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Abstract. We investigate sampling procedures that certify that an ar-
bitrary quantum state on n subsystems is close to an ideal mixed state
ϕ⊗n for a given reference state ϕ, up to errors on a few positions. This
task makes no sense classically: it would correspond to certifying that
a given bitstring was generated according to some desired probability
distribution. However, in the quantum case, this is possible if one has
access to a prover who can supply a purification of the mixed state.
In this work, we introduce the concept of mixed-state certification, and
we show that a natural sampling protocol offers secure certification in
the presence of a possibly dishonest prover: if the verifier accepts then
he can be almost certain that the state in question has been correctly
prepared, up to a small number of errors.
We then apply this result to two-party quantum coin-tossing. Given
that strong coin tossing is impossible, it is natural to ask “how close
can we get”. This question has been well studied and is nowadays well
understood from the perspective of the bias of individual coin tosses.
We approach and answer this question from a different—and somewhat
orthogonal—perspective, where we do not look at individual coin tosses
but at the global entropy instead. We show how two distrusting parties
can produce a common high-entropy source, where the entropy is an
arbitrarily small fraction below the maximum.

1 Introduction

1.1 Background and Motivation

Certifying correctness by means of cut-and-choose techniques is at the core of
many – classical and quantum – cryptographic protocols. This goes back as far
as Yao’s garbled circuits, introduced in the 80s, where cut-and-choose is the
main technique used to obtain active security. Even more so, cut-and-choose



is at the very heart of essentially any quantum-cryptographic protocol, where
participants are often asked to prepare states that agree with some specification.
Certifying that quantum states satisfy this specification is essential to proving
the security of these protocols.

Underlying these techniques is one of the most fundamental tasks in statistics:
sampling. It allows one to infer facts about a large set of data by only looking
at a small subset of it. For example, one can estimate the number of zeros in
an n-bit string with very high accuracy by looking only at a small, randomly
selected subset of the bits. This is also true in quantum mechanics: given an
n-qubit system, one can infer that it is almost entirely contained in a subspace
span{|s〉 : s is a bitstring with (δ ± ε)n 1’s} by measuring a small subset of the
qubits and observing that a fraction δ of the bits are ones [6].

One thing that a classical sampling procedure cannot do, however, is to infer
the probability distribution from which the bitstring was generated. While a
sampling procedure might be able to tell us that a bitstring contains roughly
n/2 zeros and n/2 ones, that does not mean that it originally came from n fair
coin flips — for all we know, it might be a fixed string that happens to have the
right number of zeros and ones. If we were somehow able to do this, it would
have interesting consequences for cryptography: for instance, we could get a coin-
flipping protocol by getting one party to generate the coin flips, send them to
the other party, and have the other party perform this hypothetical sampling
procedure to certify that most of the bits indeed came from fair coin flips.

While this is clearly impossible in the classical case, it turns out that, perhaps
surprisingly, this makes sense in the quantum scenario. This is due to the phe-
nomenon of purification: given a mixed quantum state ρA on system A (which
corresponds to a probability distribution on quantum states), it is possible to
define a bipartite pure (i.e. deterministic) state |ψ〉AR which is in the same mixed
state as ρA when looking at A only. Hence, one can certify that A is in the mixed
state ρA by asking someone to produce the purifying system R and measuring
that the combined system AR is indeed in state |ψ〉AR. To give a more concrete
example, suppose ρA is a uniformly random qubit, i.e. ρA = 1

2 |0〉〈0| +
1
2 |1〉〈1|.

Then, the pure state |Φ〉AR = 1√
2
(|00〉+ |11〉) purifies it, and checking that AR

is in state |Φ〉 certifies that A was uniformly distributed in the first place. Note
also that one does not need to trust the party who gives us the purification,
making this suitable for an adversarial setting.

This leads to the following natural sampling protocol. Consider a sampler
Sam who holds an arbitrary quantum state ρAn on n subsystems, prepared by a
possibly dishonest prover Paul. Sam would like to certify that this state is close
to the ideal mixed state ϕ⊗n, possibly with errors on a small number of positions,
for a given reference state ϕ. To do this, he selects a small subset of k positions at
random, and he asks the distrusted prover Paul to deliver the purifying systems
Rk for these positions. He then measures the POVM {|ϕ〉〈ϕ|AR,1 − |ϕ〉〈ϕ|AR}
on each of the selected systems in the sample to ensure that all of them are in
the state |ϕ〉AR which purifies ϕA. He rejects if any errors are detected.



We emphasize that for verifying a mixed reference state, interaction with a
prover is necessary, as there is no local measurement on Sam’s side that can
distinguish between the correct state ϕ⊗n and a state that consists of the eigen-
vectors of ϕ in the correct proportions (given by the eigenvalues).

1.2 Our Contribution

In this paper, we investigate this type of sampling procedure in detail. Several
challenges arise in the analysis of this protocol. First, defining what we mean
when we say that the sampling works is not trivial. In the case of regular quantum
sampling, we usually want to say that the state has a very small probability of
being outside of a low-error subspace that corresponds to the statistics that we
have observed. For mixed states, this definition fails completely: every subspace
contains pure states, which we would want to exclude since they are very far from
the ideal mixed state. We might then be tempted to include the purifying systems
in the definition of the low-error subspace, but then we have no guarantee that an
adversarial prover will respect the structure we want to impose on his part of the
state—we don’t even know that it consists of n subsystems. A second difficulty
comes from the fact that the prover might not necessarily want to provide the
state that gives him the best chance of passing the test, even if he has it. If we
again look at the case of certifying uniformly random qubits, even if Sam has the
ideal state before the sampling begins, Paul might want to bias the outcome, for
example by passing the test if he measures |0〉 on all of the non-sampled qubits,
and failing on purpose otherwise. Because of these difficulties, our main result
does not follow from traditional sampling theorems.

We overcome these challenges and present a general class of mixed state
certification protocols which contains the natural protocol described above. We
show that any protocol that fits this class, and that satisfies the simple criteria of
being invariant under permutations and performing well on i.i.d. states, allows us
to control the post-sampling state in a meaningful way. A positive consequence
of this modular analysis is that previous results on pure state certification also
fit our framework, and thus fall under a special case of our analysis – just as
pure states are a special case of mixed states. Because pure state certification
has already found many applications in cryptography [6,10,11,12,29], the fact
that we recover it as a special case positions our result as a powerful tool for
quantum cryptography.

Another part of the paper is devoted to applying this result to coin tossing—
or randomness generation. Given that strong coin tossing is known to be im-
possible, it is natural to ask “how close can we get?”. This question has been
well studied and is nowadays well understood from the perspective of the bias
of individual coin tosses (see Sect. 1.3 below). We approach and answer this
question from a different—and somewhat orthogonal—perspective, where we do
not optimize individual coin tosses but the global entropy instead. From this
entropic perspective, we show that “the next best” after strong coin tossing is
possible. We show that the coin-flipping protocol loosely described above allows



two distrusting parties to produce a common high-entropy source, where the en-
tropy is an arbitrarily small fraction below the maximum (except with negligible
probability).

Our protocol for the task of two party randomness generation outperforms
any classical protocol in the information theoretical setting. The trivial classical
protocol—where each party tosses n/2 unbiased coins and the output is the
result of the n tosses—is optimal for this task [15].

The paper is organized as follows. First, in the next subsections, we discuss
some previous work in the area and the relevance of our work for cryptography. In
Sect. 2, we introduce the notation and recall some useful facts. Sect. 3 presents
the main result in more detail. The coin-flipping protocol described above is
presented in Sect. 4, and the proof of our main result then follows in Sect. 5.

1.3 Previous Work

Classical sampling results have been around since the foundations of modern
probability theory, dating back to the work of Bernstein, Hoeffding and Cher-
noff on concentration of measure in the 1920s and 1930s. More recently, several
quantum generalizations of these classics have been proven. These generaliza-
tions include, for instance, Ahlswede and Winter’s operator Chernoff bound [1]
and the quantum Chernoff bound of [4]. However, these generalizations are not
easily amenable to giving results about sampling, unlike their classical counter-
parts. Other quantum results can be used to analyze sampling in certain contexts,
such as quantum de Finetti theorems for quantum key distribution [23,24,9].

But perhaps the most direct analogues of the classical sampling results are
those of [6]. There, the authors give a generic way to transpose classical sam-
pling procedures to the quantum case. Roughly speaking, they show that if a
classical sampling protocol says that a string of random variables X1, · · · , Xn is
contained in some “good” subset Xgood except with negligible probability, then
the quantum version of the same sampling procedure (defined in a precise way
in [6]) would say that the final state ρX1,...,Xn is almost entirely contained in the
good subspace span{|x1〉 ⊗ · · · ⊗ |xn〉 : x1, · · · , xn ∈ Xgood}, except with negligi-
ble probability. This “good” set would normally correspond to strings that are
consistent with what was observed in the sample. Our main result can be viewed
as extending this to the case of mixed state sampling.

Our main application, coin flipping, also has a long history. The basic task
was first defined in 1981 by Manuel Blum [5]. Since the early 2000’s, it has
received a lot of attention in the quantum cryptography community, as it is one
of the most natural tasks for which quantum protocols can perform something
that is impossible classically. There are two versions of coin flipping: strong coin
flipping, in which we require the protocol to be equivalent to a black box that
produces the coin flip and distributes the result, and weak coin flipping, in which
each participant has a known preferred outcome and must be prevented from
biasing the outcome in that direction. Several quantum protocols for strong coin
flipping have been developed with various biases [27,3], but a fundamental lower
bound of ( 1√

2
− 1

2 ) on the bias of such protocols was proven in [17] (see also [13]).



Finally, a protocol with a bias matching the lower bound was proven in [7]. For
weak coin flipping, we have had several protocols [16,28,18,19], again with various
biases, but this time culminating in a protocol with arbitrarily small bias [20].
Quantum coin flipping has even been implemented in the lab [22]. Here, we go
in a somewhat different direction: we show that even though strong coin flipping
with negligible bias is impossible without assumptions, two distrustful parties
can produce a common string of min-entropy arbitrarily close to maximum.

A strong quantum coin tossing protocol using ideas similar to that of the
protocol described in Sect. 4 has been previously considered by Høyer and Salvail
(unpublished) for achieving in a slightly simpler way the same 1

4 bias than the
one in [2]. Alice prepares two EPR pairs and sends one half of each to Bob.
Bob picks at random one qubit out of the two and verifies that Alice holds the
corresponding purification register of an EPR pair by asking her to measure it
in a random BB84 basis before comparing the result with his own. If this test
succeeds, Bob gets some evidence that the remaining pair of qubits can be used
as a coin toss after measuring it in the canonical basis. Our protocol extends this
test to a random sample of a population of N qubits, increasing the confidence
that Bob has about the remaining qubits being “close” to ideal coin tosses when
the test is successful.

