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Abstract. We put forth a new formulation of tamper-proof hardware in the Global
Universal Composable (GUC) framework introduced by Canetti et al. in TCC
2007. Almost all of the previous works rely on the formulation by Katz in Eu-
rocrypt 2007 and this formulation does not fully capture tokens in a concurrent
setting. We address these shortcomings by relying on the GUC framework where
we make the following contributions:

1. We construct secure Two-Party Computation (2PC) protocols for general
functionalities with optimal round complexity and computational assump-
tions using stateless tokens. More precisely, we show how to realize arbitrary
functionalities in the two-party setting with GUC security in two rounds
under the minimal assumption of One-Way Functions (OWFs). Moreover,
our construction relies on the underlying function in a black-box way. As
a corollary, we obtain feasibility of Multi-Party Computation (MPC) with
GUC-security under the minimal assumption of OWFs. As an independent
contribution, we identify an issue with a claim in a previous work by Goyal,
Ishai, Sahai, Venkatesan and Wadia in TCC 2010 regarding the feasibility
of UC-secure computation with stateless tokens assuming collision-resistant
hash-functions (and the extension based only on one-way functions).

2. We then construct a 3-round MPC protocol to securely realize arbitrary func-
tionalities with GUC-security starting from any semi-honest secure MPC
protocol. For this construction, we require the so-called one-many commit-
and-prove primitive introduced in the original work of Canetti, Lindell, Os-
trovsky and Sahai in STOC 2002 that is round-efficient and black-box in
the underlying commitment. Using specially designed “input-delayed” pro-
tocols we realize this primitive (with a 3-round protocol in our framework)
using stateless tokens and one-way functions (where the underlying one-way
function is used in a black-box way).

Keywords: Secure Computation, Tamper-Proof Hardware, Round Complexity, Minimal Assump-
tions

1 Introduction

Secure Multi-Party Computation (MPC) enables a set of parties to mutually run a pro-
tocol that computes some function f on their private inputs, while preserving two im-
portant properties: privacy and correctness. The former implies data confidentiality,



namely, nothing leaks by the protocol execution but the computed output, while, the
later requirement implies that no corrupted party or parties can cause the output to de-
viate from the specified function. It is by now well known how to securely compute
any efficient functionality [58, 29, 50, 4] under the stringent simulation-based defini-
tions (following the ideal/real paradigm). These traditional results prove security in the
stand-alone model, where a single set of parties run a single execution of the protocol.
However, the security of most cryptographic protocols proven in the stand-alone setting
does not remain intact if many instances of the protocol are executed concurrently [6,
8, 48]. The strongest (but also the most realistic) setting for concurrent security, known
as Universally Composable (UC) security [6] considers the execution of an unbounded
number of concurrent protocols in an arbitrary and adversarially controlled network en-
vironment. Unfortunately, stand-alone secure protocols typically fail to remain secure
in the UC setting. In fact, without assuming some trusted help, UC-security is impossi-
ble to achieve for most tasks [8, 10, 48]. Consequently, UC-secure protocols have been
constructed under various trusted setup assumptions in a long series of works; see [2,
7, 42, 41, 13, 46, 22] for few examples.

One such setup assumption and the focus of this work is the use of tamper-proof
hardware tokens. The first work to model tokens in the UC framework was by Katz in
[42] who introduced the FWRAP-functionality to capture such tokens and demonstrated
feasibility of realizing general functionalities with UC-security. Most of the previous
works in the tamper proof hardware [42, 15, 46, 30, 22, 17, 25] rely on this formulation.
As we explain next, this formulation does not provide adequate composability guaran-
tees. We begin by mentioning that any notion of composable security in an interactive
setting should allow for multiple protocols to co-exist in the same system and interact
with each other. We revisit the following desiderata put forth by Canetti, Lin and Pass
[11] for any notion of composable security:

Concurrent multi-instance security: The security properties relating to local objects
(including data and tokens) of the analyzed protocol itself should remain valid even
when multiple instances of the protocol are executed concurrently and are suscep-
tible to coordinated attacks against multiple instances. Almost all prior works in
the tamper proof model do not specifically analyze their security in a concurrent
setting. In other words, they only discuss UC-security of a single instance of the
protocol. In particular, when executing protocols in the concurrent setting with to-
kens, an adversary could in fact transfer a token received from one execution to
another and none of the previous works that are based on the FWRAP-functionality
accommodate transfers.

Modular analysis: Security of the larger overall protocols must be deducible from the
security properties of its components. In other words, composing protocols should
preserve security in a modular way. One of the main motivations and features in
the UC-framework is the ability to analyze a protocol locally in isolation while
guaranteeing global security. This does not only enable easier design but identifies
the required security properties. The current framework proposed by Katz [42] does
not allow for such a mechanism.

Environmental friendliness: Unknown protocols in the system should not adversely
affect the security of the analyzed protocol. Prior UC-formulation of tamper proof
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tokens are not “fully” environment friendly as tokens cannot be transferred to other
unknown protocols. Furthermore, prior works in the FWRAP-hybrid do not explic-
itly prove multi-instance security in the presence of an environment (i.e., they do
not realize the multi-versions of the corresponding complete functionality).

The state-of-affairs regarding tamper-proof tokens leads us to ask the following ques-
tion.

Does there exist a UC-formulation of tamper-proof hardware tokens that guar-
antee strong composability guarantees and allows for modular design?

