
Schrödinger’s Pirate: How To
Trace a Quantum Decoder

Mark Zhandry
Princeton University, USA & NTT Research, USA

mzhandry@gmail.com

Abstract. We explore the problem of traitor tracing where the pirate
decoder can contain a quantum state. Our main results include:
– We show how to overcome numerous definitional challenges to give a

meaningful notion of tracing for quantum decoders
– We give negative results, demonstrating barriers to adapting classical

tracing algorithms to the quantum decoder setting.
– On the other hand, we show how to trace quantum decoders in the

setting of (public key) private linear broadcast encryption, capturing
a common approach to traitor tracing.

1 Introduction

Quantum computers pose a looming threat to cryptography. By an unfortunate
coincidence, the enhanced computational power of quantum computers allows
for solving the exact mathematical problems, such as factoring and discrete log,
underlying the bulk of public-key cryptography used today [Sho94]. The good
news is that “quantum-safe” mathematical tools—such as lattices, multivariate
equations, or isogenies—exist that can be used as a drop-in replacement in many
setting. Nevertheless, many challenges remain. For example, using a quantum-
safe drop-in replacement does not always guarantee the security of the overall
protocol, as many of the classical proof techniques fail to carry over to the quantum
setting [VDG98,ARU14,BDF+11]. It may also be that quantum attackers may
get “superposition access” to the honest parties, opening up new avenues of
attack [KM10,Zha12a,DFNS14,KLLN16].

In this work, we consider an entirely different threat from quantum computers,
which to our knowledge has not been identified before: quantum piracy!

Traitor Tracing. The focus of this work will be the setting of traitor tracing, one
of the fundamental goals in cryptography. Originally defined by Chor, Fiat and
Naor [CFN94], traitor tracing helps protect content distributors from piracy. In
such a system, every legitimate user has their own secret decryption key which can
decrypt ciphertexts. The content distributor is worried about a user distributing
their key to unauthorized users. Of course, little can be done to stop a user from
distributing their key. Instead, in the event that the distributor discovers an
unauthorized decryption key, the distributor would like to identify the source of
the key, so that the user (deemed a “traitor”) can be prosecuted or have their

credentials revoked. This “tracing” should be possible even if the user tries to
hide their identity, say, by embedding their key in an obfuscated pirate decoder
program. What’s more, tracing should still succeed even if many malicious users
pool their keys into a single decoder. As sketched in [CFN94], classical tracing can
readily be build from generic public key encryption, albeit with large ciphertexts.
Therefore, the goal is typically to devise traitor tracing with small ciphertexts.
Numerous number-theoretic [BSW06,GGH+13,BZ14,GKW18] and combinatorial
schemes [CFN94,BN08] have been shown, with various trade-offs between system
parameters and the computational assumptions needed for security.

Most of cryptography concerns several honest parties communicating with each
other, while an adversary eavesdrops or manipulates the communication between
them. Traitor tracing is in some sense the opposite: several dishonest parties
(namely, the traitor(s) and the receiver of the pirate decoder) communicate, while
the honest party (the content distributor) is intercepting this communication
(the decoder). This role reversal makes traitor tracing a fascinating problem,
as the very cryptographic techniques employed to help secure communication
between honest partiescan be employed by the dishonest parties in an attempt
to hide their identity and protect themselves from being traced.

Traitor Tracing Meets Quantum Attackers. The aforementioned role reversal
also has interesting consequences once quantum computers are involved, as we
now highlight. Certainly, the underlying mathematical tools now need to be
quantum resistant; for example, post-quantum obfuscation [BGMZ18] or LWE-
based traitor tracing [GKW18] can be used. The proofs of security must also
work for quantum attackers; existing traitor tracing schemes satisfy this as well.
What is obtained is the following: if a classical pirate decoder is intercepted from
a quantum traitor, that traitor can be identified.

But now suppose the traitor has a quantum computer and is sending its
decoder to a quantum recipient. Just as a classical traitor can attempt to
use classical cryptographic techniques to evade detection, this quantum traitor
could now try to leverage quantum cryptography. Quantum cryptography uses
the unusual features of quantum physics such as no-cloning to achieve never-
before-possible applications, such as information-theoretic key agreement [BB87],
unforgeable currency [Wie83,AC12], unclonable programs [Aar09], certifiable
randomness [BCM+18], and secret keys that self-destruct after use [AGKZ20].

Therefore, we can imagine the traitors creating and sending a decoder com-
prising a quantum state. We stress that the entire system remains classical under
normal operation: keys, ciphertexts, encryption, and decryption are all entirely
classical and can be run on classical computers and classical networks. The
attacker only ever receives classical communication from the honest parties. Even
so, the quantum attackers can use a communication channel outside of the system:
they can meet in person to exchange the decoder, or perhaps send the decoder
over an outside quantum-enabled network. Nothing the content distributor does
can prevent the traitor from sending a quantum decoding device.

Existing traitor tracing results do not handle such quantum decoders. In more
detail, essentially all classical tracing algorithms work by testing a decoder on

2

a variety of different ciphertexts and examining the outputs. When moving to
quantum decoders, the measurement principle in quantum mechanics means that
extracting information from a quantum state may irreversibly alter it. This means,
after potentially the first ciphertext is decrypted, the decoder’s state may be
irreversibly altered into a state that is no longer capable of decrypting, essentially
self-destructing. Now, a useful pirate decoder would likely not self-destruct on
valid ciphertexts. However, a decoder that eventually self-destructs but evades
tracing may be a worthwhile compromise for a traitor. Moreover, all classical
tracing algorithms will also run the decoder on many invalid ciphertexts, and
the utility of the decoder does not require it to decrypt such ciphertexts.

The above discussion means even the most basic of classical traitor trac-
ing results—for example, the aforementioned generic scheme from public key
encryption—may no longer work in the setting of quantum decoders. In fact,
it turns out that even defining tracing in this setting is non-trivial, for reasons
discussed in Section 1.2 below.

We note that similar issues may arise any time there is adversarial com-
munication that the honest party is trying to learn information from. In such
cases, the adversary may benefit from using quantum communication, even if the
cryptosystem itself entirely classical. Software watermarking [BGI+01,CHN+16]
is another example of where such issues may arise. In such cases, classical security
proofs should be revisited, and new techniques are likely needed. In this work,
we focus exclusively on the case of traitor tracing, but we expect the tools we
develop to be useful for other similar settings.

1.1 Our Results

Definition. Our first result is a new definition for what it means to be a secure
tracing scheme in the presence of quantum decoders. As we will see, the obvious
“quantumization” of the classical definition leads to a nonsensical definition. We
must therefore carefully devise a correct quantum definition of traitor tracing,
which requires developing new ideas.

Negative Result. One could have hoped that the tracing algorithm could be
entirely classical, except for the part where it runs the decoder. We show barriers
to such classical tracing algorithms, in particular showing that such algorithms
cannot trace according to our security notion. Thus, any tracing algorithm
satisfying our definition must be inherently quantum.

Positive Result. Finally, we develop a quantum tracing algorithm. Our tracing
algorithm works on any private linear broadcast encryption (PLBE) scheme
satisfying certain requirements. This in particular captures the constructions
from generic public key encryption and from obfuscation, simply replacing the
classical tracing algorithm with ours. As demonstrated by our negative result,
our tracing requires new inherently quantum ideas. In particular, we employ a
technique of [MW04], which was previously used in the entirely different setting
of quantum Arthur-Merlin games.

3

1.2 Technical Overview

Live Quantum Decoders. For simplicity in the following discussion, we will
assume the message space is just a single bit. Classically, the definition of security
for a traitor tracing system is roughly as follows: define a “good” pirate decoder
as one that can guess the message with probability noticeably larger than 1/2.
Then security requires that any good pirate decoder can be traced with almost
certainty to some user identity controlled by the adversary.

First, we will change terminology slightly. For a classical decoder, whether the
decoder is good or bad is a fixed and immutable property. However, quantumly,
whether the decoder can decrypt or not is potentially in flux as we disrupt the
decoder by interrogating it. Therefore, we prefer the terms “live” and “dead”
to “good” and “bad”: a live decoder is one that, in its current state, would
successfully decrypt a random ciphertext. Unlike the classical case, a live decoder
may become dead after such decryption.

We now describe several examples which illustrate the difficulties in defining
liveness of quantum decoders.

Example 1. We will consider two simple attacks. In both cases, the adversary
controls a single secret key ski for user i. It creates two programs, D0 which has
ski hard-coded and decrypts according to the honest decryption procedure, and
D1 which simply outputs a random bit.

The first adversary, A, chooses a random bit b, and outputs the decoder Db.
A is entirely classical, and any reasonable notion of liveness would assign D0 to
be live and D1 to be dead, so A outputs a live decoder with probability 1/2.

The second adversary, B, chooses a random bit b, and outputs the decoder

|Ab〉 = 1√
2
|D0〉+ (−1)b√

2
|D1〉 .

Here, |Ab〉 is a quantum superposition of the two decoders D0, D1, with a “phase”
that depends on b. To run the decoders, simply run in superposition to get the
superposition of outputs of the decoders, finally measuring and outputting the
result. The question is then: with what probability does B output a live decoder?

On one hand, we might be tempted to assign both decoders |A0〉, |A1〉 to be
live, since both decoders can readily be verified to have a probability 3/4 > 1/2 of
decrypting. In any case, the phase does not fundamentally change the nature of
the decoders, so any reasonable notion of liveness should assign |A0〉 and |A1〉
either both live or both dead. In this case, B’s output is deterministically either
live or dead. In particular, A and B have different distributions of liveness.

On the other hand, consider the density matrices of the outputs of A and
B. For a quantum process outputting state |ψi〉 with probability pi, the density
matrix is

∑
i pi|ψi〉〈ψi|. According to the postulates of quantum mechanics, no

physical operation (even computationally unbounded) can distinguish states
with identical density matrices. But a routine calculation shows that the density
matrices of A and B are in fact identical, meaning that the notion of liveness must

4

be non-physical! Such a non-physical security definition cannot possibly reflect
real-world security goals. We note that this example can be readily generalized
to any non-trivial1 way to assign liveness to quantum states.