1.4 Applications to Cryptography

Sampling with a Pure Reference State. Previous results on sampling from a
quantum population have dealt with pure reference states. In this case, the
sampler can choose its sample and perform local measurements on the sampled
positions without any help from the prover. This setting allows for standard
classical tools such as Hoeffding’s inequality to be used to derive the probabil-
ity that the sampled positions’ proximity to the reference state is not a good
indicator for the unsampled positions’ proximity to the same reference state.

Since pure states are a special case of mixed states, a natural property that
we would want for our mixed state sampling result is to recover a statement
similar to the one for pure state sampling in the framework of [6]. This is indeed
the case when we restrict our attention to the task of certification, i.e. when we
do not tolerate any error in the sample. Although our results do not use the same
tools, and are expressed in terms of a post-selected operator instead of in terms
of proximity to an ideal state (see Sect. 3), we recover a statement equivalent to
that of [6], albeit with slightly worse parameters, when we apply our results to
pure reference states. Since most applications [6,11,12,29] of pure state sampling
has been in the setting of certification, our results can also be used to prove
those applications.

Sampling with a Distributed Pure Reference State. Our mixed state sampling
result is also applicable to an instance of pure state certification that falls outside
the framework of [6] and which was presented and analyzed in an ad hoc way
in [10]. Their sampling algorithm was used as part of a protocol for leakage
resilient computation.



The sampling task considered in [10] is as follows: spacially separated Alice
and Bob want to certify that their joint registers – which was prepared by an
untrusted third party – is of the form |ϕ〉⊗nAB for some entangled state |ϕ〉 where
Alice holds the A part of each of the n states and Bob the B part. The fact
that the state is distributed between Alice and Bob means that the techniques
of [6] do not apply: the two samplers cannot perform a projective measurement
to check that their shared registers are in the reference state |ϕ〉AB .

Our results of Sect. 5 only requires that the sampling protocol’s verification
procedures is invariant under the permutation of the quantum population, and
that it aborts when performed on an obviously bad state. Since the pure state
certification protocol of [10] satisfies these properties, our techniques readily
apply and can be used to analyze their protocol.

Application to Two-Party Computation. In [26], the power of quantum commu-
nication for secure unconditional two-party computation is investigated. Among
other results, it was shown that correct quantum implementations of two-party
classical cryptographic primitives must leak at least some minimal amount of
information to one of the parties. For example, randomized variants6 of one-out-
of-two OT and secure AND sharing must leak at least 1

2 bit on average. Proto-
cols exist in the quantum honest-but-curious model that minimize the amount of
leakage for a given primitive. The simplest such protocol consists of an adversary
preparing and distributing an embedding of the primitive. An embedding of a
cryptographic primitive is a pure state that yields the correct outcomes when
measured in the computational basis, i.e. from each party’s point of view, the
state shared before the final measurement is a purification of the probability
distribution for this party’s output.

A protocol that achieves minimal leakage against active adversaries under
the sole assumption that the parties have access to strong coin-tosses is easily
obtained from mixed-state certification. One of the parties would generate many
copies of the embedding of the primitive that minimizes leakage and the other
party certifies correctness using our sampling procedure. They then choose one
of the remaining embeddings, the target embedding, and measure it; the out-
come acts as the output of the protocol. If the sampling succeeds, the unsampled
positions are close to ideal embeddings from the sampler’s perspective and ran-
domly picking the target embedding would then have close to minimal leakage
with good probability. However, without additional resources, an adversary (the
sampler say) could measure its part of a few embeddings before choosing the
target embedding as one that produces the output the adversary wants to see.
Coin-tosses are therefore required to pick the target embedding without bias.

6 Variants where the primitives considered are applied to random inputs.



2 Preliminaries

2.1 Notation

Let HA,HB be two Hilbert spaces, we write L(HA,HB) for the set of linear
operators from HA to HB and we write L(HA) for L(HA,HA). Let D≤(H) be
the set of positive semi-definite operators with trace less than or equal to 1,
and let D(H) be the set of density operators on H. The set of isometries from
HA to HB is denoted U(HA,HB). We use the notation UA→B to illustrate that
UA→B ∈ U(HA,HB). When there is no ambiguity from doing so, we write UA
instead of UA→B . For an arbitrary isometry U , we sometimes write [U ](ρ) as
shorthand for UρU†. For a pure state |ψ〉, we write ψ as shorthand for |ψ〉〈ψ|
when this creates no ambiguity. For a linear operator A, ‖A‖1 := tr(

√
A†A)

denotes the trace norm. We denote 1A as the identity operator on HA and idA
as the CPTP map that acts trivially on register A.

We let [n] := {1, . . . , n} denote the set of the first n positive integers for
n ∈ N. For a fixed finite set Y and any subset X ⊆ Y , X̄ denotes the complement
of X in Y , i.e. X̄ = Y \X. Let h(p) := −p log2(p)−(1−p) log2(1−p) be the binary
entropy function; we make use of the fact that

(
n
βn

)
≤ 2h(β)n for 0 < β < 1.

Let A be a quantum register, we use the notation An to denote n identical
copies of A and label them A1, . . . , An when the need arises to distinguish in-
dividual registers. For t ⊆ [n], we write At as the composite register containing
registers Ai for each i ∈ t.

2.2 Permutation Invariance and the Symmetric Subspace

Let Sn denote the symmetric group on n elements and let A1, . . . , An be n
quantum registers with identical state space H. For π ∈ Sn, we use the same
symbol to denote the unitary operation that acts on H⊗n by

π(|φ1〉A1
⊗ · · · ⊗ |φn〉An) =

∣∣φπ−1(1)

〉
A1
⊗ · · · ⊗

∣∣φπ−1(n)

〉
An

. (1)

Definition 1. The symmetric subspace of H⊗n, denoted Symn(H), is the space
spanned by all vectors |φ〉 ∈ H⊗n with π|φ〉 = |φ〉 for any π ∈ Sn. A pure state
|φ〉 ∈ Symn(H) is referred to as a symmetric state.

A density operator ρ ∈ D(H⊗n) is called permutation invariant if πρπ† = ρ
for all π ∈ Sn.

Remark 1 ([23,8]). Although not all permutation invariant operators have sup-
port in the symmetric subspace, the next lemma asserts that they have a purifi-
cation that does: for any permutation invariant density operator ρAn on H⊗nA
there exists a pure state |ρAnBn〉 ∈ Symn(HA⊗HB) where HA ' HB , such that
trBn(ρAnBn) = ρAn .

Remark 2 ([25,23]). Let H be a d-dimensional Hilbert space. The projector onto
the symmetric subspace Symn(H) can be expressed as

cn,d

∫
|θ〉〈θ|⊗nd|θ〉



where d|θ〉 is the measure on the set of pure states of H induced by the Haar
measure on the set of unitaries acting on H and where cn,d :=

(
n+d−1
n

)
≤ (n +

1)d−1 is the dimension of Symn(H).

2.3 Mathematical Tools and Definitions

We say that an operator ρ̃B is post-selected from register A of ρAB if there
exists a POVM element 0 ≤ EA ≤ 1A such that ρ̃B = trA((EA ⊗ 1B)ρAB). The
following remark on relation between the reduced operator of a joint system
before and after a post-selected measurement takes place will be useful.

Remark 3. Let ρAB be an arbitrary positive semi-definite operator on registers
AB. Let 0 ≤ EA ≤ 1A be a positive semidefinite operator acting on register A.
Then it holds that

trA ((EA ⊗ 1B)ρAB) ≤ trA (ρAB) .

The following observation shows that there is a strong relation between post-
selected operators and upper-bounded operators.

Proposition 1. Let c ≥ 0 and let ρQ, σQ be two positive semi-definite operators.
Then ρQ ≤ c · σQ if and only if for any purification |σR1Q〉 of σQ and |ρR2Q〉 of

ρQ, there exists a linear operator AR1→R2
such that A†R1

AR1
≤ 1R1

and

|ρR2Q〉 =
√
c · (AR1→R2 ⊗ 1Q)|σR1Q〉 . (2)

Proof. Let’s start with the easier direction of the proof. Let |σR1Q〉 be a purifi-
cation of σQ, let |ρR2Q〉 be a purification of ρQ and let AR1→R2

be as in (2).
Then by Remark 3, ρQ is equal to

trR2 (ρR2Q) = c · trR1

(
(A†R1→R2

AR1→R2 ⊗ 1Q)σR1Q

)
≤ c · trR1 (σR1Q) = c · σQ .

For the other direction, write σQ as σQ = 1
c (ρQ + σ̃Q) where σ̃Q := c · σQ −

ρQ ≥ 0 . Let |ρR2Q〉 be an arbitrary purification of ρQ and let |σ̃R2Q〉 be a
purification of σ̃Q that lives in the same space. Then consider the following

purification of σQ: |σR′R2Q〉 :=
√

1
c (|0〉R′ |ρR2Q〉 + |1〉R′ |σ̃R2Q〉). Let |σR1Q〉 be

an arbitrary purification of σQ and let AR1→R2
:= (〈0|R′ ⊗1R2

)VR1→R′R2
where

VR1→R′R2 is an isometry that maps |σR1Q〉 to |σR′R2Q〉. Then

(AR1→R2
⊗ 1Q)|σR1Q〉 = (〈0|R′ ⊗ 1R)|σR′R2Q〉 =

√
1

c
|ρR2Q〉 .

ut

The following proposition is a simple corollary of the pinching inequality [14,
Lemma 9]. A direct consequence of this is that a superposition of a few states
can be approximated by a mixture of the same few states.



Proposition 2. Let {|ψi〉}i∈J be a family of vectors living on a Hilbert space
H indexed by some finite set J . Define operators

ρ =
∑
i,j∈J

|ψi〉〈ψj | and ρmix =
∑
i∈J
|ψi〉〈ψi| .

Then, ρ ≤ |J | · ρmix.

Definition 2 (Quantum “Hamming Ball”). Let |Ψ〉 ∈ H⊗n for n ∈ N and
let r ∈ [n]. We define the quantum Hamming ball of radius r around |Ψ〉, denoted
∆r(|Ψ〉), as the space spanned by all vectors of the form U |Ψ〉 where U is a
unitary that acts as the identity on at least n− r subsystems.

For the special case where |Ψ〉 = |ν〉⊗n,

∆r(|ν〉⊗n) = span{π(|ν〉⊗n−r ⊗ |u〉) : |u〉 ∈ B, π ∈ Sn}

where B is an orthonormal basis of H⊗r.

