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Abstract
There is some evidence that indistinguishability obfuscation (iO) requires either

exponentially many assumptions or (sub)exponentially hard assumptions, and indeed,
all known ways of building obfuscation suffer one of these two limitations. As such,
any application built from iO suffers from these limitations as well. However, for most
applications, such limitations do not appear to be inherent to the application, just the
approach using iO. Indeed, several recent works have shown how to base applications of
iO instead on functional encryption (FE), which can in turn be based on the polynomial
hardness of just a few assumptions. However, these constructions are quite complicated
and recycle a lot of similar techniques.

In this work, we unify the results of previous works in the form of a weakened
notion of obfuscation, called Decomposable Obfuscation. We show (1) how to build
decomposable obfuscation from functional encryption, and (2) how to build a variety of
applications from decomposable obfuscation, including all of the applications already
known from FE. The construction in (1) hides most of the difficult techniques in the
prior work, whereas the constructions in (2) are much closer to the comparatively simple
constructions from iO. As such, decomposable obfuscation represents a convenient new
platform for obtaining more applications from polynomial hardness.

1 Introduction
Program obfuscation has recently emerged as a powerful cryptographic concept. An obfuscator
is a compiler for programs, taking an input program, and scrambling it into an equivalent
output program, but with all internal implementation details obscured. Indistinguishability
obfuscation (iO) is the generally-accepted notion of security for an obfuscator, which says
that the obfuscations of equivalent programs are computationally indistinguishable.

In the last few years since the first candidate indistinguishability obfuscator of Garg,
Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b], obfuscation has been used to solve
many new amazing tasks such as deniable encryption [SW14], multiparty non-interactive
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key agreement [BZ14], polynomially-many hardcore bits for any one-way function [BST14],
and much more. Obfuscation has also been shown to imply most traditional cryptographic
primitives1 such as public key encryption [SW14], zero knowledge [BP15], trapdoor permuta-
tions [BPW16], and even fully homomorphic encryption [CLTV15]. This makes obfuscation a
“central hub” in cryptography, capable of solving almost any cryptographic task, be it classical
or cutting edge. Even more, obfuscation has been shown to have important connections to
other areas of computer science theory, from demonstrating the hardness of finding Nash
equilibrium [BPR15] to the hardness of certain tasks in differential privacy [BZ14, BZ16].

The power of obfuscation in part comes from the power of the underlying tools, but its
power also lies in the abstraction, by hiding away the complicated implementation details
underneath a relatively easy to use interface. In this work, we aim to build a similarly
powerful abstraction that avoids some of the limitations of iO.

1.1 The Sub-exponential Barrier In Obfuscation
Indistinguishability obfuscation (iO), as an assumption, has different flavor than most
assumptions in cryptography. Most cryptographic assumptions look like

“Distribution A is computationally indistinguishable from distribution B,” or
“Given a sample a from distribution A, it is computationally infeasible

to compute a value b such that a, b satisfy some given relation.”

Such assumptions are often referred to as falsifiable [Nao03], or more generally as complexity
assumptions [GT16]. In contrast, iO has the form

“For every pair of circuits C0, C1 that are functionally equivalent,
iO(C0) is computationally indisitnguishable from iO(C1).”

In other words, for each pair of equivalent circuits C0, C1, there is an instance of a complexity
assumption: that iO(C0) is indisintugishable from iO(C1). iO then is really a collection of
exponentially-many assumptions made simultaneously, one per pair of equivalent circuits.
iO is violated if a single assumption in the collection is false. This is a serious issue, as the
security of many obfuscators relies on new assumptions that essentially match the schemes.
To gain confidence in the security of the schemes, it would seem like we need to investigate
the iO assumption for every possible pair of circuits, which is clearly infeasible.

Progress has been made toward remedying this issue. Indeed, Gentry, Lewko, Sahai, and
Waters [GLSW15] show how to build obfuscation from a single assumption — multilinear
subgroup elimination — on multilinear maps. Unfortunately, the security reduction loses
a factor exponential in the number of input bits to the program. As such, in order for the
reduction to be meaningful, the multilinear subgroup elimination problem must actually
be sub-exponentially hard. Similarly, Bitansky and Vaikuntanathan [BV15] and Ananth
and Jain [AJ15] demonstrate how to construct iO from a tool called functional encryption
(FE). In turn, functional encryption can be based on simple assumptions on multilinear

1with additional mild assumptions such as the existence of one-way functions
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maps [GGHZ16]. However, while the construction of functional encryption can be based on
the polynomial hardness of just a couple multilinear map assumptions, the construction of
iO from FE incurs an exponential loss. This means the FE scheme, and hence the underlying
assumptions on multilinear maps, still need to be sub-exponentially secure.

All current techniques for building iO suffer one of these two limitations: either security
is based on an exponential number of assumptions, or the reduction incurs an exponential
loss. Unfortunately, this means every application of iO also suffers from the same limitations.
As iO is the only known instantiation of many new cryptographic applications, an important
research direction is to devise new instantiations that avoid this exponential loss.

1.2 Breaking the Sub-exponential Barrier
A recent line of works starting with Garg, Pandey, Srinivasan [GPS16] and continued
by [GPSZ16, GS16] have shown how to break the sub-exponential barrier for certain ap-
plications. Specifically, these works show how to base certain applications on functional
encryption, where the loss of the reduction is just polynomial. Using [GGHZ16], this results
in basing the applications on the polynomial hardness of a few multilinear map assumptions.
The idea behind these works is to compose the FE-to-iO conversion of [BV15, AJ15] with
the iO-to-Application conversion to get an FE-to-Application construction. While this con-
struction requires an exponential loss (due to the FE-to-iO conversion), by specializing the
conversion to the particular application and tweaking things appropriately, the reduction
can be accomplished with a polynomial loss. Applications treated in this way include: the
hardness of computing Nash equilibria, trapdoor permutations, universal samplers, multiparty
non-interactive key exchange, and multi-key functional encryption2.

While the above works represent important progress, the downside is that, in order to break
the sub-exponential barrier, they also break the convenient obfuscation abstraction. Both
the FE-to-iO and iO-to-Application conversions are non-trivial, and the FE-to-iO conversion
is moreover non-black box. Add to that the extra modifications to make the combined
FE-to-Application conversion be polynomial, and the resulting constructions and analyses
become reasonably cumbersome. This makes translating the techniques to new applications
rather tedious — not to mention potentially repetitive given the common FE-to-iO core —
and understanding the limits of this approach almost impossible.

1.3 A New Abstraction: Decomposable Obfuscation
In this work, we define a new notion of obfuscation, called Decomposable Obfuscation, or
dO, that addresses the limitations above. This notion abstracts away many of the common
techniques in [GPS16, GPSZ16, GS16]; we use those techniques to build dO from the
polynomial hardness of functional encryption. Then we can show that dO can be used
to build the various applications. With our new notion in hand, the dO-to-Application

2The kind of functional encryption that is used as a starting point only allows for a single secret key query
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constructions begin looking much more like the original iO-to-Application constructions, with
easily identifiable modifications that are necessary to prove security using our weaker notion.

1.3.1 The Idea

Functional Encryption (FE). As in the works of [GPS16, GPSZ16, GS16], we will focus
on obtaining our results from the starting point of polynomially-secure functional encryption.
Functional encryption is similar to regular public key encryption, except now the secret key
holder can produce function keys corresponding to arbitrary functions. Given a function key
for a function f and a ciphertext encrypting m, one can learn f(m). Security requires that
even given the function key for f , encryptions of m0 and m1 are indistinguishable, so long as
f(m0) = f(m1)3.

The FE-to-iO Conversion. The FE-to-iO conversions of [BV15, AJ15] can be thought of
very roughly as follows. To obfuscate a circuit C, we generate the keys for an FE scheme, and
encrypt the description of C under the FE scheme’s public key, obtaining c. We also produce
function keys fki for particular functions fi that we will describe next. The obfuscated
program consists of c and the fki.

To evaluate the program on input x, we first use fk1 and c to learn f1(C). f1(C) is defined
to produce two ciphertexts c0, c1, encrypting (C, 0) and (C, 1), respectively. We keep cx1 ,
discarding the other ciphertext. Now, we actually define fk1 to encrypt (C, 0) and (C, 1)
using the functional encryption scheme itself — therefore, we can continue applying function
keys to the resulting plaintexts. We use fk2 and cx1 to learn f2(C, x1). f2(C, b) is defined to
produce two ciphertexts cb0, cb1, encrypting (C, b0) and (C, b1). Again, these ciphertexts will
be encrypted using the functional encryption scheme. We will repeat this process until we
obtain the encryption cx of (C, x). Finally, we apply the last function key for the function
fn+1, which is the universal circuit evaluating C(x).

This procedure implicitly defines a complete binary tree of all strings of length at most
2n, where a string x is the parent of the two string x||0 and x||1. At each node y ∈ {0, 1}≤n,
consider running the evaluation above for the first |y| steps, obtaining a ciphertext cy
encrypting (C, y). We then assign the circuit C to the node y, according to the circuit that
is encrypted in cy. The root is explicitly assigned C by handing out the ciphertext c since
we explicitly encrypt C to obtain c. All subsequent nodes are implicitly assigned C as cy is
derived from c during evaluation time. Put another way, by explicitly assigning a circuit C to
a node (in this case, the root) we implicitly assign the same circuit C to all of its descendants.
The exception is the leaves: if we were to assign a circuit C to a leaf x, we instead assign the
output C(x). In this way, the leaves contain the truth table for C.

Now, we start from an obfuscation of C0 (assigning C0 to the root of the tree) and we wish
to change the obfuscation to an obfuscation of C1 (assigning C1 to the root). We cannot do
this directly, but the functional encryption scheme does allow us to do the following: un-assign

3The two encryptions would clearly be distinguishable if f(m0) 6= f(m1) just by decrypting using the
secret function key. Thus, this is the best one can hope for with an indistinguishability-type definition
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a circuit C from any internal node y4, and instead explicitly assign C to the two children of
that node. This is accomplished by changing cy to encrypt (⊥, x), explicitly constructing the
ciphertexts cy||0 and cy||1, and embedding cy||0, cy||1 in the function key fk|y| in a particular
way. If the children are leaves, explicitly assign the outputs of C on those leaves. Note that
this process does not change the values assigned to the leaves; as such, the functionality
of the tree remains unchanged, so this change cannot be detected by functionality alone.
The security of functional encryption shows that, in fact, the change is undetectable to any
polynomial-time adversary.

The security reduction works by performing a depth-first traversal of the binary tree.
When processing a node y on the way down the tree, we un-assign C0 from y and instead
explicitly assign C0 to the children of y. When we get to a leaf, notice that by functional
equivalence, we actually simultaneously have the output of C0 and C1 assigned. Therefore,
when processing a node y on our way up the tree from the leaves, we can perform the above
process in reverse but for C1 instead of C0. We can un-assign C1 from the children of y, and
then explicitly assign C1 to y. In this way, when the search is complete, we explicitly assign
C1 to the root, which implicitly assigns C1 to all nodes in the tree. At this point, we are
obfuscating C1. By performing a depth-first search, we ensure that the number of explicitly
assigned nodes never exceeds n+ 1, which is crucial for the efficiency of the obfuscator, as we
pay for explicit assignments (since they correspond to explicit ciphertexts embedded in the
function keys) but not implicit ones (since they are computed on the fly). Note that while
the obfuscator itself is polynomial, the number of steps in the proof is exponential: we need
to un-assign and re-assign every internal node in the tree, which are exponential in number.
This is the source of the exponential loss.

Shortcutting the conversion process. The key insight in the works of [GPS16, GPSZ16,
GS16] is to modify the constructions in a way so that it is possible to re-assign certain internal
nodes in a single step, without having to re-assign all of its descendants first. By doing this it
is possible to shortcut our way across an exponential number of steps using just a few steps.

In these prior works, the process is different for each application. In this work, we
generalize the conditions needed for and the process of shortcutting in a very natural way.
To see how shortcutting might work, we introduce a slightly different version of the above
assignment setting. Like before, every node can be assigned a circuit. However, now the
circuit assigned to a node u of length k must work on inputs of length n − k; essentially,
it is the circuit that is “left over” after reading the first k bits and which operates on the
remaining n− k bits.

If we explicitly assign a circuit Cy to a node y, its children are implicitly assigned the
partial evaluations of Cy on 0 and 1. That is, the circuit Cy||b assigned to y||b is Cy(b, ·). We
will actually use Cy(b, ·) to denote the circuit obtained by hard-coding b as the first input bit,
and then simplifying using simple rules: (1) any unary gate with a constant input wire is
deleted and replaced with an appropriate constant input wire, (2) any binary gate with a
constant input is replaced with just a unary gate (a passthrough or a NOT) or a hardwired

4By assigning ⊥ instead, which does not propagate down the tree
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output according to the usual rules, (3) any gate whose output wire is unused is deleted, and
(4) this process is repeated until there are no gates with hardwired inputs and no unused
gates. An important observation is that our rules guarantee that circuits assigned to leaves
are always constants, corresponding to the output of the circuit at that point.

Now when we obfuscate by assigning C to the root, the internal nodes are implicitly
assigned the simplified partial evaluations of C on the prefix corresponding to that node:
node y is assigned C(y, ·) (simplified). The move we are allowed to make is now to un-assign
C from a node where C was explicit, and instead explicitly assign the simplified circuits
C(0, ·) and C(1, ·) to its children. We call the partial evaluations C(0, ·) and C(1, ·) fragments
of C, and we call this process of un-assigning the parent and assigning the fragments to
the children decomposing the node to its children fragments. The reverse of decomposing is
merging.

This simple transformation to the binary tree rules allows for, in some instances, the
necessary shortcutting to avoid an exponential loss. When transforming C0 to C1, the crucial
observation is that if any fragment C0(x, ·) is equal to C1(x, ·) as circuits (after simplification),
it suffices to stop when we explicitly assign a circuit to x; we do not need to continue
all the way down to the leaves. Indeed, once we explicitly assign the fragment C0(y, ·) to
a node y, y already happens to be assigned the fragment C1(y, ·) as well, and all of its
descendants are therefore implicitly assigned the corresponding partial evaluations of C1 as
well. By not traversing all the way to the leaves, we cut out potentially exponentially many
steps. For certain circuit pairs, it may therefore be possible to transform C0 to C1 in only
polynomially-many steps.

Our New Obfuscation Notion. Our new obfuscation notion stems naturally from the
above discussion. Consider two circuits C0, C1 of the same size, and consider assigning C0 to
the root of the binary tree. Suppose there is a set S of tree nodes of size τ that (1) exactly
cover all of the leaves5, and (2) for every nodes x ∈ S, the (simplified) fragments C0(y, ·)
and C1(y, ·) are identical as circuits. Then we say the circuits C0, C1 are τ -decomposing
equivalent. Our new obfuscation notion, called decomposable obfuscation, is parameterized by
τ and says, roughly, that the obfuscations of two τ -decomposing equivalent circuits must be
indistinguishable.

1.4 Our Results
Our results are as follows:

• We show how to use (compact, single key) functional encryption to attain our notion
of dO. The construction is similar to the FE-to-iO conversion, with the key difference
that each step simplifies the circuit as must as possible; this implements the new tree
rules we need for shortcutting.

5In the sense that for each leaf, the path from root to leaf contains exactly one element in S
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The number of steps in the process of converting C0 to C1, and hence the loss in the
security reduction is proportional to τ . However, we show that by performing the
decompose/merge steps in the right order, we can make sure the number of explicitly
assigned nodes is always at most n+ 1, independent of τ . This means the obfuscator
itself does not depend on τ , and therefore τ can be taken to be an arbitrary polynomial
or even exponential and the obfuscator will still be efficient. If we restrict τ to a
polynomial, we obtain dO from polynomially secure FE. Our results also naturally
generalize to larger τ : we obtain dO for quasipolynomial τ from quasipolynomially
secure FE, and we obtain dO for exponential τ from (sub)exponentially secure FE.

• We note that by setting τ to be 2n, τ -decomposing equivalence corresponds to standard
functional equivalence, since we can take the set S of nodes to consist of all leaf nodes.
Then dO coincides with the usual notion of indistinguishability obfuscation, giving
us iO from sub-exponential FE. This re-derives the results of [BV15, AJ15]. In our
reduction, the loss is O(2n).