Idea 1: Measuring the Decoder. We observe that |Ab〉 in the above example are
really just simple quantum versions of probability distributions: the decoders
|Ab〉 can be roughly thought of as being D0 with probability 1/2 and D1 with
probability 1/2. For classical pirate decoders, similar issues arise if we try to
apply the notion of “live” to the entire probability distribution over decoders.
Instead, classically we would only consider the goodness of actual concrete pirate
decoder produced by the adversary. The only thing quantum about our example
is that it turned a probability distribution—which models uncertainty in the
outcome, and is therefore non-physical—into a well-defined physical object.

Motivated by the role of measurements in quantum mechanics, the natural
solution to the above example is to consider |Ab〉 as being a superposition over
live and dead decoders2. The security definition and challenger will then measure
whether the decoder is live or dead, rather than try to assign liveness to the
overall quantum state. In the example above, this is done by simply measuring
|Ab〉, obtaining a random choice of D0, D1, and then performing the classical test
for liveness. If the decoder measures to be live, then we require the decoder to
actually be live, and moreover we require tracing to succeed. This easily resolves
the above example, since measuring live vs dead will simply collapse the quantum
decoder to a classical probability distribution.

More abstractly, a decoder has some actual probability p̂ of decrypting random
ciphertexts; in our |Ab〉 example, p̂ = 3/4. However, this probability is hidden
inside the quantum state and cannot be accessed in a physically meaningful way.
The solution is instead to measure or observe the success probability, resulting in
a measured success probability p. For |Ab〉 as given above, when we observe p,
we find that it can be either 1/2 or 1, each with 50% probability.

Example 2. In the case of more general decoders, however, defining the procedure
to measure success probabilities is non-trivial. We cannot in general simply
perform the standard measurement as above, as doing so might break the decoder.
As a simple example, the decoder’s state could be the quantum Fourier transform
applied to |Ab〉 from the example above. Evaluation simply applies the inverse
transform, recovering |Ab〉, and then running the decoder as above. If we try to
observe p by performing a standard measurement on this “encoded” decoder, the
measurement will result in garbage. The observed p will therefore be 1/2, despite
the actual overall success probability of the decoder still being 3/4.

In Example 2, we could of course define our measurement for p as: perform the
inverse Fourier transform, and then perform the standard measurement. While
this works for this particular case, the example illustrates that care is needed
1 By non-trivial, we mean there is at least one live state and one dead state.
2 In much the same way that Schrödinger’s cat is neither live nor dead, but is rather a
superposition over live and dead cats.

5

in determining how to measure liveness, and that the exact way we measure p
will depend on the decoder itself. We need an automated way to determine the
appropriate measurement that works, regardless of how |A〉 operates.

Example 3. In the classical setting, the goodness or liveness of a decoder is deter-
mined by deciding whether the probability that the decoder correctly decrypts
is above a given threshold. However, the exact probability cannot be computed
efficiently: it amounts to determining the precise number of accepting inputs of
a circuit, which is NP-hard. Therefore, most definitions of classical tracing are
actually inefficient, in the sense that determining whether or not an adversary
broke the security experiment cannot be determined in polynomial time.

Now, one could imagine estimating the success probability by simply running
the decoder on several random ciphertexts. This gives rise to a definition of
liveness that actually can be meaningfully translated to the quantum setting:
namely, to measure liveness, run the decoder on several random ciphertexts in
sequence, compute the fraction of ciphertexts that were correctly decrypted, and
finally outputting “live” if the fraction exceeded a given threshold.

On the other hand, this notion of liveness has some limitations. First, suppose
the measurement used q ciphertexts. Then the decoder could potentially decrypt
q ciphertexts correctly and self-destruct. The decoder would measure as live, but
actually result in a dead decoder, which would subsequently be untraceable.

Another issue is that this attempted notion of liveness is rather weak. A
decoder may start off with a very high probability of decryption, and then reverse
to a high probability of failure, so that overall the decoder appears dead to this
test. Defining security relative to this notion of liveness would not guarantee any
traceability for such decoders. Yet, such decoders would reasonably be considered
useful, and would ideally be traced.

Motivated by the above discussion, we now give a “wish list” of features a
liveness measurement should posses:

– It should collapse to the classical notion of goodness for a classical decoder.
– It should be “encoding independent”. That is, if we apply some quantum

transformation to the decoder’s state (that gets undone when running the
decoder), this should not affect the goodness of the decoder.

– If the same measurement is applied twice in a row (without any operations
in between), it should return the same outcome both times. In other words,
if a decoder is measured to be live, the resulting decoder should still be live.

– It should label decoders that start off with a high probability of decryption
live, even if the decoder starts failing later.

Idea 2: Projective Implementations. In order to describe our solution, we recall
some basic quantum measurement theory. A quantum state is simply a complex
unit vector |ψ〉 of dimension d. For example, if the state consists of k qubits,
d will be 2k, with the components of |ψ〉 specifying weights for each of the d
possible k-bit strings.

6

Any quantum measurement can be described as a positive operator valued
measure (POVM). Such a measurementM is described by n Hermitian positive
semi-definite matrices M1, . . . ,Mn such that

∑
iMi = I. When applyingM to

|ψ〉, the measurement results in outcome i with probability pi = 〈ψ|Mi|ψ〉. The
normalization on |ψ〉 andM ensures that this is a valid probability distribution.
We stress that the matricesMi and the weights in the vector |ψ〉 are not explicitly
written out, but are implicitly defined by the measurement apparatus and the
procedure that generates |ψ〉.

In our setting, we have the following POVM measurement: encrypt a random
message bit m, run the pirate decoder on the resulting ciphertext, and then
output 1 or 0 depending on whether the decoder correctly decrypts or not.

While the POVM formalism describes the probability distribution of the
measurement, it does not describe the post-measurement quantum state. Indeed,
many measurement apparatus could yield the same POVM, but result in dif-
ferent post-measurement states. A general quantum measurement, in contrast,
determines both the measurement outcomes and the post-measurement states.

Our goal, given a POVM M and a state |ψ〉, is to learn the probability
distribution from applyingM to |ψ〉. The discussion above demonstrates that the
actual probability distribution is information-theoretically hidden and inaccessible.
Instead, we want a measurementM′ that measures the distribution, such that
|ψ〉 is a superposition over states with “well-defined” output distributions.

We interpret the above as the following. For a POVM M over outputs
{1, . . . , n}, we want a measurementM′ which outputs a distribution (as in, it
outputs a probability vector) over {1, . . . , n} such thatM generates the same
distribution of outputs as the following procedure:

– First, measureM′ to obtain an observed distribution D
– Then sample a random value in {1, . . . , n} according to D.

Additionally, we want that subsequently applyingM to the post-measurement
state will yield exactly the distribution D, corresponding to measuring a de-
coder as live actually yielding a live decoder. We will call M′ the projective
implementation ofM 3. See Section 3 for a precise definition.

For generalM, there is no way to come up with a projective implementation
M′. In fact, we show that the existence of M′ is equivalent to the matrices
M1, . . . ,Mn inM all commuting, and when it existsM′ is unique. Concretely,M′
is the projective measurement in the simultaneous eigenbasis of the M1, . . . ,Mn.

In our case, M has two outcomes, either correct or incorrect decryption,
and normalization (M0 + M1 = I) implies that M0 and M1 = I −M0 always
commute. Therefore,M′ must exist. Our test of liveness, essentially, will perform
the measurementM′ to get a distribution over {0, 1}—which is equivalent to
measuring a success probability p—and then output “live” if p is sufficiently large;
otherwise it outputs “dead”.

3 This terminology comes from the fact that we will ultimately set M′ to be a
“projective” measurement.

7

We note that this liveness measurement satisfies all of our “wish list” items.
In the case of classical decoders, M0,M1 are diagonal matrices whose entries are
the success probabilities of the various classical decoders. As such, our projective
implementation reduces to the classical goodness notion. Applying any encoding
to the decoder state simply rotates the eigenbases of (M0,M1), but our notion
automatically adjusts to such a rotation. The measurement is projective, implying
that applying it twice will always yield the same answer. Finally, the notion
captures the success probability of decrypting the very first ciphertext, and is
not dependent on any subsequent decrypting abilities.

Our Quantum Tracing Model. With a notion of liveness in hand, we now
turn to our tracing model. Even in the classical case there are potentially multiple
tracing models. The most permissive for the tracing algorithm is to give the
tracer the entire code of the decoder. This tracing model captures the setting
where the decoder is an actual piece of software that the tracer has access to.
Analogously, in the quantum setting we could give the tracer the actual quantum
state representing the decoder, corresponding to a quantum software model.

On the other hand, over twenty-plus years of work on classical traitor tracing,
the community has largely settled on a weaker “black box” model where the tracer
can only query the decoder on ciphertexts and see the responses, but otherwise
cannot observe how the decoder works. This is motivated in part due to the
possibility of the decoder being obfuscated [BGI+01,GGH+13]—which informally
hides everything about a program except for its input/output behavior—meaning
the tracing algorithm does not gain much by inspecting the decoder’s code.
Moreover, in many cases it is desirable to trace an actually physical decoder
box constructed by the traitors. In this case, various hardware security measures
might be in place to prevent inspecting the decoder’s operation.

In the black box setting, however, it is trivial to devise untraceable decoders:
the decoder simply maintains a counter and ceases to function after a certain
number of decryptions. If the number of ciphertexts the decoder decrypts is
set small enough, tracing will become impossible. Such decoders are clearly less
useful to pirates, but nonetheless represent a way for traitors to evade tracing.

The classical solution is to restrict attention to stateless decoders. The implicit
assumption in this model is that the tracer has some way to reset or rewind the
decoder to its original state. In the software setting, such resets are trivial. Such
resets may also be plausible—perhaps a hard reboot or cutting power will cause
the counter to reset—depending on the hardware employed by the traitors.

Motivated by the years of development leading to the classical black box
stateless decoder model, we would like to develop an analogous model for quantum
decoders. However, we immediately face a definitional issue: for a general quantum
decoder, it may be information-theoretically impossible to rewind the decoder to
its initial state. This holds true even if we consider the software setting where
the tracer has complete unfettered access to the decoder.