The projector onto the quantum Hamming ball of radius r around an i.i.d.
state |ν〉⊗n ∈ HA1

⊗ · · · ⊗ HAn can be written as

Pr,|ν〉An =
∑

E⊆[n] : |E|≤r

(⊗
i∈E

(1− |ν〉〈ν|)Ai
⊗
i/∈E

|ν〉〈ν|Ai

)
.

The following Lemma says that n i.i.d. copies of a state close to |ν〉 is almost
entirely contained in a Hamming ball around |ν〉⊗n.

Lemma 1. Let |ν〉, |θ〉 ∈ H be such that |〈θ|ν〉|2 ≥ 1− ε. Then, for any α > 0,

tr
(
Pr,|ν〉 · |θ〉〈θ|⊗n

)
≥ 1− exp(−2α2n)

where Pr,|ν〉 is the projector onto ∆r(|ν〉⊗n) for r = (ε+ α)n.

Proof. Observe that

tr
(
Pr,|ν〉|θ〉〈θ|⊗n

)
= Pr[wt(Xθ) ≤ r] = Pr[wt(Xθ)− εn ≤ αn]

where Xθ is a random variable obtained by measuring n copies of |θ〉 with ob-
servables M0 = |ν〉〈ν| and M1 = 1 − |ν〉〈ν| and where wt(·) is the Hamming
weight function, i.e. the number of ones. Since Xθ consists of n i.i.d. Bernoulli
trials with parameter 1−F (ν, θ)2 ≤ ε, Hoeffding’s inequality allows us to lower-
bound the above quantity: tr(Pr,|ν〉 |θ〉〈θ|⊗n) ≥ 1− exp(−2α2n). ut

3 Certification of Mixed States

The task we analyze can be understood as an interactive game between two
participants: a prover Paul, and a sampler Sam. Paul is supposed to prepare



multiple copies of some reference state ϕ before sending them to Sam, and the
purpose of the game is for Sam to detect when the state produced by Paul is
(close to) what it is supposed to be, no matter how maliciously Paul behaves.
Here, the reference state ϕ may be an arbitrary but known mixed state. A canoni-
cal example of such a quantum sampling protocol is depicted in Fig. 1. It consists
of Sam asking Paul to deliver the purification registers of k randomly chosen po-
sitions. Sam then measures these purifications in order to learn if they were in
the right state.7

Purification-Based Sampling

1. Paul prepares N copies of the purification |ϕPS〉 of ϕS , he sends N registers
in state ϕS labeled S1 to SN to Sam and keeps the corresponding purification
registers P1 to PN .

2. Sam picks a subset t ⊆ [N ] of size k uniformly at random.
3. Sam sends t to Paul and asks him to send him the purification registers Pi for

i ∈ t.
4. Sam measures each register PiSi for i ∈ t using projective measurement
{|ϕ〉〈ϕ|PS ,1PS − |ϕ〉〈ϕ|PS}. Sam accepts if he observed |ϕ〉〈ϕ|⊗k, otherwise,
he rejects.

Fig. 1. The purification-based mixed state quantum sampling protocol with reference
state ϕS . Paul and Sam need to have previously agreed on a purification |ϕPS〉 of ϕS .

In the extreme case of a reference state that is empty on Paul’s side, and
thus pure on Sam’s side (and so there is no purification for Paul to provide in
step 2), the sampling protocol of Fig. 1 pretty much coincides with the pure-state
sampling procedure considered and analyzed in [6]. For a true mixed reference
state, however, it is significantly harder to prove that the sampling protocol
“does its job” because of the additional freedom that Paul has in preparing
the purification registers that may depend on the choice of t. This very much
renders the techniques from [6] useless. Indeed, the idea of the analysis in [6]
was to assume, for the sake of the argument, that the positions outside of t are
measured as well, and then to delay the choice of t to after the measurement
so as to reduce to a classical sampling procedure. Because of Paul’s freedom in
choosing the purifications dependent on t, it makes no sense to speak about the
outcome of the reference measurement {|ϕ〉〈ϕ|,1− |ϕ〉〈ϕ|} before t is chosen, or
about the measurement being applied to a position outside of t. As such, we
need an entirely different approach.

7 Note that there is no loss in generality in announcing the positions that Sam wants
to check in one go as is done in Fig. 1, compared to announcing them one-by-one;
doing it the latter way only makes it harder for Paul.



Before worrying about analyzing the mixed-state sampling protocol of Fig. 1,
we first need to specify what it should actually mean for it to “do its job”; this is
not entirely obvious. Intuitively, we want that after the sampling, if Sam accepts
then his part of the state should be “somehow close” to what it is supposed to
be, namely ϕ⊗n where we set n = N − k. However, Paul can obviously cheat
in a small number of positions, i.e., start off with a state that consists of i.i.d.
copies of |ϕ〉 except for a small number of positions where the state may deviate
arbitrarily, and he still has a fair chance of not being caught. Of course, the
same holds for a mixture of such states, and therefore, by purification, also for
a superposition of such states. This motivates the definition below of an “ideal
state”, which captures the best we can hope for. The formal statement of what
the sampling protocol of Fig. 1 achieves is then in terms of controlling Sam’s
part of the state after the protocol by means of Sam’s part of such an ideal state.
This is somewhat similar in spirit as the approach in [6] for pure-state sampling,
though there are some technical differences.

Definition 3 (Ideal States). For ε > 0, a state ψSn ∈ D≤(H⊗nS ) is said to be
ε–ideal if there exists a purification |ψRPnSn〉 of ψSn such that

|ψ〉RPnSn ∈ HR ⊗∆εn(|ϕ〉⊗nPnSn) .

We loosely say that ψSn is ideal when it is ε–ideal for small ε.

This basically means that an ideal state is one where Paul could transform
his system into one where he holds n systems Pn and an additional purifying R
system, and where the PnSn part of the state lives in a low-error subspace.

Our analysis of the sampling protocol described in Fig. 1 (and some variants
of it) preserves many aspects of the operational interpretation provided in [6]
when sampling with respect to a pure reference state. We establish that Sam’s
subnormalized final state of register Sn upon acceptance can be controlled by an
ideal state. The subnormalized state is simply the state Sam is left with when he
accepts scaled down by the probability of acceptance (i.e. its trace corresponds
to the probability for Sam to accept). Let d := dim (HS) be the size of the
register holding ϕS and let ε > 0 be a parameter. Informally, our main theorem
(Theorem 2 and Corollary 2) establishes that Sam’s subnormalized final state
upon acceptance ρacc

Sn ∈ D≤(H⊗nS ) is such that

ρacc
Sn ≤ (N + 1)d

2−1ψSn + σSn , (3)

where ψSn is ideal and ‖σSn‖1 is negligible in N .
Any state ρacc

Sn that satisfies (3) can be considered to be an ideal state in
many applications. Let Q be a completely positive trace non-increasing super-
operator modelling a task that we would like to apply upon ρacc

Sn . Suppose that
Q behaves nicely when it is executed from an ideal state ψSn . That is, the bad
event represented by a POVM element Ebad has negligible probability on the
ideal state pid

bad := tr(EbadQ(ψSn)) ≤ 2−αN for α > 0. Running Q upon ρacc
Sn

instead produces the state Q(ρacc
Sn ) ≤ Q((N + 1)d

2−1ψSn + σSn). We then have



that the probability of the bad event in the real case is preal
bad := tr(EbadQ(ρacc

Sn )) ≤
(N+1)d

2−1pid
bad +‖σSn‖1, which remains negligible when pid

bad is negligible and d
is small enough (i.e. a constant). In other words, any negligible upper bound on
the probability of some “bad” event occurring when processing the ideal state
translates to a negligible upper bound on the “bad” event when processing the
real state instead. In these cases, it is good enough to analyze the ideal state, for
which an analysis is typically simpler because of the specific form of the state as
given by Definition 3.

Our main result can also be interpreted as a statement about Paul and Sam’s
joint state when Sam accepts. To do so, we invoke Proposition 1 upon (3). For
the sake of simplicity, assume that ρacc

Sn ≤ c · ψSn , which is essentially what (3)

means for c := (N + 1)d
2−1. Proposition 1 then establishes the existence of a

linear operator A acting upon registers RPn for which A†A ≤ 1 such that

|ρacc〉RPnSn =
√
c(A⊗ 1Sn)|ψ〉RPnSn , (4)

where |ρacc〉RPnSn and |ψ〉RPnSn are purifications of ρacc
Sn and ψSn , respectively.

The operator E := AA† can be viewed as the outcome of a POVM applied upon
registers RPn implemented by the detection operator A. It follows from (4)
that ρacc

RPnSn can be obtained with a non-negligible probability of success 1/c by
applying a measurement upon an ideal state ψRPnSn . Therefore, any application
having a negligible probability for Paul to generate a bad shared state from an
ideal one has also a negligible probability to generate a bad shared state from
the real one.

We now state our main result in the special case of the basic protocol given
in Fig. 1. To do so, we define Eacc

RSN→Sn as a completely positive, trace non-
increasing map that represents the execution of the protocol in the accepting
case, meaning that given an initial state ρRSn , Eacc

RSN→Sn(ρRSn) will be a subnor-
malized density matrix representing the output given that the verifier accepted,
and tr[Eacc

RSN→Sn(ρ)] will be the probability of acceptance on that input state.
The statement is the following:
Theorem 1. Let Eacc

RSN→Sn be defined as above, and let ρRSN ∈ D(HR ⊗H⊗NS )
be an arbitrary input state. For any ε > 0, there exist a subnormalized ε-ideal
operator ψSn ∈ D≤(H⊗nS ) and σSn such that

Eacc
RSN→Sn(ρRSN ) ≤ cN,d2 · ψSn + σSn

where ‖σSn‖1 ≤ exp(−Ω(N)).

The proof is deferred to Sect. 5 (Theorem 2 and Corollary 2), where it will
be a corollary of a more general statement.

3.1 Sampling Protocol Using LOCC Only

Our analysis of mixed state sampling protocols is not limited to the protocol of
Fig. 1. In Sect. 5, we show that any sampling protocol that satisfy certain criteria
can be analyzed using our techniques. One such protocol is the one depicted in



Fig. 2. It is a protocol for certifying that Paul prepares—and purifies—halves
of EPR pairs that requires only local operations and classical communication
(LOCC) after the initial state preparation and distribution phase. EPR pairs
are states of the form |Φ+〉 = 1√

2
(|00〉 + |11〉) that have the unique property

that measurements in both the computational and diagonal bases are perfectly
correlated. The protocol exploits this fact in the following way: for each position
in the sample, Sam asks Paul for the result of measuring his purifying register in
a random basis, and checks that this result corresponds to his own measurement
in the same basis.