Since the work of [42], the power of hardware tokens has been explored extensively
in a long series of works, especially in the context of achieving UC-security (for ex-
ample, [15, 51, 30, 23, 26, 25, 17]). While the work of Katz [42] assumed the stronger
stateful tokens, the work of Chandran, Goyal and Sahai [15] was the first to achieve
UC-security using only stateless tokens. In this work we will focus only on the weaker
stateless token model. In the tamper-proof model with stateless tokens, as we argue be-
low, the issue of minimal assumptions and round-complexity have been largely unad-
dressed. The work of Chandran et al. [15] gives anO(κ)-round protocol (where κ is the
security parameter) based on enhanced trapdoor permutations. Following that, Goyal et
al. [30] provided an (incorrect) O(1)-round construction based on Collision-Resistant
Hash Functions (CRHFs). The work of Choi et al. [17], extending the techniques of
[30] and [23], establishes the same result and provide a five-round construction based
on CRHFs.

All previous constructions require assumptions stronger than one-way functions
(OWFs), namely either trapdoor permutations or CRHFs. Thus as a first question, we
investigate the minimal assumptions required for token-based secure computation pro-
tocols. The works of [30] and [17] rely on CRHFs for realizing statistically-hiding com-
mitment schemes. Towards minimizing assumptions, both these works, consider the
variant of their protocol where they replace the construction of the statistically-hiding
commitment scheme based on CRHFs to the one based on one-way functions [33] to
obtain UC-secure protocols under minimal assumptions (See Theorem 3 in [30] and
Footnote 7 in [17]). While analyzing the proof of this variant in the work of [30], we
found a flaw4 in the original construction based on CRHFs. We present a concrete attack
that breaks the security of their construction in Section 3. More recently, the authors of
[17] have conveyed in private communication that the variant that naively replaces the
commitment in their protocol is in fact vulnerable to covert attacks. They have since
retracted this result (see the updated eprint version [16]). Given the state of affairs, our
starting point is to address the following fundamental question regarding tokens that
remains open.

Can we construct tamper-proof UC-secure protocols using stateless tokens as-
suming only one-way functions?

4 In private communication, the authors have acknowledged this flaw and are in the process of
updating their result. We remark that we point out a flaw only in one particular result, namely,
realizing the UC-secure oblivious transfer functionality based on CRHFs and stateless tokens.
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A second important question that we address here is:

What is the round complexity of UC-secure two-party protocols using stateless
tokens assuming only one-way functions?

We remark here that relying on black-box techniques, it would be impossible to
achieve non-interactive secure computation even in the tamper proof model as any such
approach would be vulnerable to a residual function attack.5 This holds even if we
allow an initial token exchange phase, where the two parties exchange tokens (that are
independent of their inputs). Hence, the best we could hope for is two rounds.6

(G)UC-secure protocols in the multi-party setting. In the UC framework, it is possi-
ble to obtain UC-secure protocols in the MPC setting by first realizing the UC-secure
oblivious transfer functionality (UC OT) in the two-party setting and then combining
it with general compilation techniques (e.g., [44, 12, 40, 47] to obtain UC-secure multi-
party computation protocols. First, we remark that specifically in the stateless tamper-
proof tokens model, prior works fail to consider multi-versions of the OT-functionality
while allowing transferrability of tokens which is important in an MPC setting.7 As
such, none of the previous works explicitly study the round complexity of multi-party
protocols in the tamper proof model (with stateless tokens), we thus initiate this study
in this work and address the following question.

Can we obtain round-optimal multi-party computation protocols with GUC-
security in the tamper proof model?

Unidirectional token exchange. Consider the scenario where companies such as Ama-
zon or Google wish to provide an email spam-detection service and users of this ser-
vice want to keep their emails private (so as to not have unwanted advertisements posted
based on the content of their emails). In such a scenario, it is quite reasonable to assume
that Amazon or Google have the infrastructure to create tamper-proof hardware tokens
in large scale while the clients cannot be expected to create tokens on their own. Most
of the prior works assume (require) that both parties have the capability of construct-
ing tokens. When relying on non-black-box techniques, the work of [17] shows how to
construct UC-OT using a single stateless token and consequently requires only one of
the parties to create the token. The work of Moran and Segev in [51] on the other hand
shows how to construct UC-secure two-party computation via a black-box construction
where tokens are required to be passed only in one direction, however, they require

5 Intuitively, this attack allows the recipient of the (only) message to repeatedly evaluate the
function on different inputs for a fixed sender’s input.

6 Note that in the plain model, without trusted setup, Katz and Ostrovsky [43] showed that five
rounds are necessary and sufficient for general 2PC functionalities. Garg et al. [28] revisit the
lower bound of [43] and showed that four rounds are necessary and sufficient for realizing
general 2PC functionalities in the simultaneous message exchange model where both parties
can simultaneously exchange messages in each round.

7 We remark that the work of [17] considers multiple sessions of OT between a single pair of
parties. However, they do not consider multiple sessions between multiple pairs of parties
which is required to realize UC-security in the multiparty setting.

4



the stronger model of stateful tokens. It is desirable to obtain a black-box construction
when relying on stateless tokens. Unfortunately, the work of [17] shows that this is
impossible in the fully concurrent setting. More precisely, they show that UC-security
is impossible to achieve for general functionalities via a black-box construction using
stateless tokens if only one of the parties is expected to create tokens. In this work, we
therefore wish to address the following question:

Is there a meaningful security notion that can be realized in a client-server
setting relying on black-box techniques using stateless tokens where tokens are
created only by the server?

1.1 Our Results

As our first contribution, we put forth a formulation of the tamper-proof hardware as a
“global” functionality that provides strong composability guarantees. Towards address-
ing the various shortcomings of the composability guarantees of the UC-framework,
Canetti et al. [7] introduced the Global Universal Composability (GUC) framework
which among other things allows to consider global setup functionalities such as the
common reference string model, and more recently the global random oracle model
[9]. In this work, we put forth a new formulation of tokens in the GUC-framework that
will satisfy all our desiderata for composition. Furthermore, in our formulation, we will
be able to invoke the GUC composition theorem of [7] in a modular way. A formal
description of the FgWRAP-functionality can be found in Figure 2 and more detailed
discussion is presented in the next section.