• We then show how to obtain several applications of obfuscation from dO with polynomial
τ . Thus, for all these applications, we obtain the application from the polynomial
hardness of FE, re-deriving several known results. In these applications, there is a
single input, or perhaps several inputs, for which the computation must be changed
from using the original circuit to using a hard-coded value. This is easily captured by
decomposing equivalence: by decomposing each node from the root to the leaf for a
particular input x, the result is that that the program’s output on x is hard-coded into
the obfuscation. Applications include:

– Proving the hardness of finding Nash equilibria (Section 5.5; Nash hardness from
FE was originally shown in [GPS16])

– Trapdoor Permutations (Section 5.6; originally shown in [GPSZ16])
– Universal Samplers (Section 5.3; originally shown in [GPSZ16])
– Short Signatures (Section 5.2; not previously known from functional encryption,

though known from obfuscation [SW14])
– Multi-key functional encryption (Section 5.4; originally shown in [GS16])

We note that Nash, universal samplers, and short signatures only require (polynomially
hard) dO and one-way functions. In contrast, trapdoor permutations and multi-key
functional encryption both additionally require public key encryption. If basing the
application on public key functional encryption, this assumption is redundant. However,
unlike the the case for full-fledged iO, we do not know how to obtain public key
functional encryption from just polynomially hard dO and one-way functions (more
on this below). We do show that a weaker multi-key secret key functional encryption
scheme does follow from dO and one-way functions.

Thus, we unify the techniques underlying many of the applications of FE — namely
iO, Nash, trapdoor permutations, universal samplers, short signatures, and multi-key FE —
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under a single concept, dO. The constructions and proofs starting from dO are much simpler
than the original proofs using functional encryption, due to the convenient dO abstraction
hiding many of the common details. We hope that dO will also serve as a starting point for
further constructions based on polynomially-hard assumptions.

1.5 Discussion
A natural question to ask is: what are the limits of these techniques? Could they be used to
give full iO from polynomially-hard assumptions? Or at least all known applications from
polynomial hardness? Here, we discuss several difficulties that arise.

Difficulties in breaking the sub-exponential barrier. First, exponential loss may be
inherent to constructing iO. Indeed, the following informal argument is adapted from Garg
et al. [GGSW13]. Suppose we can prove iO from a single fixed assumption. This means
that for every pair of equivalent circuits C0, C1, we prove under this assumption that iO(C0)
is indistinguishable from iO(C1). Fix two circuits C0, C1, and consider the proof for those
circuits. If C0 is equivalent to C1, then the proof succeeds. However, if C0 is not equivalent
to C1, then the proof must fail: let x be a point such that C0(x) 6= C1(x). Then a simple
adversary with x hard-coded can distinguish iO(C0) from iO(C1) simply by running the
obfuscated program on x.

This intuitively means that the proof must some how decide whether C0 and C1 are
equivalent. Since the proof consists of an efficient algorithm R reducing breaking the
assumption to distinguishing iO(C0) from iO(C1), it seems that R must be efficiently deciding
circuit equivalence. Assuming P 6= NP , such a reduction should not exist.6

The reductions from iO to functional encryption/simple multilinear map assumptions
avoid this argument by not being efficient. Indeed, the reductions traverse the entire tree of
2n nodes as described above. In essence, the proof in each step just needs to check a local
condition such as C0(x) = C1(x) for some particular x — which can be done efficiently — as
opposed to checking equivalence for all inputs.

While this argument is far from a proof of impossibility, it does represent an significant
inherent difficulty in building full-fledged iO from polynomial hardness. We believe that
overcoming this barrier, or showing that it is insurmountable, is an important and fascinating
open question. For example, imagine translating the arguments above to iO for computational
models with unbounded input lengths such as Turing machines. In this case, equivalence is
not only inefficient, but undecidable. As such, the above arguments demonstrate a barrier
to basing Turing machine obfuscation on a finite number of even (sub)exponentially hard

6One may wonder whether the same arguments apply to the seemingly similar setting of zero knowledge,
where zero knowledge must hold for true instances, but soundness must hold for false instances. The crucial
difference is that soundness does not prevent the zero knowledge simulator from working on false instances.
Therefore, a reduction from a hard problem to zero knowledge does not need to determine whether the
instance is in the language. In contrast, for iO, the security property must apply to equivalent circuits, but
correctness implies that it cannot apply to inequivalent circuits.
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assumptions. An important open question is whether it is possible to build iO from Turing
machines from iO for circuits; we believe achieving this goal will likely require techniques
that can also be used to overcome the sub-exponential barrier.

For the remainder of the discussion, we will assume that building iO from polynomial
hardness is beyond reach without significant breakthroughs.

Avoiding the Barrier. We observe that poly-decomposing equivalence is an NP relation:
the polynomial-sized set of nodes where the fragments are identical provides a witness that
two circuits are equivalent: it is straightforward to check that a collection of nodes covers all
of the leaves and that the fragments at those nodes are identical. In contrast, general circuit
equivalence is co-NP -complete, and therefore unlikely to be in NP unless the polynomial
hierarchy collapses. This distinction is exactly what allows us to avoid the sub-exponential
barrier.

Our security reduction has access to the witness for equivalence, which guides how the
reduction operates. The reduction can use the witness to trivially verify that the two circuits
are equivalent; if the witness is not supplied or is invalid, the reduction does not run. The
sub-exponential barrier therefore no longer applies in this setting.

More generally, the sub-exponential barrier will not apply to circuit pairs for which there
is a witness proving equivalence; in other words, languages of circuit pairs in NP ∩ co-NP 7.
Any languages outside NP ∩ co-NP are likely to run into the same sub-exponential barrier
as full iO since witnesses for equivalence do not exist, and meanwhile there remains some
hope that languages inside might be obfuscatable without a sub-exponential loss by feeding
the witness to the reduction.

In fact, almost all applications of obfuscation we are aware of can be modified so that
the pairs of circuits in question have a witness proving equivalence. For example, consider
obtaining public key encryption from one-way functions using obfuscation [SW14]. The secret
key is the seed s for a PRG, and the public key is the corresponding output x. A ciphertext
encrypting message m is an obfuscation of the program Px,m, which takes as input a seed s′
and checks that PRG(s′) = x. If the check fails, it aborts and outputs 0. Otherwise if the
check passes, it outputs m. To decrypt using s, simply evaluate the obfuscated program on s.

In the security proof, iO is used for the following two programs: Px,m where x is a truly
random element in the co-domain of PRG, and Z, the trivial program that always outputs
0. We note that since PRG is expanding, with high probability x will not have a pre-image,
and therefore Px,m will also output 0 everywhere. Therefore, Px,m and Z are (with high
probability) functionally equivalent.

For general PRGs, there is no witness for equivalence of these two programs. However, by
choosing the right PRG, we can remedy this. Let P be a one-way permutation, and let h be
a hardcore bit for P . Now let PRG(s) = (P (s), h(s)). Instead of choosing x randomly, we
choose x as P (s), 1⊕ h(s) for a random seed s8. This guarantees that x has no pre-image

7Circuit equivalence is trivially in co-NP ; a point on which the two circuits differ is a witness that they
are not equivalent

8This is no longer a random element in the codomain of the PRG, but it suffices for the security proof
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under PRG. Moreover, s serves as a witness that x has no pre-image. Therefore, the programs
Px,m and Z have a witness for equivalence.

Limits of the dO approach. Unfortunately, decomposable obfuscation is not strong
enough to prove security in many settings. In fact, we demonstrate (Section 4) that τ -
decomposing equivalence can be decided in time proportional to τ , meaning poly-decomposing
equivalence is actually in P . However, for example, the equivalence of programs Px,m and Z
above cannot possibly be in P — otherwise we could break the PRG: on input x, check if Px,m
is equivalent to Z. A random output will yield equivalence with probability 1/2, whereas a
PRG sample will never yield equivalence circuits. In other words, Px,m and Z are provably
not poly-decomposing equivalent, despite being functionally equivalent programs.

One can also imagine generalizing dO to encompass more general paths through the binary
tree of prefixes. For example, one could decompose the circuit into fragments, partially merge
some of the fragments back together, decompose again, etc. We show that this seemingly
more general path decomposing equivalence is in fact equivalent to (standard) decomposing
equivalence. Therefore, this path dO is equivalent to (standard) dO, and only works for pairs
of circuits that can be easily verified as equivalent.

Unsurprisingly then, all the applications we obtain using poly-decomposable obfuscation
obfuscate circuits for which it is easy to verify equivalence. This presents some interesting
limitations relative to iO:

• All known ways of getting public key encryption from iO and one-way functions suffer
from a similar problem as the example above, and cannot to our knowledge be based on
poly-dO. In other words, unlike iO, dO might not serve as a bridge between Minicrypt
and Cryptomania. Some of our applications — namely multi-key functional encryption
and trapdoor permutations — imply public key encryption; for these applications, we
actually have to use public key encryption as an additional ingredient. Note that if
we are instantiating dO from functional encryption, we get public key encryption for
free. However, if we are interested in placing dO itself in the complexity landscape, the
apparent inability to give public key encryption is an interesting barrier.
More generally, a fascinating question is whether any notion of obfuscation that works
only for efficiently-recognizable equivalent circuits can imply public key encryption,
assuming additionally just one-way functions.

• While iO itself does not imply one-way functions9, iO can be used in conjunction
with a worst-case complexity assumption, roughly NP * BPP , to obtain one-way
functions [KMN+14]. The proof works by using a hypothetical inverter to solve the
circuit equivalence problem; assuming the circuit equivalence problem is hard, they
reach a contradiction. The solver works exactly because iO holds for the equivalent
circuits.

9If P = NP , one-way functions do not exist but circuit minimization can be used to obfuscate
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This strategy simply does not work in the context of dO. Indeed, dO only applies to
circuits for which equivalence is easily decidable anyway, meaning no contradiction is
reached. In order to obtain any results analogous to [KMN+14] for restricted obfuscation
notions, the notion must always work for at least some collection of circuit pairs for
which circuit equivalence is hard to decide. Put another way, dO could potentially exist
in Pessiland.

• More generally, dO appears to roughly capture the most general form of the techniques
in [GPS16, GPSZ16, GS16], and therefore it appears that these techniques will not
extend to the case of non-efficiently checkable equivalence. Many constructions using
obfuscation fall in this category of non-checkable equivalence: deniable encryption
and non-interactive zero knowledge [SW14], secure function evaluation with optimal
communication complexity [HW15], adaptively secure universal samples [HJK+16], and
more.

We therefore leave some interesting open questions:

• Build iO for a class of circuit pairs for which equivalence is not checkable in polynomial
time, but for which security can be based on the polynomial hardness of just a few
assumptions.

• Modify the constructions in deniable encryption/NIZK/function evaluation/etc so that
obfuscation is only ever applied on program pairs for which equivalence can be easily
verified — ideally, the circuits would be decomposing equivalent.

• Prove that for some applications, obfuscation must be applied to circuit pairs with
non-efficiently checkable equivalence.

2 Preliminaries: Definitions and Notations
In this paper, we use κ to denote the security parameter. We denote a polynomial by poly(·).
We say a function f(·) : N→ R+ is negligible if for all constant c > 0, f(n) < 1

nc
for all large

enough n. Wel use negl(·) to denote a negligible function. When we refer to a probabilistic
algorithm A, sometimes we need to specify the random string r feed to A on input x as
A(x; r). For a finite set S, we use x←

R
S to denote uniform sampling of x from the set S.

If we ignore r for a probabilistic algorithm A, then the randomness is drawn uniformly at
random; i.e. A(x) denotes A(x; r) where r is a uniformly random string. We use A to denote
a sequence of non-uniform adversaries {Aκ} and we say A is a poly sized adversary if for
every κ, Aκ is of size at most poly(κ). We denote [κ] as the set {1, 2, · · · , k}. A binary
string x is represented as x1x2 · · ·x` where ` is the length of that binary string. For a binary
string x, x[i] denotes the i-bit prefix of x which is x1x2 · · ·xi and x[i···j] denotes the substring
xixi+1 · · ·xj. For two strings x, y, x||y is the concatenation of x and y.
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One-Way Functions
A one-way function is a function that is easy to compute but hard to invert. Here is the
formal definition of a one-way function:

Definition 2.1. A one-way function f : {0, 1}∗ → {0, 1}∗ is a deterministic algorithm
satisfying the following properties:

• Efficiently Computable : For any κ ∈ Z+, any x ∈ {0, 1}κ, f(x) is polynomial time
computable;

• Hard to Invert : For any poly sized adversary A, there exists a negligible function
negl such that for any κ ∈ Z+,

Pr
x←
R
{0,1}κ

[f(A(f(x))) = f(x)] < negl(κ)

Pseudo Random Generators
A pseudo random generator is a deterministic algorithm that maps a short truly random
string to a longer pseudo random string. Assuming the existence of one-way functions, there
exists PRG. Here is the formal definition of PRG.

Definition 2.2. A pseudo random generator PRG with a expansion factor `(·) is a polynomial
deterministic algorithm such that

• Length Expansion : For any κ ∈ Z+ and x ∈ {0, 1}κ, |PRG(x)| = `(κ) where `(·) is
a polynomial

• Pseudo Randomness : For any poly sized adversary A, there exists a negligible
function negl such that for any κ,∣∣∣∣∣∣ Pr

y←
R
{0,1}`(κ)

[A(y) = 1]− Pr
x←
R
{0,1}κ

[A(PRG(x)) = 1]

∣∣∣∣∣∣ ≤ negl(κ)

Symmetric Key Encryption
Now we define a symmetric key encryption scheme.

Definition 2.3. A symmetric key encryption scheme SKE consists a tuple of algorithms
SKE.KeyGen, SKE.Enc, SKE.Dec where

• SKE.KeyGen(1κ) is a probabilistic polynomial time algorithm that takes a security
parameter κ, outputs a secret key sk;

• SKE.Enc(sk,m) is a polynomial time algorithm that takes a secret key sk and a message
m ∈ {0, 1}∗, outputs a ciphertext c;
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• SKE.Dec(sk, c) is a polynomial time algorithm that takes a secret key sk and a ciphertext
c ∈ {0, 1}∗, outputs a message m′;

• Correctness : a symmetric key encryption is said to be correct if for all κ and all
message m ∈ {0, 1}∗,

Pr [SKE.Dec(sk, c) = m | sk← SKE.KeyGen(1κ) ; c← SKE.Enc(sk,m)] = 1

Consider the following security game Gameκ,A,b:

• The adversary A generates two messages m0,m1 (|m0| = |m1|) and sends them to the
challenger;

• The challenger runs SKE.KeyGen(1κ) to get a secret key sk, and sends the ciphertext
c = SKE.Enc(sk,mb) to A;

• A gets c and outputs b′; b′ is the output of this game.

A symmetric key encryption scheme SKE is said to be secure if for every poly sized
adversary A, there exists a negligible function negl such that for every κ

|Pr[Gameκ,A,0 = 1]− Pr[Gameκ,A,1 = 1]| ≤ negl(κ)

With a pseudo random generator, one can construct a symmetric key encryption scheme
from it.

Public Key Encryption
Now we give the definition of a public key encryption scheme.

Definition 2.4. A public key encryption scheme PKE consists a tuple of algorithms PKE.KeyGen,
PKE.Enc, PKE.Dec where

• PKE.KeyGen(1κ) is a probabilistic polynomial time algorithm that takes a security
parameter κ, outputs a key pair: a secret key sk and a public key pk;

• PKE.Enc(pk,m) is a probabilistic polynomial time algorithm that takes a public key pk
and a message m ∈ {0, 1}∗, outputs a ciphertext c;

• PKE.Dec(sk, c) is a polynomial time algorithm that takes a secret key sk and a ciphertext
c ∈ {0, 1}∗, outputs a message m′;

• Correctness : a public key encryption is said to be correct if for all κ and all message
m ∈ {0, 1}∗,

Pr [PKE.Dec(sk, c) = m | (pk, sk)← PKE.KeyGen(1κ) ; c← PKE.Enc(pk,m)] = 1
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To define the selective security of a public key encryption scheme, we need the following
security game. Consider the security game Gameκ,A,b:

• The adversary A generates two messages m0,m1 (|m0| = |m1|) and sends them to the
challenger;

• The challenger runs SKE.KeyGen(1κ) to get a key pair (pk, sk), and sends the ciphertext
c = SKE.Enc(sk,mb) and pk to A;

• A then outputs b′; b′ is the output of this game.

A public key encryption scheme PKE is said to be secure if for every poly sized adversary
A, there exists a negligible function negl such that for every κ,

|Pr[Gameκ,A,0 = 1]− Pr[Gameκ,A,1 = 1]| ≤ negl(κ)

Indistinguishability Obfuscation
Here is the definition of indistinguishability obfuscators [BGI+01, GGH13a].