Our solution. We now describe our solution. Recall that, outside of measurements,
quantum operations are indeed reversible. Therefore, we can imagine running

8

the decoder until the measurement that produces the decrypted value. Then, we
assume the ability to run all the operations, save for the final measurement, in
reverse. This rewinding cannot possibly recover the initial state of the decoder,
but in some sense it represents the closest we can get to a full rewinding. For
example, in this model, the decoder’s operation is “projective,” which implies
that a second decryption of the same ciphertext immediately following the first
actually will not further alter the decoder’s state, and moreover is guaranteed to
give the same output. Analogous to the gentle measurement lemma [Aar04], if
a particular decoder output occurs with overwhelming probability, a projective
measurement will only negligibly affect the decoder’s state. In particular, such
projections collapse to the notion of stateless decoders in the classical setting.

Our black box decoder model therefore assumes that the decoder’s operation
is a projective measurement. Our precise formalization of a quantum black box
model is somewhat delicate; see Section 4 for details. At a high level, what gets
measured is not the adversary’s output itself, but rather the single bit indicating
whether the decoder was correct. This is done partly to accommodate relaxed
decoder models from the classical literature [GKW18], and also motivated by the
level of access that our ultimate tracing algorithm will need.

Our black box quantum decoder model is a natural generalization of the
classical stateless decoder model. However, it remains to be seen whether it
actually represents a realistic model of quantum hardware devices. Nevertheless,
we emphasize that in the setting of quantum software decoders, it is always
possible to perform the rewinding to implement a projective decoder. As a result,
our model at least captures what is possible in the software setting.

Negative Result For Classical Black Box Tracing. One may hope that
existing classical tracing algorithms for stateless decoders might also work for
projective decoders, or at least that alternate classical tracing4 could be devised.
We show, unfortunately, that such classical tracing is unlikely. Concretely, for any
0 < ε < 1/2, we devise a quantum projective black box pirate decoder such that:

– The decoder starts out with decryption probability at least 1/2 + ε.
– For any polynomial-length sequence of classical ciphertext queries, there is a

non-negligible probability that the decoder will respond to all queries with 0.

If the decoder outputs zero on all queries, it is clearly impossible to trace. The
usual classical notions of tracing require that the tracing algorithm identifies
a traitor with overwhelming probability by making q = poly(1/ε) queries. Our
counterexample would invalidate this definition.

We note that the definition of tracing could be relaxed to allow for some
inverse polynomial probability τ that tracing fails, and then allow the number of
queries by the tracer to be q = poly(1/ε, 1/τ). Our counterexample does not rule
out such a weaker tracing notion. Nevertheless, our counter example shows that
4 By classical tracing, we mean that the tracer only queries the decoder on classical
ciphertexts, and then uses the classical outputs in some way to accuse a user.

9

the existing guarantees of classical tracing algorithms do not carry over to the
quantum projective decoder setting. Additionally, it shows that if one wants to
achieve the strong tracing guarantees analogous to tracing classical decoders, the
tracing algorithm should make quantum queries to the decoder. Thus, our model
of black box decoders will allow for such quantum queries. Again, such queries
are always possible for software decoders.

Our Quantum Tracing Algorithm. We now turn to our tracing algorithm.
We observe that essentially all classical traitor tracing solutions work abstractly
as follows: the tracer generates ciphertexts from invalid distributions DS for
various subsets S of users, where decryption is possible only for users in S. An
additional guarantee is typically that only users in the symmetric difference of S
and T can distinguish DS from DT . The tracer estimates the probabilities p̂S
that the pirate decoder decrypts DS by testing the decoder on various samples
from DS . Typically, the first S is the set of all users, corresponding to DS being
all valid ciphertexts. Subsequently, additional sets S are considered. Large gaps
between the p̂S then give information about the identities of the traitor(s).

This framework is very broad, encompassing essentially the entire body of
traitor tracing literature. For example, it encompasses the private linear broadcast
encryption (PLBE) approach of [BSW06], which is the backbone of most of the
various algebraic traitor tracing constructions [BSW06,GGH+13,BZ14,GKW18].
Here, the sets S have the form [i] = {1, 2, . . . , i} for various i. This framework
also encompasses combinatorial schemes such as [CFN94,BN08]. For example, the
most basic scheme of [CFN94] uses the bit-fixing sets Si,b = {x ∈ {0, 1}k : xi = b}.
The fingerprinting code-based construction of [BN08] uses a set structure that is
actually kept secret, except to the tracer.

Our goal will be to upgrade classical tracing algorithms to work with quantum
decoders. As we will see, there are numerous problems that must be overcome.

Approximating M′ efficiently. We first aim to build a quantum analog of this
classical probability estimation. For exactly the same reasons encountered when
defining traitor tracing, the actual success probabilities p̂S cannot be accessed
in any physical way for a quantum decoder. As in the discussion leading to our
tracing definition, the most natural alternative is to instead measure the success
probability, obtaining a measurement pS . In the case of S being all users, this
means the tracing algorithm would need to implement the measurementM′ from
above, and for other S analogous measurements will be needed.

However, while a projective implementationM′ is guaranteed to exist, we
have not guaranteed that it is computationally efficient. In fact, it cannot be
computationally efficient, even classically. This is simply because, even classically,
we cannot efficiently learn the exact output distribution of a program5. Classically,
this is resolved by having the tracer estimate the success probability of the decoder,
and demonstrating that an estimate is good enough for tracing.
5 This means that the security experiment is inefficient. However, the same is true of
classical traitor tracing experiments for essentially the same reason.

10

We would therefore like to develop a procedure that approximates the mea-
surementM′. Yet the matrices Mi are exponentially-large, being only implic-
itly defined by the measurement apparatus of the decoder. Therefore, eigen-
decomposition would be intractable. Our negative result also means cannot use
classical estimation techniques, since those work by running the decoder on
classical ciphertexts.

Instead, we devise an operation on the quantum pirate decoder that tries
ciphertexts in superposition; our operation will still work in the black box
projection model for pirate decoders, which allows for such quantum queries.
Our algorithm makes use of the fact that M′ is projective. More precisely, if
Mc = (Mc,0,Mc,1) is the measurement which tests if the decoder correctly
decrypts c, thenMc is guaranteed to be projective by our decoder model. The
overall measurement POVMMc = (M0,M1) for testing correctness on a random
ciphertext is then the average or mixture of theMc:

Mb =
∑
c

Pr[c]Mc,b .

Our black box decoder model allows us to evaluate the projectiveMc for any ci-
phertext c, or even evaluate theMc for superpositions of c values. We demonstrate
how to use this ability to compute an approximation ofM′.

To do so, we employ a technique of Watrous and Marriott [MW04], which
was originally used for decreasing error in quantum Arthur-Merlin games. We
show that their algorithm, with some small modifications, works in our setting
to achieve a reasonable approximation ofM′. At a very high level, the algorithm
runs Mc over a superposition of c, and getting a measurement outcome b1.
Then we apply a particular measurement to the superposition of c, obtaining
measurement d1. We interleave and repeat both measurements a number of times,
obtaining a sequence d0 = 0, b1, d1, b2, d2 The output is p′ where 1− p′ is the
fraction of bit flips in the sequence.

Following the analysis from [MW04], we show that the output of this measure-
ment indeed approximates the distribution ofM′. One wrinkle is that [MW04]
did not care about the post-measurement state of the decoder, whereas we want
the post-measurement states for M′ and the approximation to be “close” in
some sense. We show that, by being careful about exactly when the sequence of
measurements is terminated, we can guarantee the necessary closeness.

On Computational Indistinguishability. Recall that, in addition to estimating
probabilities pS , classical tracing algorithms typically rely on pS and pT being
close for different sets S, T , as long as the adversary controls no users in the
symmetric difference between S, T . Classically, such closeness follows readily from
the indistinguishability between (many samples of) DS , DT . Indeed, if pS , pT
were far, a distinguisher could use the samples to compute an estimate of the
success probability, and then guess which distribution the samples came from.

Quantumly, such closeness is non-obvious. Since the POVMs corresponding
to DS , DT simply run the decoder on a single classical ciphertext, we know that

11

the probability the decoder is correct on the two distributions must be close.
This implies that the means of the distributions on pS and pT must be close. But
this alone is insufficient. For example, for a given decoder, pS might be always
measure to be 3/4, whereas pT measures to be 1/2 or 1 with equal probability.
Both distributions have the same mean, but are nevertheless far apart.

Now, our algorithm for approximating the projective implementation allows
us to efficiently estimate pS or pT , which would therefore allow us to distinguish
the two cases above. However, our algorithm runs the decoder on quantum super-
positions of exponentially-many ciphertexts, and this quantumness is somewhat
inherent, per our negative result. But perhaps such superpositions are actually
distinguishable, even if the individual ciphertext samples are not? For exam-
ple, [GKZ19] shows that superpositions over LWE samples can be distinguished,
despite individual samples being presumably indistinguishable.

We show that, nonetheless, if polynomially-many samples of DS and DT are
computationally indistinguishable, then the distributions over measured pS and
pT must be close, in some sense 6. We show this by a careful application of the
small-range distributions of Zhandry [Zha12a]. These distributions allow us to
approximate the measurements of pS or pT using only a polynomial number of
classical samples from either ciphertext distribution.

Handling Non-simultaneous Measurements. Based on the above indistinguisha-
bility result, we know, for a given decoder state, that pS and pT being far means
the attacker must in fact control a user in the symmetric difference between S
and T . As in the classical case, we would therefore like to use this information to
narrow down our list of suspected traitors. Unfortunately, we cannot actually
simultaneously measure pS and pT for the same state: once we measure one of
them, say pS , the decoder state is potentially irreversibly altered. If we then
measure pT , we will get a result, but pT and pS will be measurements from
different states, and it is not obvious what comparing pS and pT yields.