EPR-LOCC Sampling

1. Paul prepares N EPR pairs and sends half of each to Sam.
2. Sam chooses a sample t ⊂ [N ] of size k and a basis c ∈ {+,×}k both uniformly

at random, and sends both to Paul.
3. Upon reception of t and c, Paul measures each qubit of the sample in the

corresponding basis ci. He sends the outcome X̂ ∈ {0, 1}k back to Sam.
4. Sam measures each of his sampled qubit in the corresponding basis ci, let

X ∈ {0, 1}k be the outcome. He rejects if X̂ 6= X.

Fig. 2. The sampling protocol with local measurements for sampling halves of EPR
pairs, i.e. with reference state ϕ = 1

2
.

4 Two-Party Randomness Generation

Before we prove our main result, we first apply the protocol in Fig. 1 to a two-
party randomness generation problem.

4.1 The Protocol

The protocol for randomness generation is depicted in Fig. 3. The protocol works
as follows: Alice first has to generate N EPR pairs and send half of each to Bob.
Bob then uses our sampling protocol of Fig. 1 to certify that the state Alice
sent him is (close to) the prescribed state. If Bob’s check succeeds, then our
quantum sampling result says that Alice basically prepared the right state, up to
a few errors. Bob’s measurement outcome will then have very high min-entropy
(arbitrarily close to the maximum n).

4.2 Entropy of Alice and Bob’s Outputs

Since Alice is the preparer of the N EPR pairs, her output will have high min-
entropy. The tricky part of the following proof is showing that Bob’s freedom in



1. Alice prepares the state |Φ+〉⊗N

ANBN for |Φ+〉 := 1√
2
(|00〉+ |11〉) and sends the

system BN to Bob.
2. Alice and Bob perform protocol Purification-Based Sampling from Fig. 1

with Alice as the prover and Bob as the sampler and with k = βN for β > 0
such that βN is an integer. Let ρAnBn ∈ D((H2 ⊗ H2)⊗n) be the resulting
normalized joint state of n = N − k pairs of qubits.

3. Alice and Bob respectively measure their n qubits in the computational basis
and output their respective measurement outcomes XA and XB .

Fig. 3. The randomness generation protocol. N is the security parameter, β determines
the size of the sample.

choosing t and accepting or refusing the sampling outcome cannot influence too
much the distribution of Alice’s measurement outcome.

Lemma 2 (Entropy of Alice’s output). If Alice follows the protocol, then
for any γ > 0, her output XA ∈ {0, 1}n satisfies

H∞(XA) ≥ (1− γ)n ,

except with probability negligible in n.

Proof. Let ρANBN be the joint state of Alice and Bob before the sampling phase.
As the preparer of the quantum state, Alice prepares N perfect EPR pairs (i.e.

ρANBN = |Φ+〉〈Φ+|⊗N ), so her measurement outcome would have maximal min-
entropy for the n remaining qubits were it not for Bob’s actions. Bob can bias
the outcome of Alice’s measurement in two possible ways: (1) he can measure his
register BN before choosing t and make t depend on this measurement outcome
and (2) he can make the sampling abort even though Alice was honest. We
analyze both possibilities separately, showing that each cannot reduce the min-
entropy by more than a small linear amount, except with negligible probability.

For (1), suppose Bob performs some measurement on his register BN that
yields sample choice t ⊂ [N ] with probability pt and results in the reduced
density operator ρtAN on Alice’s side. Suppose also that Alice was to measure
her whole state at this point, resulting in a measurement outcome XA ∈ {0, 1}N .
Observe that by the law of total probability,

2−N = 2−H∞(XA)ρ =
∑
t

pt · 2−H∞(XA|T=t)ρt ,

where 2−H∞(XA|T=t)ρt gives the maximal probability of guessing XA given T = t
when XA was obtained by measuring ρtAN . It holds by Markov’s inequality that∑

t

pt · [H∞(XA | T = t)ρt ≤ N − (αN)] ≤ 2−αN



where [·] is the Iverson bracket which evaluates to 1 if the contents is true and
to 0 otherwise. In other words, the values of t for which H∞(XA | T = t)ρt is
less than (1− α)N have combined probability less than 2−αN . Now, Alice does
not measure her whole state, but instead only those positions that do not belong
to t, so let X t̄

A be the outcome of measuring the qubits outside of t and let Xt
A

be the outcome for the positions in t. The following holds except with negligible
probability over the choice of t:

H∞(X t̄
A | T = t) ≥ H∞(XA | T = t,Xt

A) ≥ (1− α− β)N (5)

where the last inequality follows from the chain rule for the min-entropy with
H0(Xt

A) = βN .

To deal with (2), observe that

2−H∞(X t̄A|T=t,acc) ≤ 2−H∞(X t̄A|T=t)/Pr[acc] ≤ 2−H∞(X t̄A|T=t)+αN (6)

whenever Pr[acc] ≥ 2−αN .

We can conclude that, except with negligible probability upper bounded by
2 · 2−αN , the min-entropy of Alice’s output is

H∞(X t̄
A | T = t, acc) ≥ (1− 2α− β)N

by combining the bounds (5) and (6) and the respective probabilities that these
bounds hold. The statement is satisfied by choosing α and β such that γ = 2α+β
and noting that N > n. ut

We rely on the next Lemma to lower-bound the amount of min-entropy in
the measurement outcome of Bob. It says that if the joint state of Alice and Bob
lives in a quantum Hamming ball of small radius around n copies of an EPR
pair, then Bob’s reduced density operator has high min-entropy.

Lemma 3. Let ε > 0 and |σRPnSn〉 ∈ HR ⊗∆εn(|Φ+〉⊗nPnSn). It holds that

H∞(Sn)σ ≥ (1− ε− h(ε))n .

Proof. Let Πε = {E ⊆ [n] : |E| ≤ εn} and let Pεn,|Φ
+〉

PnSn =
∑
E∈Πε P

E
PnSn be the

projector onto ∆εn(|Φ+〉⊗nPnSn) where

PEPnSn =
⊗
i∈E

(1−
∣∣Φ+

〉〈
Φ+
∣∣)PiSi⊗

i/∈E

∣∣Φ+
〉〈
Φ+
∣∣
PiSi

.

Define |σ̃ERPnSn〉 = (1R ⊗ PEPnSn)|σRPnSn〉 for each E ∈ Πε. It holds by Propo-
sition 2 that

σRPnSn =
∑

E,E′∈Πε

|σ̃ERPnSn〉〈σ̃E
′

RPnSn | ≤ 2h(ε)n
∑
E∈Πε

∣∣σ̃ERPnSn〉〈σ̃ERPnSn ∣∣



because the set Πε contains at most 2h(ε)n elements. Furthermore, we know by
the definition of |σ̃ERPnSn〉 that

σ̃ESn

‖σ̃ESn‖1
=

(⊗
i/∈E

1Si

2

)
⊗ ψSE ≤ 2−n+|E|

1Sn

for some normalized state ψSE living on register SE =
⊗

i∈E Si. Since |E| ≤ εn,
it directly follows that

σSn ≤ 2h(ε)n
∑
E∈Πε

σ̃ESn ≤ 2−(1−ε−h(ε))n
1Sn

and we can thus conclude that H∞(Sn)σ ≥ (1− ε− h(ε))n. ut

Lower-bounding Bob’s output min-entropy is essentially applying Lemma 3
to Bob’s state after the sampling step of protocol of Fig. 3 which can be approx-
imated by an ideal state by means of our main result (Theorem 1).

Lemma 4 (Entropy of Bob’s output). If Bob follows the protocol, for any
γ > 0, his output XB ∈ {0, 1}n satisfies

H∞(XB) ≥ (1− γ)n ,

except with probability negligible in n.

Proof. The security of the protocol against dishonest Alice is almost a direct
consequence of our quantum sampling result (Theorem 1). Let ρBn ∈ D(H⊗n2 )
be the normalized state of Bob after step 2 of the protocol of Fig. 3 given that
Bob did not reject and let Pacc be the probability that he did not reject the
sampling. By Theorem 1, it holds that for any ε > 0 there exists an ideal ψBn

and an operator σBn with negligible norm such that

ρBn ≤ P−1
acc(cN,d2ψBn + σBn) . (7)

Let ψ̃Bn =
cN,d2

Pacc
· ψBn . Then∥∥∥∥cN,d2

Pacc
(ψBn + σBn)− ψ̃Bn

∥∥∥∥
1

=
1

Pacc
‖σBn‖1 ,

which is negligible in N whenever Pacc is non-negligible. It follows that except
with negligible probability, the right-hand side of (7) will behave exactly like
ψ̃Bn , in which case their min-entropy will be equal. This min-entropy is bounded
below by

H∞(ψ̃Bn) = H∞(ψBn)− log
cN,d2

Pacc
≥ (1− ε− h(ε))n− log

cN,d2

Pacc
(8)

by Lemma 3.



Using the bound of (8), we can claim that the min-entropy of ρBn is lower-
bounded by

(1− ε− h(ε)− α)n

unless one of two negligible probability events occurred. The first event is that
ρBn behaves like σBn instead of ψ̃Bn and the second event is that Bob accepted
the outcome of a sampling that had probability Pacc ≤ cN,d2 · 2−αn of being
accepted. We can conclude that the result XB of measuring ρBn in the compu-
tational basis will have min-entropy at least (1 − ε − h(ε) − α)n, except with
negligible probability. The statement follows by choosing ε and α in the above
such that γ = ε+ h(ε) + α. ut

5 Proof of Our Main Result

We now turn to the proof of our main result. In this section, we present the
techniques that allow to analyze sampling protocols similar to that of Fig. 1.
The key property of the sampling protocol that makes the tools of this section
applicable is that it is invariant under the permutation of the sampler’s register,
up to an adjustment of the adversary’s attack and of the output state. In order
to make this more explicit, we actually consider and analyze a general class of
sampling protocols that are permutation invariant and perform well on i.i.d.
states, and we then show (1) that the protocol of Fig. 1 falls into that class
and (2) that any protocol from that class allows us to control the post-sampling
state the way we want. As an additional bonus of this modular analysis is that
we can then easily extend our results to other sampling protocols. For instance,
the sampling protocol of Fig. 2 for certifying EPR pairs presented in Sect. 3.1
also falls into the class of protocols that we consider. In that protocol, Paul
is not asked to provide his respective parts of the EPR pairs from within the
sampled subset, but he is instead asked to provide the measurement outcome of
those, when measured in a random basis chosen and announced by Sam, and
Sam compares with the corresponding measurement outcomes on his side.