Definition 2.5. A PPT algorithm iO is an indistinguishability obfuscator for a circuit family
C if the following hold,

• Preserving functionalities : For all κ and all circuit C ∈ C, for all input x, we
have Pr[iO(1κ, C)(x) = C(x)] = 1;

• Indistinguishability : For all C0, C1 ∈ C where C0 and C1 have the same function-
alities (in other words, for all input x ∈ {0, 1}n, C0(x) = C1(x)) and |C0| = |C1|, for
any poly sized adversary A, there exists a negligible function negl such that for all κ,

|Pr[A(iO(1κ, C0)) = 1]− Pr[A(iO(1κ, C1)) = 1]| ≤ negl(κ)

Functional Encryption
Now we recall the definition of functional encryption schemes [BSW11, O’N10].

Definition 2.6. A functional encryption scheme FE is a tuple of PPT algorithms FE.Gen,
FE.Enc, FE.KeyGen and FE.Dec such that

• FE.Gen(1κ): takes a security parameter and outputs a pair of keys (mpk,msk);

• FE.Enc(mpk,m): takes a public key mpk and a message m, it outputs a ciphertext c;

• FE.KeyGen(msk, f): takes a secret key msk and a circuit f and outputs a function key
fskf ;

• FE.Dec(fskf , c): takes a function key and a ciphertext, it outputs a string y.
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A functional encryption scheme FE should be correct, in other words, for all κ, n and all
message m ∈ {0, 1}n, for any circuit f defined on {0, 1}n,

Pr

FE.Dec(fskf , c) = f(m)

∣∣∣∣∣∣∣∣
(mpk,msk)← FE.Gen(1κ)

c← FE.Enc(mpk,m)
fskf ← FE.KeyGen(msk, f)

 = 1

Most functional encryption schemes FE used in our paper will be compact, single-key
selective secure. To define the security, let us first define a security game Gameκ,A,b:

• The adversary A first outputs two messages m0 and m1 where |m0| = |m1|;

• After receiving messages, the challenger runs FE.Gen(1κ) to generate a key pair (mpk,msk)
and computes the ciphertext c = FE.Enc(mpk,mb) and sends (mpk, c) back to A;

• A then submits a function query f to the challenger and receives a function key
fskf = FE.KeyGen(msk, f) where f(m0) = f(m1);

• Finally A outputs a bit b′;

We say FE is single-key selective secure if for any poly sized adversary A, there exists a
negligible function negl(·) such that for all κ,

|Pr[Gameκ,A,0 = 1]− Pr[Gameκ,A,1 = 1]| ≤ negl(κ)

For a multi-key selective secure scheme, we allow an adversary to adaptively make
function queries f to the challenger as long as f(m0) = f(m1).

A functional encryption scheme is said to be compact [AJS15, BV15, AJ15] if for all
κ and all m ∈ {0, 1}∗, the running time (circuit size) of FE.Enc(mpk,m) is bounded by
poly(κ, |m|).

3 Decomposing Equivalence and dO
In this section, we discuss several basic definitions including decomposing equivalence and
dO.

3.1 Partial Evaluations on Circuits
Definition 3.1. Consider a circuit C defined on inputs of length n > 0, for any bit b ∈ {0, 1},
a partial evaluation of C on bit b denoted as C(b, ·) is a circuit defined on inputs of length
n− 1, where we harcode the input bit x1 to b, and then simplify. To simplify, while there is a
gate that has a hard-coded input, replace it with the appropriate gate or wire in the usual way
(e.g. AND(1, b) gets replaced with the pass-through wire b, and AND(0, b) gets replaced with
the constant 0). Then remove all unused wires.

Also we can define a partial evaluation of a circuit C on a string x which is repeatedly
applying partial evaluations and simplifying bit by bit.
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From now on, whenever we use the expression C(x, ·), we always refer to the result of
simplifying C after hardcoding the prefix x.

3.2 Circuit Assignments
A binary tree Tn is a tree of depth n+ 1 where the root (whose depth is 1) is labeled ε (an
empty string), and for any node that is not a root whose parent is labeled as x, it is labeled
x||0 if it is a left-child of its parent; it is labeled as x||1 if it is a right-child of its parent.

Definition 3.2 (Tree Covering). We say a set of binary strings {xi}`i=1 is a tree covering
for all strings of length n if the following holds: for every string x ∈ {0, 1}n, there exists
exactly one xj in the set such that xj is a prefix of x.

A tree covering {xi}`i=1 also can be viewed as a set of nodes in Tn such that for every leaf
in the tree, the path from root ε to this leaf will pass exactly one node in the set.

Yet another equivalent formulation is that a tree covering is either (1) a set consisting of
the root node of the tree, or (2) the union of two tree coverings for the two subtrees rooted at
the children of the root node.

We define a partial order � on nodes in a binary tree. We say that x � y (alternatively,
x is above y) if x is a prefix of y. We also extend our partial order � to tree coverings. We
say a tree covering TC0 � TC1, or TC0 is above TC1, if for every node u in TC1, there
exists a node v in TC0 such that v � u (that is, v is equal to u or an ancestor of u). A tree
covering TC0 is below TC1 if TC1 is above TC0. It is straightforward that if TC0 � TC1,
then |TC0| ≤ |TC1| where |TC0| = |TC1| if TC0 = TC1. We can also extend � to compare
tree coverings to nodes. We have u � TC if there is a node v ∈ TC such that u � v. TC � u
if there exists a v ∈ TC such that v � u.

Definition 3.3 (Circuit Assignment). We say L = {(xi, Cxi)}`i=1 is a circuit assignment
with size ` where {xi}`i=1 is a tree covering for Tn and {Cxi}`i=1 is a set of circuits where Cxi
is assigned to the node xi in the covering.

We say a circuit assignment is valid if for each Cxi, it is defined on input length n− |xi|.
An evaluation of L on input x is defined as: find the unique xj which is a prefix of

x = xj||x−j and return Cxj(x−j).
We call each circuit in the assignment a fragment. The cardinality of the circuit

assignment is the size of the tree covering, and the circuit size is the maximum size of any
fragment in the assignment.

A circuit assignment L = {(xi, Cxi)}`i=1 naturally corresponds to a function: on input
y ∈ {0, 1}n, scan the prefix of y from left to right until we find the smallest i such that y[i]
equals to some xj , output Cxj (y[i+1···n]). We will override the notation and write this function
as L(x).

We associate a circuit C with the assignment LC = {(ε, C)} which assigns C to the root
of the tree. Notice that LC and C are equivalent as functions.

Before looking at the equivalence definitions, we need to give several basic operations for
circuit assignments. These definitions will simplify our discussions later.
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• Decompose(L, x) : takes a circuit assignment L and a string x as parameters. This
operation is invalid if x is not in the tree covering. The new circuit assignment has a
slightly different tree covering: the new tree covering includes x||0 and x||1 but not
x. It decomposes the fragment Cx into two fragments Cx(0, ·) and Cx(1, ·) and assigns
them to x||0 and x||1 respectively.

• CanonicalMerge(L, x) : operates on an assignment L where the tree covering includes
both children of node x but not x itself. It takes two circuits Cx||0, Cx||1 assigned
to the node x||0 and x||1 and merges them to get the following circuit Cx(b, y) =
(b ∧Cx||0(y)) ∨ (b ∧Cx||1(y)) (Here we assume the output length of both circuits is 1. It
is stragithforward to extend the definition to circuits with any output length). The
new tree covering has x but not x||0 or x||1.
One observation is that for any circuit assignment whose tree covering has x||0 and
x||1 but not x and Cx||0, Cx||1 can not be simplified any further, we have the following
relation: Decompose(CanonicalMerge(L, x), x) = L.

• TargetedMerge(L, x, C) operates on an assignment L where the tree covering includes
both children of node x but not x itself. This operation is invalid if either C(0, ·) 6= Cx||0
or C(1, ·) 6= Cx||1 as circuits. It takes the two circuits Cx||0, Cx||1 assigned to the node
x||0 and x||1 and merges them to get Cx = C. The new tree covering has x but not
x||0 or x||1.
We observe that

– Decompose(TargetedMerge(L, x, C), x) = L where Cx||0 and Cx||1 in L can not be
simplified any further, and all the operations are valid

– TargetedMerge(Decompose(L, x), x, C) = L where C is the fragment at node x in
L (as long as the operations are valid).

• DecomposeTo(L, x): takes a circuit assignment L and a string x as parameters. The
operation is valid if TC � x, where TC is the tree covering for L. Let u be ancestor of
x in TC. Let p0 = u, p1, . . . , pt = x be the path from the root u to x.
DecomposeTo first sets L0 = L, and then runs Li ← Decompose(Li−1, pi−1) for i =
1, . . . , t. The output is the new circuit assignment L′ = Lt. The new tree covering TC ′
for L′ is the minimal TC ′ that is both below TC and contains x.
We will also extend DecomposeTo to operate on circuits in addition to assignments, by
first interpreting the circuit as an assignment, and performing DecomposeTo on the
assignment.

• DecomposeTo(L, TC): It takes a circuit assignment L (if the first parameter is a circuit
C, then L = {(C, ε)}) and a tree covering TC where TC is below the covering in L.
This procedure keeps taking the lexicographically first circuit fragment Cx which x
is not in TC and do Decompose(L, x). Because the covering in L is above TC, the
procedure halts when the covering in the new circuit assignment is exactly TC.
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• CanonicalMerge(L, TC): It takes a circuit assignment L and a tree covering TC where
TC is below the covering in L. It repeatedly performs CanonicalMerge(L, x) at different
x until the tree covering in the assignment becomes TC. To make the merging truly
canonical, we need to specify an order that nodes are merged in. We take the convention
that the lowest nodes in the tree are merged first, and between nodes in the same level,
the leftmost nodes are merged first.

• CanonicalMerge(L): it canonically merges all the way to the root. In other words, the
procedure keeps taking the lexicographically first circuit fragment pair Cx||0 and Cx||1
and doing CanonicalMerge(L, x) until the tree covering in the circuit assignment is {ε},
in other words, it becomes a single circuit.

Note that the functionality of a circuit assignment is preserved under applying any valid
operation above.

3.3 Locally, Path, One Shot Decomposing Equivalence
We define several new equivalence notions for circuits based on the decomposing and merging
operations defined above. First, we define a local equivalence condition on circuit assignments:

Definition 3.4 (locally decomposing equivalent). We say two circuit assignments L1 =
{(xi, Cxi)}, L2 = {(yi, C ′yi)} are (`, s)-locally decomposing equivalent if the following
hold:

• The circuit sizes of L1, L2 are at most s;

• The cardinalities of L1, L2 are at most `;

• L1 can be obtained from L2 by applying Decompose(L2, x) for some x or by apply-
ing TargetedMerge(L2, x, C) for some x and C is the fragment assigned in L1 to the
string(node) x;

Local decomposing equivalence (Local DE) means that we can transform L1 into L2 by
making just a single local change, namely decomposing a node or merging two nodes. Notice
that since decomposing a node does not change functionality, local DE implies that L1 and
L2 compute equivalent functions. For any `, s, (`, s)-local decomposing equivalence forms a
graph, where nodes are circuit assignments and edges denote local decomposing equivalence.
Next, we define a notion of path decomposing equivalence for circuits (where circuits can
be thought as nodes in the graph), which says that two circuits are equivalent if they are
connected by a reasonably short path through the graph.

Definition 3.5 (path decomposing equivalent). We say two circuits C1, C2 are (`, s, t)-path
decomposing equivalent if there exist at most t− 1 circuit assignments L′1, L′2, · · · , L′t−1
such that, for any 1 ≤ i ≤ t, L′i−1 and L′i are (`, s)-locally decomposing equivalent, where
L′0 = {(ε, C1)} and L′t = {(ε, C2)}.

18



The final notion of equivalence is a “one-shot” notion, which allows for exactly two steps
to get between C1 and C2. Now the steps are not confined to be local, but instead the first
step is allowed to decompose the root to a given tree covering, and the second then merges
the tree covering all the way back to the root.

Definition 3.6 (one shot decomposing equivalent). Given two circuits C0, C1 defined on
inputs of length n, we say they are τ -one shot decomposing equivalent or simply τ -
decomposing equivalent if the following hold:

• There exists a tree covering X = {xi}i of size at most τ ;

• For all xi ∈ X , C0(xi, ·) = C1(xi, ·) (as circuits).

An equivalent definition for “τ -one shot decomposing equivalent” is that there exists a tree cov-
ering X of size at most τ , such that DecomposeTo({(ε, C0)},X ) = DecomposeTo({(ε, C1)},X ),
in other words, the tree coverings are the same and the corresponding fragments for each node
are the same.

We note that since the operations defining path and one shot decomposing equivalence
all preserve functionalities, we have that these notions imply standard functional equivalence
for the circuits:

Lemma 3.7. If C0, C1 are (`, s, t)-path decomposing equivalent for any `, s, t, or if C0, C1
are τ -one shot decomposing equivalent for any τ , then C0, C1 compute equivalent functions
(C0(x) = C1(x),∀x ∈ {0, 1}n).

We also observe a partial converse:

Lemma 3.8. Two circuits C0, C1 (defined on n bits string) are 2n-one shot decomposing
equivalent if and only if they are functionally equivalent (C0(x) = C1(x),∀x ∈ {0, 1}n).

Proof. We only need to show the case that functional equivalence implies 2n-one shot decom-
posing equivalence. If C0, C1 are functionally equivalent, we can let the tree covering be X =
{0, 1}n. Because C0(x) = C1(x) for all x ∈ {0, 1}n = X , we have DecomposeTo({(ε, C0)},X ) =
DecomposeTo({(ε, C1)},X ). Therefore C0, C1 are 2n-one shot decomposing equivalent.

3.4 Deciding Decomposing Equivalence
Definition 3.9. A tree covering TC is a witness that C0 ≡ C1 if TC satisfies

DecomposeTo({(ε, C0)},X ) = DecomposeTo({(ε, C1)},X )

In other words, decomposing C0 and C1 to TC gives the same circuit assignment (as in, the
circuit fragments themselves are identical).

TC is an minimal witness if, for all other TC ′ that are witnesses to C0 ≡ C1, we have
that TC � TC ′. In particular, this means that TC is strictly smaller than all other witnesses.
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We define a node x as “good” for C0, C1 if C0(x, ·) = C1(x, ·) as circuits. Notice that the
children of a good node are also good. We say that a good node x is “minimal” if its parent
is not good.

Lemma 3.10. For any two equivalent circuits C0, C1, there is always exactly one minimal
witness TC∗, and it consists of all of the minimal good nodes for C0, C1.

Proof. First, any witness TC for C0 ≡ C1 must only contain good nodes. Moreover, if TC
contains a non-minimal good node x, we can derive another witness TC ′ � TC by replacing
x with its parent y, and removing all descendants of y. Thus any minimal witness must only
contain minimal good nodes.

Now, since C0 ≡ C1, all the leaves are good. For each leaf, consider the path from the
root to the leaf. There will be some node x on the path such that all nodes in the path before
x are not good, but x and all nodes after x are good. Therefore, that x is an minimal good
node. Moreover, no minimal good node can be a descendant of any other minimal good node
(since no minimal good node can be the descendant of any good node). Therefore, the set of
minimal good nodes form a tree covering. This tree covering always exists, and must also be
minimal.

Lemma 3.11. τ -one shot decomposing equivalence can be decided deterministically in time
τ × poly(n,max{|C0|, |C1|}). Moreover, if C0 ≡ C1, then the optimal witness TC∗ can also
be computed in this time.

Proof. The algorithm is simple: process the nodes in a depth-first manner, and keep a global
list R. When processing a node x, if C0(x, ·) = C1(x, ·) as circuits, it adds x to R, and then
does not recurse. Otherwise, it recurses on the children as normal. If the list R ever grows
to exceed τ elements, it aborts the search and reports non-decomposing equivalence. If the
search finishes with |R| ≤ τ , then it reports decomposing equivalence and outputs R.

The total running time is bounded by O(nτ · poly(max{|C0|, |C1|})): at most nτ nodes
are processed (up to τ nodes in R, plus their ancestors), and processing each node takes time
proportional to the sizes of C0, C1.

3.5 Relations Between Equivalence Notions
As noted above, our equivalence notions imply standard functional equivalence, and functional
equivalence implies 2n-one shot exploding equivalence. Here, we show some additional
relationship between our definitions and functional equivalence. First, we show that one-shot
and path equivalence are actually essentially the same.

Lemma 3.12. If two circuits C0, C1 are (t/2 + 1)-one shot decomposing equivalent, then they
are (n+ 1, s, t)-path decomposing equivalent where s = max{|C0|, |C1|}.