Nevertheless, we show that if pS and pT are measured in succession, and if the
underlying distributions DS and DT are indistinguishable (for polynomially many
samples), then pS and pT will in fact be close. Supposing we applied the actual
projective implementation corresponding to DS , we know that the resulting
decoder |AS〉 is an eigenstate of the measurement. Thus, if we applied the
projective implementation a second time to |AS〉, obtaining a second measurement
p′S of p̂S , then pS = p′S . We show that if we relax to using our approximation
algorithm, then p′S ≈ pS . If we replace this second measurement on |AS〉 with our
approximation of pT , then by our computational indistinguishability guarantee,
pT ≈ p′S ≈ pS (notice that p′S is never actually computed; it is just used in the
analysis). Thus, if pS and pT are far, the adversary must control a user in the
symmetric difference between S and T , as desired.

How to Trace PLBE. Up until this point, our discussion has applied broadly to
most tracing algorithms and one may hope to simply swap out the probability
6 Statistical closeness is too-strong a requirement, which is also true classically. Instead,
we consider a weaker notion of distance based on the Euclidean distance

12

estimation steps of classical tracing algorithms with our approximate projective
implementation algorithm. Unfortunately, this does not appear to work in general.
To see the issue, consider a tracing algorithm which first computes (an estimate
of) pS . We know that the decoder is live, so p[N] (the success probability for
valid ciphertexts) must be noticeably higher than 1/2; let’s say p[N] = 1. Suppose
pS is measured to be 1/2 � p[N]. We therefore know that the adversary must
control a user in [N] \S. However, this might not be sufficient for accusing a user:
perhaps S only contains N/2 users, in which case we have only narrowed the
attacker down to half the users. Tracing must then proceed to compute pT for a
different set T . But at this point, perhaps the decoder has actually collapsed to
a dead decoder and we can no longer learn any information from it.

The takeaway is: the very first time any gap is found, the decoder could
potentially now be dead, and we should therefore be ready to accuse a user. In
the example above, if S contained all but one user, say user N , we could then
immediately accuse user N . We would then satisfy the desired tracing guarantee,
despite having a now-useless decoder. If on the other hand pS were measured
to be greater than 1/2, we can continue to measure pT . The same issue occurs
if there is more than one user in S \ T , so we would want to have T contain all
users in S except a single user, say user N − 1.

What is needed, therefore, is a linear set structure, where it is possible to
encrypt to subsets [j] of users, j = N,N −1, . . . , 0, where users i ≤ j can decrypt,
users i > j cannot, and it is impossible to distinguish [j] from [j − 1] unless
the adversary controls user j. In other words, we need private linear broadcast
encryption (PLBE) as defined by [BSW06]. Based on the above, we show that any
PLBE with the right properties (elaborated below) can be traced. Our tracing
algorithm proceeds essentially as the classical tracing algorithm given in [BSW06],
except that we use our quantum approximation algorithm to compute the various
probabilities p[j]. We also must compute the p[j] in a particular order, namely in
order of decreasing j, whereas the order does not matter in [BSW06].

Applications and Limitations. Fortunately, PLBE is the most common approach
to building traitor tracing, and therefore our tracing algorithm is broadly appli-
cable. For example, sufficiently strong PLBE can be instantiated from

– Generic public key encryption, resulting in ciphertexts and public keys that
grow linearly with the number of users.

– From post-quantum obfuscation [BGMZ18], following [GGH+13,BZ14], re-
sulting in constant-sized ciphertexts.

– In the setting of bounded collusions, we can use bounded-collusion secure
functional encryption, which can be instantiated from generic public key
encryption [AV19]. The resulting scheme has ciphertexts growing linearly in
the collusion bound (but independent of the total number of users).

We note that PLBE can also be constructed from pairings [BSW06], though
this instantiation is not useful in our context since pairings are insecure against
quantum attackers.

13

Unfortunately, our analysis does not seem to extend to a variant of PLBE that
was recently constructed from LWE by Goyal, Koppula, and Waters [GKW18] for
subtle reasons. Indeed, their version of PLBE has encryptions to sets [j] for j < N
requiring a secret encryption key, and indistinguishability of D[j] and D[j−1] only
holds for those who do not know the secret encryption key. The implication is
that tracing can only be carried out by the holder of the secret key. The fact that
tracing requires a secret key is itself not a problem for us, as we can similarly
consider a secret key version of tracing. The issue is that, when we prove p[j] is
close to p[j−1], we need indistinguishability between [j] and [j − 1] to hold for
polynomially ciphertexts. On the other hand, [GKW18] only remains secure for
a constant number of ciphertexts, and the natural ways of extending [GKW18]
to handle more ciphertexts will blow up the ciphertext too much. We therefore
leave tracing quantum decoders for [GKW18] as an important open problem.

We also note that our approach does not appear to extend to combinatorial
traitor tracing schemes, such as [CFN94,BN08]. In these schemes, the sets S do
not have the needed linear structure. As discussed above, this means that the
decoder could fail on the first distribution DS for S 6= [N], and no longer work
for any other distribution. Since [N] \ S contains more than 1 identity, there is
no way to accuse a user using our approach. We leave as an interesting open
question developing a tracing algorithm for these combinatorial constructions, or
alternatively demonstrating a quantum pirate decoder that cannot be traced.

1.3 Paper Outline

Section 2 gives a basic background in quantum notation and operations. In
Section 3, we develop our notion of projective implementations, which will be
used in Section 4 to define traitor tracing for pirate decoders. In Section 5, we
demonstrate that quantum access to a quantum decoder is necessary for tracing.
In Section 6, we develop our algorithm for estimating the success probability of
a pirate decoder, which is then used in our tracing algorithm in Section 7.

2 Quantum Preliminaries

In this work, we will make use of two formalisms for quantum measurements. The
first, a positive operator valued measure (POVM), is a general form of quantum
measurement. A POVMM is specified by a finite index set I and a set {Mi}i∈I
of hermitian positive semidefinite matricesMi with the normalization requirement∑
i∈IMi = I. The matrices Mi are called items of the POVM. When applying

a POVM M to a quantum state |ψ〉, the result of the measurement is i with
probability pi = 〈ψ|Mi|ψ〉. The normalization requirements forM and |ψ〉 imply
that

∑
i pi = 1, and therefore this is indeed a probability distribution. We denote

byM(|ψ〉) the distribution obtained by applyingM to |ψ〉.
The POVM formalism describes the probabilities of various outcomes, but it

does not specify how |ψ〉 is affected by measurement. Indeed, there will be many

14

possible implementations of a measurement giving rise to the same probability
distribution of outcomes, but resulting in different post-measurement states.

To account for this, the second formalism we will use is simply called a
quantum measurement. Here, a quantum measurement E is specified by a finite
index set I and a set {Ei}i∈I of matrices Ei (not necessarily hermitian nor
positive) such that

∑
i∈I E

†
iEi = I. The matrices Ei are called measurement

operators. When applying a quantum measurement E to a quantum state |ψ〉,
the result of the measurement is i with probability pi = 〈ψ|E†iEi|ψ〉 = ‖Ei|ψ〉‖2.
Conditioned on the outcome being i, the post-measurement state is Ei|ψ〉/

√
pi,

where the factor √pi is to ensure that the state is normalized.
We note that any quantum measurement E is associated with a POVM

M = POVM(E) with Mi = E†iEi. We will call E an implementation ofM. We
note that while each quantum measurement implements exactly one POVM, each
POVM may be implemented by many possible quantum measurements.

A projective measurement is a quantum measurement where the Ei are
projections: Ei are hermitian and satisfy E2

i = Ei. We note that
∑
iEi =∑

iE
†
iEi = I implies that EiEj = 0 for i 6= j.

A projective POVM is a POVM where Mi are projections. We note that
the POVM associated with a projective measurement is projective. However, a
projective POVM may be implemented by non-projective measurements. As with
quantum measurements, a projective POVM will satisfy MiMj = 0 for i 6= j.

3 Commutative POVMs and Projective Implementations
In this section, we give some additional definitions for quantum measurements
and POVMs, as well as some basic results. In Section 4, we use these definitions
and results to define our notion of traitor tracing for pirate decoders.
Definition 1. A POVMM = {Mi}i∈I is commutative if MiMj = MjMi∀i, j.

Let I be an index set, and let D be a finite set of distributions over I. Let
E = {ED}D∈D be a projective measurement with index set D. Consider the
POVMM = {Mi}i∈I where Mi =

∑
D∈D ED Pr[D = i]. ThenM is equivalent

to the following measurement process:
– First apply the measurement E to obtain a distribution D
– Then choose a random sample i according to D

Definition 2. For E ,M be as above, E is the projective implementation ofM.
Lemma 1. A POVM M = {Mi}i∈I is commutative if and only if it has a
projective implementation; the projective implementation is unique.
Proof. The proof is given in the Full Version [Zha20]. The basic idea is that
a projective implementation corresponds to an eigenbasis for the simultaneous
diagonalization of the Mi; such simultaneous diagonalization is possible if and
only if the Mi commute.

Therefore, for a commutative POVMM, we will let ProjImp(M) denote the
unique projective measurement.

15

4 Defining Tracing of Quantum Pirates

4.1 Traitor Tracing Syntax

Here, we give the syntax for public key traitor tracing with public traceability.
Variants with secret key encryption and/or secret key tracing are defined analo-
gously. A traitor tracing system is a tuple of four algorithms (Gen,Enc,Dec,Trace)
defined as follows:

– Gen(1λ, 1N) is a classical probabilistic polynomial time (PPT) algorithm that
takes as input the security parameter and a number N of users, and samples
a public key pk, and N secret keys sk1, . . . , skN .

– Enc(pk,m) is a classical PPT algorithm that takes as input the public key
pk and a message m, and outputs a ciphertext c.

– Dec(ski, c) is a classical deterministic algorithm that takes as input a secret
key ski for user i and a ciphertext, and outputs a message m′.

– Trace|A〉(pk,m0,m1, ε) takes as input the public key pk, two messagesm0,m1,
and a parameter ε. It makes queries to a pirate decoder |A〉. It ultimately
outputs a subset of [N], which are the accused users.

4.2 Decoder Models

We now specify |A〉 and what a query to |A〉 does. |A〉 consists of a collection of
qubits |ψ〉 and the description of an efficient procedure U . U maps a ciphertext
c to an efficiently computable unitary operation U(c) which acts on |ψ〉.