In the two-party setting we resolve both the round complexity and computational
complexity required to realize GUC-secure protocols in the stronger FgWRAP-hybrid
stated in the following theorem:

Theorem 1.1 (Informal) Assuming the existence of OWFs, there exists a two-round
protocol that GUC realizes any (well-formed) two-party functionality in the global tam-
per proof model assuming stateless tokens. Moreover it only makes black-box use of the
underlying OWF.

As mentioned earlier, any (black-box) non-interactive secure computation protocol is
vulnerable to a residual function attack assuming stateless tokens. Therefore, the best
round complexity we can hope for assuming (stateless) tamper-proof tokens is two
which our results shows is optimal. In concurrent work [24], Dottling et al. show how
to obtain UC-secure two-party computation protocol relying on one-way functions via
non-black-box techniques.

As mentioned before, we also identify a flaw in a prior construction that attempted
to construct a UC-secure protocols in the stateless tamper-proof model from OWFs.
We describe a concrete attack on this protocol in Section 3. On a high-level, the result
of Goyal et al. first constructs a “Quasi oblivious transfer” protocol based on tokens
that admits one-sided simulation and one-sided indistinguishability. Next, they provide
a transformation from Quasi-OT to full OT. We demonstrate that the transformation in
the second step is insecure by constructing an adversary that breaks its security. The pur-
pose of presenting the flaw is to illustrate a subtlety that arises when arguing security in
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the token model. While there are mechanisms that could potentially facilitate compiling
a Quasi-OT to full OT in the token model, we do not pursue this approach for two rea-
sons. First, fixing this issue will still result in a protocol that requires statistically-hiding
commitments and in light of the vulnerability of the [17] protocol, it is unclear if we
can simply rely on one-way functions for the statistically-hiding commitment scheme
to obtain a construction under minimal assumptions. Second, even if this construction is
secure, it would yield only a O(κ)-round protocol [33]. Instead, we directly construct a
round-optimal construction based on OWFs using a more modular, and in our opinion,
simpler construction.

In the multi-party setting, our first theorem follows as a corollary of our results from
the two-party setting.

Theorem 1.2 Assuming the existence of OWFs, there exists a O(df )-round protocol
that GUC realizes any multi-party (well formed) functionality f in the global tamper
proof model assuming stateless tokens, where df is the depth of any circuit implement-
ing f .

Next, we improve the round-complexity of our construction to obtain the following
theorem:

Theorem 1.3 Assuming the existence of OWFs and stand-alone semi-honest MPC in
the OT-hybrid, there exists a three-round protocol that GUC realizes any multi-party
(well formed) functionality in the global tamper proof model assuming stateless tokens.

We remark that our construction is black-box in the underlying one-way function
but relies on the code of the MPC protocol in a non-black-box way. It is conceivable
that one can obtain a round-optimal construction if we do not require it to be black-box
in the underlying primitives and leave it as future work.

Finally, in the client-server setting, we prove the following theorem in the full ver-
sion [34]:

Theorem 1.4 (Informal) Assuming the existence of one-way functions, there exists a
two-round protocol that securely realizes any two-party functionality assuming stateless
tokens in a client-server setting, where the tokens are created only by the server. We
also provide an extension where we achieve UC-security against malicious clients and
sequential and parallel composition security against malicious servers.

In more detail, we provide straight-line (UC) simulation of malicious clients and stan-
dard rewinding-based simulation against malicious servers. Our protocols guarantee
security of the servers against arbitrary malicious coordinating clients and protects ev-
ery individual client executing sequentially or in parallel against a corrupted server. We
believe that this is a reasonable model in comparison to the Common Reference String
(CRS) model where both parties require a trusted entity to sample the CRS. Further-
more, it guarantees meaningful concurrent security that is otherwise not achievable in
the plain model in two rounds.

6



1.2 Our Techniques

Our starting point for our round optimal secure two-party computation is the following
technique from [30] for an extractable commitment scheme.

Roughly speaking, in order to extract the receiver’s input, the sender chooses a
function F from a pseudorandom function family that maps {0, 1}m to {0, 1}n bits
where m >> n, and incorporates it into a token that it sends to the receiver. Next,
the receiver commits to its input b by first sampling a random string u ∈ {0, 1}m and
querying the PRF token on u to receive the value v. It sends as its commitment the
string comb = (Ext(u; r) ⊕ b, r, v) where Ext(·, ·) is a strong randomness extractor.
Now, since the PRF is highly compressing, it holds with high probability that condi-
tioned on v, u has very high min-entropy and therefore Ext(u; r) ⊕ b, r statistically
hides b. Furthermore, it allows for extraction as the simulator can observe the queries
made by the sender to the token and observe that queries that yields v to retrieve u. This
commitment scheme is based on one-way functions but is only extractable. To obtain a
full-fledged UC-commitment from an extractable commitment we can rely on standard
techniques (See [56, 35] for a few examples). Instead, in order to obtain round-optimal
constructions for secure two-party computation, we extend this protocol directly to re-
alize the UC oblivious transfer functionality. A first incorrect approach is the following
protocol. The parties exchange two sets of PRF tokens. Next, the receiver commits to
its bit comb using the approach described above, followed by the sender committing to
its input (coms0 , coms1) along with an OT token that implements the one-out-of-two
string OT functionality. More specifically, it stores two strings s0 and s1, and given a
single bit b outputs sb. Specifically, the code of that token behaves as follows:

– On input b∗, u∗, the token outputs (sb, decomsb) only if comb = (Ext(u∗; r) ⊕
b∗, r, v) and PRF(u∗) = v. Otherwise, the token aborts.