Proof. We start from the covering that has C0 assigned to the root. We perform a depth-first
traversal of the binary search tree consisting of the “bad” nodes: nodes for which the partial
evaluations of C0 and C1 are different. Equivalently, we search over the ancestors of nodes in
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the tree covering. There are t/2 such nodes. When we first visit a node on our way down the
tree, we Decompose the fragment at that node to its children. When we visit a node x for
the second time after processing both children, we merge the fragments in the two children,
using a TargetedMerge toward the circuit (C1)x. This operation is always valid since for each
child either: (1) the child is a “good” node, in which case the partial evaluations at that node
is identical to the partial evaluation of (C1)x||b; or (2) the child is a “bad” node, in which case
it was, by induction, already processed and replaced with the partial evaluation of (C1)x||b.
The cardinality of any circuit assignment in this path is at most n+ 1 since we will only have
fragments adjacent to the path from the root to the node we are visiting. The circuit size
is moreover always bounded by s = max{|C0|, |C1|} because all the intermediate fragments
are partial evaluations of either C0 or C1. Finally, the path performs an Decompose and
TargetedMerge for each “bad” node, corresponding to t operations.

Now we prove the converse, that path DE implies one-shot DE.

Lemma 3.13. If two circuits C0, C1 are (`, s, t)-path decomposing equivalent, then they are
(t/2 + 1)-one shot decomposing equivalent

Proof. If C0, C1 are (`, s, t)-path decomposing equivalent, they are equivalent, and therefore
there exists a minimal tree covering TC∗. We observe that, for each of the ancestors of nodes
in TC∗, there must be a step in the path where that node is decomposed, and there must
also be a step in the path where that node is merged. The number of ancestors for any
tree covering is exactly one less than the size of the covering. From this, we deduce that
|TC∗| ≤ t/2 + 1. Since TC∗ exists and the size is bounded by t/2 + 1, these two circuits are
(t/2 + 1)-one shot decomposing equivalent.

We emphasize that the above lemma and proof were independent of the bounds ` and s.
Putting together Lemmas 3.12 and 3.13, we find that the path equivalence definition is
independent of the parameters `, s.

We also see that path decomposing equivalence can be computed efficiently, following
Lemmas 3.11, 3.12, and 3.13.

We then show that path/one-shot decomposing equivalence is a strictly stronger notion
than standard functional equivalence, when a reasonable bound is placed on the path
length/witness size. The rough idea is the use the fact that, say, polynomial decomposing
equivalence can be decided in polynomial time, whereas in general deciding equivalence is
hard.

Lemma 3.14. For any n, there exist two circuits on n bit inputs C0 ≡ C1 that are not
(2n−1 − 1)-one-shot decomposing equivalent.

Proof. Let D0, D1 be two equivalent but non-identical circuits on 2 input bits (for example,
two different circuits computing the XOR). Let TC∗ be the tree covering consisting of all
2n−1 nodes in the layer just above the leaves. Let Lb for b = 0, 1 be the circuit assignment
assigning Db to every node in TC∗. Finally, Let Cb be the result of canonically merging Lb
all the way to the root node.
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Now, TC∗ is clearly the optimal witness that C0 ≡ C1. Therefore, any witness must
have size at least |TC∗| = 2n−1. Therefore, C0, C1 are not (2n−1 − 1) one-shot decomposing
equivalent.

Note that the above separation constructed exponentially-large C0, C1. We can even show
a similar separation in the case where C0, C1 have polynomial size, assuming P 6= NP . Indeed,
since poly-one shot decomposing equivalence is decideable in polynomial time, but functional
equivalence is not (assuming P 6= NP ), there must be circuit pairs that are equivalent but
not poly-one shot decomposing equivalent.

Next, we even demonstrate an explicit ensemble of circuit pairs that are equivalent but
not poly-decomposing equivlant, assuming one-way functions exist.

Lemma 3.15. Assuming one-way functions exist, there is an explicit family of circuit pairs
(C0, C1) that are equivalent, but are not poly(n)-decomposing equivalent for any polynomial
poly(n).

Proof. Let PRG be a length-doubling pseudorandom generator (which can be constructed
from any one-way function). Let C0(x) = “return 0” and C1(x) = ‘return 1 if PRG(x) = v;
0 otherwise‘’ where v is uniformly chosen from {0, 1}2κ. When v is uniformly chosen, except
with probability 1

2κ , v has no pre-image under PRG. Therefore, with probability 1− 1
2κ , C0

and C1 are functionally equivalent.
Next, assume there exists a polynomial τ and a non-negligible probability δ such that C0

and C1 are τ -decomposing equivalent with probability δ. Now we can build an adversary B
for this length-doubling PRG:

• The adversary B gets u from the challenger;

• B prepares the following two circuits: C0(x) =“return 0” and C1(x) = ‘return 1 if
PRG(x) = u; 0 otherwise‘’.

• B runs the algorithm to see if they are τ -decomposing equivalent. If the algorithm
returns true, B guesses u is a truly random string; otherwise it guesses u is generated
by PRG.

When u is generated by PRG, it will always return the correct answer since C1 does not
return 0 at some point but C0 does; when u is truly random, the probability that B is correct
equal to the probability C0 and C1 are τ -decomposing equivalent which is a non-negligible δ.
So B has non-negligible advantage δ in breaking PRG.

4 Decomposable Obfuscation
In this section, we give more discussions about decomposing equivalence and introduce dO.
And finally we give the construction of dO from compact functional encryption schemes.
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4.1 Locally, One Shot dO
Here, we give several new obfuscation definitions. Decomposable obfuscator, roughly, is an
indistinguishability obfuscator, but where the indistinguishability security requirement only
applies to pairs of circuits that are decomposing equivalent (as opposed to applying to all
functionally equivalent circuits).

Definition 4.1. dO with two PPT algorithms {dO.ParaGen, dO.Eval} is a τ(n, s, κ)-decomposable
obfuscator if the following conditions hold

• Efficiency: dO.ParaGen, dO.Eval are efficient algorithms;

• Functionality preserving: dO.ParaGen takes as input a security parameter κ and
a circuit C, and outputs the description Ĉ of an obfuscated circuit. For all κ and all
circuit C, for all input x ∈ {0, 1}n, we have dO.Eval(dO.ParaGen(1κ, C), x) = C(x);

• Decomposing indistinguishability : Consider a pair of PPT adversaries (Samp, D)
where Samp outputs a tuple (C0, C1, σ) where C0, C1 are circuits of the same size s = s(κ)
and input length n = n(κ). We require that, for any such PPT (Samp, D), if

Pr[C0 is τ(n, s, κ)-decomposing equivalent to C1 : (C0, C1, σ)← Samp(κ)] = 1

then there exists a negligible function negl(κ) such that

|Pr[D(σ, dO.ParaGen(1κ, C0)) = 1]
−Pr[D(σ, dO.ParaGen(1κ, C1)) = 1]| ≤ negl(κ)

Since 2n-decomposing equivalence corresponds to standard equivalence, 2n-dO is equivalent
to the standard notion of iO. In this work, we will usually consider a much weaker setting,
where τ is restricted to a polynomial.

The following obfuscator, called local dO (ldO), will be used to help us build dO. Roughly,
ldO is an obfuscator for circuit assignments with the property that local changes to the
assignment (that is, decomposing operations) are computationally undetectable.

Definition 4.2. ldO with two PPT algorithms {ldO.ParaGen, ldO.Eval} is a locally decom-
posable obfuscator if the following conditions hold

• Efficiency: ldO.ParaGen, ldO.Eval are efficient algorithms;

• Functionality preserving: ldO.ParaGen takes as input a security parameter κ, a
circuit assignment L, a cardinality bound `, and a circuit size bound s. For all κ and
all circuit assignment L with cardinality at most ` and circuit size at most s, for all
input x ∈ {0, 1}n, we have ldO.Eval(ldO.ParaGen(1κ, L, `, s), x) = L(x);
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• Local decomposing indistinguishability: Consider polynomials ` = `(κ) and s =
s(κ). For any such polynomials, and any pair of PPT adversaries (Samp, D), we require
that if

Pr[L0 is (`(κ), s(κ))-local decomp. equiv. to L1 : (L0, L1, σ)← Samp(κ)] = 1

then there exists a negligible function negl(κ) such that

|Pr[D(σ, ldO.ParaGen(1κ, L0, `, s)) = 1]
− Pr[D(σ, ldO.ParaGen(1κ, L1, `, s)) = 1]| ≤ ` · negl(κ)

We will also consider a stronger variant, called sub-exponentially secure local dO, where in
the definition of local decomposing indistinguishability, the negligible function negl is replaced
by a subexponential function subexp.

4.2 ldO implies dO
Now we show that the existence of ldO implies the existence of dO.

Lemma 4.3. If ldO exists, then τ -dO exists, where the loss in the security reduction is
2(τ − 1). In particular, if polynomially secure ldO exists, then τ -dO exists for any polynomial
function τ . Moreover, if subexponentially secure ldO exists, then 2n-dO, and hence iO, exists.

Proof. The construction of ldO from dO is the natural one: to obfuscate a circuit C, we
simply consider the circuit as a circuit assignment with C assigned to the root node, and
obfuscate this circuit assignment. We take the maximum cardinality for ldO to be n+ 1 and
the circuit size to be |C|.

• dO.ParaGen(1κ, C) = ldO.ParaGen(1κ, {(ε, C)}, n+ 1, |C|);

• dO.Eval(params, x) = ldO.Eval(params, x);

Efficiency and functionality preservation follow immediately from the underlying ldO.
Now we focus on security. Let (Samp, D) be two PPT adversaries, and s, n be polynomials
in κ. Suppose the circuits C0, C1 outputted by Samp(κ) always have the same size s(κ),
same input length n(κ), and are τ(n, s, κ)-decomposing equivalent with probability 1. Then
C0 and C1 are also (n + 1, s, 2(τ − 1))-path decomposing equivalent by Lemma 3.12. By
the definition of path decomposing equivalence and Lemma 3.11 (which states that the
minimum tree covering is efficiently computable), there exist L′1, L′2, · · · , L′2(τ−2), L

′
2(τ−1)−1

and L′0 = {(ε, C0)}, L′2(τ−1) = {(ε, C1)} such that any two adjacent circuit assignments are
(n+ 1, s)-locally decomposing equivalent. So we have that

|Pr[D(dO.ParaGen(1κ, C0))]− Pr[D(dO.ParaGen(1κ, C1))]|

≤
2(τ−1)∑
i=1

∣∣∣∣∣ Pr[D(ldO.ParaGen(1κ, L′i−1), n+ 1, |C0|)]
−Pr[D(ldO.ParaGen(1κ, L′i), n+ 1, |C0|)]

∣∣∣∣∣
≤ 2(τ − 1) · ε(κ)
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Here, ε is the advantage of the following adversary pair (Samp′, D) in the local dO
security game (where D is from above). Samp′ runs (C0, C1, σ)← Samp′, computes the path
L′0, · · · , L′2(τ−1), chooses a random i ∈ [2(τ − 1)], and outputs (L′i−1, L

′
i, σ).

Therefore, as desired, we get an adversary for the local dO where the loss is 2(τ − 1). If
we assume the polynomial hardness of ldO, the adversary (Samp′, D) must have negligible
advantage ε, and so we get τ − dO for any polynomial τ . If we assume the subexponential
hardness of ldO, we can set κ so that ε = 2−nnegl(κ) for some negligible function negl. In this
case, we even get 2n-dO, which is equivalent to iO. In the regime of subexponential hardness,
we can even set ε = 2−nsubexp(κ) for some subexponential function subexp, in which case we
get subexponentially secure 2n-dO and hence subexponentially secure iO.

Next, we focus on constructing ldO, which we now know is sufficient for constructing dO.

4.3 Compact FE implies dO
Theorem 4.4. If compact single-key selective secure functional encryption schemes exist,
then there exists local decomposable obfuscators ldO.

With theorem 4.4 and lemma 4.3, we have the following theorem 4.5.

Theorem 4.5. If compact single-key selective secure functional encryption schemes exist,
then there exist decomposable obfuscators dO.

Now we prove theorem 4.4.

Proof. Let us first give the construction of our ldO.ParaGen(see algorithm 1) where FE is a
compact functional encryption scheme, SKE is a symmetric key encryption scheme and PRG
is a pseudorandom generator.

Algorithm 1 does the following: for a circuit assignment defined on n bits, it generates
n+ 1 layers; the i-th layer has two pairs of master public key and secret key (mpk0

i ,msk0
i ) and

(mpk1
i ,msk1

i ) and two pairs of function keys fsk0
i , fsk1

i allowing you to evaluate the function
on a ciphertext.

For each function f b,Z
b
i

i (1 ≤ i ≤ n), it basically computes a partial evaluation of an input
circuit and encrypts it under two different functional encryption schemes (See Algorithm 2).
But instead of doing this, this function also allows us to cheat and output a result given a
secret key and the corresponding ciphertext from Z.

For each function f bn+1, it is given a circuit with no input, and simply evaluates it (see
algorithm 3).

Finally it generates the ciphertexts c0, c1 corresponding to the root of the tree by CGen
algorithm.
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Algorithm 1 locally decomposable obfuscator ldO.ParaGen
1: procedure ldO.ParaGen(1κ, L = {(xi, Cxi)}, `, s)
2: for i = 1, 2, · · · , n, n+ 1 do
3: (mpkbi ,mskbi)← FE.Gen(1κ) for b ∈ {0, 1}
4: end for
5: prepare a list of secret keys skbi,j ← SKE.KeyGen(1κ) for 1 ≤ i ≤ n, 1 ≤ j ≤ ` and
b ∈ {0, 1}

6: prepare Zb
i = Zb

i,1, Z
b
i,2, · · · , Zb

i,` for 1 ≤ i ≤ n and b ∈ {0, 1} where Zb
i,j =

SKE.Enc(skbi,j, 0t1) and t1 is a length bound;
7: generate c0, c1 by calling a recursive algorithm CGen(ε, L)
8: for i = 1, 2, · · · , n do
9: fskbi ← FE.KeyGen(mskbi , f

b,Zbi
i ) for b ∈ {0, 1}

10: end for
11: fskbn+1 ← FE.KeyGen(mskbn+1, f

b
n+1) for b ∈ {0, 1}

12: return the parameters {c0, c1, {mpk0
i ,mpk1

i }n+1
i=1 , {fsk0

i , fsk1
i }n+1
i=1 }

13: end procedure

Algorithm 2 f b,Z
b
i

i for 1 ≤ i ≤ n

1: procedure f b,Z
b
i

i (C,K, σ, sk)
2: Hardcoded : Zb

i

3: if σ 6= 0 then
4: return SKE.Dec(sk, Zb

i,σ)
5: else
6: C ′ ← C(b, ·) and pad C ′ to have length s
7: return {FE.Enc(mpk0

i+1, 〈C ′, K0
i+1, 0, 0t2〉; r1),

8: FE.Enc(mpk1
i+1〈C ′, K1

i+1, 0, 0t2〉; r2)} where
9: K0

i+1 ← r3
10: K1

i+1 ← r4
11: using randomness r1, r2, r3, r4 ← PRG(K)
12: end if
13: end procedure

Algorithm 3 f bn+1

1: procedure f bn+1(C,K, σ, sk)
2: return the evaluation of C
3: end procedure
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Algorithm 4 generating c0, c1 recursively
1: procedure CGen(x, L)
2: if L only contains one pair, it must be (x,Cx) then
3: x is a node in the tree covering of the input circuit assignment
4: Generate Kb ← {0, 1}κ for b ∈ {0, 1}
5: cb ← FE.Enc(mpkbd, 〈Cx, Kb, 0, 0t2〉) for b ∈ {0, 1}, and d = |x|+ 1
6: return c0, c1
7: end if
8: Split L into L0, L1 where L0 contains all the pairs (y, Cy) where y starts with x||0

and L1 contains all the pairs (y, Cy) where y starts with x||1
9: (c′0, c′1)← CGen(x||0, L0) and (c′′0, c′′1)← CGen(x||1, L1)
10: Choose an integer j0 randomly from 1 to ` that has not been used yet in Z0

d and
replace Z0

d,j0 with SKE.Enc(sk0
d,j0 , 〈c

′
0, c
′
1〉)

11: Choose j1 in the same way and replace Z1
d,j1 with SKE.Enc(sk1

d,j1 , 〈c
′′
0, c
′′
1〉)

12: return c0, c1 where c0 = FE.Enc(mpk0
d, 〈⊥,⊥, j0, sk0

d,j0〉) and c1 =
FE.Enc(mpk1

d, 〈⊥,⊥, j1, sk1
d,j1〉)

13: end procedure

Evaluation and Correctness

Now let us look at how ldO.Eval works. By fixing the first two ciphers and keys, given a input
x ∈ {0, 1}n,

• It begins with c0, c1;

• For i = 1, 2, · · · , n, it picks the function key fskxii and cxi ; then does the update:
(c0, c1)← FE.Dec(fskxii , cxi);

• Finally we can either output FE.Dec(fsk0
n+1, c0) or FE.Dec(fsk1

n+1, c1);

ldO.Eval(c0, c1, {mpk0
i ,mpk1

i }n+1
i=1 , {fsk0

i , fsk1
i }n+1
i=1 , · · · ) actually has the same functionalities

with the circuit assignment L since basically on input x, it finds a fragment corresponding to
a prefix y of x = y||x′ and keeps doing partial evaluations on each input bit of x′. Here y
is a node in the tree covering. Because of the way CGen works, after applying the partial
evaluations corresponding to the string y, the ciphertext corresponding to Cy, in other words
cb ← FE.Enc(mpkbd, 〈Cy, Kb, 0, 0t2〉) for b ∈ {0, 1} , will be recovrered from Z. Since the
cardinality is at most `, ` different Zb

i,j in a single layer Zb
i are enough for use.