5.1 Mixed State Sampling Protocols and Permutation Invariance

The general form of the sampling protocols we consider is depicted in Fig. 4.
For simplicity, we assume that the protocol always outputs the same number of
qudits n = N − k, i.e. that it lives in the Hilbert space H⊗nS . Note that this
means that there is no freedom in the way we choose the sample t; the only
permutation invariant probability distribution on the subsets of [N ] of size k is
the uniform distribution. We also assume that k is of the order of N .

The obvious example instantiation of such a sampling protocol is the sam-
pling protocol of Fig. 1, where c is empty and Sam’s measurement consists of
projecting onto |ϕ〉〈ϕ|⊗k. Another example is the one we discuss in Sect. 3.1 for
certifying EPR pairs, where c then is a randomly chosen sequence of bases that
specifies how Paul is supposed to measure his parts of the EPR pairs.



General Mixed State Sampling Protocol

1. Paul prepares ρRSN ∈ D(HR ⊗H⊗N
S ) and sends register SN to Sam.

2. Sam chooses a sample t ⊂ [N ] of size k uniformly at random and a challenge
c and sends both to Paul.

3. Upon reception of t and c, Paul sends back a quantum register Q.
4. Sam performs a binary outcome measurement that depends on c and t on the

joint system of registers Q and Si for i ∈ t, and accepts or rejects based on
the outcome.

Fig. 4. The general form of a mixed state sampling protocol for sampling a mixed
reference state ϕ.

Clearly, for a given instantiation of the general protocol of Fig. 4, the ad-
versary’s attack strategy consists of the choice of ρRSN and of the quantum
operation (that depends on t and c) that produces Q in step 3.

We now define the notion of permutation invariance that sampling strategies
must satisfy for our techniques to apply.

Definition 4 (Permutation Invariance for Sampling Protocols). A sam-
pling protocol that implements the framework of Fig. 4 is invariant under the
permutation of the sampler’s register if for any adversarial strategy for Paul,
the completely positive trace non-increasing map Eacc

RSN→Sn , which represents the
output state of the sampler when he accepts, satisfies

1. for any input ρRSN ∈ D(HR ⊗H⊗NS ) there exists Ēacc
PNSN→ΠSn such that

1

n!

∑
π∈Sn

|π〉〈π|Π ⊗ πSnE
acc
RSN→Sn(ρRSN )π†Sn = Ēacc

PNSN→ΠSn(ρ̄PNSN ) (9)

for some symmetric purification |ρ̄PNSN 〉 ∈ SymN (HP ⊗HS) of 1
N !

∑
π∈SN

πSNρSNπ
†
SN

,

2. for any ε > 0, ‖Ēacc
PNSN→ΠSn(|θ〉〈θ|⊗N )‖1 ≤ exp(−Ω(N)) whenever F (θS , ϕS)2 <

1− ε, and
3. Ēacc

PNSN→ΠSn acts trivially on the unsampled systems, up to reordering. For-
mally, Ēacc

PNSN→ΠSn satisfies

trΠ

(
Ēacc
PNSN→ΠSn(|θ〉〈θ|⊗NPS )

)
≤ θ⊗nS .

The first criterion effectively requires that any attack against the sampling pro-
tocol of Fig. 4 can be transformed into an equivalent attack on a symmetric
state — up to a random reordering of the positions. The second criterion de-
mands that Bob rejects with overwhelming probability in case of an “obviously



bad” state, i.e., in case of i.i.d. copies of a state that is far from the reference
state ϕ. The third criterion simply asks that the sampling protocol (and the cor-
responding symmetrized map Ēacc

PNSN→ΠSn) does not measure registers outside
the sample.

From a technical perspective, the first criterion allows us to apply the obser-
vations from Sect. 2.2 to the promised symmetric state, so that we can upper
bound the latter by a convex linear combination of i.i.d. states, and the second
criterion then allows us to control the “bad part” of this convex linear combina-
tion (see Sect. 5.3). What then still turns out to be cumbersome to deal with is
the random permutation, which got introduced by the first criterion, and to get
a bound on the actual state Eacc

RSN→Sn(ρRSN ) instead; we show how to do this
in Sect. 5.4.

We point out that the “cheap” way to deal with the random permutation
would be to simply modify the sampling protocol by really permuting the reg-
isters at the end of the protocol, so that the permuted state is the final state
after the sampling protocol. Besides being esthetically less appealing, because it
would mean a less natural and more complicated sampling protocol than really
necessary, this would also give more freedom to the party who chooses the per-
mutation in choosing it adversarially. For instance, in our application in Sect. 4,
where the final state is used to produce a high min-entropy source, we can-
not allow that either player can rearrange the registers and so, say, move the
zero-outputs into the positions he wants them to be.

5.2 Permutation Invariance of our Sampling Protocols

As a first step in analyzing the sampling protocol Purification-Based Sam-
pling of Fig. 1, we show that it satisfies the above definition of permutation
invariance. Given that Sam’s actions are obviously symmetric with respect to
permuting his registers, this is probably not very surprising; spelling out the
details though still turns out to be somewhat cumbersome. We therefore move
the proof to Sect. A.1 and simply give a high-level proof sketch below.

Proposition 3. The protocol Purification-Based Sampling of Fig. 1 satis-
fies Definition 4.

Proof (sketch). For the first criterion, we need to argue that any adversary
against the real sampling protocol can be adapted into an adversary against
a symmetrized version of the protocol that will yield the same output state, up
to a random permutation.

We first observe that when sampling from a permutation invariant operator,
it doesn’t matter which registers we sample from since the reduced density oper-
ator of any subset of k registers is the same, i.e. ρSt = ρSt′ for any t, t′ ⊆ [N ] of
size k. Therefore we can make the simplifying assumption that we always sample
from the first k registers of SN .

We construct the symmetric adversary: from the symmetric state ρ̄PNSN from
the first criterion of Definition 4, the adversary will compute the permutation



π ∈ SN applied on SN . This permutation defines the set tπ ⊂ [N ] of positions
to which π sends positions 1, . . . , k. The symmetric adversary will then simulate
the real adversary on this sample tπ and will permute the output according to
π before sending it to Sam (such that each register sent by the adversary aligns
with the corresponding register on Sam’s side).

The second criterion follows from the observation that the maximal proba-
bility of measuring |ϕ〉〈ϕ|⊗k in the sampling protocol on input |θ〉〈θ|⊗N is the
fidelity between θ⊗k and ϕ⊗k which is negligible in k when F (θS , ϕS)2 < 1− ε.

The third criterion follows from the fact that the unsampled positions are
untouched in both the real and the symmetrized protocols. ut

The following proposition allows us to apply the techniques of this section
to the LOCC sampling protocol presented in Fig. 2. Its proof can be found in
Sect. A.2.

Proposition 4. The sampling protocol EPR-LOCC Sampling from Fig. 2
satisfies Definition 4.

Proof (sketch). We need to argue that the protocol is permutation invariant in
the sense of Definition 4, and that it performs well on i.i.d. states. The first
part follows from the permutation invariance of the choice of t and c and of
the measurement on the sampler’s qubits. Suppose Sam was to permute his
register with π ∈ SN before performing the sampling. Then we can modify the
adversary such that it attacks the sampling protocol with this new ordering of
Sam’s register: if Sam chooses sample t, announce π(t) to Paul instead, the same
goes for c. Let x be Paul’s message to Sam, then permute x such that it aligns
correctly with the corresponding qubits on Sam’s register. The probability of
accepting is exactly the same and the output of the protocol will be shuffled
according to π’s action on the unsampled qubits.

The second criterion follows from the fact that the only state that is perfectly
correlated in both the computational and the diagonal bases is the EPR pair
|Φ+〉. Therefore if all of Paul and Sam’s measurement outcomes are perfectly
correlated in the randomly chosen basis, it should hold that they shared states
close to perfect EPR pairs. More precisely, if they share a state |θ〉⊗N where each
θ has fidelity at most 1 − ε with |Φ+〉, then their outputs cannot be perfectly
correlated in at least one of the bases, except with negligible probability. The
third criterion follows trivially from the fact that the unsampled qubits are not
measured or acted upon. ut

5.3 Proof of Sampling Against Symmetric Adversaries

By considering sampling protocols that are permutation invariant in the sense
of Definition 4, we can use the specific properties of symmetric states to upper-
bound the failure probability of such protocols for symmetric adversaries (ad-
versaries which prepare a state |ρ̄PNSN 〉 that lives in the symmetric subspace
SymN (HP ⊗HS)).



Lemma 5 below shows that since symmetric states are approximated by a
mixture of i.i.d. states, then the output of the sampling executed on such a
mixture is approximated by a mixture of states i.i.d. in states that are close to
the reference state ϕ.

Lemma 5. Let Eacc
RSN→Sn be the output of a sampling protocol that satisfies Def-

inition 4 and let ρRSN ∈ D(HR ⊗ H⊗NS ). For any ε > 0 there exists a sub-
normalized measure dθS on the set of mixed states θS ∈ D(HS) which satisfy
F (θS , ϕS)2 ≥ 1− ε and an operator σ̃Sn such that

1

n!

∑
π∈Sn

πSnEacc
RSN→Sn(ρRSN )π†Sn ≤ cN,d2 ·

∫
θ⊗nSn dθS + σ̃Sn (10)

and ‖σ̃Sn‖1 ≤ exp(−Ω(N)), where cN,d2 is the dimension of SymN (HP ⊗HS).

Proof. By Definition 4, there exists Ēacc
PNSN→ΠSn and ρ̄PNSN ∈ SymN (HP ⊗HS)

such that

1

n!

∑
π∈Sn

|π〉〈π|Π ⊗ πSnE
acc
RSN→Sn(ρRSN )π†Sn = Ēacc

PNSN→ΠSn(ρ̄PNSN ) . (11)

Therefore it suffices to prove the statement for Ēacc
PNSN→Sn obtained by tracing

out the register Π from the output of Ēacc
PNSN→ΠSn .