The receiver then runs the token to obtain sb and verifies if decomsb correctly decom-
mits comsb to sb. This simple idea is vulnerable to an input-dependent abort attack,
where the token aborts depending on the value b∗. The work of [30] provides a com-
biner to handle this particular attack which we demonstrate is flawed. We describe the
attack in Section 3. We instead will rely on a combiner from the recent work of Ostro-
vsky, Richelson and Scafuro [54] to obtain a two-round GUC-OT protocol.

GUC-secure multi-party computation protocols. In order to demonstrate feasibility,
we simply rely on the work of [40] who show how to achieve GUC-secure MPC pro-
tocols in the OT-hybrid. By instantiating the OT with our GUC-OT protocol, we obtain
MPC protocols in the tamper proof model assuming only one-way functions. While this
protocol minimizes the complexity assumptions, the round complexity would be high.
In this work, we show how to construct a 3-round MPC protocol. Our starting point is to
take any semi-honest MPC protocol in the stand-alone model and compile it into a mali-
cious one using tokens following the paradigm in the original work of Canetti et al. [12]
and subsequent works [55, 48]. Roughly, the approach is to define a commit-and-prove
GUC-functionality FCP and compile the semi-honest protocol using this functionality
following a GMW-style compilation.
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We will follow an analogous approach where we directly construct a full-fledged
F1:M

CP -functionality that allows a single prover to commit to a string and then prove
multiple statements on the commitment simultaneously to several parties. In the token
model, realizing this primitive turns out to be non-trivial. This is because we need the
commitment in this protocol to be straight-line extractable and the proof to be about
the value committed. Recall that, the extractable commitment is based on a PRF token
supplied by the receiver of the commitment (and the verifier in the zero-knowledge
proof). The prover cannot attest the validity of its commitment (via an NP-statement)
since it does not know the code (i.e. key) of the PRF. Therefore, any commit and prove
scheme in the token model necessarily must rely on a zero-knowledge proof that is
black-box in the underlying commitment scheme. In fact, in the seminal work of Ishai
et al. [39] they showed how to construct such protocols that have been extensively used
in several works where the goal is to obtain constructions that are black-box in the
underlying primitives. Following this approach and solving its difficulties that appear
in the tamper-proof hardwire model, we can compile a T -round semi-honest secure
MPC protocol to aO(T )-round protocol. Next, to reduce the rounds of the computation
we consider the approach of Garg et al. [27] who show how to compress the round
complexity of any MPC protocol to a two-round GUC-secure MPC protocol in the
CRS model using obfuscation primitives.

In more detail, in the first round of the protocol in [27], every party commits to its
input along with its randomness. The key idea is the following compiler used in the
second round: it takes any (interactive) underlying MPC protocol, and has each party
obfuscate their “next-message” function in that protocol, providing one obfuscation for
each round. To ensure correctness, zero-knowledge proofs are used to validate the ac-
tions of each party w.r.t the commitments made in the first step. Such a mechanism
is also referred to as a commit-and-prove strategy. This enables each party to inde-
pendently evaluate the obfuscation one by one, generating messages of the underlying
MPC protocol and finally obtain the output. The observation here is that party Pi’s
next-message circuit for round j in the underlying MPC protocol depends on its private
input xi and randomness ri (which are hard-coded in the obfuscation) and on input the
transcript of the communication in the first j−1 rounds outputs its message for the next
round.

To incorporate this approach in the token model, we can simply replace the obfus-
cation primitives with tokens. Next, to employ zero-knowledge proofs via a black-box
construction, we require a zero-knowledge protocol that allows commitment of a wit-
ness via tokens at the beginning of the protocol and then in a later step prove a statement
about this witness where the commitment scheme is used in a “black-box” way. A first
idea here would be to compile using the zero-knowledge protocol of [39] that facilitate
such a commit-and-prove paradigm. However, as we explain later this would cost us
in round-complexity. Instead we will rely on so-called input-delayed proofs [45] that
have recently received much attention [20, 21, 36]. In particular, we will rely on the
recent work of [36] who shows how to construct the so-called “input-delay” commit-
and-prove protocols which allow a prover to commit a string in an initial commit phase
and then prove a statement regarding this string at a later stage where the input statement
is determined later. However, their construction only allows for proving one statement

8



regarding the commitment. One of our technical contributions is to extend this idea to
allow multiple theorems and further extend it so that a single prover can prove sev-
eral theorems to multiple parties simultaneously. This protocol will be 4-round and we
show how to use this protocol in conjunction with the Garg et al.’s round collapsing
technique.

1.3 Related Work

In recent and independent work, using the approach of [9], Nilges [53, 49] consider
a GUC-like formulation of the tokens for the two-party setting where the parties have
fixed roles. The focus in [53, 49] was to obtain a formulation that accommodates reusabil-
ity of a single token for several independent protocols in the UC-setting for the specific
two-party case. In contrast to our work, they do not explicitly model or discuss adver-
sarial transferability of the tokens. In particular they do not discuss in the multi-party
case, which is the main motivation behind our work.

Another recent work by Boureanu, Ohkubo and Vaudenay [5] studies the limit of
composition when relying on tokens. In this work, they prove that EUC (or GUC)-
security is impossible to achieve for most functionalities if tokens can be transferred
in a restricted framework. More precisely, their impossibility holds, if the tokens them-
selves do not “encode” the session identifier in any way. Our work, circumvents this
impossibility result by precisely allowing the tokens generated (by honest parties) to
encode the session identifier in which they have to be used.

2 Modeling Tamper-Proof Hardware in the GUC Framework

In this section we describe our model and give our rationale for our approach. We
provide a brief discussion on the Universal Composability (UC) framework [6], UC
with joint state [14] (JUC) and Generalized UC [7] (GUC). For more details, we refer
the reader to the original works and the discussion in [9].