Efficiency

Let us look at the parameter size. All the master keys {mpk0
i ,mpk1

i }n+1
i=1 are of length poly(κ).

t2 is the length of a secret key for SKE scheme so it is also of poly(κ). And we assume FE is a
compact functional encryption scheme which means the size of ciphertexts c0, c1 is bounded by
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O(poly(s, log `, κ)) and also the size of f circuit is bounded by O(poly(s, `, κ)) which implies
the size of {fskbi} is bounded by O(poly(s, `, κ)). Finally t1 is bounded by O(poly(s, log `, κ)).

So ldO.ParaGen and ldO.Eval run in time poly(s, `, n, κ).

Security

Without loss of generality, we have two circuit assignments L0 and L1 where Decompose(L0, x) =
L1. We are going to prove the indistinguishability when we are given either L0 or L1.
• Hyb 0: Here, an adversary is given an instance ldO.ParaGen(1κ, L0, `, s). In the process
of generating c0, c1, we get L′ during the execution of CGen at x where L′ is the
current partial circuit assignment corresponding to the subtree rooted at x. Since L′
only contains (x,Cx), CGen will return FE.Enc(mpkbd, 〈Cx, Kb, 0, 0t2〉) for b ∈ {0, 1} and
d = |x|+ 1; we denote them as ĉ0, ĉ1.

• Hyb 1: In this hybrid, we change Zb
d. Assume ĉb,0, ĉb,1 = FE.Dec(fskbd, ĉb). In

ldO.ParaGen, Zb
d are assigned to an array of encryptions of 0t1 before calling CGen. We

instead choose random j0, j1 from the unused indices (not used in CGen process) and
change Zb

d,jb
to be the encryption of 〈ĉb,0, ĉb,1〉. Since an adversary does not have any

secret key skbi,j, SKE security implies Hyb 0 and Hyb 1 are indistinguishable.

• Hyb 2: In this hybrid, we change the ciphertexts ĉ0, ĉ1 to

ĉb = FE.Enc(mpkbd, 〈⊥,⊥, jb, skbd,jb〉)

where ⊥ means filling it with zeroes and jb are the indices chosen in Hyb 1. Notice
that

f
b,Zbd
d (⊥,⊥, jb, skbd,jb) = f

b,Zbd
d (Cx, Kb, 0, 0t2)

Therefore, FE security means Hyb 1 and Hyb 2 are indistinguishable.

• Hyb 3: In this hybrid, we change Z0
d,j0 and Z1

d,j1 . In Hyb 1, ĉb,0, ĉb,1 were computed
using the randomness from a pseudorandom generator. In Hyb 2, we removed the
seed feed to PRG. Therefore we can replace ĉb,0, ĉb,1 to be the values computed using
uniformly chosen randomness. Indistinguishability from Hyb 2 easily follows from
PRG security. We observe that the distribution of the instances in Hyb 3 is identical
to the distribution of ldO.ParaGen(1κ, L1, `, s).

This completes our proof for theorem 4.4.

5 Applications

5.1 Notations
Before all the applications, let us first introduce several definitions for convenience.

We now define a decomposing-compatible pseudorandom function. The construction
[GGM86] satisfies the definition below.
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Definition 5.1. A decomposing compatible pseudorandom function DPRF consists the fol-
lowing algorithms DPRF.KeyGen and DPRF.Eval where

• DPRF.Eval takes a input of length n and the output is of length p(n) where p is a fixed
polynomial;

• (PRF Security) For any poly sized adversary A, there exists a negligible function negl,
for any string y0 ∈ {0, 1}n and any κ,

|Pr[A(DPRF.Eval(S, y0)) = 1]− Pr[A(r) = 1]| ≤ negl(κ)

where S ← DPRF.KeyGen(1κ) and r ∈ {0, 1}p(n) is a uniformly random string.

• (DPRF Security) Consider the following game, let Gameκ,A,b be

– The challenger prepares S ← DPRF.KeyGen(1κ);
– The adversary makes queries about x and gets DPRF.Eval(S, x) back from the
challenger;

– The adversary gives a tree covering TC and y∗ ∈ TC to the challenger where y∗
is not a prefix of any x that has been asked;

– The challenger sends the assignment Db back to the adversary A where
∗ D0: let the circuit D to be D(·) = DPRF.Eval(S, ·) defined on {0, 1}n, the
circuit assignment is DecomposeTo(D,TC). We observe that the fragment
corresponding to y is DPRF.Eval(S, y, ·) defined on {0, 1}n−|y|.
∗ D1: For each y 6= y∗ ∈ TC, let the fragment corresponding to y be Dy(·) =

DPRF.Eval(S, y, ·) defined on {0, 1}n−|y| and for y∗, Dy∗(·) = DPRF.Eval(S ′, y∗, ·)
defined on {0, 1}n−|y∗| where S ′ ← DPRF.KeyGen(1κ).

– The adversary can keep making queries about x which does not have prefix y∗ and
gets DPRF.Eval(S, x) back from the challenger;

– The output of this game is the output of A.

For any poly sized adversary A, there exists a negligible function negl such that:

|Pr[Gameκ,A,0 = 1]− Pr[Gameκ,A,1 = 1]| ≤ negl(κ)

Let us define an another operation on a circuit assignment and a circuit.

Definition 5.2. By given a circuit C and a circuit assignment L where C takes two inputs
x and L(x), C(·, L(·)) is a circuit assignment defined below:

• Let TC be the tree covering inside L = {(x,Dx)}x∈TC.

• Let L′ = DecomposeTo(C, TC) = {(x,Cx)}x∈TC
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• For each fragment in the output circuit assignment corresponding to x ∈ TC, it is
Cx(·, Dx(·)) simplified, which is defined on {0, 1}n−|x|.

We can also define similar operations on several circuit assignments and one circuit as long
as these circuit assignments have the same tree covering. In other words, let L1, · · · , Lm(Li =
{(x,Di

x)} are circuit assignments with the same tree covering TC, then C(·, L1(·), L2(·), · · · , Lm(·))
is a circuit assignment whose fragment corresponding to y ∈ TC is C(y, ·, D1

y(·), · · · , Dm
y (·))

simplified.

Then we have the following lemma:

Lemma 5.3. For any two circuits C,D where D takes a single input x and C takes two
inputs x and D(x), for any tree covering TC, we have

DecomposeTo(C(·, D(·)), TC) = C(·, [DecomposeTo(D,TC)](·))

For m + 1 circuits C,D1, D2, · · · , Dm, where D1, · · · , Dm take a single input x and C
takes x and D1(x) · · ·Dm(x) as inputs, we have

DecomposeTo(C(·, D1(·), · · · , Dm(·)), TC)
= C(·,DecomposeTo(D1, TC), · · · ,DecomposeTo(Dm, TC))

Proof. Let us first look at the left side. It is a circuit assignment with the tree covering TC.
For the fragment corresponding to y ∈ TC, it is the partial evaluation of C(·, D(·)) on y.

For the right side, we first have a circuit assignment DecomposeTo(D,TC) where the
fragment corresponding to y is D(y, ·). So by the definition of our operation, the fragment
corresponding to y in the right side is C(y, ·, D(y, ·)) simplified. Since each pair of fragments
are the same, the left side is equal to the right side.

5.2 Short Signatures
Here, we show how to use dO to build short signatures, following [SW14]. As in [SW14], we
will construct statically secure signatures.

The signature is simply of the following form f(DPRF.Eval(S,m)) where f is a one-way
function.

Definition 5.4. A signature scheme SS consists of the following algorithms:

• SS.Setup(1κ): it outputs a verification key vk and a signature key sk;

• SS.Sign(sk,m): it is a deterministic procedure; it takes a signature key and a message,
then outputs a signature σ;

• SS.Ver(vk,m, σ): it is a deterministic algorithm; it takes a verification key, a message
m and a signature σ, it outputs 1 if it accepts; 0 otherwise.
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We say a short signature scheme is correct if for any message m ∈ {0, 1}`:

Pr
[
SS.Ver(vk,m, σ) = 1

∣∣∣∣∣ (vk, sk)← SS.Setup(1κ)
σ ← SS.Sign(sk,m)

]
= 1

We now define security for short signatures.
Definition 5.5. We denote Gameκ,A to be the following where κ is the security parameter
and A is an adversary:

• First A announces a message m∗ of length `;

• The challenger gets m∗ and prepares two keys sk and vk; it then sends vk back to A;

• A can keep making queries m′ to the challenger and gets Sign(sk,m′) back for any
m′ 6= m∗;

• Finally A sends a forged signature σ∗ and the output of the game is Ver(vk,m∗, σ∗).
We say SS is secure if for any polysized A, there exists a negligible function negl,

Pr[Gameκ,A = 1] ≤ negl(κ)

Construction.

We now give a signature scheme where signatures are short. The construction is similar with
that in [SW14] but we use dO instead of iO. Our SS has the following algorithms:
• SS.Setup(1κ): it takes a security parameter κ and prepares a key S ← DPRF.KeyGen(1κ).
S is the secret key sk. Then it prepares the verification key (which is a description of
an obfuscated circuit) vk← dO.ParaGen(1κ, V (·,DPRF.Eval(S, ·))) where V is given in
Figure 5 (we will pad programs to a length upper bound before applying dO).

Algorithm 5 Verification Algorithm
1: procedure V (m,σ,DPRF.Eval(S,m))
2: it computes σ′ ← DPRF.Eval(S,m)
3: if f(σ) = f(σ′) then
4: return 1
5: else
6: return 0
7: end if
8: end procedure

• SS.Sign(sk,m) = DPRF.Eval(S,m)

• SS.Ver(vk,m, σ) = dO.Eval(vk, {m,σ})
It is straightforward to see that the construction satisfies correctness.
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Security

Theorem 5.6. If dO is a secure poly-dO, DPRF is a secure decomposing compatible PRF,
and f is a one-way function, then the construction above is a short secure signature scheme.

Proof. We prove the security through a sequence of hybrid experiments.

• Hyb 0: In this hybrid, we are in Gameκ,A;

• Hyb 1: In this hybrid, since the challenger gets m∗ before it releases vk, we decompose
the circuit to get L = DecomposeTo(V (·,DPRF.Eval(S, ·)),m∗). By lemma 5.3, the
circuit assignment is V (·,DecomposeTo(DPRF.Eval(S, ·),m∗)).
Therefore we have that the distributions dO.ParaGen(1κ, V (·,DPRF.Eval(S, ·))) and
dO.ParaGen(1κ,CanonicalMerge(L)) are indistinguishable, since these two circuits are
`+ 1-decomposing equivalent by applying dO,

• Hyb 2: This is the same asHyb 1, except that we replace the fragment in L correspond-
ing to m∗ — which is “return DPRF.Eval(S,m∗)” — by “return DPRF.Eval(S ′,m∗)”
where S ′ ← DPRF.KeyGen(1κ) is a fresh random DPRF key that is independent of S.
We call the new circuit assignment L′. Hyb 1 and Hyb 2 are indistinguishable because
of the DPRF security.

• Hyb 3: This is the same as Hyb 2, except that we replace the fragment in L′, which
is “return DPRF.Eval(S ′,m∗)” by “return r∗” where r∗ is a uniformly random string.
We call the new circuit assignment L′′. As we don’t have S ′ in the program anywhere
except this fragment, Hyb 2 and Hyb 3 are indistinguishable because of the PRF
security.
We find that in CanonicalMerge(L′′), the fragment corresponding to m∗ is: on input σ,
it returns 1 if f(σ) = v∗; 0 otherwise, where v∗ = f(r∗) for a uniformly random r∗.

Lemma 5.7. If there exists a poly sized adversary A for Hyb 3, then we can break one-way
function f .

Proof. Given z∗ which is f(r∗) for a truly random r∗, we can actually simulate Hyb 3. If we
successfully find a forged signature for Hyb 3 with non-negligible probability, it is actually a
pre-image of z∗ which means we break one-way function with non-negligible probability.

This completes the security proof.

5.3 Universal Samplers
Here we construct universal samplers from dO. For the sake of simplicity, we will show how to
construct samplers meeting the one-time static definition from [HJK+16]. However, note that
the same techniques also can be used to construct the more complicated k-time interactive
simulation notion of [GPSZ16].

Let US denote an universal sampler. It has the following procedures:
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• params ← US.Setup(1κ, 1`, 1t): the Setup procedure takes a security parameter κ, a
program size upper bound ` and a output length t and outputs an parameter params;

• US.Sample(params, C) is a deterministic procedure that takes a params and a sampler
C of length at most ` where C outputs a sample of length t. This procedure outputs a
sample s;

• params′ ← US.Sim(1κ, 1`, 1t, C∗, s∗) takes a security parameter κ, a program size upper
bound ` and a output length t, also a circuit C∗ and a sample s∗ in the image of C∗; it
outputs a parameter.

Correctness

For any C∗ and s∗ in the image of C∗, and for any ` ≥ |C∗|, and t is a upper bound for C∗’s
outputs, we have

Pr
[
US.Sample(params′, C∗)] = s∗ | params′ ← US.Sim(1κ, 1`, 1t, C∗, s∗)

]
= 1

Security

For any ` and t, for any C∗ of size at most ` and output size at most t, for any poly sized
adversary A, there exists a negligible function negl, such that∣∣∣∣Pr[A(params, C∗) = 1 | params← US.Setup(1κ, 1`, 1t)]−

Pr
[
A(params′, C∗) = 1

∣∣∣ params′ ← US.Sim(1κ, 1`, 1t, C∗, s∗),
s∗←

R
C∗(·)

] ∣∣∣∣ ≤ negl(κ)

where s∗←
R
C∗(·) means s∗ is a truly random sample from C∗(·).

Construction

Now we give the detailed construction for our universal sampler:

• Define U to be the size upper bound among all the circuits being obfuscated in our
proof (not the size of circuits fed into the universal sampler). It is straightforward to
see that U = poly(κ, `, t); Whenever we mention dO.ParaGen(1κ, C), we will pad C to
have size U before feeding it to dO.

• For simplicity, we assume circuits C fed into the universal sampler is always padded to
length ` so that we can consider only circuits of a fixed size.

• US.Setup(1κ, 1`, 1t) randomly samples a key S ← DPRF.KeyGen(1κ), and constructs a
circuit Sampler (see algorithm 6) as follows: on input circuit C of size `, it outputs a
sample based on the randomness generated by DPRF; and the output of the procedure
US.Setup is params = dO.ParaGen(1κ, Sampler(·,DPRF.Eval(S, ·))).

33



Algorithm 6 Sampler Algorithm
1: procedure Sampler(C = c1c2 · · · c`,DPRF.Eval(S,C))
2: rC ← DPRF.Eval(S,C)
3: return C(; rC)
4: end procedure

• US.Sample(params, C): it simply outputs dO.Eval(params, C);

• US.Sim(1κ, 1`, 1t, C∗, s∗): it randomly samples a key S ← DPRF.KeyGen(1κ), let L
be a circuit assignment Sampler(·,DecomposeTo(DPRF.Eval(S, ·), C∗)). And finally it
replaces the fragment corresponding to C∗ in L with “return s∗” instead of returning
C∗(; DPRF.Eval(S,C∗)). Let Sampler′ = CanonicalMerge(L) and the output of US.Sim
is params′ = dO.ParaGen(1κ, Sampler′).

Theorem 5.8. If dO and one-way functions exist, then there exists an universal sampler.

Proof. First, it is straightforward that correctness is satisfied. Next we prove security. Fix a
circuit C∗ and suppose there is an adversary A for the security game with respect to C∗. We
prove the indistinguishability through a sequence of hybrids:

• Hyb 0: Here, the adversary receives params← US.Setup(1κ, 1`, 1t);

• Hyb 1: In this hybrid, let s∗ be the instance sampled by C∗(; DPRF.Eval(S,C∗)). We
get params1 ← US.Sim(1κ, 1`, 1t, C∗, s∗) where let Sampler1 be the circuit constructed
in US.Sim and we are using the same seed S as in Hyb 0.
It is straightforward that Sampler1 and Sampler are ` + 1-decomposing equivalent.
Therefore params1 = dO.ParaGen(1κ, Sampler1) and params = dO.ParaGen(1κ, Sampler)
are indistinguishable by dO security, meaning Hyb 0 and Hyb 1 are indistinguishable.