The assumed operation of the decoder in this model, denoted Eval|A〉(c), is
the following: on input a ciphertext c, compute U(c). Then apply U(c) to |ψ〉.
Finally, measure the first qubit of U(c)|ψ〉, and output the result.

In the classical setting, various levels of access to the decoder may be possible.
For example, the decoder may be a digital program, and the tracer actually
obtains the program code. Alternatively, the decoder may be an actually physical
piece of hardware, and the tracer has only access to the input/output behavior.
In the quantum setting, one can imagine analogous scenarios. Below, we describe
decoder models to capture some scenarios in the quantum decoder setting.

Software Decoder Model. The Software Decoder model will be the quantum
analog of the classical setting where the decoder is a software program. In this
model, a query to |A〉 consists of the empty string ε, and in response the Trace
receives the entire state |A〉 (including U). In this sense, Trace has complete
access to the entire decoder. Next, we will consider decoder models where Trace
has limited access. Such models will be potential useful in hardware settings.

The Black Box Projection Model. We now develop a black box model of quantum
decoders, which hopefully generalizes the classical notion of stateless decoders.
Of course, some limitations of the decoder are necessary, to prevent simple
counterexamples like self-destructing after a counter reaches a certain value. Our

16

goal is to identify the minimal type of query access needed to allow tracing. The
result is our Black Box Projection model. In our model, a query to |A〉 has the
form

∑
aux,c,b αaux,c,b|aux, c, b〉, where c ranges over ciphertexts, b over bits, and

aux over an arbitrary domain. In response to the query, |A〉 does the following:
1. First, it performs the following action on basis states:

|aux, c, b〉 ⊗ |ψ〉 7→ |aux, c, b〉 ⊗ U(c)|ψ〉 .

2. Apply a controlled NOT (CNOT) to the b register, where the control bit is
the first qubit of the decoder’s state.

3. Next, it applies the inverse of Step 1:

|aux, c, b〉 ⊗ |ψ〉 7→ |aux, c, b〉 ⊗ U†(c)|ψ〉 .

4. Finally, it measures the b register, and then returns the result b as well as
whatever remains in the aux, c registers.

Note that the query is a projective measurement on |ψ〉. Recall that applying
a projective measurement twice in a row will always result in identical outcomes.
This is similar to how a classical stateless (deterministic) decoder will always
produce the same outcome on repeated ciphertexts. Thus projective measurements
are a generalization of stateless decoders, though other generalizations are possible.

Lemma 2. Let A|A〉(·) be any quantum polynomial-time algorithm that takes
as input x and makes queries to |A〉 in the Black Box Projection model. Then
there exists another quantum polynomial-time algorithm B|A〉(·) in the Software
Decoder model such that, for any x, y, Pr[A|A〉(x) = y] = Pr[B|A〉(x) = y].

Since the Black Box Projection model is the weakest model we consider,
ability to trace in this model gives the strongest guarantees. We now discuss
some of the choice made in our Black Box Projection model.

Superposition Queries. Our model allows queries on superpositions of ciphertexts.
We could have instead required classical queries. Unfortunately, such a model
seems untraceable, evidenced by our negative result in Section 5.

Returning the ciphertext registers. One could alternatively only return b′ and not
the ciphertext (the aux registers being held privately by Trace). This is equivalent
to measuring the ciphertext, resulting in effectively a classical query model.

The role of b. An alternative is to measure the first qubit of the decoder’s state
directly (that is, the intended output of the decoder), instead of measuring the
result of XORing with b. We have two reasons for our modeling choice:
– The standard query model for quantum operations has the query response

XORed into some registers provided as part of the query. Our modeling
mimics this query behavior. We thus have the measurement applied to only
the output of the decoder in the XOR query model, rather than having the
measurement applied to the private state of the decoder.

17

– If we initialize the b registers to initially contain the correct answer expected
from the decoder, the result of the query measurement will tell us whether
the decoder answered correctly or incorrectly, as opposed to telling us the
actual answer. This turns out to be crucial for our tracing algorithm. Indeed,
as we will see in Section 6, the given Black Box Projection model will allow
us to measure the success probability of the decoder. On the other hand, if
the measurement were applied directly to the decoder state, we would be
able to measure either of the probabilities pr that the decoder outputs 1 on
a random encryption of the bit r. To to get the success probability, we would
need to know both p0 and p1. But in the quantum case it may not be possible
to learn both values simultaneously if the measurements are “incompatible.”

4.3 Correctness and Security.
Definition 3. A traitor tracing system is correct if, for all messages m and
functions N = N(λ), i = i(λ),

Pr[Dec(ski,Enc(pk,m)) = m : (pk, sk1, . . . , skN)← Gen(λ,N)] ≥ 1− negl(λ)

For brevity, we omit the semantic security requirement and focus on tracing. Our
definition is inspired by that of [GKW18], adapted to use our decoder model. For
a decoder |A〉 = (U, |ψ〉), two messages m0,m1, consider the operation on |ψ〉:
– Choose a random bit b← {0, 1}
– Run c← Enc(pk,mb) to get a random encryption of mb.
– Run b′ ← Eval|A〉(c).
– Output 1 if and only if b = b′; otherwise output 0.
LetM = (M0,M1) be the POVM given by this operation, which we call the

associated POVM to the decoder. Note that M0 and M1 = I−M0 commute, so
M has a projective implementationM′ = ProjImp(M) = {M ′p}p, where each M ′p
corresponds to the probability distribution on {0, 1} that is 1 with probability p.

Tracing Experiment. For an adversary A, function ε(·), and security parameter
λ, we consider the following experiment on A:
– A gets λ, and replies with a number N . Both λ,N are represented in unary.
– Run (pk, sk1, . . . , skN)← Gen(1λ, 1N), and send pk to A.
– A then makes an arbitrary number of classical queries on identities i ∈ [N];

in response it receives ski. Let S be the set of i queried by A.
– Next, A outputs (|A〉,m0,m1) for decoder |A〉 and messages m0,m1.

Now consider two possible operations on |A〉:

– S′ ← Trace|A〉(pk,m0,m1, ε). Let BadTrace as the event that S \ S′ 6= ∅. We
define the event GoodTrace as the event that S′ 6= ∅

– Apply the measurementM′ to |A〉, obtaining a probability p. Let Live be
the event that p ≥ 1/2 + ε.

Definition 4. A tracing system is quantum traceable if for all quantum polyno-
mial time adversaries A and for every inverse polynomial ε, there is a negligible
negl such that Pr[BadTrace] < negl(λ) and Pr[GoodTrace] ≥ Pr[Live]− negl(λ).

18

5 On the Necessity of Quantum Queries

We consider a variant of our Black Box Projection model where queries to the
decoder are only on classical ciphertexts c. Concretely, when a query is made
to |A〉, the c registers are additionally measured, to ensure that only a classical
ciphertext is input. We call this the Classical Black Box Projection model.

Theorem 1. Any traitor tracing scheme which operates in the Classical Black
Box Projection model is not quantum traceable according to Definition 4.

Proof. We construct an adversary A which chooses an arbitrary polynomial N ,
a random j ∈ [N], and queries for secret key skj . It then chooses two arbitrary
distinct messages m0,m1 and constructs the following decoder |A〉. First let

Dec′(c) :=
{
b if Dec(skj , c) = mb

0 otherwise

Let H have basis {|c〉}c ∪ {|⊥〉}, where c ranges over all possible ciphertexts.
The decoder’s initial state is |⊥〉 ⊗ |0〉|m0,m1, skj〉. That is, the decoder’s state
consists of the system H initialized to |⊥〉, a qubit H2 initialized to |0〉, as well
as the messages m0,m1 and the secret key skj . Define the vectors |φc〉 ∈ H as
|φc〉 =

√
2ε|⊥〉+

√
1− 2ε|c〉. Let U(c) be the unitary over H2 ⊗H:

U(c) = (|1− Dec′(c)〉〈1|+ |Dec′(c)〉〈0|)⊗ |φc〉〈φc|+ I⊗ (I− |φc〉〈φc|)

The output register for |A〉 is set toH2. Informally, U(c) applies the projective
measurement (Pc, Qc = I− Pc), where Pc := |φc〉〈φc|. Then conditioned on the
measurement output being 1, it XORs Dec′(c) into the output register.

In the Full Version [Zha20], we demonstrate that |A〉 will almost certainly
measure to be live for parameter ε; that is, Pr[Live] ≥ 1 − negl. On the other
hand, we show that Pr[GoodTrace] < 1− δ, for some inverse polynomial δ that
depends on the number of queries made by the tracing algorithm. This is proved
by showing that there is some inverse polynomial probability that all tracing
queries are answered with 0, in which case tracing is impossible. ut

6 On Mixtures of Projective Measurements

We now develop some additional tools that will be used in our quantum tracing
algorithm in Section 7. We will explore efficient approximations of projective
implementations, as well as questions of computational indistinguishability.

We consider the following abstract setup. We have a collection P = {Pi}i∈I
of binary outcome projective measurements Pi = (Pi, Qi) over the same Hilbert
space H. Here, Pi corresponds to output 0, and Qi corresponds to output 1. We
will assume we can efficiently measure the Pi for superpositions of i, meaning we
can efficiently perform the following projective measurement over I ⊗H:(∑

i

|i〉〈i| ⊗ Pi ,
∑
i

|i〉〈i| ⊗Qi

)
(1)

19

Here, we call P a collection of projective measurements, and call I the control.
For a distribution D over I, let PD be the POVM which samples a random i← D,
applies the measurement Pi, and outputs the resulting bit. We call PD a mixture
of projective measurements. The POVM is given by the matrices (PD, QD) where

P =
∑
i∈I

Pr[i← D]Pi and Q =
∑
i∈I

Pr[i← D]Qi

In this section, we will address two questions:
– Since PD has a binary outcome, there exists a projective implementation
M = ProjImp(PD). Can we efficiently approximate the measurement?

– If D0, D1 are computationally indistinguishable, what does that say about
the outcomes ofM0 = ProjImp(PD0) andM1 = ProjImp(PD1)?