Basic UC. Introduced by Canetti in [6], the Universal Composability (UC) framework
provides a framework to analyse security of protocols in complex network environ-
ments in a modular way. One of the fundamental contributions of this work was to give
a definition that will allow to design protocols and demonstrate security by “locally”
analyzing a protocol but guaranteeing security in a concurrent setting where security
of the protocol needs to be intact even when it is run concurrently with many instances
of arbitrary protocols. Slightly more technically, in the UC-framework, to demonstrate
that a protocol Π securely realizes an ideal functionality F , we need to show that for
any adversary A in the real world interacting with protocol Π in the presence of arbi-
trary environments Z , there exists an ideal adversary S such that for any environment
Z the view of an interaction withA is indistinguishable from the view of an interaction
with the ideal functionality F and S.

Unfortunately, soon after its inception, a series of impossibility results [8, 10, 48]
demonstrated that most non-trivial functionalities cannot be realized in the UC-framework.
Most feasibility results in the UC-framework relied on some sort of trusted setup such
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as the common reference string (CRS) model [8], tamper-proof model [42] or relaxed
security requirements such as super-polynomial simulation [55, 57, 3]. When modeling
trusted setup such as the CRS model, an extension of the UC-framework considers the
G-hybrid model where “all” real-world parties are given access to an ideal setup func-
tionality G. In order for the basic composition theorem to hold in such a G-hybrid model,
two restrictions have to be made. First, the environment Z cannot access the ideal setup
functionality directly; it can only do so indirectly via the adversary. In some sense, the
setup G is treated as “local” to a protocol instance. Second, two protocol instances of
the same or different protocol cannot share “state” for the UC-composition theorem
to hold. Therefore, a setup model such as the CRS in the UC-framework necessitates
that each protocol uses its own local setup. In other words, an independently sampled
reference string for every protocol instance. An alternative approach that was pursued
in a later work was to realize a multi-version of a functionality and proved security of
the multi-version using a single setup. For example, the original feasibility result of
Canetti, Lindell, Ostrovsky and Sahai [12] realized the FMCOM-functionality which is
the multi-version of the basic commitment functionalityFCOM in the CRS model.

JUC. Towards accommodating a global setup such as the CRS for multiple protocol in-
stances, Canetti and Rabin [14] introduced the Universal Composition with Joint State
(JUC) framework. Suppose we want to analyze several instances of protocol Π with an
instance G as common setup, then at the least, each instance of the protocol must share
some state information regarding G (e.g., the reference string in the CRS model). The
JUC-framework precisely accommodates such a scenario, where a new composition
theorem is proven, that allows for composition of protocols that share some state. How-
ever, the JUC-model for the CRS setup would only allow the CRS to be accessible to a
pre-determined set of protocols and in particular still does not allow the environment to
directly access the CRS.

GUC. For most feasibility results in the (plain) CRS model both in the UC and JUC
framework, the simulator S in the ideal world needed the ability to “program” the CRS.
In particular, it is infeasible to allow the environment to access the setup reference
string. As a consequence, we can prove security only if the reference string is privately
transmitted to the protocols that we demand security of and cannot be made publicly ac-
cessible. The work of Canetti, Pass, Dodis and Walfish [7] introduced the Generalized
UC-framework to overcome this shortcoming in order to model the CRS as a global
setup that is publicly available. More formally, in the GUC-framework, a global setup
G is accessible by any protocol running in the system and in particular allows direct
access by the environment. This, in effect, renders all previous protocols constructed
in the CRS model not secure in the GUC framework as the simulator loses the pro-
grammability of the CRS. In fact, it was shown in [7] that the CRS setup is insufficient
to securely realize the ideal commitment functionality in the GUC-framework. More
generally, they show that any setup that simply provides only “public” information is
not sufficient to realize GUC-security for most non-trivial functionalities. They further
demonstrated a feasibility in the Augmented CRS model, where the CRS contains sig-
nature keys, one for each party and a secret signing key that is not revealed to the parties,
except if it is corrupt, in which case the secret signing key for that party is revealed.
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As mentioned before, the popular framework to capture the tamper-proof hardware
is the one due to [42] who defined the FWRAP-functionality in the UC-framework. In
general, in the token model, the two basic advantages that the simulator has over the ad-
versary is “observability” and “programmability”. Observability refers to the ability of
the simulator to monitor all queries made by an adversary to the token and programma-
bility refers to the ability to program responses to the queries in an online manner.
In the context of tokens, both these assumptions are realistic as tamper-proof tokens
do provide both these abilities in a real-world. However, when modeling tamper proof
hardware tokens in the UC-setting, both these properties can raise issues as we discuss
next.

Apriori, it is not clear why one should model the tamper proof hardware as a global
functionality. In fact, the tokens are local to the parties and it makes the case for it not to
be globally accessible. Let us begin with the formulation by Katz [42] who introduced
the FWRAP-functionality (see Figure 1 for the stateless variant). In the real world the
creator or sender of a token specifies the code to be incorporated in a token by sending
the description of a Turing machine M to the ideal functionality. The ideal functional-
ity then emulates the code of M to the receiver of the token, only allowing black-box
access to the input and output tapes of M . In the case of stateful tokens, M is modeled
as an interactive Turing machine while for stateless tokens, standard Turing machines
would suffice. Slightly more technically, in the UC-model, parties are assigned unique
identifiers PID and sessions are assigned identifiers sid. In the tamper proof model, to
distinguish tokens, the functionality accepts an identifier mid when a token is created.
More formally, when one party PIDi creates a token with program M with token iden-
tifier mid and sends it to another party PIDj in session sid, then the FWRAP records
the tuple (PIDi,PIDj ,mid,M). Then whenever a party with identifier PIDj sends a
query (Run, sid,PIDi,mid, x) to the FWRAP-functionality, it first checks whether there
is a tuple of the form (·,PIDj ,mid, ·) and then runs the machine M in this tuple if one
exists.