Since |ρ̄PNSN 〉 ∈ SymN (HP ⊗ HS), it holds by remark 2 that ρ̄PNSN ≤
cN,d2 ·

∫
|θ〉〈θ|⊗NPNSN d|θPS〉 where d|θPS〉 is the normalized Haar measure on the

set of pure states on HP ⊗HS . It follows that

Ēacc
PNSN→Sn(ρ̄PNSN ) ≤ Ēacc

PNSN→Sn

(
cN,d2 ·

∫
|θ〉〈θ|⊗NPNSN d|θ〉

)
= cN,d2 · Ēacc

PNSN→Sn

(∫
θS≈εϕS

|θ〉〈θ|⊗NPNSN d|θ〉

+

∫
θS 6≈εϕS

|θ〉〈θ|⊗NPNSN d|θ〉
)

≤ cN,d2 ·
∫
θS≈εϕS

θ⊗nSn dθS + σ̃Sn

where θS ≈ε ϕS means that F (θS , ϕS)2 ≥ 1− ε and where the operator σ̃Sn :=

cN,d2 · Ēacc
PNSN→Sn

(∫
θ 6≈εϕ |θ〉〈θ|

⊗N
d|θ〉

)
satisfies ‖σ̃Sn‖1 ≤ exp(−Ω(N)) by the

second criterion of Definition 4. The last inequality of the above follows from the
third criterion of Definition 4 and from Remark 3: since the trace non-increasing
map Ēacc

PNSN→Sn does not act on the unsampled qubits, the state of Sn after the
application of this map is upper-bounded by the state of the unsampled qubits
before its application.



Finally, the measure dθS is obtained by taking the partial trace over P on
the measure d|θPS〉 on the restricted set of |θPS〉 where F (θS , ϕS)2 ≥ 1− ε. This
corresponds to a measure proportional to the Hilbert-Schmidt measure [31,25]
over density operators on HS which have fidelity squared at least 1 − ε with
ϕS . ut

From the above Lemma, we can conclude that the permuted output of the
sampling protocol is upper bounded by an ideal state in the spirit of (3).

Corollary 1. Let Eacc
RSN→Sn be the output of a sampling protocol that satisfies

Definition 4 and let ρRSN ∈ D(HR ⊗ H⊗NS ). For any ε > 0, there exist a sub-
normalized ε-ideal operator ψSn ∈ D≤(H⊗nS ) and σSn such that

1

n!

∑
π∈Sn

πSnEacc
RSN→Sn(ρRSN )π†Sn ≤ cN,d2 · ψSn + σSn (12)

where ‖σSn‖1 ≤ exp(−Ω(N)).

Proof. Fix β = ε/2 and let dθS and σ̃Sn be as in Lemma 5 for parameter β, i.e.
such that

1

n!

∑
π∈Sn

πSnEacc
RSN→Sn(ρRSN )π†Sn ≤ cN,d2 ·

∫
θ⊗nSn dθS + σ̃Sn (13)

where dθS is a subnormalized measure on the set of mixed states which satisfy
F (θS , ϕS)2 ≥ 1− β and where σ̃Sn has negligible norm.

Let τPnSn :=
∫
|θ〉〈θ|⊗nPnSndθS be an extension of

∫
θ⊗nSn dθS where each |θPS〉

is such that |〈θPS |ϕPS〉|2 = F (θS , ϕS)2 ≥ 1 − β and let σ̃PnSn be an extension
of σ̃Sn . Then from Lemma 1, we have

tr
(

(1− P2βn,|ϕ〉
PnSn ) (τPnSn)

)
≤ exp(−2β2n) . (14)

Choose ψSn = trPn(P2βn,|ϕ〉
PnSn τPnSnP2βn,|ϕ〉

PnSn ). Then, using (13), we have

1

n!

∑
π∈Sn

πSnEacc
RSN→Sn(ρRSN )π†Sn ≤ cN,d2 ·

∫
θ⊗nSn dθS + σ̃Sn

= trPn
(
cN,d2 · τPnSn + σ̃PnSn

)
= cN,d2 · ψSn + σSn

where σSn := trPn(cN,d2(τPnSn − P2βn,|ϕ〉
PnSn τPnSnP2βn,|ϕ〉) + σ̃PnSn) has norm

upper bounded by

‖σPnSn‖1 ≤ cN,d2‖τPnSn−P2βn,|ϕ〉
PnSn τPnSn P2βn,|ϕ〉

PnSn ‖1 +‖σ̃PnSn‖1 ≤ exp(−Ω(N))

by first applying the triangle inequality and then the Gentle Measurement’s
Lemma [30,21] with the bound of (14). ut

It should be noted that the operator σSn from the above Corollary is not positive
semidefinite in general, but since its norm is negligible, this shouldn’t matter
because it can simply be ignored for most applications.



5.4 Proof Against Arbitrary Adversaries: Unpermuting the Output

In order to conclude that the sampling protocol works as intended on an arbitrary
input state and adversarial strategy, we need to argue that if we remove the
permutation from the contents of (12), then the left-hand side, which becomes
the post-sampling state, is still approximated by a state having a purification in
a low-error subspace. It turns out that the intuitive statement “if the permuted
output is ideal then the non-permuted output is also ideal” that we want to
show is quite tricky to prove. We stress that this step is necessary if we want
to keep the permutation “under the hood” and have a statement that doesn’t
require to physically shuffle the systems, which would lead to unnatural sampling
protocols.

Lemma 6 below is the first step in this proof, it shows that the property
of having a purification in a low-error subspace, i.e. of being ideal, does indeed
persist after “unpermutation” of the registers.

Lemma 6. Let ε > 0 and let σSn ∈ D(H⊗nS ) be such that 1
n!

∑
π∈Sn πSnσSnπ

†
Sn

is ε-ideal, then σSn is also ε-ideal.

Proof. Let r = εn. We need to show that if σ̄Sn := 1
n!

∑
π∈Sn πSnσSnπ

†
Sn has

a purification in HR ⊗ ∆r(|ϕ〉⊗nPnSn) for some register R, then σSn also has a

purification in HR ⊗ ∆r(|ϕ〉⊗nPnSn). Let |σ̄RPnSn〉 ∈ HR ⊗ ∆r(|ϕ〉⊗nPnSn) be the
purification of σ̄Sn that exists by assumption and let

∑
i pi|iSn〉〈iSn | be the

spectral decomposition of σSn . Define the pure state

|σ̄ΠPnSn〉 =

√
1

n!

∑
π∈Sn

|π〉Π ⊗

(∑
i

√
pi|iPn〉 ⊗ πSn |iSn〉

)

where {|iPn〉}i is an orthonormal basis of HPn . Note that this state is a purifica-
tion of σ̄Sn , so there exists an isometry VΠPn→RPn such that VΠPn→RPn |σ̄ΠPnSn〉 =
|σ̄RPnSn〉 ∈ HR ⊗∆r(|ϕ〉⊗nPnSn).We can express |σ̄RPnSn〉 as:

|σ̄RPnSn〉 = (VΠPn→RPn ⊗ 1Sn)|σΠPnSn〉

=
∑
π,i

√
pi
n!
VΠPn→RPn |π〉Π |iPn〉 ⊗ πSn |iSn〉 =

∑
π,i

√
pi
n!
|ξπ,i〉RPn ⊗ πSn |iSn〉

where the vectors |ξπ,i〉RPn := VΠPn→RPn |π〉Π |iPn〉 are orthogonal to each
other. Then by acting on this state with an isometry that extracts π from reg-
isters RPn and that undoes π on registers Pn and Sn, we get∑

π,i

√
pi
n!

(1R ⊗ π−1
Pn)|ξπ,i〉RPn ⊗ |iSn〉

Note that both before and after this isometry is applied, the state of registers
Pn and Sn has support in ∆r(|ϕ〉⊗nPnSn) because this subspace is invariant under
permutation of these registers. The proof is then completed since the above state
is a purification of σSn that lies in HR ⊗∆r(|ϕ〉⊗nPnSn). ut



We now have all the tools we need to prove our main result, Theorem 2
below. Its proof combines the above lemma with Lemmas 1 and 5 to show that
the output of the sampling is negligibly close to a state that is post-selected from
a purification of an ideal state.

Theorem 2 (Main Result). Let Eacc
RSN→Sn be the output of a sampling protocol

that satisfies Definition 4 and let ρRSN ∈ D(HR ⊗H⊗NS ). For any ε > 0, there
exists a non-normalized vector∣∣∣ψ̃R′PnSn〉 ∈ HR′ ⊗∆εn(|ϕ〉⊗nPnSn)

and a completely positive trace non-increasing superoperator K̃R′Pn→C such that∥∥∥Eacc
RSN→Sn(ρRSN )− cN,d2(K̃R′Pn ⊗ idSn)(ψ̃R′PnSn)

∥∥∥
1
≤ exp(−Ω(N))

By means of Proposition 1 and Remark 3, we can express the statement of
Theorem 2 in terms of an operator inequality as suggested in (3), rather than
by means of post-selection.

Corollary 2. Let Eacc
RSN→Sn be the output of a sampling protocol that satisfies

Definition 4 and let ρRSN ∈ D(HR ⊗ H⊗NS ). For any ε > 0, there exist a sub-
normalized ε-ideal operator ψSn ∈ D≤(H⊗nS ) and σSn such that

Eacc
RSN→Sn(ρRSN ) ≤ cN,d2 · ψSn + σSn

where ‖σSn‖1 ≤ exp(−Ω(N)).

Proof (of Theorem 2). Let ψSn and σSn be as in the statement of Corollary 1,
i.e. such that

1

n!

∑
π∈Sn

πSnEacc
RSN→Sn(ρRSN )π†Sn ≤ cN,d2 · ψSn + σSn (15)

and define τSn := ψSn + c−1
N,d2 · σSn . Since ψSn is ε-ideal, let |ψR′PnSn〉 be

the purification of ψSn that lives in the low error subset HR′ ⊗ ∆εn(|ϕ〉⊗nPnSn).
Let |τR′PnSn〉 be a purification8 of τSn such that ‖ψR′PnSn − τR′PnSn‖1 ≤
exp(−Ω(N)). From (15) and Proposition 1 we can show that there exists a
trace non-increasing completely positive map KR′Pn→Π that produces a classi-
cal register Π from purification registers R′Pn with the property that

1

n!

∑
π∈Sn

|π〉〈π|Π ⊗ πSnE
acc
RSN→Sn(ρRSN )π†Sn = cN,d2(KR′Pn→Π ⊗ idSn)(τR′PnSn) .

8 The existence of a purification of τSn with this property can be argued by us-
ing Uhlmann’s Theorem: since τSn is close in fidelity to ψSn , for any purifica-
tion |ψR′PnSn〉 of ψSn , there exists a purification |τR′PnSn〉 that is also close to
|ψR′PnSn〉.



Suppose now we were to submit both sides of the above equality to the follow-
ing quantum operation: measure register Π and undo the observed permutation
on register Sn. The left-hand side of the above would become Eacc

RSN→Sn(ρRSN )
whereas the right-hand side becomes

cN,d2 ·
∑
π∈Sn

(〈π|Π ⊗ π
−1
Sn )(KR′Pn→Π ⊗ idSn)(τR′PnSn)(|π〉Π ⊗ (π−1

Sn )†) .