6.1 Additional Definitions
Shift distance. For a ∈ R and interval [b, c] ⊆ R, denote the distance between a
and [b, c] as |a− [b, c]| := minx∈[b,c] |a−x|. For a ∈ [b, c], the distance is 0 and for
a /∈ [b, c], the distance is max(a− c, b− a). Let D0, D1 be two distributions over
R, with cumulative density functions f0, f1, respectively. Let ε ∈ R. The Shift
distance with parameter ε is defined as:

∆ε
Shift(D0, D1) := sup

x∈R

∣∣f0(x)− [f1(x− ε), f1(x+ ε)]
∣∣

Note that small shift distance does not imply small statistical difference, as
distributions with disjoint supports can have small shift distance. Also note the
triangle-like inequality ∆ε1+ε2

Shift (D0, D2) ≤ ∆ε1
Shift(D0, D1) +∆ε2

Shift(D1, D2).

Shift Distance for Measurements. Let M = (Mi)i∈I and N = (Nj)j∈J be
real-valued quantum measurements over the same quantum system H. The shift
distance betweenM,N , denoted ∆ε

Shift(M,N) is defined as

∆ε
Shift(M,N) := sup

|ψ〉
∆ε

Shift(M(|ψ〉) , N (|ψ〉))

Almost Projective Measurements. We define “almost” projectivity, based on the
fact that repeated consecutive projective measurements yield the same output.
Definition 5. A real-valued quantum measurementM = (Mi)i∈I is (ε, δ)-almost
projective if the following is true: for any quantum state |ψ〉, applyM twice in a
row to |ψ〉, obtaining measurement outcomes x, y. Then Pr[|x− y| ≤ ε] ≥ 1− δ.

6.2 Approximating Projective Implementations
We now address the question of efficiently approximating the projective im-
plementation M = ProjImp(PD) of a mixture of projective measurements PD.
We note that exact measurement is computationally infeasible, as it captures
computing acceptance probabilities of circuits. Instead, we employ techniques
from [MW04] to develop an algorithm API which efficiently approximates the
projective implementation of PD. We first define two subroutines.

20

Controlled Projection. Let P = {Pi = (Pi, Qi)}i∈I be a collection of projective
measurements over H. Let D a distribution with random coin set R. We will
abuse notation and let R also denote the |R|-dimensional Hilbert space. The
controlled projection is the measurement CProjP,D = (CProj0P,D,CProj1P,D) where

CProj0P,D =
∑
r∈R
|r〉〈r| ⊗ PD(r) , CProj1P,D =

∑
r∈R
|r〉〈r| ⊗QD(r) .

CProjP,D is readily implemented using the measurement in Equation 1. First,
initialize control registers I to 0. Then perform the map |r〉|i〉 7→ |r〉|i⊕D(r)〉
to the R × I registers. Next, apply the mixture of projective measurements
assumed in Equation 1. Finally, perform the map |r〉|i〉 7→ |r〉|i⊕D(r)〉 again to
un-compute the control registers, and discard the control registers.

Uniform Test. Define IsUniformR = (|1R〉〈1R|, I− |1R〉〈1R|) where

|1R〉 = 1√
|R|

∑
r∈R
|r〉 .

The Algorithm API. Our algorithm is parameterized by a distributionD, collection
of projective measurements P, and real values 0 < ε, δ ≤ 1, and is denoted as
APIε,δP,D. On input a quantum state |ψ〉 over Hilbert space H, it works as follows:
1. Initialize a new register R to the state |1R〉.
2. Initialize a classical list L = (0).
3. Repeat the following “main loop” a total of T = dln(4/δ)/ε2e times:

(a) Apply the controlled projection CProjP,D over the joint system R⊗H,
resulting in measurement outcome b2i−1. Append b2i−1 to the end of L.

(b) Apply the Uniform Test IsUniformR to the system R, resulting in mea-
surement outcome b2i. Append b2i to the end of L.

4. Let t be the number of bit flips in the sequence L = (0, b1, b2, . . . , b2T), and
let p̃ = t/2T be the fraction of bit flips

5. If in the last iteration of the “main loop” b2T = 1, repeat the “main loop”
until the first time b2i = 0.

6. Discard the R registers, and output p̃.
Theorem 2. For any ε, δ,P, D, we have that:
– ∆ε

Shift(APIε,δP,D,ProjImp(PD)) ≤ δ. That is, API approximates the projective
implementation ProjImp(PD).

– APIε,δP,D is (ε, δ)-almost projective.
– The expected run time of APIε,δP,D is X × poly(1/ε, log(1/δ)), where X is the
combined run time of D, the procedure mapping i to the measurement (Pi, Qi),
and the run-time of the measurement (Pi, Qi).

Proof. Let |ψ〉 be an arbitrary state. Write |ψ〉 =
∑
p αp|ψp〉 where |ψp〉 are

eigenvectors of PD with eigenvalue p 7. In other words, QD|ψp〉 = p|ψp〉. Define
the following states:
7 Note that there may be repeated eigenvalues. The |ψp〉 are therefore the projections
of |ψ〉 onto the eigenspaces.

21

– |u0
p〉 = 1√

(1−p)|R|

∑
r |r〉PD(r)|ψp〉. Notice that

〈u0
p|u0

p〉 = 1
(1− p)|R|

(∑
r

〈r|〈ψp|PD(r)

)(∑
s

|s〉PD(s)|ψp〉

)

= 1
(1− p) 〈ψp|

(
1
|R|

∑
r

PD(r)

)
|ψp〉 = 1

1− p 〈ψp|PD|ψp〉 = 1 .

Also, notice that CProj0P,D|u0
p〉 = |u0

p〉 whereas CProj1P,D|u0
p〉 = 0.

– |u1
p〉 = 1√

p|R|

∑
r |r〉QD(r)|ψp〉. By an analogous calculation for |u0

p〉, we have

that 〈u1
p|u1

p〉 = 1. Since different eigenvectors of PD are orthogonal, we also
have that 〈u1

p|u1
p′〉 = 0 for p 6= p′. Since PiQi = 0, we have 〈u1

p|u0
p′〉 = 0 for

any p, p′ (not necessarily distinct). This means B = {|ubp〉}b,p is orthonormal.
Also, notice that CProj0P,D|u1

p〉 = 0 whereas CProj1P,D|u1
p〉 = |u1

p〉.
– |v0

p〉 = |1R〉 ⊗ |ψp〉. Notice that |v0
p〉 =

√
1− p|u0

p〉+
√
p|u1

p〉. Also notice that
IsUniform0

R ⊗ I|v0
p〉 = |v0

p〉 and IsUniform1
R ⊗ I|v0

p〉 = 0
– |v1

p〉 = −√p|u0
p〉+
√

1− p|u1
p〉. Notice that 〈vbp|vb

′

p′〉 is 1 if b = b′∧p = p′ and 0
otherwise. This means B′ = {|vbp〉} is orthonormal, spanning the same space as
B. Finally, notice that IsUniform0

R ⊗ I|v1
p〉 = 0 and IsUniform1

R ⊗ I|v1
p〉 = |v1

p〉.

At the beginning of the first run of the “main loop” (Step 3), the state of the
system is |ψ∅〉 := |1R〉 ⊗ |ψ〉. Writing this state in the basis B′, we have

|1R〉 ⊗ |ψ〉 =
∑
p

αp|v0
p〉 .

Let |ψL〉 for L ∈ {0, 1}z denote the unnormalized state of the system after
the first z measurements, if the sequence of measurement outcomes is L. Let t(L)
denote the number of bit flips in the sequence 0, L1, L2, . . . , Lz.

Claim. |ψL〉 = θL
∑
p αp(

√
p)t(L)(

√
1− p)z−t(L)

{
|vLzp 〉 if z mod 2 = 0
|uLzp 〉 if z mod 2 = 1

where

θL is a global phase factor, |θL| = 1.

Proof. We prove by induction. The base case z = 0 is true. Now assume that the
claim is true for z − 1. We prove the odd z case, the even case being essentially
identical. Let L′ be L but with the last entry removed. By induction we have

|ψL′〉 = θL′
∑
p

αp(
√
p)t(L

′)(
√

1− p)z−1−t(L′)|vL
′
z

p 〉 .

Observe that |vbp〉 =
√

1− p|ubp〉 − (−1)b|u1−b
b 〉. We apply CProjP,D; if the

outcome is b, this projects onto {|ubp〉}p. If Lz = L′z−1 ⊕ c, then t(L) = t(L′) + c,
and

|ψL〉 = θL′(−1)cLz
∑
p

αp(
√
p)t(L

′)+c(
√

1− p)z−t(L
′)−c|uLzp 〉

Setting θL appropriately gives the desired outcome. ut

22

At Step 4, the unnormalized state is |ψL〉 as defined above, where L contains
the results of measurements. The probability of obtaining a particular L is

〈ψL|ψL〉 =
∑
p

|αp|2(p)t(L)(1− p)2T−t(L) .

L is therefore distributed according to the following distribution:

– First apply ProjImp(PD) to |ψ〉 to obtain a value p
– Let K be a list of 2T independent coin flips with expected value p.
– Set Li to be the parity of the first i bits of K.

Then 2T p̃ = t(L) is just the number 1s in K. Hoeffding’s inequality then gives

Pr[|p̃− p| ≥ ε/2] ≤ 2e−2(2T)(ε/2)2
≤ δ/2 < δ ,

for T ≥ ln(4/δ)/ε2. This implies that ∆ε
Shift(p, p̃) ≤ ∆

ε/2
Shift(p, p̃) ≤ δ/2 ≤ δ.

We now analyze the run-time, which is dominated by the number of iterations
of the main loop, including Step 5. Note that Step 5 terminates once the number
of bit flips in L is even. The number of iterations is identically distributed to:

– Sample p by running ProjImp(PD).
– Flip 2T biased random coins whose probability of outputting 1 is p.
– Flip an even number of additional coins until the overall parity is 0.
– Output the total number of coin tosses, divided by 2.

We can simplify this experiment by pairing off the coin tosses, and only
looking at the parity of each pair, which itself is a biased coin with expectation
q = 2p(1− p):

– Sample p by running ProjImp(PD).
– Flip T biased random coins whose probability of outputting 1 is q = 2p(1−p).
– Flip additional coins until the overall parity is 0.
– Output the total number of coin tosses.