Functionality FStateless
WRAP

Functionality FStateless
WRAP is parameterized by a polynomial p(·) and an implicit security

parameter κ.

Create. Upon receiving (Create, sid,PIDi,PIDj ,mid,M) from S, where M is a Tur-
ing machine, do:

1. Send (Create,PIDi,PIDj ,mid) to R.
2. Store (PIDi,PIDj ,mid,M).

Execute. Upon receiving (Run, sid,PIDi,mid, x) from R, find the unique stored tuple
(PIDi,PIDj ,mid,M). If no such tuple exists, do nothing. Run M(x) for at most
p(κ) steps, and let out be the response (out = ⊥ if M does not halt in p(k) steps).
Send (PIDi,PIDj ,mid, out) to R.

Fig. 1. The ideal functionality for stateless tokens [42].
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In the UC-setting (or JUC), to achieve any composability guarantees, we need to re-
alize the multi-use variants of the specified functionality and then analyze the designed
protocol in a concurrent man-in-the-middle setting. In such a multi-instance setting, it
is reasonable to assume that an adversary that receives a token from one honest party in
a left interaction can forward the token to another party in a right interaction. Unfortu-
nately, the FWRAP-functionality does not facilitate such a transfer.

Let us modifyFWRAP to accommodate transfer of tokens by adding a special “trans-
fer” query that allows a token in the possession of one party to be transferred to another
party. Since protocols designed in most works do not explicitly prove security in a con-
current man-in-the-middle setting, such a modification renders the previous protocols
designed in FWRAP insecure. For instance, consider the commitment scheme discussed
in the introduction based on PRF tokens. Such a scheme would be insecure as an adver-
sary can simply forward the token from the receiver in a right interaction to the sender
in a left interaction leading to a malleable commitment.

In order to achieve security while allowing transferability we need to modify the
tokens themselves in such a way to be not useful in an execution different from where
it is supposed to be used. If every honestly generated token admits only queries that
are prefixed with the correct session identifier then transferring the tokens created by
one honest party to another honest party will be useless as honest parties will prefix
their queries with the right session and the honestly generated tokens will fail to an-
swer on incorrect session prefixes. This is inspired by an idea in [9], where they design
GUC-secure protocols in the Global Random Oracle model [9]. As such, introducing
transferrability naturally requires protocols to address the issue of non-malleability.

While this modification allows us to model transferrability, it still requires us to
analyze protocols in a concurrent man-in-the-middle setting. In order to obtain a more
modular definition, where each protocol instance can be analyzed in isolation we need
to allow the token to be transferred from the adversary to the environment. In essence,
we require the token to be somewhat “globally” accessible and this is the approach we
take.

2.1 The Global Tamper-Proof Model

A natural first approach would be to consider the same functionality in the GUC-
framework and let the environment to access the FWRAP-functionality. This is reason-
able as an environment can have access to the tokens via auxiliary parties to whom
the tokens were transferred to. However, naively incorporating this idea would deny
“observability” and “programmability” to the simulator as all adversaries can simply
transfer away their tokens the moment they receive them and let other parties make
queries on their behalf. Indeed, one can show that the impossibility result of [17] ex-
tends to this formulation of the tokens (at least if the code of the token is treated in a
black-box manner).8 A second approach would be to reveal to the simulator all queries

8 Informally, the only advantage that remains for the simulator is to see the code of the tokens
created by the adversary. This essentially reduces to the case where tokens are sent only in one
direction and is impossible due to a result of [17] when the code is treated as a black-box.
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made to the token received by the adversary even if transferred out to any party. How-
ever, such a formulation would be vulnerable to the following transferring attack. If an
adversary received a token from one session, it can send it as its token to an honest party
in another session and now observe all queries made by the honest party to the token.
Therefore such a formulation of tokens is incorrect.

Our formulation will accommodate transferrability while still guaranteeing observ-
ability to the simulator. In more detail, we will modify the definition of FWRAP so that
it will reveal to the simulator all “illegitimate” queries made to the token by any other
party. This approach is analogous to the one taken by Canetti, Jain and Scafuro [9]
where they model the Global Random Oracle Model and are confronted by a similar
issue; here queries made to a globally accessible random oracle via auxiliary parties by
the environment must be made available to the simulator while protecting the queries
made by the honest party. In order to define “legitimate” queries we will require that all
tokens created by an honest party, by default, will accept an input of the form (sid, x)
and will respond with the evaluation of the embedded program M on input x, only if
sid = sid, where sid corresponds to the session where the token is supposed to be used,
i.e. the session where the honest party created the token. Furthermore, whenever an
honest party in session sid queries a token it received on input x, it will prefix the query
with the correct session identifier, namely issue the query (sid, x). An illegitimate query
is one where the sid prefix in a query differs from the session identifier from which the
party is querying from. Every illegitimate query will be recorded by our functionality
and will be disclosed to the party whose session identifier is actually sid.

More formally, the FgWRAP-functionality is parameterized by a polynomial p(·)
which is the time bound that the functionality will exercise whenever it runs any pro-
gram. The functionality admits the following queries:

Creation Query: This query allows one party S to create and send a token to another
party R by sending the query (Create, sid,S,R,mid,M) where M is the descrip-
tion of the machine to be embedded in the token, mid is a unique identifier for the
token and sid is the session identifier. The functionality records (R, sid,mid,M).9

Transfer Query: We explicitly provide the ability for parties to transfer tokens to other
parties that were not created by them (eg, received from another session). Such a
query will only be used by the adversary in our protocols as honest parties will al-
ways create their own tokens. When a transfer query of the form (transfer, sid,S,R,
mid) is issued, the tuple (S, sid,mid,M) is erased and a new tuple (R, sid,mid,M)
is created where sid is the identifier of the session where it was previously used.