We now show how to represent this operator in a way that corresponds to
the statement we need to prove, i.e. as post-selected from a rank-one operator
living almost entirely in the low-error subspace. To this end, define9 an isometry
UR′Pn→ZΠ that purifies the action of KR′Pn→Π , i.e. such that for any νR′Pn ,

KR′Pn→Π(νR′Pn) := trZ
(
(PZ ⊗ 1Π) · UR′Pn→ZΠ · νR′Pn · (UR′Pn→ZΠ)†

)
for some projector PZ . Using this representation, the post-sampling operator can
be expressed as

Eacc
RSN→Sn(ρRSN ) = cN,d2 · trZ

(
(PZ ⊗ 1Sn) ·

∑
π∈Sn

[UπR′Pn→Z ⊗ π−1
Sn ](τR′PnSn)

)
(16)

where UπR′Pn→Z := (1Z⊗〈π|Π) ·UR′Pn→ZΠ and where [U ](ρ) is short for UρU†.

Define the operator

ψ̃ZSn :=
∑
π∈Sn

(UπR′Pn→Z ⊗ π−1
Sn )ψR′PnSn(UπR′Pn→Z ⊗ π−1

Sn )† .

where ψR′PnSn is the purification of ψSn defined earlier. It isn’t too hard to
show that ψ̃Sn is such that ψSn = 1

n!

∑
π∈Sn πSn ψ̃Snπ

†
Sn . Since ψSn has a

purification in the low-error subspace, Lemma 6 implies that ψ̃Sn itself ad-
mits a purification in this subspace. Let |ψ̃R′PnSn〉 be this purification and let
K̃R′Pn→C be the superoperator that first maps |ψ̃R′PnSn〉 to ψ̃ZSn and then ap-
plies σZ 7→ trZ(PZσZ) to register Z. Then, using the definition of ψ̃R′PnSn and
K̃R′Pn , and since completely positive trace non-increasing maps cannot increase

9 It is always possible to define such an isometry and projector for any
trace non-increasing completely positive superoperator EA→B . To see this, let
E(σA) =

∑
k EkσAE

†
k where Ek ∈ L(HA,HB) are the Kraus operators of

E and define the isometry UA→BZ as mapping an arbitrary state |ψ〉A to∑
k Ek|ψ〉A|k〉Z +

√
1−

∑
k E
†
kEk|ψ〉A|⊥〉Z where |⊥〉Z is orthogonal to |k〉Z for

every k. Then PZ =
∑

k |k〉〈k|Z suffices as the required projector since trZ((1B ⊗
PZ)UA→BZσAU

†
A→BZ) =

∑
k EkσAE

†
k = EA→B(σA).



the trace distance,

‖Eacc
RSN→Sn(ρRSN )− cN,d2(K̃R′Pn ⊗ idSn)(ψ̃R′PnSn)‖1

=

∥∥∥∥cN,d2 · trZ
(
PZ ⊗ 1Sn)·∑

π∈Sn

[UπR′Pn→Z ⊗ π−1
Sn ]
(
τR′PnSn − ψR′PnSn

))∥∥∥∥
1

≤ cN,d2 · ‖τR′PnSn − ψR′PnSn‖1
≤ exp(−Ω(N))

where in the first inequality Eacc
RSN→Sn(ρRSN ) is replaced with (16) and the last

inequality follows from our choice of |τR′PnSn〉. ut

6 Conclusion and Open Questions

Statistical sampling is a natural task that is well understood from a classical
perspective. Classical tools such as Hoeffding’s inequality, Azuma’s inequality
and other results on concentration of measure that are used to analyze classical
sampling (and quantum sampling to a certain degree [6]) are of no use when
trying to sample from quantum data with a mixed reference state. The tools of
symmetric invariance can substitute the classical tools up to a certain degree
when analyzing fully quantum sampling protocols. We have introduced a frame-
work for sampling mixed states by presenting a general sampling protocol and
we have shown that if an instantiation of that general protocol respects simple
criteria, then it can be used to certify that a quantum population is close to an
n-fold tensor product of a reference state ϕ in an adversarial setting.

We have also shown that this result can be applied to yield a two-party
randomness generation protocol. While perfect coin tossing is impossible without
assumptions, we can achieve the “next best thing” by producing a string that
has an almost-maximal min-entropy from the point of view of both participants.

Sampling of a quantum population is a new concept and many questions are
left unanswered, especially when sampling with a mixed reference state where
the usual (classical) tools do not apply. Precisely, future directions for this work
include:

1. A formulation of our results where a conclusion can be made when an error
rate significantly larger than 0 has been observed. From an observed error
rate of δ > 0 within the sample, we would want to conclude that the state of
the remaining positions can be controlled by means of an (ε+ δ)-ideal state
for small ε > 0.

2. An extension of our results to multiple reference states for the same popu-
lation instead of a fixed reference state ϕ, e.g. with reference states ϕ0, ϕ1

where register i of the population is tested against ϕxi for x ∈ {0, 1}n. While
sampling according to an arbitrary (pure) reference state is given “for free”



for pure state sampling (since all pure states are related by a unitary trans-
formation on the sampler’s register), it requires more work in the case of
mixed state sampling.

3. On top of the previous point, it is often useful for quantum sampling ap-
plications to have a statement in terms of an adaptive sampling protocol
where the reference states (i.e. the bits of x) are chosen adaptively by the
adversary based on what positions were sampled. Such an extension would
have applications in two-party cryptography where sampling is done in a
sequential manner using a 1- or 2-bit cryptographic primitive, such as cut-
and-choose. In fact, if our results were extended in such a way, it would allow
to certify states with a 2-bit description (such as the BB84 encoding) using
a 1-bit cut-and-choose, a task that is not known to be possible relying on
existing sampling tools. The pure-state sampling framework of [6] was shown
to apply in the adaptive setting in [12].
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A Permutation Invariance of Sampling Protocols

A.1 Proof of Proposition 3

We can assume w.l.o.g. that the state ρRSN ∈ D(HR ⊗H⊗NS ) is pure and that
adversarial strategies against the protocol depicted in Fig. 1 is described by
a family of isometries of the form U tR→R′Pk for t ⊆ [N ] of size k, where P k

represents the register sent to Sam and supposed to contain the purifications of
ϕS , and R′ is a register kept by Paul.

For convenience, define the isometry V tSN→SnSk that, for any t ⊆ [N ], maps
subsystems Si for i ∈ t into the last k subsystems (denoted Sk) and subsystems
Si for i /∈ t into the first n = N − k subsystems (denoted Sn). In other words,
isometry V tS simply groups together the registers to be sampled.

For an adversarial strategy as described above, the completely positive trace
non-increasing map Eacc

RSN→Sn that maps the input state ρRSN to the sampler’s
conditional output is defined by

Eacc
RSN→Sn(ρRSN ) :=

1(
N
k

) ∑
t⊆[N ]

trR′
(
〈ϕ|⊗kPkSk · [U

t
R ⊗ V tSN ](ρPS) · |ϕ〉⊗kPkSk

)
.

where we left the identity operator acting on R′Sn implicit and where [U ](ρ) is
short for UρU† for any isometry U .

The following property of V tSN→SnSk will be useful for proving Lemma 7
below.

Remark 4. Let π ∈ SN , and let tπ = {π−1(i) | i ∈ [k]}. There exist τπ ∈ Sk
and τ̄π ∈ Sn such that V

[k]

SN→SnSk · πS = (τ̄πSn ⊗ τπSk) · V tπ
SN→SnSk . Furthermore,

there is a one-to-one correspondence between permutations π ∈ SN and triplets
(tπ, τ

π, τ̄π).

Lemma 7. Protocol Purification-Based Sampling from Fig. 1 satisfies the
first criterion of Definition 4.

Proof. We need to show the existence of a completely positive trace non-increasing
map Ēacc

PNSN→ΠSn such that for any ρRSN ,

1

n!

∑
π∈Sn

|π〉〈π|Π ⊗ πS′E
acc
RSN→Sn(ρRSN )π†S′ = Ēacc

PNSN→ΠSn(ρ̄PNSN ) (17)

for some symmetric purification |ρ̄PNSN 〉 of 1
N !

∑
π∈SN πSNρSNπ

†
SN

where Eacc
RSN→Sn

is defined earlier in this section.



Let |ρ̄PNSN 〉 ∈ SymN (HP ⊗ HS) be an arbitrary purification of 1
N !

∑
π∈SN

πSNρSNπ
†
SN

. Since all purifications are equivalent up to an isometry on the
purifying register, there exists an isometry WPN→RΠ̄ such that

(WPN ⊗ 1SN )|ρ̄PNSN 〉 =
1√
N !

∑
π∈Sn

(1R ⊗ πSN )|ρRSN 〉 ⊗ |π〉Π̄ .

Let ŪPN→R̄Pk be the isometry that performs the following actions unitarily on
register PN of |ρ̄PNSN 〉:
1. Apply WPN , producing registers R and Π̄.
2. From permutation π ∈ SN held in register Π̄, compute tπ, τπ ∈ Sk and

τ̄π ∈ Sn as in Remark 4, i.e. such that V
[k]

SN→SnSk ·πS = (τπ
Ŝ
⊗τ̄πS′)·V

tπ
SN→SnSk .

3. Apply attack U tπ
R→R′Pk on register R, producing registers R′ and P k and

reorder register P k using permutation τπ so that each Pi aligns with the
right sampled Si.

4. Let register R̄ be composed of registers R′, Π̄. Output registers P k , R̄ and
register Π containing the permutation τ̄π that acts on the output Sn (i.e.
on the unsampled registers).

From the definition of the above isometry,

(ŪPN→R̄Pk ⊗ V
[k]

SN→SnSk)|ρ̄PNSN 〉

=
1√
N !

∑
π∈SN

(τπPk ⊗ τ
π
Sk ⊗ τ̄

π
Sn)(U tπ

R→R′Pk ⊗ V
tπ
SN→SnSk)|ρRSN 〉|π〉Π̄ |τ̄

π〉Π

Tracing out register Π̄ from the above and using the one-to-one correspondence
between π and (tπ, τ

π, τ̄π) to break the sum over π into sums over t, τ and τ̄ ,
we get

1

N !

∑
π∈SN

[(τπPk ⊗ τ
π
Sk ⊗ 1R′ ⊗ τ̄

π
Sn)(U tπ

R→R′Pk ⊗ V
tπ
SN→SnSk)](ρRSN )⊗ |τ̄π〉〈τ̄π|Π

=
1

n!

1

k!