Let T ′(q) be the expected number of additional coins for a given q; note that
q ∈ [0, 1/2]. Note that T ′(0) = 0, since the parity is always even. For q > 0, if
the parity is even after T steps, no additional flips are needed. Assuming T is
even, a routine calculation shows that the probability the parity is odd after the
first T steps is (1− (1− 2q)2T)/2, in which case an expected 1/q additional flips
are needed. Thus T ′(q) := (1− (1− 2q)2T)/2q for q > 0. For q ∈ (0, 1/2], T ′ is
monotonically decreasing, and limq→0 T

′(q) = 2T . Therefore, for any fixed q, we
can upper bound the total expected number of coin tosses to T + 2T = 3T . By
linearity of expectation, this also holds over any distribution over q. Thus, the
expected number of runs of the main loop is at most 3T .

Finally, we consider applying API twice to the same state. Notice that, since
the first run of API is guaranteed to stop when the last bit of L is 0, this
corresponds to R containing a uniform superposition. But this means that when
we start the second run of API, the state going into the main loop will actually

23

be identical to the state at the end of the first run. We can therefore view the
two runs of API as a single run, but with a larger value of T . The overall list
K produced by both runs, but stopping at Step 4 in the second run, is then
distributed according to:

– Sample p by running ProjImp(PD).
– Flip 2T biased random coins whose probability of outputting 1 is p.
– Flip an even number of additional random coins, until a 0 is found.
– Then flip 2T more biased random coins.
– Let K be the overall list of coin flips.

The first output, p̃1, is then just the fraction of 1’s in the first 2T bits of K,
whereas the second output, p̃2, is the fraction of 1’s in the last 2T bits of K.
These fractions are independent. Recalling that

Pr[|p̃− p| ≥ ε/2] ≤ δ/2,

we have that Pr[|p̃1 − p̃2| ≥ ε] ≤ δ. Thus API is (ε, δ)-almost projective. ut

6.3 On Computational Indistinguishability

Here, we show that if the underlying distributions D0, D1 are computation-
ally indistinguishable, then the resulting projective implementations M0 =
ProjImp(PD0) andM1 = ProjImp(PD1) are close.

Theorem 3. Let ρ be an efficiently constructible mixed state, and D0, D1 effi-
ciently sampleable, computationally indistinguishable distributions. For any in-
verse polynomial ε, there exists a negligible δ such that ∆ε

Shift(M0(ρ),M1(ρ)) ≤ δ.

Proof. The rough idea is that we will switch from the projective implementation
Mb to our approximation API. Since API is efficient, we argue that the results of
API must be close. The difficulty is that API makes queries on a superposition of
exponentially-many samples from the respective Db distribution, whose indistin-
guishability does not follow from the indistinguishability of single samples. We
nevertheless show that the outputs of API under the two distributions must be
close by using the small-range distributions of Zhandry [Zha12a].

Consider an adversary A producing a mixture ρ. Let R be the space of random
coins for D0, D1; we can assume wlog that they share the same random coin
space. We now define the following sequence of hybrid distributions:

Hybrid 0. The distribution is p0 ←M0(ρ) where ρ is generated by A.

Hybrid 1. Here, we choose a random permutationΠ onR. LetDΠ
0 (r) = D0(Π(r)).

Run p1 ← ProjImp(PDΠ0). Since D0 and DΠ
0 are identical distributions, the

measurements PD0 and PDΠ0 are identical, and therefore so are their projective
implementations. Thus, p0 and p1 are identically distributed.

24

Hybrid 2. Here, we will generate p2 ← APIε
′,δ′

P,DΠ0
(ρ), for a function δ′ and an inverse

polynomial ε′ to be chosen later. By Theorem 2, we have that ∆ε′

Shift(p1, p2) ≤ δ′.

Hybrid 3. Now we change Π to be the small-range functions Σ = G ◦ F of
Zhandry [Zha12a], where F : R → [s] and G : [s] → R are random functions,
and s is a parameter. Let p3 ← APIε

′,δ′

P,DΣ0
(ρ). Let Φ be the distribution of random

functions on R. Yuen and Zhandry show the following:
Theorem 4 ([Yue14,Zha15]). For any quantum algorithm B making Q quan-
tum queries to Π or Φ, |Pr[BΠ() = 1]− Pr[BΦ() = 1]| ≤ O(Q3/|R|).
Theorem 5 ([Zha12a]). For any quantum algorithm B making Q quantum
queries to Φ or Σ, |Pr[BΦ() = 1]− Pr[BΣ() = 1]| ≤ O(Q3/|R|).
Theorems 4 and 5 in particular means that ∆0

Shift(p2, p3) ≤ O(Q3/s+Q3/|R|).

Hybrid 4. This is the same as Hybrid 3, except that we change F to be a 2Q-wise
independent function E. Let p4 ← APIε

′,δ′

P,DG◦E0
(ρ). Since API only makes Q queries

to F or E, the following theorem implies that p3 and p4 are identically distributed:

Theorem 6 ([Zha12b]). For any quantum algorithm B making Q quantum
queries to F or E, Pr[BF () = 1] = Pr[BE() = 1].

Assume |R| > s, adding random coins to R that are ignored by D0, D1 if
necessary. Then ∆ε′

Shift(p0, p4) ≤ O(Q3/s) + δ′.

Hybrid 5. Next, we switch to using the distribution DG◦E
1 (r) = D1(G(E(r))).

Let p5 ← APIε
′,δ′

P,DG◦E1
(ρ). Note that Db(G(·)) can be interpreted as a list of s

samples from Db, which the input selecting which sample to use. Since D0 and
D1 are computationally indistinguishable, so are s samples. Notice that the entire
experiment in Hybrids 4/5 are efficient. Therefore, by a straightforward argument,
we have that ∆0

Shift(p5, p6) ≤ γ where γ is negligible.

Hybrids 6-9. Hybrid 6 + g is identical to Hybrid 5 − g except for replacing
D0 with D1. In Hybrid 9, the output is exactly M1(ρ). Putting everything
together, we have that ∆2ε′

Shift(M0(ρ),M1(ρ)) ≤ O(Q3/s) + 2δ′ + γ.
Let ε be an inverse polynomial, and suppose δ := ∆ε

Shift(M0(ρ),M1(ρ)) is non-
negligible, lower bounded by an inverse-polynomial w infinitely often. Set ε′ = ε/2
and δ′ = w/4. Then log(1/δ′) is logarithmic. Recall Q = O(log(1/δ′)3/(ε′)2). For
the infinitely-many values of the security parameter where δ ≥ w, we have that
w ≤ δ ≤ O(Q3/s) + w/2 + γ, which re-arranges to w ≤ O(log(1/w)3/ε6s) + 2γ.
But now choose s = 2 × O((1/ε)6(1/w) log(1/w)3), a polynomial. This gives
w ≤ w/2 + 2γ, or w ≤ 4γ, which can only happen for finitely many security
parameters since γ is negligible, a contradiction. Thus δ must be negligible. ut
Corollary 1. Let ρ be an efficiently constructible, potentially mixed state, and
let D0, D1 be two computationally indistinguishable distributions. Then for any
inverse polynomial ε and any function δ, there exists a negligible negl such that
∆3ε

Shift(APIε,δP,D0
,APIε,δP,D1

) ≤ 2δ + negl.

25

7 Tracing PLBE
7.1 Private Linear Broadcast Encryption
Our construction will use the Private Linear Broadcast Encryption (PLBE)
framework of Boneh, Sahai, and Waters [BSW06]. A PLBE scheme is a triple of
probabilistic classical polynomial time algorithms (Gen′,Enc′,Dec′) where:
– Gen′(1N , 1λ) takes as input a number of users N and a security parameter λ.

It outputs a public key pk, plus N user secret keys ski for i ∈ [N].
– Enc′(pk, j,m) takes as input the public key, an index j ∈ [0, N], and a message
m. It outputs a ciphertext c.

– Dec′(ski, c) takes as input a secret key ski for user i and a ciphertext, and
outputs a message m′ or a special abort symbol ⊥.

Correctness. For correctness, we require that user i can decrypt ciphertexts with
index j, so long as i ≤ j. That is there exists a negligible function negl(λ) such
that for every λ and N ≤ 2λ, for every i ∈ [N] and j ≥ i, we have that

Pr[Dec′(ski,Enc′(pk, j,m)) = m : (pk, {ski}i∈[N])← Gen′(N,λ)] > 1− negl(λ) .

Security. We need two security requirements. The first is indistinguishability
security, which requires semantic security for encryptions to j = 0:
Definition 6. A PLBE scheme (Gen′,Enc′,Dec′) is indistinguishable secure if
for all quantum polynomial time adversaries A, there exists a negligible negl such
that the probability A wins in the following game is at most 1/2 + negl(λ):
– A gets λ as input, and sends a number N represented in unary.
– Run (pk, sk1, . . . , skN)← Gen′(λ,N), and send pk to A.
– A then makes an arbitrary number of classical queries on identities i ∈ [N];
in response it receives ski.

– Next, A outputs a pair of messages (m0,m1). In response, choose a random
bit b and send A the ciphertext c← Enc′(pk, j = 0,mb).

– A makes more queries for ski.
– Finally, A outputs a guess b′ for b. Output “win” if and only if b′ = b.
Second, we need index hiding security which says that encrypts to j − 1 and

j are only distinguishable to an adversary that has the secret key for user j.
Definition 7. A PLBE scheme (Gen′,Enc′,Dec′) is index hiding secure if for
all quantum polynomial time adversaries A, there exists a negligible function negl
such that the probabilities A wins in the following game is at most 1/2 + negl(λ):
– A gets λ as input, and sends a number N represented in unary.
– Run (pk, sk1, . . . , skN)← Gen′(λ,N), and send pk to A.
– A then makes an arbitrary number of classical queries on identities i ∈ [N];
in response it receives ski. Let S be the set of i queried by A.

– Next, A outputs a pair of (j,m) for j ∈ [N] such that j /∈ S. Choose a random
bit b and send A the ciphertext c← Enc′(pk, j − b,m) to index j − b

– A is allowed to make more queries on identities i ∈ [N] \ j, to which it
receives ski in response.