Execute Query: To run a token the party needs to provide an input in a particular for-
mat. All honest parties will provide the input as x = (sid, x′) and the functionality
will run M on input x and supply the answer. In order to achieve non-malleability,
we will make sure in all our constructions that tokens generated by honest parties
will respond to a query only if it contains the correct sid.

Retrieve Query: This is the important addition to our functionality following the ap-
proach taken by [9]. FgWRAP-functionality will record all illegitimate queries made

9 We remark here that the functionality does not explicitly store the PID of the creator of the
token. We made this choice since the simulator in the ideal world will create tokens for itself
which will serve as a token created on behalf of an honest party.

13



to a token. Namely for a token recorded as the tuple (R, sid,mid,M) an illegitimate
query is of the form (sid, x) where sid 6= sid and such a query will be recorded in a
set Qsid that will be made accessible to the receiving party corresponding to sid.

A formal description of the ideal functionality FgWRAP is presented in Figure 2. We
emphasize that our formulation of the tamper-proof model will now have the following
benefits:

1. It overcomes the shortcomings of the FWRAP-functionality as defined in [42] and
used in subsequent works. In particular, it allows for transferring tokens from one
session to another while retaining “observability”.

2. Our model allows for designing protocols in the UC-framework and enjoys the
composition theorem as it allows the environment to access the token either directly
or via other parties.

3. Our model explicitly rules out “programmability” of tokens. We remark that it is
(potentially) possible to explicitly provide a mechanism for programmability in the
FgWRAP-functionality. We chose to not provide such a mechanism so as to provide
stronger composability guarantees.

4. In our framework, we can analyze the security of a protocol in isolation and guar-
antee concurrent multi-instance security directly using the GUC-composition the-
orem. Moreover, it suffices to consider a “dummy” adversary that simply forwards
the environment everything (including the token).

An immediate consequence of our formulation is that it renders prior works such as
[42, 15, 23, 24] that rely on the programmability of the token insecure in our model. The
works of [30, 17] on the other hand can be modified and proven secure in the FgWRAP-
hybrid as they do not require the tokens to be programmed.

We now provide the formal definition of UC-security in the Global Tamper-Proof
model.

Definition 2.1 (GUC security in the global tamper-proof model) Let F be an ideal
functionality and let π be a multi-party protocol. Then protocol π GUC realizes F
in FgWRAP-hybrid model, if for every uniform PPT hybrid-model adversary A, there
exists a uniform PPT simulator S, such that for every non-uniform PPT environment
Z , the following two ensembles are computationally indistinguishable,{

ViewFgWRAP

π,A,Z (κ)
}
κ∈N

c
≈
{

ViewFgWRAP

F,S,Z (κ)
}
κ∈N.

3 Issue with Over Extraction in Oblivious Transfer Combiners [30]

In the following we identify an issue that affects one of the feasibility results in [30,
Section 5]. More precisely, this result establishes that UC security for general function-
alities is feasible in the tamper-proof hardware model in O(κ)-round assuming only
OWFs (orO(1)-round based on CRHFs) based on stateless tokens. The issue arises as a
result of over extraction where a fully-secure OT protocol is constructed from a weaker
variant and the simulation extracts values for sender’s inputs even on certain executions
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Functionality FgWRAP

Parameters: Polynomial p(·).

Create. Upon receiving (Create, sid,S,R,mid,M) from S, where M is a Turing ma-
chine, do:

1. Send (Receipt, sid, S,R,mid) to R.
2. Store (R, sid,mid,M).

Execute. Upon receiving (Run, sid,mid, x) from R, find the unique stored tuple
(R, sid,mid,M). If such a tuple does not exist, do nothing. Otherwise, interpret
x = (sid, x′) and run M(x) for at most p(κ) steps, and let out be the response
(out = ⊥ if M does not halt in p(k) steps). Send (sid,R,mid, out) to R.
Handling Illegal Queries: If sid 6= sid, then add (x′, out,mid) to the listQsid that
is initialized to be empty.

Transfer. Upon receiving (transfer, sid,S,R,mid) from S, find the unique stored tuple
(S, sid,mid,M). If no such tuple exists, do nothing. Otherwise,

1. Send (Receipt, sid, S,R,mid) to R.
2. Store (R, sid,mid,M). Erase (S, sid,mid,M).

Retrieve Queries: Upon receiving a request (retreive, sid) from a party R, return the
listQsid of illegitimate queries.

Fig. 2. The global stateless token functionality.

where the receiver aborts. The term over extraction has been studied before in the con-
text of commitment schemes where a scheme with over extraction is constructed as an
intermediate step towards achieving full security [56, 31].

On a high-level, in the work of [30], they first construct an OT protocol with milder
security guarantees. More precisely, a QuasiOT protocol achieves UC-security against
a malicious receiver and straight-line extraction against malicious sender. However, the
scheme is not fully secure as a malicious sender can cause an input-dependent abort
for an honest receiver. Towards amplifying the security, [30] consider the following
protocol:

1. The sender with input (s0, s1) and receiver with input b interact in n executions of
QuasiOTs. The sender picks z1, . . . , zn and ∆ at random and sets the inputs to the
ith QuasiOT instance as (zi, zi +∆). The receiver on the other hand chooses bits
b1, . . . , bn at random subject to the sum being its input b.