1(
N
k

) ∑
τ̄∈Sn

τ̄Sn

( ∑
τ∈Sk

t⊆[N ]:|t|=k

[(τPk ⊗ τSk)(U tR ⊗ V tSN )](ρRSN )

)
(τ̄Sn)† ⊗ |τ̄π〉〈τ̄π|Π

Taking the partial inner product with |ϕ〉⊗kPkSk and tracing out R′ leaves us with

1

n!
(
N
k

) ∑
τ̄∈Sn

τ̄Sn

(∑
t

trR′
(
〈ϕ|⊗kPkSk · [U

t
R ⊗ V tSN ](ρRSN ) · |ϕ〉⊗kPkSk

))
(τ̄Sn)† ⊗ |τ̄π〉〈τ̄π|Π

=
1

n!

∑
τ̄∈Sn

τ̄SnEacc
RSN→Sn(ρRSN )τ̄ †Sn ⊗ |τ̄

π〉〈τ̄π|Π

where the sum over τ disappeared because |ϕ〉⊗kPkSk is invariant under permuta-
tion. Then Ēacc

PNSN→ΠSn defined as

Ēacc
PNSN→ΠSn(ρ̄PNSN ) := trR̄

(
〈ϕ|⊗kPkSk · [ŪPN ⊗ V

[k]

SN
](ρ̄PNSN ) · |ϕ〉⊗kPkSk

)
.



satisfies (17). ut

Lemma 8. Protocol Purification-Based Sampling from Fig. 1 satisfies the
second criterion of Definition 4.

Proof. We need to show that for any ε > 0, ‖Ēacc
PNSN→ΠSn(|θ〉〈θ|⊗NPNSN )‖1 ≤

exp(−Ω(N)) whenever F (θS , ϕS)2 < 1− ε where

Ēacc
PNSN→ΠSn(ρ̄PNSN ) := trR̄

(
〈ϕ|⊗kPkSk · [ŪPN ⊗ V

[k]

SN
](ρ̄PNSN ) · |ϕ〉⊗kPkSk

)
.

The proof is based on the simple observation that the isometry Ū that maximizes
the probability of observing |ϕ〉⊗k on registers P kSk is the one that matches the
fidelity with ϕ⊗k by the fact that the fidelity is monotonous. Therefore it holds
that, since the fidelity is multiplicative for product states,

‖Ēacc
PNSN→ΠSn

(
|θ〉〈θ|⊗NPNSN

)
‖1 ≤ F (θ⊗k

Sk
, ϕ⊗k

Sk
)2 ≤ (1− ε)2k ≤ exp(−2εk)

whenever F (θS , ϕS)2 < 1− ε . ut

The third criterion of Definition 4 follows trivially from the observation that
neither Eacc

RSN→Sn nor Ēacc
PNSN→ΠSn acts on the unsampled qubits other than by

rearranging them.

A.2 Proof of Proposition 4

As in Section A.1, let us establish that the protocol satisfies the each criterion
of Definition 4.

Lemma 9 (First criterion). Let Eacc
RSN→Sn be the output of the sampling pro-

tocol EPR-LOCC Sampling from Fig. 2. For any ρRSN ∈ D(HR ⊗ H⊗NS )
there exists Ēacc

PNSN→ΠSn such that

1

n!

∑
π∈Sn

|π〉〈π|Π ⊗ πSnE
acc
RSN→Sn(ρRSN )π†Sn = Ēacc

PNSN→ΠSn(ρ̄PNSN ) (18)

for some symmetric purification |ρ̄PNSN 〉 of 1
N !

∑
π∈SN πSNρSNπ

†
SN

.

Proof. Recall the linear operator V tSN→SnSk from Section A.1 that maps St to
Sk and St̄ to Sn (where Sk is understood to represent the last k registers). The
completely positive trace non-increasing map Eacc

RSN→Sn that models the action
of the protocol on the state ρRSN when Sam accepts can be represented as

2−k
(
N

k

)−1 ∑
t,c,x

trRSk
(
(Et,cx ⊗ Px,c

Sk
)V tSN→SnSkρRSNV

t
SN→SnSk

)
where the sum is over t ⊂ [N ] such that |t| = k, c ∈ {+,×}k and x ∈ {0, 1}k and
where, for t and c sent by Sam, Et,c = {Et,cx }x∈{0,1}k is the POVM measurement



on R that produces x and Px,c
Sk

:= H⊗c|x〉〈x|H⊗c is the projector onto x in basis
c.

Let ρ̄PNSN be an arbitrary purification of 1
N !

∑
π∈SN πSNρSNπ

†
SN

. Define the

map Ēacc
PNSN→ΠSn as follows:

1. Map state ρ̄PNSN to 1
N !

∑
π∈SN |π〉〈π|Π̄ ⊗ (1R ⊗ πSN )ρRSN (1R ⊗ π†SN ).

2. From permutation π ∈ SN held in register R, compute tπ, τπ ∈ Sk and
τ̄π ∈ Sn as in Remark 4.

3. Apply V
[k]

SN→SnSk on SN , choose c ∈ {+,×}k at random and apply POVM
Etπ,c on R producing output x.

4. Measure the sampled registers Sk by projecting on H⊗τ
π(c)|τπ(x)〉Sk =

τπH⊗c|x〉Sk .
5. Output τ̄π in register Π and register Sn.

The output of Ēacc
PNSN→ΠSn applied on ρ̄PNSN is

2−k

N !

∑
π,c,x

trRSk
(

(Etπ,cx ⊗ τπSkP
x,c
Sk

(τπSk)†) · [V [k]

SN→SnSkπSN ](ρRSN )
)
⊗ |τ̄π〉〈τ̄π|Π

=
2−k

N !

∑
π,c,x

τ̄πSn trRSk
(
Etπ,cx ⊗ Px,c

Sk
)[V tπ

SN→SnSk ](ρRSN )
)
τ̄πSn ⊗ |τ̄π〉〈τ̄π|Π

=
2−k

n!

(
N

k

)−1 ∑
τ̄π∈Sn

[τ̄πSn ]

(∑
t,c,x

trRSk
(

(Et,cx ⊗ Px,c
Sk

)[V tSN ](ρRSN )
))
⊗ |τ̄π〉〈τ̄π|Π

=
1

n!

∑
τ̄π∈Sn

τ̄πSnEacc
RSN→Sn(ρRSN )τ̄πSn ⊗ |τ̄π〉〈τ̄π|Π

where the second equality uses Remark 4. ut

Lemma 10 (Second criterion). Let Ēacc
PNSN→ΠSn be as in the proof of Lemma 9.

For any ε > 0, ‖Ēacc
PNSN→ΠSn(|θ〉〈θ|⊗NPNSN )‖1 ≤ exp(−Ω(N)) whenever F (θS , ϕS)2 <

1− ε

Proof. For any c ∈ {+,×}k, let Ēcx be the POVM element on PN that gives the
probability of x being outputted in step 3 of Ēacc

PNSN→ΠSn when c is chosen in
the same step. In essence, Ēcx is to Ēacc

PNSN→ΠSn what Etπ,c is to Eacc
RSN→Sn ; it

gives the probability of observing x when the following measurement is done on
PN : produce registers Π̄R from PN , measure π from register Π̄, compute the
corresponding sample tπ, and apply the measurement corresponding to POVM
Etπ,c.

Using these POVM operators Ēcx, we can express the norm we wish to upper-
bound as

‖Ēacc
PNSN→ΠSn(|θ〉〈θ|⊗NPNSN )‖1 = 2−k

∑
c,x

tr
(

(Ēcx ⊗ Px,c
Sk
⊗ 1Sn)|θ〉〈θ|⊗NPNSN

)
(19)

where Px,c
Sk

is the projector onto x in basis c. Note that the right-hand side
of (19) can be interpreted as the probability of guessing the outcome of measuring



register Sk in a known but random basis c by observing the reduced operator
of register PN . We now analyze this guessing probability to provide an upper-
bound on (19).

Since each measurement on Sk is independent of each other and since the
joint state is in an i.i.d. form, the probability of Paul guessing outcome x is of
the form γk where γ corresponds to the probability of guessing a single bit of x.
This probability is given by the expression

γ =
1

2
Pr(guess X | C = +) +

1

2
Pr(guess X | C = ×)

We show that at least one of the above conditional term is bounded above by a
constant strictly smaller than 1 when F (θS , ϕS) < 1 − ε, which means that γk

is negligible in k.
The maximum probability of guessing X when C = + is given by the prob-

ability of distinguishing states∣∣θ0
P

〉
= (1p ⊗ 〈0|S)|θPS〉 and

∣∣θ1
P

〉
= (1p ⊗ 〈1|S)|θPS〉

and the same holds when C = × for similarly defined |θ+
P 〉 and |θ−P 〉. Let√

λ0|f0〉P |e0〉S +
√
λ1|f1〉P |e1〉S

be the Schmidt decomposition of |θPS〉 and consider the quantity∣∣〈θ0
P

∣∣θ1
P

〉∣∣+
∣∣〈θ+

P

∣∣θ−P 〉∣∣ ≥ ∣∣〈θ0
P

∣∣θ1
P

〉
+
〈
θ+
P

∣∣θ−P 〉∣∣
= |〈θPS |(1P ⊗ |0〉〈1|S)|θPS〉+ 〈θPS |(1P ⊗ |+〉〈−|S)|θPS〉|

=
1

2
|〈θPS |(1P ⊗HS)|θPS〉| =

1

2
|λ0〈e0|SHS |e0〉S + λ1〈e1|SHS |e1〉S |

=
1

2
|λ0 − λ1|

where HS =

(
1 1
1 −1

)
, the only inequality above is the triangle inequality and the

last equality follows from the fact that 〈e0|SHS |e0〉S = −〈e1|SHS |e1〉S for any
two orthogonal vectors |e0〉S and |e1〉S . The last term from the above equation
can be bounded above by ε since

|λ0 − λ1| =
∣∣∣∣λ0 −

1

2

∣∣∣∣+

∣∣∣∣λ1 −
1

2

∣∣∣∣ =

∥∥∥∥θS − 1S

2

∥∥∥∥
1

≥ 2(1− F (θS ,
1S

2
)) ≥ 2ε

Suppose that
∣∣〈θ0

P |θ1
P 〉
∣∣ ≥ ε/2 (otherwise,

∣∣〈θ+
P |θ
−
P 〉
∣∣ ≥ ε/2 and the same

argument holds for those two states), this means that Paul cannot distinguish
between the two reduced states |θ0

P 〉 and |θ1
P 〉 with probability better than one

minus some constant (that depends on ε). We conclude that γ is bounded above
by a constant strictly less than 1 and that the probability γk of guessing all
measurement outcomes correctly declines exponentially fast in k. ut

The third criterion of Definition 4 follows trivially from the observation that
neither Eacc

RSN→Sn nor Ēacc
PNSN→ΠSn acts on the unsampled qubits other than by

relabeling them.
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