• Hyb 2 : This is the same as Hyb 1, except we replace the fragment in the circuit
assignment DecomposeTo(DPRF.Eval(S, ·), C∗) corresponding to C∗ with the fragment
“return DPRF.Eval(S ′, C∗)” where S ′ ← DPRF.KeyGen(1κ) is a new key generated
uniformly at random. We call the new circuit assignment L′. The indistinguishability
between Hyb 1 and Hyb 2 follows from the DPRF security.

• Hyb 3: In this hybrid, since the fragment in L′ corresponding to C∗ is now returning
C∗(; DPRF.Eval(S ′, C∗)) and we don’t have S ′ in the program, by PRF security, we
can replace the return value with C(; r∗) where r∗ is a truly random string. This is
equivalent to the adversary receiving params ← US.Sim(1κ, 1`, 1t, C∗, s∗) for a fresh
sample s∗ ← C∗.
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5.4 Equivalence of dO and FE assuming Public Key Encryption
In this section we are going to prove the following theorem:

Theorem 5.9. Assume public key encryption and dO exist, there exists compact (multi-key
selective secure) functional encryption.

Our construction is similar with [GS16]. Before mentioning the construction, wel first
give two more definitions which are used in the construction.

5.4.1 Background

Definition 5.10 (Symmetric Key Encryption with Disjoint Ranges [LP09]). A symmetric key
encryption DSKE with disjoint ranges consists a tuple of algorithms DSKE.KeyGen, DSKE.Enc,
DSKE.Dec , DSKE.InRange and satisfies every property below:

• DSKE.KeyGen(1κ) is a probabilistic polynomial time algorithm that takes a security
parameter κ, outputs a secret key sk;

• DSKE.Enc(sk,m) is a polynomial time algorithm that takes a secret key sk and a message
m ∈ {0, 1}∗, outputs a ciphertext c;

• DSKE.Dec(sk, c) is a polynomial time algorithm that takes a secret key sk and a ciphertext
c ∈ {0, 1}∗, outputs a message m′;

• Range Disjoint : Let Rangen(sk) denote the set {DSKE.Enc(sk, x) |x ∈ {0, 1}n}. For
any two different secret key sk0 6= sk1, Rangen(sk0)∩Rangen(sk1) 6= ∅ with overwhelming
probability, i.e., for any sk0 6= sk1, there exists a negligible function negl such that

Pr [Rangen(sk0) ∩ Rangen(sk1) 6= ∅] ≥ 1− negl(κ)

• DSKE.InRange(sk, c) is an efficient algorithm that checks if a given ciphertext c is in
Rangen(sk);

• Correctness : symmetric key encryption with disjoint ranges is said to be correct if
for all κ and all message m ∈ {0, 1}∗,

Pr [DSKE.Dec(sk, c) = m | sk← DSKE.KeyGen(1κ) ; c← DSKE.Enc(sk,m)] = 1

• Security : It has SKE security.

Symmetric key encryption with disjoint ranges can be obtained from one-way functions [LP09].

We now define a circuit garbling scheme from [Yao86]. We use the definition from [LP09].

Definition 5.11 (Garbled Circuits [Yao86, LP09]). A circuit garbling scheme consists a
tuple of PPT algorithms (Garb.ParaGen,Garb.Eval) satisfying the following properties:
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• Garb.ParaGen(C): It is an efficient randomized procedure that takes a circuit defined on
κ bits to be garbled and outputs a garbled parameter and the set of garbled input labels:
C̃ and {inpi,bi}i∈[κ],bi∈{0,1};

• Garb.Eval(C̃, {inpi,xi}i∈[κ]): It is a deterministic algorithm that takes a parameter C̃ and
input labels {inpi,xi} corresponding to x, it outputs a string y;

• Correctness : Garb is said to be correct if for all circuits C and all inputs x, we have
the following:

Pr
[
Garb.Eval(C̃, {inpi,xi}) = C(x) | C̃, {inpi,bi}i∈[κ],bi∈{0,1} ← Garb.ParaGen(C)

]
= 1

• Security : There exists a simulator Sim such that for all circuits C and all input x,{
C̃, {inpi,xi}i∈[κ]

}
≈c {Sim(1κ, C, C(x))}

In other words, for any poly sized adversary A, there exists a negligible function negl
such that for any C and any input x,∣∣∣Pr

[
A(C̃, {inpi,xi}) = 1

]
− Pr [A(Sim(1κ, C, C(x))) = 1]

∣∣∣ ≤ negl(κ)

Assuming the existence of one-way functions, there exists a circuit garbling scheme
satisfying Definition 5.11 [Yao86, LP09].

5.4.2 dO and Public Key Encryption implies Compact FE

We will first prove dO implies single-key compact functional encryption. The proof of multi-
key FE from dO is similar. Another way to get multi-key FE is to use the result of [GS16].
Now let us give the construction:

• FE.Setup(1κ): it first randomly samples two keys S ← DPRF.KeyGen(1κ) and K ←
DPRF.KeyGen(1κ); consider the following algorithm:

Algorithm 7 Algorithm G with S,K hardcoded
1: procedure G(pk = pk1pk2, · · · pkκ,DPRF.Eval(S, pk),DPRF.Eval(K, pk))
2: Kpk ← DPRF.Eval(K, pk);
3: Spk ← DPRF.Eval(S, pk);
4: return PKE.Enc(pk, Spk;Kpk)
5: end procedure

Algorithm G takes a public key pk for a functional encryption scheme and out-
puts the encryption of Spk using the public key pk. It pads G to have a length
U1 which is a circuit size upper bound (it is a specific polynomial of |G|). Let
mpk = dO.ParaGen(1κ, G(·,DPRF.Eval(S, ·),DPRF.Eval(K, ·))) and msk = S. Finally it
outputs (mpk,msk).
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• FE.Enc(mpk,m): it takes a message m ∈ {0, 1}∗ and does the following (see Algorithm
8): it first generates a key pair (pk, sk) for a public key encryption scheme; then it
gets the encryption of Spk from G and decrypts it by using the secret key sk; finally it
outputs pk and Li,mi for 1 ≤ i ≤ n;

Algorithm 8 FE encryption algorithm
1: procedure FE.Enc(mpk,m)
2: (pk, sk)← PKE.KeyGen(1κ);
3: c← dO.Eval(mpk, pk);
4: S ′pk ← PKE.Dec(sk, c);
5: Ŝ ′pk ← DPRF.KeyGen(1κ) using the randomness from S ′pk;
6: for i = 1, 2, · · · , n do
7: Li,mi ← DPRF.Eval(Ŝ ′pk, i||mi); . Here i is padded to have dlog2 ne bits before

being feed to DPRF
8: end for
9: return (pk, {Li,mi}i∈[n])
10: end procedure

• FE.KeyGen(msk, Cf): it takes a secret key msk = S and a circuit Cf describing
the function f , it then constructs the following circuit (Algorithm 9) where K ′ ←
DPRF.KeyGen(1κ) is a new key.

Algorithm 9 Algorithm H

1: procedure H(pk = pk1pk2 · · · pkκ,DPRF.Eval(S, pk),DPRF.Eval(K ′, pk))
2: K ′pk ← DPRF.Eval(K ′, pk);
3: Spk ← DPRF.Eval(S, pk);
4: Ŝpk ← DPRF.KeyGen(1κ) using the randomness from Spk;
5: (C̃f , {inpi,bi}i∈[κ],bi∈{0,1})← Garb.ParaGen(Cf ;K ′pk);
6: ci,b = DSKE.Enc(Li,b, inpi,b) for any i ∈ [n] and b ∈ {0, 1} where Li,b =

DPRF.Eval(Ŝpk, i||b);
7: return (C̃f , {ci,bi}i∈[n],bi∈{0,1});
8: end procedure

H simply applies Garb.ParaGen on Cf but encrypts all the input labels using Li,bi .
This procedure outputs dO.ParaGen(1κ, H(·,DPRF.Eval(S, ·),DPRF.Eval(K ′, ·))) (H is
padded to a length upper bound U2).

• FE.Dec(fskf , c) where fskf = dO.ParaGen(1κ, H) and c = (pk, {Li,mi}i∈[n]).

It will first get (C̃f , {ci,bi}i∈[n],bi∈{0,1}) by dO.Eval(fskf , pk). Since either ci,0 or ci,1 will
be in Rangen(Li,mi), it can use DSKE.InRange(Li,mi , ci,b) to know which ciphertext to
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choose. So it can exactly decrypt ci,mi using Li,mi to get inpi,mi for 1 ≤ i ≤ n. Finally
it runs Garb.Eval(C̃, {inpi,mi}) = Cf (m).

Correctness and Efficiency

It is easy to see that the above construction satisfies the correctness of functional en-
cryption. Since given a fskf and c = (pk, {Li,mi}i∈[n]), FE.Dec will find the right ci,mi by
DSKE.InRange. Given the right {inpi,mi}, by correctness of the circuit garbling scheme,
Garb.Eval(C̃, {inpi,mi}) = Cf (m),

Let us argue it is compact. The running time of FE.Enc is bounded by poly(κ, |m|) since
the running time of PKE.KeyGen, dO.Eval, PKE.Dec, DPRF and the output size of dO.ParaGen
is bounded by poly(κ, |m|). It is independent of Cf .

Security

Now let us prove the security through a sequence of hybrids.

• Hyb 0: The adversary is given the following:

– a master public key mpk = dO.ParaGen(1κ, G(·,DPRF.Eval(S, ·),DPRF.Eval(K, ·))),
– a ciphertext c∗ = (pk∗, {Li,m0,i}i∈[n]),
– a function key fskf = dO.ParaGen(1κ, H(·,DPRF.Eval(S, ·),DPRF.Eval(K ′, ·))).

• Hyb 1: In this hybrid, we decompose the program G to get a circuit assignment
LG = DecomposeTo(G, pk∗). By lemma 5.3, indeed we have

LG = G(·,DecomposeTo(DPRF.Eval(S, ·), pk∗),DecomposeTo(DPRF.Eval(K, ·), pk∗))

Then we get its corresponding circuit CanonicalMerge(LG) (pad it to length U1) and
a new master public key mpk1 = dO.ParaGen(1κ,CanonicalMerge(LG)). The indistin-
guishability comes from the security of dO.

• Hyb 2: In this hybrid, we decompose H along pk∗ to get a circuit assignment LH =
DecomposeTo(H, pk∗). By lemma 5.3, indeed we have

LH = H(·,DecomposeTo(DPRF.Eval(S, ·), pk∗),DecomposeTo(DPRF.Eval(K ′, ·), pk∗))

Then we get its corresponding circuit CanonicalMerge(LH) (pad it to length U2) and a
new function key fsk1 = dO.ParaGen(1κ,CanonicalMerge(LH)). The indistinguishability
comes from the security of dO.

• Hyb 3: In this hybrid, we are going to change the fragment in LG corresponding to
pk∗. The fragment is “return PKE.Enc(pk∗, Spk∗ ;Kpk∗)”. By DPRF security, Kpk∗ can
be replaced as DPRF.Eval(K ′′, pk∗) where K ′′ is a new key generated using a uniformly
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random string. And as we don’t have K ′′ inside the program (the fragment is simplified),
by PRF security, Kpk∗ can again be replaced with a uniformly random string r1.
So in this step, the fragment now becomes “return PKE.Enc(pk∗, Spk∗ ; r1)”. Let us call
the new circuit assignment L′G. Finally we get mpk2 = dO.ParaGen(1κ,CanonicalMerge(L′G)).
The indistinguishability comes from PRF and DPRF security.

• Hyb 4: In this hybrid, we are still going to change the fragment in L′G corresponding
to pk∗. It is now “return PKE.Enc(pk∗,⊥; r1)” where ⊥ means filling it with zeroes.
Let us call the new circuit assignment L′′G. The indistinguishability comes from the
security of PKE since we only have pk∗ but don’t have sk∗. (Observe that L′′G no longer
has Spk∗ inside. )

• Hyb 5: In this hybrid, we can replace K ′pk∗ using the same way as in Hyb 3 and replace
it with a uniformly random string r2. So the fragment in the new circuit assignment
L′H corresponding to pk∗ is now using r2 to compute Garb.ParaGen(Cf) instead of the
old K ′pk∗ . The indistinguishability comes from the security of DPRF.

• Hyb 6: By the DPRF security, we can replace the fragment DPRF.Eval(S, pk∗) in
DecomposeTo(DPRF.Eval(S, ·)) with DPRF.Eval(S̃, pk∗) where S̃ is a newly generated
key using fresh randomness. We find that DPRF.Eval(S, pk∗) does not appear in L′′G
as the fragment corresponding to pk∗ is now “return PKE.Enc(pk∗,⊥; r1)”. And the
fragment in L′H has DPRF.Eval(S̃, pk∗) but not that of S.

• Hyb 7: We can now replace the DPRF.Eval(S̃, pk∗) in the fragment corresponding to
pk∗ in L′H with a truly random string r3. The indistinguishability comes from PRF
security. Now Ŝpk∗ in G can be viewed as being generated by fresh randomness, in other
words, Ŝpk∗ ← DPRF.KeyGen(1κ; r3).

• Hyb 8: We replace each Li,bi with truly random strings. We have the following
observations:

– Ŝpk∗ does not appear anywhere now;
– We can replace each Li,bi for all i ∈ [n] and bi ∈ {0, 1} one by one, by DPRF

security and PRF security, and replace it with truly random strings ri,bi . If Li,bi
is part of c∗, we also replace it in the ciphertext c∗. Otherwise, we only need to
replace it in the fragment.
That is, we change the secret key (to encrypt inpi,bi) from Li,bi to a uniformly
random string, and update c∗i,bi .

– After all these replacement, the fragment in the new L′′H corresponding to pk∗ now
becomes “return (C̃f , {c∗i,bi}i∈[n],bi∈{0,1})” where c∗i,bi are ciphertexts using the new
symmetric keys.

• Hyb 9: Since in the previous hybrid, the adversary no longer has Li,¬m0,i (which is
replaced with truly randomness and the circuit is simplified), we can replace any ci,¬m0,i
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as SKE.Enc(ri,¬m0,i ,⊥) instead of SKE.Enc(ri,¬m0,i , inpi,¬m0,i) where the symmetric key
ri,¬m0,i is drawn uniformly at random. It comes from indistinguishability of SKE.
So we have c∗ = (pk∗, {ri,m0,i}i∈[n]), mpk = dO.ParaGen(1κ,CanonicalMerge(L′′G)) and
fskf = dO.ParaGen(1κ,CanonicalMerge(L′′H)) where

dO.Eval(fskf , pk∗)
= (C̃f , {ci,m0,i = SKE.Enc(ri,m0,i , inpi,m0,i)}i∈[n] ∪ {ci,¬m0,i = SKE.Enc(ri,¬m0,i ,⊥}i∈[n])

• Hyb 10: In this Hyb, we replace {C̃f , {inpi,m0,i}i∈[n]} with {Sim(1κ, C, C(m0))}. The
indistinguishability comes from the security of a circuit garbling scheme.

• Hyb 11: In this Hyb, we replace {Sim(1κ, C, C(m0))} with {Sim(1κ, C, C(m1))} since
C(m0) = C(m1). The two distributions are identical.

If it starts with c∗ = (pk∗, {Li,m1,i}i∈[n]), it will finally goes to Hyb 9 through several
hybrids. So an adversary can not distinguish whether it is given the encryption of m0 or m1
when the function query Cf satisfies Cf (m0) = Cf (m1). We complete the proof of security.

Theorem 5.12. Assume one-way functions and dO exist, there exists compact (multi-key
selective secure) secret functional encryption.

We don’t give the full proof for this theorem. But it is quite similar to the proof for
theorem 5.9. And it is even simpler because the challenger does not need to give mpk to the
adversary which allows us to get rid of PKE in the theorem.

5.5 PPAD Hardness from polynomially hard dO
In this section, we will first mention the background and notations and then give the main
result.

5.5.1 Background

Most of this subsection are taken verbatim from [BPR15, GPS16]. A search problem is
given by a tuple (I, R). I defines the set of instances and R is an NP relation. Given
x ∈ I, the goal is to find a witness w (if it exists) such that R(x,w) = 1. We say a search
problem (I1, R1) is polynomial time reducible to another research problem (I2, R2) if there
exist polynomial time algorithms P,Q such that for every x1 ∈ I1, P (x1) ∈ I2 and given w2
such that R1(P (x1), w2) = 1, we have R1(x1, Q(w2)) = 1.

