∑
i=τ

p∗i
( i
m
− f

)
.

Equation 9 can now be written as δτ = m
n−m (γτ+1 − pτ (1 − τ

m )), and of course
by definition we have γτ = pτ ( τm − f) + γτ+1. We similarly have γ∗τ = p∗τ ( τm −
f) + γ∗τ+1, but here γ∗τ+1 − p∗τ (1− τ

m ) = 0. Note also that for τ ≥ fm the term
τ
m − f is non-negative. We next use the following two facts:

– By Chernoff bound, γ∗t∗ <
∑
i≥t∗ p

∗
i is exponentially small in εf ·m = Θ(m).

– By our assumption on the adversary γt∗ is non-negligible since

γt∗ =
∑
i≥t∗

pi
( i
m
− f

)
≥
∑
i≥t∗

pi
( t∗
m
− f

)
= εf

∑
i≥t∗

pi = εfα.

This means that γt∗ is exponentially (in m) larger than γ∗t∗ , i.e. there exists some
constant η > 0 such that γt∗ ≥ (1 + η)mγ∗t∗ .

By the Claim 5 below, we either have pt∗−1 ≥ (1 + η)m(1− η
2 )p∗t∗−1, or else

δt∗−1 >
ηm

2(n−m)γt∗ , which is non-negligible (in m). In the former case (of large

pt∗−1) we get

γt∗−1 = pt∗−1(
t∗ − 1

m
− f) + γt∗ ≥ (1 + η)m(1− η

2
)p∗t∗−1(

t∗ − 1

m
− f︸ ︷︷ ︸

>0

) + (1 + η)mγ∗t∗

> (1 + η)m(1− η

2
)(p∗t∗−1(

t∗ − 1

m
− f) + γ∗t∗) = (1 + η)m(1− η

2
)γ∗t∗−1.

In that case we can apply Claim 5 again to conclude that either pt∗−2 > (1 +
η)m(1− η

2 )2p∗t∗−2 or else δt∗−2 is non-negligible. Repeating this process, we show
by induction that either at least one of δt∗−1, δt∗−2, . . . , δfm is non-negligible
(in m), or else we have

∀i ∈ [fm, t∗ − 1], pi > (1 + η)m(1− η

2
)t
∗−i.

But the last case cannot happen, since it means that the pi’s sum up to more
than one. That is so because the hypergeometric distribution has probability at
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least 1/4 of exceeding the expected value [28],18 i.e.,
∑
i≥fm p

∗
i ≥ 1/4, and so

m∑
i=0

pi ≥
t∗−1∑
i=fm

pi +

m∑
i=t∗

pi ≥
t∗∑

i=fm

(1 + η)m(1− η/2)t
∗−ip∗i + (1 + η)m

m∑
i=t∗

p∗i

> (1 + η)m(1− η/2)m
∑
i≥fm

p∗i >
(
1 + η/4

)m · 1

4
> 1. ut

Claim. For any τ ≥ fm, denote the ratio Rτ+1
def
= γτ+1/γ

∗
τ+1 and let η > 0 be

an arbitrary constant. Then either pτ > Rτ+1(1− η
2 )p∗τ , or else δτ ≥ ηm

2(n−m)γτ+1.

Proof. Recall that for the hypergeometric distribution we have γ∗τ+1 = p∗τ (1 −
τ
m ), and by definition of Rτ+1’s we have γτ+1 = Rτ+1γ

∗
τ+1. Assume that pτ ≤

Rτ+1(1− η
2 )p∗τ , and we need to show that δτ ≥ ηm

2(n−m)γτ+1. By Equation 9 we

have

δτ ·
n−m
m

= γτ+1 − pτ (1− τ

m
) ≥ Rτ+1γ

∗
τ+1 −Rτ+1(1− η

2
)p∗τ (1− τ

m
)

= Rτ+1

(
γ∗τ+1 − p∗τ (1− τ

m
)︸ ︷︷ ︸

=0

)
+
η

2
·Rτ+1 · p∗τ (1− τ

m
) =

η

2
·Rτ+1γ

∗
τ+1 =

η

2
· γτ+1.

Hence δτ ≥ ηm
2(n−m)γτ+1, as needed.
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9. F. Böhl, D. Hofheinz, and D. Kraschewski. On definitions of selective opening
security. In International Workshop on Public Key Cryptography, 2012.

10. D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. Rasmussen, and
A. Sahai. Threshold cryptosystems from threshold fully homomorphic encryption.
In CRYPTO, 2018. https://eprint.iacr.org/2017/956.pdf.

11. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party
computation. In STOC, 1996.