– Finally, A outputs a guess b′ for b. Output “win” if and only if b′ = b.

26

From PLBE to Traitor Tracing. Following [BSW06], the first three algorithms of
our traitor tracing construction (Gen,Enc,Dec,Trace) we be immediately derived
from the PLBE scheme: Gen = Gen′, Enc(pk,m) = Enc′(pk, j = N,m), and
Dec = Dec′. Correctness is immediate. In the following, we describe Trace.

7.2 The quantum algorithm Trace.

Where we depart from [BSW06] is in our tracing algorithm, which we now need
to trace quantum pirates. First, we briefly explain how to implement API using
Black Box Projection queries.

Concretely, let |A′〉 be |A〉, except that we augment the decoder with a qubit
H2 originally set to |0〉. Let H′2 × C be control registers, where H′2 is another
qubit and C is a ciphertext register. Consider the following measurement process
on registers H′2 ⊗ C ⊗H2 ⊗H:

– Perform the map |b′〉|b〉 → |b′〉|b⊕ b′〉 on the H′2 ⊗H2 registers
– Make a Black Box Projection query using the registers C ⊗H2 as the query

registers. Let o be the result.
– Perform the map |b′〉|b〉 → |b′〉|b⊕ b′〉 on the H′2 ⊗H2 registers
– Output 1− o.

This measurement process has exactly the form of a collection of projective
measurements P in Equation 1. For a decoder in its initial state (meaning H2
is initialized to |0〉) and for a given bit/ciphertext pair (b, c), the corresponding
measurement P(b,c) outputs 1 exactly when the decoder would output b. Thus,
we can run the algorithm API on |A′〉.

We now give our algorithm Trace|A〉(pk,m0,m1, ε):

1. Let ε′ = ε/4(N + 1) and δ′ = 2−λ.
2. Run p̃N ← APIε

′,δ′

P,DN (|A′〉), where Dj is the following distribution:
– Run b← {0, 1}
– Compute c← Enc′(pk, j,mb)
– Output (b, c).

3. If p̃N < 1/2 + ε− ε′, abort and output the empty set {}.
4. Otherwise, initialize S′ = {}. Then for j = N to j = 1,

– Compute p̃j−1 ← APIε
′,δ′

P,Dj−1
(|A′〉)

– If p̃j−1 < p̃j − 4ε′, add j to S′.
Finally, output S′.

Theorem 7. If (Gen′,Enc′,Dec′) is indistinguishable secure and index hiding
secure for quantum adversaries, then (Gen,Enc,Dec,Trace) is quantum traceable.

Proof. Consider an adversary A which has secret keys for identities in S, and
produces a pirate decoder |A〉. Let ε be an inverse polynomial. Define the events
GoodTrace,BadTrace, Live as in Definition 4.

We first argue that Pr[BadTrace] is negligible. Suppose that there is a non-
negligible probability s that BadTrace happens. Then for a random choice of j, it

27

is the case that with (non-negligible) probability at least s/N , both (1) A never
queries j, and (2) p̃j−1 < p̃j − 4ε′.

Let ρ be the state produced by the following process:

– Choose a random j, and run the tracing experiment
– If A ever makes a query on j, abort and output an arbitrary quantum state.
– Next run Trace, stopping immediately after p̃j is computed.
– Output the state |A′〉.

Consider running Trace for one more iteration, applying APIε
′,δ′

P,Dj−1
to ρ to

obtain a measurement p̃j−1. By assumption, we have that p̃j−1 ≥ p̃j − 4ε′ with
non-negligible probability s/N .

Now consider instead stopping Trace at iteration j to obtain ρ, but then
applying APIε

′,δ′

P,Dj to ρ a second time, obtaining a second measurement p̃′j of
pj . We stress that in this case, we do not compute p̃j−1. Since API is (ε′, δ′)
projective, we know that |p̃j − p̃′j | ≤ ε′ except with probability at most δ′.

Since j was never queried, encryptions to index j and j − 1 are indistin-
guishable. By Corollary 1, this means the distributions on p̃′j and p̃j−1 sat-
isfy ∆3ε′

Shift(p̃′j , p̃j−1) ≤ negl. But by our triangle-like inequality, this means that
p̃j−1 ≥ p̃j − 4ε′ except with negligible probability, a contradiction.

We now argue that Pr[GoodTrace] ≥ Pr[Live] − negl(λ). First, let Abort be
the event that tracing aborts in Step 3. Let pN be the probability obtained from
applying M′ to the decoder outputted by A. Note that Live is the event that
pN > 1/2 + ε. We then have that ∆ε′

Shift(pN , p̃N) ≤ δ′. Therefore, Pr[¬Abort] ≥
Pr[Live]− δ′

Next, let Fail be the event that p̃0 ≥ 1/2 + 4ε′. Let ρ be the state right
before measuring p̃0. Let p0 be the random variable corresponding to applying
PD0 to ρ. Recall that for j = 0, encryptions of m0 and m1 are computationally
indistinguishable. This means that p0 ≤ 1/2 + negl. By Corollary 1, this means
Pr[Fail] < negl. Thus, Pr[¬Abort ∧ ¬Fail] ≥ Pr[Live]− negl.

Finally, we note that if neither of Fail or Abort happen, then p̃N−p̃0 > ε−4ε′ =
4Nε′. But then it must have been some j such that p̃j− p̃j−1 > 4ε′, meaning S′ is
non-empty and therefore GoodTrace happens. Thus Pr[GoodTrace] ≥ Pr[¬Abort∧
¬Fail] ≥ Pr[Live]− negl, as desired. ut

References

Aar04. Scott Aaronson. Limitations of quantum advice and one-way communication.
In Proceedings. 19th IEEE Annual Conference on Computational Complexity,
2004., pages 320–332. IEEE, 2004.

Aar09. S. Aaronson. Quantum copy-protection and quantum money. In 2009 24th
Annual IEEE Conference on Computational Complexity, pages 229–242,
2009.

AC12. Scott Aaronson and Paul Christiano. Quantum money from hidden sub-
spaces. In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC,
pages 41–60. ACM Press, May 2012.

28

AGKZ20. Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry. One-
shot signatures and applications to hybrid quantum/classical authentication.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy, editors, 52nd ACM STOC, pages 255–268.
ACM Press, June 2020.

ARU14. Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks
on classical proof systems: The hardness of quantum rewinding. In 55th
FOCS, pages 474–483. IEEE Computer Society Press, October 2014.

AV19. Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion
secure functional encryption. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part I, volume 11891 of LNCS, pages 174–198. Springer, Heidel-
berg, December 2019.

BB87. Charles H. Bennett and Gilles Brassard. Quantum public key distribution
reinvented. SIGACT News, 18(4):51–53, July 1987.

BCM+18. Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani,
and Thomas Vidick. A cryptographic test of quantumness and certifiable
randomness from a single quantum device. In Mikkel Thorup, editor, 59th
FOCS, pages 320–331. IEEE Computer Society Press, October 2018.

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

BGMZ18. James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of
GGH15: Provable security against zeroizing attacks. In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 544–574. Springer, Heidelberg, November 2018.

BN08. Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext.
In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008,
pages 501–510. ACM Press, October 2008.

BSW06. Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor
tracing with short ciphertexts and private keys. In Serge Vaudenay, edi-
tor, EUROCRYPT 2006, volume 4004 of LNCS, pages 573–592. Springer,
Heidelberg, May / June 2006.

BZ14. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 480–499. Springer, Heidelberg, August 2014.

CFN94. Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt,
editor, CRYPTO’94, volume 839 of LNCS, pages 257–270. Springer, Heidel-
berg, August 1994.

CHN+16. Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and
Daniel Wichs. Watermarking cryptographic capabilities. In Daniel Wichs
and Yishay Mansour, editors, 48th ACM STOC, pages 1115–1127. ACM
Press, June 2016.

DFNS14. Ivan Damgård, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail.
Superposition attacks on cryptographic protocols. In Carles Padró, editor,
ICITS 13, volume 8317 of LNCS, pages 142–161. Springer, Heidelberg, 2014.

29

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer
Society Press, October 2013.

GKRW18. Rishab Goyal, Venkata Koppula, Andrew Russell, and Brent Waters. Risky
traitor tracing and new differential privacy negative results. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 467–497. Springer, Heidelberg, August 2018.

GKW18. Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant
traitor tracing from learning with errors. In Ilias Diakonikolas, David Kempe,
and Monika Henzinger, editors, 50th ACM STOC, pages 660–670. ACM
Press, June 2018.

GKZ19. Alex B. Grilo, Iordanis Kerenidis, and Timo Zijlstra. Learning-with-errors
problem is easy with quantum samples. Phys. Rev. A, 99:032314, Mar 2019.

KLLN16. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-
Plasencia. Breaking symmetric cryptosystems using quantum period finding.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 207–237. Springer, Heidelberg, August 2016.

KM10. Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between
the 3-round feistel cipher and the random permutation. In 2010 IEEE
International Symposium on Information Theory, pages 2682–2685. IEEE,
2010.

MW04. C. Marriott and J. Watrous. Quantum arthur-merlin games. In Proceedings.
19th IEEE Annual Conference on Computational Complexity, 2004., pages
275–285, 2004.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

VDG98. Jeroen Van De Graaf. Towards a formal definition of security for quantum
protocols, 1998.

Wie83. Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January
1983.

Yue14. Henry Yuen. A quantum lower bound for distinguishing random functions
from random permutations. Quantum Information & Computation, 14(13-
14):1089–1097, 2014.

Zha12a. Mark Zhandry. How to construct quantum random functions. In 53rd FOCS,
pages 679–687. IEEE Computer Society Press, October 2012.

Zha12b. Mark Zhandry. Secure identity-based encryption in the quantum ran-
dom oracle model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 758–775. Springer, Heidelberg,
August 2012.

Zha15. Mark Zhandry. A note on the quantum collision and set equality problems.
Quantum Information and Computation, 15(7& 8), 2015.

Zha20. Mark Zhandry. Schrödinger’s pirate: How to trace a quantum decoder (full
version), 2020.

30

	Schrödinger's Pirate: How To Trace a Quantum Decoder