A search problem is said to be total if for any x ∈ {0, 1}∗, there exists a polynomial time
procedure to test whether R(x,w) = 1 for given x,w and for all x ∈ I, the set of witness
w such that R(x,w) = 1 is non-empty. The class of total search problems is denoted by
TFNP. PPAD [Pap94] is a subset of TFNP and is defined by its complete problem called
END-OF-LINE (abbreviated as EOL).
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Definition 5.13. END-OF-LINE is the following problem: EOL = {IEOL, REOL} where IEOL =
{(xs, Succ,Pred) : Succ(xs) 6= xs = Pred(xs)} and REOL((xs, Succ,Pred), w) = 1 if and only if
(Pred(Succ(w)) 6= w) ∨ (Succ(Pred(w)) 6= w ∧ w 6= xs).

Definition 5.14. The complexity class PPAD is the set of all search problems (I, R) such
that (I, R) ∈ TFNP and (I, R) polynomial time reduces to EOL.

Now let us look at a related problem to EOL which is SINK-OF-VERFIABLE-LINE (abbre-
viated as SVL) which is defined as follows:

Definition 5.15. SVL = {ISVL, RSVL} where ISVL = {(xs, Succ,Ver, T )} is the set of instances
and the relation RSVL((xs, Succ,Ver, T ), w) is true ⇐⇒ Ver(w, T ) = 1.

SVL instance defines a single directed path with the source being xs. Succ is the successor
circuit and there is a directed edge between u and v if and only if Succ(u) = v. Ver is the
verification circuit and is used to test whether a given node is the i-th node from xs. That is,
Ver(x, i) = 1 iff x = Succi−1(xs). The goal is to find the T -th node in the path. We have the
following lemma from [AKV04, BPR15].

Lemma 5.16. SVL polynomial time reduces to EOL.

So to prove the existence of dO implies PPAD hardness, we only need to show dO implies
SVL hardness.

5.5.2 Construction

The construction is similar to [GPS16].
Given the Next function (see algorithm 11), we can now construct a SVL instance

(xs, Succ,Ver, T ) where

• xs = (0κ,DPRF.Eval(S1, 0), · · · ,DPRF.Eval(Sκ, 0κ));

• Succ(k, σ1, · · · , σκ) = Next(k, σ1, · · · , σκ);

• Ver(x, k) = 1 iff Succk−1(xs) = x;

• T = 1κ;

where S1, S2, · · · , Sκ are sampled from DPRF.KeyGen(1κ). And PRG is a pseudorandom
generator with expansion factor 4 where PRG0 denotes the left part of PRG’s output and PRG1
denotes the right part. And v←

R
{0, 1}4κ. For simplicity, we define P1(x1) = DPRF.Eval(S1, x1)

defined on inputs of length 1, P2(x[2]) = DPRF.Eval(S2, x[2]) defined on inputs of length 2,
and similarly Pκ(x) = DPRF.Eval(Sκ, x) defined on inputs of length κ. So xs can be written
as (0κ, P1(0), P2(00), · · · , Pκ(0κ)). Also we can define Qi(x) computes Pi(x+ 1); it means Qi
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Algorithm 10 G outputs a sequence
1: procedure G(x = x1x2 · · ·xκ, P1(x1), Q1(x1), · · · , Pκ(x), Qκ(x))
2: Hardcoded: v
3: initialize arrays {ti}, {αi}, {γi} as zeroes for i = 1 · · ·κ;
4: initialize j as 1 (j will finally be the smallest integer, x = x[j]||1κ−j);
5: for i = 1, 2, · · · , κ do
6: if xi = 0 then
7: fill γl and tl with zeroes for all l between j and i− 1
8: update j as i since f(x) will be at least i
9: end if
10: compute si = DPRF.Eval(Si, x[i]) by Pi(x[i])
11: compute and store αi = PRG0(si) and γi = PRG1(si)
12: compute and store ti = DPRF.Eval(Si, x[i] + 1) by Qi(x[i])
13: end for
14: for i = j, j + 1, · · · , κ do
15: compute βi = SKE.Enc(γj|| · · · ||γκ, ti)
16: end for
17: if PRG(x) = v then
18: return ⊥
19: end if
20: return α1, · · · , ακ, βj, · · · , βκ
21: end procedure
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Algorithm 11 Next computes the next feasible node
1: procedure Next(x = x1x2 · · · xκ, σ1, · · · , σκ)
2: Hardcoded : G′ ← dO.ParaGen(1κ, G(·, P1(·), Q1(·), · · · , Pκ(·), Qκ(·)))
3: (α1, · · · , ακ, βj, · · · , βκ)← dO.Eval(G′, x1x2 · · · xκ)
4: if the output is ⊥ or PRG0(σi) 6= αi for any i ∈ [κ] then
5: output ⊥
6: end if
7: if x = 1κ, output SOLVED
8: compute j = f(x) which is the smallest integer, x = x[j]||1κ−j
9: for i = 1, · · · , j − 1 do
10: σ′i ← σi
11: end for
12: for i = j, · · · , κ do
13: γi ← PRG1(σi)
14: end for
15: for i = j, · · · , κ do
16: σ′i ← SKE.Dec(γj|| · · · ||γκ, βi)
17: end for
18: return (x+ 1, σ′1, · · · , σ′κ)
19: end procedure

Algorithm 12 Qm computes Pm(x+ 1) = DPRF.Eval(Sm, x+ 1)
1: procedure Qm(x = x1x2 · · ·xm)
2: let P be the fragment Pm(·)
3: let tmp = Pm(0m)
4: for i = 1, 2, · · · ,m do
5: if xi = 0 then
6: tmp← P (1||0m−i+1)
7: end if
8: update fragment P ← P (xi, ·)
9: end for
10: return tmp
11: end procedure
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first computes y = x+ 1 and then gets Pi(y) (Pi, Qi can also be viewed as defined on inputs
of length κ by simply ignoring the last few input bits.)

This algorithm Next describes a line graph where the starting node is xs and Next will
first check the given input is valid and then return the next node in the graph.

Correctness

First, when S1, S2, · · · , Sκ are sampled from DPRF.KeyGen(1κ) and v←
R
{0, 1}4κ, with over-

whelming probability 1 − 1
23κ , we have a valid instance of SVL. Since with overwhelming

probability,

Pr[∃x such that PRG(x) = v] ≤
⋃
x

Pr[PRG(x) = v] = 2κ
24κ = 1

/
23κ

the 17-th line of G will never be executed. With a node description (x, σ1, · · · , σκ), we
first compute a list α1, α2, · · · , ακ, βj, · · · , βκ where j = f(x). And in Next, we check that
for all i, PRG(σi) = αi holds. Because x and x + 1 share the longest common prefix with
length j − 1 (in details x = x[j−1]||0||1κ−j and x + 1 = x[j−1]||1||0κ−j) it is easy to see that
DPRF.Eval(Si, x[i]) = DPRF.Eval(Si, (x+ 1)[i]) for 1 ≤ i ≤ j − 1. Then we decrypt βj, · · · , βκ
to get DPRF.Eval(Si, (x+ 1)[i]) = DPRF.Eval(Si, x[i] + 1) = Qi(x[i]) for all j ≤ i ≤ κ.

Security

Proof. Now let us prove PPAD hardness. We are doing the proof through polynomial
number of hybrids to the function G. In the following hybrids, before using dO, we will first
pad the programs to length U where U is the length upper bound of all the programs which
is of poly(κ, |G|).

• Hyb 0: The adversary is given an SVL instance in the above construction where every
Si is sampled by DPRF.KeyGen(1κ). The adversary has xs and G.

• Hyb 1: In this hybrid, we change the hardcoded v in G by v′ where v′ ← PRG(u)
and u←

R
{0, 1}κ. It is easy to show the indistinguishability from the security of the

pseudorandom generator. We denote the algorithm as G1. Given u, we define a
sequence u = u0, u1, · · · , uδ = 1κ where δ is at most κ, ui+1 = ui + 2κ−f(ui) and f(x) is
the smallest integer j such that x = x[j]||1κ−j.

• Hyb 2: In this hybrid, we can decompose the program G along u. Let the circuit
assignment L = DecomposeTo(G, u). The fragment in L corresponding to u is “return
⊥”. Let G2 = CanonicalMerge(L). We find dO.ParaGen(1κ, G2) and dO.ParaGen(1κ, G1)
are indistinguishable since G1 and G2 are (κ+ 1)-decomposing equivalent.

• Hyb 3 In this hybrid, we will decompose the program into more pieces and replace
some fragments. After the replacement, the two programs are indistinguishable but
with overwhelming probability, for any x ∈ [u0 + 1, u1], there does not exist σ1, · · · , σκ
that pass the test PRG0(σi) = αi in Next function. Now let us look at the details:

44



– Hyb 3.1 In this sub-hybrid, we puncture at [u0 + 1, u1]. We realize that for all
x ∈ [u0 + 1, u1], they share a common prefix of length f0 = f(u0) (recall the
definition of f in both algorithm 10 and Hyb 1). Let t0 be the longest common
prefix of u0 + 1 and u1, f0 = |t0|.
We decompose our original program G into pieces along the path u = u0 and u1 to
get L2 = DecomposeTo(G, {u0, u1}). And let G3 = CanonicalMerge(L2). We claim
that dO.ParaGen(G3) is indistinguishable from dO.ParaGen(G2) because G2 and
G3 are (2κ+ 1)-decomposing equivalent.

– Hyb 3.2 For each fragment in L2 which corresponds to y, the fragment is

G(y, ·, P1(y, ·), Q1(y, ·), · · · , Pκ(y, ·), Qκ(y, ·)) simplified

Here we view Pm, Qm as functions defined on κ bit strings, so the above holds
because of Lemma 5.3. For any Qm and string y (|y| ≤ m), Qm(y, ·) can be
constructed from Pm(y, ·) and Pm(y + 1, 0m−|y|) since we can easily reconstruct
Qm in the |y|-th round (recall the definition of Qm) using the fragment Pm(y, ·)
and the value Pm(y + 1, 0m−|y|) as tmp. Assume y = y′||0||1l, in the |y′| + 1
round, the algorithm Qm will update tmp in that round by Pm(y′||1||0l, 0m−|y|) =
Pm(y + 1, 0m−|y|) and never update tmp during (|y′|+ 2)-th round to |y|-th round.
The above argument implies another observation: for any tree covering TC,
DecomposeTo(Qm, TC) can be constructed from DecomposeTo(Pm, TC). So now
we only care about the circuit assignments DecomposeTo(Pm, {x1, x2}).

– Hyb 3.3 In this sub-hybrid, we replace the fragment in DecomposeTo(Pf0 , ·)
corresponding to t0 (or in other words, the value DPRF.Eval(Sf0 , t0)) with a
uniformly random string rf0,t0 . The indistinguishability comes from DPRF and
PRF security. Also we find that rf0,t0 only appears in the fragment (of the circuit
Next) as PRG0(rf0,t0),PRG1(rf0,t0):
∗ For any fragment corresponding to y = u0,[l−1]¬u0,l that l < f0, there does not

exist z such that y||z = t0 or t0 − 1, so the value rf0,t0 does not appear in this
fragment;
∗ For any fragment corresponding to y = u0,[l−1]¬u0,l that l > f0, we know that
yl = 0. So by the definition of f function, for any z, f(y||z) will be at least
l > f0. So the variable tf0 in the function G has been replaced with zeroes and
αf0 , βf0 are computed from PRG(DPRF.Eval(Sf0 , t0,[f0−1]||0)) instead of from
PRG(DPRF.Eval(Sf0 , t0)) as we know the f0-th bit of t0 is 1.
∗ For the fragment corresponding to u0, it already becomes “return ⊥”. (Here
for Hyb (2+i).3 where i > 1, the fragment corresponding to ui−1 is not
“return ⊥”. It is “return {α} and {β}” where {β} have been replaced with
encryptions of random strings. So rfi,ti is still not in the fragment.)
∗ For any fragment corresponding to y = u1,[l−1]¬u1,l that l < f0, there does not

exist z such that y||z = t0;
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∗ For any fragment corresponding to y = u1,[l−1]¬u1,l that l > f0, we know that
yl = 0. So by the definition of f function, for any z, f(y||z) will be at least
l > f0. So it only has PRG0(rf0,t0) inside the program.
∗ For the fragment corresponding to u1, it has both PRG0(rf0,t0),PRG1(rf0,t0).

– Hyb 3.4 In this sub-hybrid, we replace PRG(rf0,t0) = PRG0(rf0,t0)||PRG1(rf0,t0)
with truly random strings. Since we don’t have rf0,t0 hardcoded in the circuit assign-
ment, we can simply replace PRG0(rf0,t0) and PRG1(rf0,t0) with truly randomness
v0,0, v0,1 ← {0, 1}2κ by the PRG security.
After the replacement, with overwhelming probability (1− 1/2κ), there does not
exist any σf0 such that PRG0(σf0) = v0,0. And the fragment corresponding to
u1 is returning {α}, {β} where {β} are now encrypted by random keys because
PRG1(rf0,t0) has been replaced with a truly random string.

– Hyb 3.5 In this sub-hybrid, as we no longer have the secret key for encrypting {β},
we can replace them with encryptions of random strings. The indistinguishability
comes from SKE security.

• Hyb (2 + i) for 1 ≤ i ≤ δ : In this hybrid, we will decompose the program into pieces
along the path u0, u1, u2, · · · , ui and replace hardcoded values like Hyb 3. After the
replacement, the two programs are indistinguishable but with overwhelming probability,
for any x ∈ [u0, u2+i], there does not exist σ1, · · · , σκ that pass the test PRG0(σi) = αi
in Next function. The proof is similar like that for Hyb 3. Let G2+i denote the current
program we have.

Let U = max2+δ
i=1 |Gi| ≤ poly(|G|, κ, δ) be the upper bound of all the programs in the above

hybrids.
Finally we are in Hyb (2 + δ). We have already replaced PRG0(Pfi(ti)) with true

randomness.

Pr [∃σ1, · · · , σκ, such that G2+δ(1κ, σ1, · · · , σκ) 6= ⊥] ≤ 1
2κ

So with overwhelming probability, we can never find a valid signature (or witness w =
(σ1, σ2, · · · , σκ)) for the destination T = 1κ such that Ver(w, T ) = 1.

Theorem 5.17. If polynomially hard dO and one way functions exist, then the END-OF-LINE
problem is hard for polynomial-time algorithms.

5.6 Trapdoor Permutations
In this section, we present the construction of trapdoor permutations from dO. The construc-
tion is inspired from [GPSZ16].
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5.6.1 Background

Most of this subsection are taken verbatim from [GPSZ16].

Definition 5.18. An efficiently computable family of functions:

T DP = {TDPPK : DPK → DPK}

over the domain DPK with associated probabilistic algorithms (KeyGen, SampGen) is a weakly
samplable trapdoor permutation if it satisfies:

• Trapdoor Invertibility: For any (PK, SK)← KeyGen(1λ), TDPPK is a permutation
over DPK. And for any y ∈ DPK, TDP−1

PK is efficiently computable gvien the trapdoor
SK;

• Weakly Pseudorandom Sampling: For any (PK, SK)← KeyGen(1λ) and Sampler←
SampGen(SK), Sampler(·) samples pseudo random points in DPK. Formally, for any
poly sized adversary A, we define the following game: Gameλ,A,b:

– The challenger prepares (PK, SK)← KeyGen(1λ) and Sampler← SampGen(SK).
– If b = 0, the challenger sends 〈PK, Sampler, x〉 where x is a uniformly random
sample in DPK; otherwise, the challengers sends 〈PK, Sampler, x′〉 where x′ is
sampled by Sampler(·).

– The result of the game is the output of A.

And the following holds: for any poly sized adversary A, there exists a negligible function
negl such that for every security parameter λ,

|Pr[Gameλ,A,0 = 0]− Pr[Gameλ,A,1 = 0]| ≤ negl(λ)

• One-wayness: For all poly sized adversary A, there exists a negligible function negl,
for all λ,

Pr
[
A(PK, Sampler,TDPPK(x)) = x

∣∣∣∣∣ (PK,SK)←KeyGen(1λ)
Sampler←SampGen(SK)

x←Sampler(·)

]
≤ negl(λ)

This is called “weakly pseudorandom sampling” because in Gameλ,A,b, the challenger does
not need to provide the randomness that is used in KeyGen and SampGen. Therefore the
trapdoor permutations can be only used in applications where an honest party runs KeyGen
and SampGen algorithms.
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5.6.2 Construction

First KeyGen is the following algorithm: it takes a security parameter λ and prepares 2λ keys
Si ← DPRF.KeyGen(1λ) for i = 1, 2, · · · , 2λ. Given these 2λ keys, the domain DPK is defined
as the following:

DPK =
{(
x,DPRF.Eval(S1, x[1]), · · · ,DPRF.Eval(S2λ, x[2λ])

)}
x∈{0,1}2λ

In other words, for every x ∈ {0, 1}2λ, it computes σi which is DPRF.Eval(Si, x[i]). Similar
Section 5.5, all the elements in DPK define a cycle. For every element (x, · · · ), it has a
predecessor ((x− 1) mod 22λ, · · · ) and a successor ((x+ 1) mod 22λ, · · · ).