12. R. Canetti, S. Halevi, and J. Katz. Adaptively-secure, non-interactive public-key
encryption. In TCC, 2005.

13. R. Canetti and A. Herzberg. Maintaining security in the presence of transient
faults. In CRYPTO, 1994.

14. J. Chen and S. Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 2019.

15. R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. Johnson, A. Juels, A. Miller,
and D. Song. Ekiden: A platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In IEEE European Symposium on Security and
Privacy, EuroS&P, 2019.

16. A. R. Choudhuri, A. Goel, M. Green, A. Jain, and G. Kaptchuk. Fluid mpc: Secure
multiparty computation with dynamic participants. Cryptology ePrint Archive,
Report 2020/754, 2020. https://eprint.iacr.org/2020/754.

17. Y. Desmedt and S. Jajodia. Redistributing secret shares to new access structures
and its applications. In Technical Report, 1997.

18. S. Dolev, J. A. Garay, N. Gilboa, and V. Kolesnikov. Brief announcement:
swarming secrets. In PODC, 2010.

19. C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions: In
memoriam: Bernard m. dwork 1923–1998. Journal of the ACM (JACM), 2003.

20. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and
oblivious pseudorandom functions. In TCC, 2005.

21. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In EUROCRYPT, 2004.

22. J. A. Garay, Y. Ishai, R. Ostrovsky, and V. Zikas. The price of low communication
in secure multi-party computation. In Advances in Cryptology – CRYPTO 2017,
volume 10401 of Lecture Notes in Computer Science, pages 420–446. Springer,
2017.

23. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its
applications. In STOC, 2013.

24. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In B. A. Coan and
Y. Afek, editors, Proceedings of the Seventeenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’98, Puerto Vallarta, Mexico, June
28 - July 2, 1998, pages 101–111. ACM, 1998.

25. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and
system sciences, 1984.

26. R. Goyal and V. Goyal. Overcoming cryptographic impossibility results using
blockchains. In TCC, 2017.

https://eprint.iacr.org/2017/956.pdf
https://eprint.iacr.org/2020/754


30 F. Benhamouda et al.

27. V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song. Storing and
retrieving secrets on a blockchain. Cryptology ePrint Archive, Report 2020/504,
2020. https://eprint.iacr.org/2020/504.

28. S. Greenberg and M. Mohri. Tight lower bound on the probability of a binomial
exceeding its expectation. Statistics & Probability Letters, 86:91 – 98, 2014.

29. H. Gunasinghe, A. Kundu, E. Bertino, H. Krawczyk, S. Chari, K. Singh, and
D. Su. Prividex: Privacy preserving and secure exchange of digital identity assets.
In WWW, 2019.

30. T. Hanke, M. Movahedi, and D. Williams. DFINITY technology overview series,
consensus system. CoRR, 2018.

31. R. Hayashi and K. Tanaka. Anonymity on paillier’s trap-door permutation. In
ACISP, 2007.

32. C. Hazay, A. Patra, and B. Warinschi. Selective opening security for receivers.
In International Conference on the Theory and Application of Cryptology and
Information Security, 2015.

33. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
public key and signature systems. In CCS, 1997.

34. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. In CRYPTO, 1995.

35. D. Hofheinz, V. Rao, and D. Wichs. Standard security does not imply
indistinguishability under selective opening. In TCC (B2), 2016.

36. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In ACNS, 2017.

37. S. Jarecki, H. Krawczyk, and J. K. Resch. Updatable oblivious key management
for storage systems. In CCS, 2019.

38. E. Kokoris-Kogias, E. C. Alp, S. D. Siby, N. Gailly, P. Jovanovic, L. Gasser, and
B. Ford. Verifiable management of private data under byzantine failures. IACR
Cryptology ePrint Archive, 2018.

39. A. Lehmann. Scrambledb: Oblivious (chameleon) pseudonymization-as-a-service.
PoPETs, 2019.

40. Y. Lindell, A. Nof, and S. Ranellucci. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. IACR
Cryptology ePrint Archive, 2018.

41. S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. Song.
CHURP: dynamic-committee proactive secret sharing. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, 2019. https://eprint.iacr.org/2019/017.

42. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS,
1999.

43. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO, 2002.

44. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended
abstract). In PODC, 1991.

45. D. A. Schultz, B. Liskov, and M. D. Liskov. Mobile proactive secret sharing. In
PODC, 2008.

46. D. A. Schultz, B. Liskov, and M. D. Liskov. MPSS: mobile proactive secret sharing.
ACM Trans. Inf. Syst. Secur., 2010.

47. A. Shamir. How to share a secret. Commun. ACM, 1979.
48. M. Shirvanian, S. Jarecki, H. Krawczyk, and N. Saxena. SPHINX: A password

store that perfectly hides passwords from itself. In ICDCS, 2017.

https://eprint.iacr.org/2020/504
https://eprint.iacr.org/2019/017

	Can a Public Blockchain Keep a Secret?