Intuitively PK is an obfuscated program which takes as input an element corresponding to
x in DPK and outputs an element corresponding to (x+ 1) mod 22λ. In other words, PK takes
an element in DPK and outputs the next element in the cycle. SK is just 2λ keys (S1, · · · , S2λ)
and one can easily compute the previous element in the cycle with SK.

More formally, PK is the following program Next where Next (see algorithm 13) computes
the next node in the cycle. This is almost the same as that in Section 5.5 but it does not halt
on 12λ or return SOLVED. PRG0 and PRG1 are the left and right part of a pseudorandom
generator PRG : {0, 1}λ → {0, 1}4λ. Pi is a circuit computing DPRF.Eval(Si, ·) and Qi is a
circuit computing Qi(x) = Pi((x+ 1) (mod 2i)) just in Section 5.5

Algorithm 13 Next computes the next node in the cycle
1: procedure Next(x = x1x2 · · · x2λ, σ1, · · · , σ2λ)
2: Hardcoded : G′ ← dO.ParaGen(1κ, G(·, P1(·), Q1(·), · · · , P2λ(·), Q2λ(·)))
3: (α1, · · · , α2λ, βj, · · · , β2λ)← dO.Eval(G′, x1x2 · · ·x2λ)
4: if the output is ⊥ or PRG0(σi) 6= αi for any i ∈ [2λ] then
5: output ⊥
6: end if
7: compute j = f(x) which is the smallest integer, x = x[j]||12λ−j

8: for i = 1, · · · , j − 1 do
9: σ′i ← σi
10: end for
11: for i = j, · · · , 2λ do
12: γi ← PRG1(σi)
13: end for
14: for i = j, · · · , 2λ do
15: σ′i ← SKE.Dec(γj|| · · · ||γ2λ, βi)
16: end for
17: return ((x+ 1) mod 22λ, σ′1, · · · , σ′2λ)
18: end procedure

Here G′ is an obfuscated program hard-coded in Next. The circuit G (see algorithm 14) is
similar to that in Section 5.5 where the only difference is in the 17-th line; PRG′ is a length
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doubling injective pseudorandom generator {0, 1}λ/8 → {0, 1}λ/4 and Extw is a (λ/4, negl(λ))
strong randomness extractor with seed length q(λ) where a random seed w is sampled for
Ext.

The KeyGen procedure returns PK = Next and SK = (S1, S2, · · · , S2λ).

Algorithm 14 G outputs a sequence
1: procedure G(x = x1x2 · · ·x2λ, P1(x1), Q1(x1), · · · , P2λ(x), Q2λ(x))
2: Hardcoded: a uniformly random v ∈ {0, 1}λ/4

3: initialize arrays {ti}, {αi}, {γi} as zeroes for i = 1 · · · 2λ;
4: initialize j as 1 (j will finally be the smallest integer, x = x[j]||12λ−j);
5: for i = 1, 2, · · · , 2λ do
6: if xi = 0 then
7: fill γl and tl with zeroes for all l between j and i− 1
8: update j as i since f(x) will be at least i
9: end if
10: compute si = DPRF.Eval(Si, x[i]) by Pi(x[i])
11: compute and store αi = PRG0(si) and γi = PRG1(si)
12: compute and store ti = DPRF.Eval(Si, x[i] + 1) by Qi(x[i])
13: end for
14: for i = j, j + 1, · · · , 2λ do
15: compute βi = SKE.Enc(γj|| · · · ||γ2λ, ti)
16: end for
17: if PRG′(Extw(x)) = v then
18: return ⊥
19: end if
20: return α1, · · · , α2λ, βj, · · · , β2λ
21: end procedure

Next let us look at SampGen. The construction of SampGen and Sampler requires dO and
PKE. The technique is similar to the equivalence of dO and FE in Section 5.4. SampGen
generates two DPRF keys K and K ′, generates the circuit H corresponding to K,K ′ and
returns Sampler corresponding to an obfuscated program H ′.

The correctness is straightforward to verify. First with probability at least 1− 1
2λ/8 , there

does not exist x such that PRG′(Extw(x)) = v for a random v. Thus, for every PK, TDPPK is
a permutation defined on DPK. And given SK = (S1, · · · , S2λ), TDP−1

PK (x, · · · ) is computable
in polynomial time: get x′ = (x − 1) (mod 22λ) and compute σi = DPRF.Eval(Si, x′[i]). It
remains to prove another two properties “weakly pseudorandom sampling” and “one-wayness”.

5.6.3 Weakly pseudorandom sampling

Now we verify “weakly pseudorandom sampling”.
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Algorithm 15 Sampler algorithm
1: procedure Sampler(; r)
2: Hardcoded: an obfuscated program H ′

3: (pk, sk)← PKE.KeyGen(1κ; r) where we assume the distribution of pk is uniform
4: (c, c1, c2, · · · , c2λ)← dO.Eval(H ′, pk);
5: Kpk ← PKE.Dec(sk, c);
6: σ′i ← PKE.Dec(sk, ci) for 1 ≤ i ≤ 2λ;
7: return (pk||Kpk, σ

′
1, · · · , σ′2λ)

8: end procedure

Algorithm 16 circuit H
1: procedure H(pk,DPRF.Eval(K, ·),DPRF.Eval(K ′, ·))
2: Hardcoded: S1, S2, · · · , S2λ
3: Y = DPRF.Eval(K, pk) and let x = pk||Y ;
4: compute σi ← DPRF.Eval(Si, x[i]);
5: encrypt Y, σ1, · · · , σ2λ as c, c1, · · · , c2λ using pk and the randomness from K ′pk;
6: return (c, c1, c2, · · · , c2λ)
7: end procedure

Proof. Let us prove Gameλ,A,0 and Gameλ,A,1 are indistinguishable. We do so by defining a
sequence of hybrids:

• Hyb 0: The adversary is given the program Next (in other words, the obfuscated
program G′) , the sampler H ′, and a random point sampled from Sampler, i.e., the
challenge (pk∗||Kpk∗ , σ1, · · · , σ2λ). In this case, the adversary is in Gameλ,A,1.

• Hyb 1: In this Hybrid, DPRF.Eval(K, ·) and DPRF.Eval(K ′, ·) is decomposed along
pk∗ and the adversary gets a new obfuscated circuit H ′1 = dO.ParaGen(1λ, H1):

H1 = DecomposeTo(H(·,DPRF.Eval(K, ·),DPRF.Eval(K ′, ·)), pk∗)

BecauseH1 andH are (λ+1) decomposing equivalent, computational indistinguishability
between Hyb 0 and Hyb 1 follows from the security of dO.

• Hyb 2: We take the circuit fragment in H1 corresponding to pk∗. This fragment is
a constant circuit that always outputs (c∗, c∗1, · · · , c∗2λ) where they are encryptions of
Kpk∗ , σ1, · · · , σ2λ using pk∗ and randomness from K ′pk∗ .
In this step, we only change K ′pk∗ with a truly random string and now (c∗, c∗1, · · · , c∗2λ)
are encryptions of the same messages but using uniform randomness. Let H2 and H ′2
be the programs of this step. The indistinguishability between H ′1 and H ′2 comes from
the security of DPRF.

• Hyb 3: In this step, we change c∗, c∗1, · · · , c∗2λ in the fragment corresponding to pk∗
in H2 with encryptions of 0λ. Because the adversary only gets pk∗ but not sk∗, the
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advantage of distinguishing them is negligible from PKE security. Let H3 be the program
and the fragment in H3 corresponding to pk∗ outputs encryptions of 0λ with uniform
randomness.

• Hyb 4: In this step, because Kpk∗ only appears in the random point sampled from
Sampler, Kpk∗ can be replaced with a random string z←

R
{0, 1}λ and update σi =

DPRF.Eval(Si, (pk∗||z)[i]). The challenge given to the adversary is now (pk∗||z, σ1, · · · , σ2λ).

• Hyb 5: We restore what we did for c∗, c∗1, · · · . Now they are encryptions of Kpk∗ and
σi with respect to pk∗||Kpk∗ . The indistinguishability comes from PKE security. This is
identical to Hyb 2 except the challenge is different.

• Hyb 6: We restore what we did for K ′pk∗ . Instead of replacing it with a random string
and using it for encrypting, now we use K ′pk∗ for encrypting z and σi. The security of
DPRF implies the probability of distinguishing Hyb 5 and Hyb 6 is negligible. This is
identical to Hyb 1 except the challenge is different.

• Hyb 7: This is same as Hyb 0 except the challenge is now (pk∗||z, σ1, · · · ). In other
words, the adversary is now in Gameλ,A,0 where the challenge corresponds to pk∗||z
which is a uniformly random string in {0, 1}2λ. The challenge is now a random point in
DPK. The indistinguishability comes from dO security.

We prove this construction satisfies the “weakly pseudorandom sampling” property. That
is , for any poly sized A, there exists a negligible function negl for all λ,

|Pr[Gameλ,A,0 = 0]− Pr[Gameλ,A,1 = 0]| ≤ negl(λ)

5.6.4 One-wayness

Let us prove the construction satisfies the “one-wayness” property. The technique is similar
to the proof in Section 5.5. The main difference is that given a challenge (i∗, · · · ), we are
going to puncture the program G at a random point that is at most 2λ/4 away from i∗ to
prevent the sampler’s image fall into this range.

Proof.

• Hyb 0: The adversrary gets PK = Next (in other words, the obfuscated program
G′ in Next), Sampler (the obfuscated program H ′ in Sampler) and a random point
(pk∗||Kpk∗ , σ1, · · · ) sampled from Sampler.

• Hyb 1: The challenge is replaced with a random point (pk∗||z, σ1, · · · ). The indistin-
guishability comes from weakly pseudorandom sampling property we have proved
for this construction. Let us denote the challenge as (i∗, σ1, · · · , σ2λ).
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• Hyb 2: In this step, we change how the value v in G is generated. We know that in G,
v is a uniformly random string in {0, 1}λ/4. Now v is replaced with v′ = PRG′(u) where
u′←

R
{0, 1}λ/8. The indistinguishability comes from PRG’ security. Let us call the new

program G2.

• Hyb 3: In Hyb 2, v′ = PRG′(u) where u is uniformly chosen from {0, 1}λ/8. Let
us change how u is chosen. Instead of choosing uniformly from {0, 1}λ/8, u′ now is
computed by Extw((i∗7

4λ
− 1)||h) where h← {0, 1}λ/4. The two distributions Uλ/8 and

Extw((i∗7
4λ
− 1)||Uλ/4) (where w is a random seed) are indistinguishable by the definition

of a (λ/4, negl(λ)) randomness extractor.
After this change, we get the program G3 with v′′ = PRG′(u′) = PRG′((Extw(i∗7/4λ −
1)||h0)) where h0←

R
{0, 1}λ/4. Now Next always outputs ⊥ for all ((i∗7/4λ − 1)||h0, · · · ).

• In the following hybrids, we are going to puncture the program G3 such that with
overwhelming probability, for any x ∈ [(i∗7/4λ − 1)||h0, i

∗ − 1], TDPPK is not defined. As
a result, TDPPK((i∗, · · · )) does not have a preimage. So for any poly sized adversary, it
can never find the preimage.
Let u0 = (i∗7/4λ − 1)||h0. Like what we did for PPAD section, we define u1, u2, · · · , uδ
such that (uj+1 − uj) is a power of 2 and

– Recall the definition of f : f(x) is the smallest integer j such that xj = x[j]||12λ−j.
– ui = ui−1 + 22λ−f(ui−1) if the first 7/4 bits of ui is (i∗7/4λ − 1). And finally we get
uδ′ = (i∗7/4λ − 1)||1λ/4.

– ui+1+δ′ = ui+δ′ + 22λ−ρ(ui+δ′+1,i∗−1) for i ≥ 0. Here ρ(x, y) returns the smallest
index j such that x and y differs at that index. In our proof, the ρ(x, y)-th bit of
x is always 0 and that of y is always 1.

– δ is linear in δ, δ = O(λ).

After defining u0 = (i∗7/4λ − 1)||h0 and u1, u2, · · · , uδ = i∗ − 1, we are going to puncture
the program at [ui + 1, ui+1] for 0 ≤ i ≤ δ − 1 and u0.

• Hyb 4: We decompose the program G3 and H along u0, in other words, we decompose
P1, P2, · · · , P2λ and Q1, Q2, · · · , Q2λ along u0. According to the observation in PPAD
section that DecomposeTo(Qm, TC) can be reconstructed from DecomposeTo(Pm, TC)
for any tree covering TC, we only care about P1, P2, · · · , P2λ in the rest of the proof.
The indistinguishability here comes from dO security.
Let G4 and H4 be the circuits in this step. One observation is that the fragment
corresponding to u0 in G4 always outputs ⊥.

• Hyb 5: In this hybrid, we decompose the program into more pieces and replace some
fragments. After this step, the new program and the old program are indistinguishable
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but with overwhelming probability, for any x ∈ [u0 + 1, u1], there does not exist
σ1, · · · , σ2λ that pass the test PRG0(σi) = αi for all i.

– Hyb 5.1 : In this step, let f0 be the length of the longest common prefix shared by
u0+1, u1 and t0 be the longest common prefix, |t0| = f0. Because |uδ−u0| ≤ 2·2λ/4,
we observe that f0 >

3
2 · λ.

We then decompose the program G4 and H4 along the path u0 and u1. Let G5.1
and H5.1 be the programs in this step:

G5.1 = CanonicalMerge(DecomposeTo(G4, {u0, u1}))
H5.1 = CanonicalMerge(DecomposeTo(H4, {u0, u1}))

This indistinguishability comes from dO security.
– Hyb 5.2 : In this hybrid, we change DPRF.Eval(Sf0 , t0) to a truly random string
rf0,t0 . The indistinguishability comes from DPRF and PRF security. Also we find
that rf0,t0 only appears in the fragment (of the circuit Next) as PRG0(rf0,t0) and
PRG1(rf0,t0). The proof is exactly the same as what we did for Hyb 3.3 in PPAD
section. And rf0,t0 can be removed from Sampler. We know that f0 >

3
2 · λ, let

p̂k = t0,[λ].
∗ Decompose DPRF.Eval(K, ·) in Sampler along u0; (the indistinguishability

comes from dO security)
∗ Replace DPRF.Eval(K, p̂k) with a random string, say w0; (the indistinguisha-

bility comes from DPRF security)
∗ As long as p̂k||w0 does not contain t0 as a prefix, rf0,t0 can be removed from
the Sampler. Because f0 >

3
2 · λ, the probability that it happens is at most

1
2λ/2 . So with overwhelming probability, rf0,t0 can be removed from Sampler.

– Hyb 5.3 : As we do not have rf0,t0 inside the circuits Next and Sampler, we can
replace PRG0(rf0,t0) and PRG1(rf0,t0) with truly random strings v0,0 and v0,1 by
PRF security. After it, with overwhelming probability (1− 1/22λ), there does not
exist any σf0 such that PRG0(σf0) = v0,0. And the fragment corresponding to u1
is now returning {α}, {β} where {β} are now encrypted by random keys v0,1.

– Hyb 5.4 : Now we no longer have the secret keys for encrypting {β}, we can
replace them with encryptions of random strings. The indistinguishability comes
from SKE security.

• Hyb 6 toHyb 4 + δ: AtHybrid 4 + i for 2 ≤ i ≤ δ, we puncture at [ui−1 +1, ui]. The
argument is the same as what we did for Hyb (2+i) in PPAD section. We decompose
the program along {u0, u1, · · · , ui} and let fi be the length of the longest common
prefix shared by ui−1 + 1, ui and ti be that prefix. The argument in Hyb 5.1 to Hyb
5.4 applies.
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• Hyb 5 + δ: In the final hybrid, for any x ∈ [u0, i
∗− 1], there does not exist σ1, · · · , σ2λ

that pass all the tests with overwhelming probability. So for A, it has negligible
probability to find a preimage of the given challenge (i∗, · · · ).
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