2. If the first step completes, the sender sends (s′0 = s0+
∑
i zi, s

′
1 = s1+

∑
i zi+∆)

to the receiver. The receiver computes its output as s′b +
∑
i wi where wi is the

output of the receiver in the ith QuasiOT.

This protocol remains secure against a malicious receiver. However, an issue arises
with a malicious sender. To simulate a malicious sender in this protocol, [30] rely on the
straight-line extractor of the n QuasiOTs by sampling two sets of random (b1, . . . , bn),
one set summing up to 0 and another set summing up to 1 and computing what the re-
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ceiver outputs in the two cases. As we demonstrate below such a strategy leads to failure
in the simulation. More precisely, consider the following malicious sender strategy.

– Pick z1, z2, ..., zn−1 and ∆ at random.
– The inputs of the first n− 1 tokens are set to z1, z1 +∆, . . . , zn−1, zn−1 +∆.
– Let z1 + . . .+ zn−1 = a and z1 + . . .+ zn−1 +∆ = b.
– The inputs to the n-th token are some fixed values c (when bn = 0) and d (when
bn = 1), where c+ d 6= ∆.

Next, the sender modifies the code of the tokens used in the QuasiOT protocol so
that the first n − 1 QuasiOTs never abort. The n-th instantiations however is made to
abort whenever the input bn, the receiver’s input is 1. Let s0 = 0 and s1 = 1 (we remark
that we are not concerned about the actual inputs of the sender, but focus on what the
receiver learns). We next examine the honest receiver’s output in both the real and ideal
worlds. First, in the real world the honest receiver learns an output only if bn = 0 (since
the n-th token aborts whenever bn = 1). We consider two cases:

Case 1: The receiver’s input is b = 0. Then bn = 0 with probability 1/2, and bn = 1
with probability 1/2. Moreover, when bn = 0, the sum of the outputs obtained by
the receiver is a+ c. This is because when bn = 0, then, b1 + . . .+ bn−1 = 0, and
the receiver learns a as the sum of the outputs in the the first n− 1 QuasiOTs and c
from the n-th QuasiOT. On the other hand, if bn = 1 then the receiver aborts in the
n-th QuasiOT and therefore aborts.

Case 2: The receiver’s input is b = 1. Similarly, in this case the receiver will learn
b+ c with probability 1/2 and aborts with probability 1/2.

In the ideal world, the simulator runs first with a random bit-vector and extracts its
inputs in the QuasiOTs by monitoring the queries to the corresponding PRF tokens.
Next, it generates two bit-vectors bi’s and b′i’s that add up to 0 and 1, respectively,
and computes the sums of the sender’s input that correspond to these bits. Then the
distribution of these sums can be computed as follows:

Case 1: In case that
∑
bi = 0, then bn = 0 with probability 1/2, and bn = 1 with

probability 1/2. In the former case the receiver learns a + c, whereas in the latter
case it learns b+ d.

Case 2: In case that
∑
b′i = 1, then with probability 1/2, b′n = 0 and with probability

1/2, b′n = 1. In the former case the receiver learns b + c, whereas in the latter it
learns a+ d.

Note that this distribution is different from the real distribution, where the receiver never
learns b+ d or a+ d since the token will always abort and not reveal d. We remark that
in our example the abort probability of the receiver is independent of its input as proven
in Claim 17 in [30], yet the distribution of what it learns is different.

On a more general note, our attack presents the subtleties that need to be addressed
with the “selective” abort strategy. Recent works by Ciampi et al. [18, 19] have identi-
fied subtleties in recent construction of non-malleable commitments [32] where selec-
tive aborts were not completely addressed.
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4 Two-Round Token-Based GUC Oblivious Transfer

In this section we present our main protocol that implements GUC OT in two rounds.
We first construct a three-round protocol and then show in [34] how to obtain a two-
round protocol by exchanging tokens just once in a setup phase. Recall that the counter
example to the [30] protocol shows that directly extracting the sender’s inputs does
not necessarily allow us to extract the sender’s inputs correctly, as the tokens can be-
have maliciously. Inspired by the recently developed protocol from [54] we consider a
new approach here for which the sender’s inputs are extracted directly by monitoring
the queries it makes to the PRF tokens and using additional checks to ensure that the
sender’s inputs can be verified.

Protocol intuition. As a warmup consider the following sender’s algorithm that first
chooses two random strings x0 and x1 and computes their shares [xb] = (x1b , . . . , x

2κ
b )

for b ∈ {0, 1} using the κ+ 1-out-of-2κ Shamir secret-sharing scheme. Next, for each
b ∈ {0, 1}, the sender commits to [xb] by first generating two vectors αb and βb such
that αb⊕βb = [xb], and then committing to these vectors. Finally, the parties engage in
2κ parallel OT executions where the sender’s input to the jth instance are the decommit-
ments to (α0[j], β0[j]) and (α1[j], β1[j]). The sender further sends (s0 ⊕ x0, s1 ⊕ x1).
Thus, to learn sb, the receiver needs to learn xb. For this, it enters the bit b for κ+ 1 or
more OT executions and then reconstructs the shares for xb, followed by reconstructing
sb using these shares. Nevertheless, this reconstruction procedure works only if there is
a mechanism that verifies whether the shares are consistent.

To resolve this issue, Ostrovsky et al. made the observation that the Shamir secret-
sharing scheme has the property for which there exists a linear function φ such that any
vector of shares [xb] is valid if and only if φ(xb) = 0. Moreover, since the function
φ is linear, it suffices to check whether φ(αb) + φ(βb) = 0. Nevertheless, this check
requires from the receiver to know the entire vectors αb and βb for its input b. This
means it would have to use b as the input to all the 2κ OT executions, which may lead
to an input-dependent abort attack. Instead, Ostrovsky et al. introduced a mechanism
for checking consistency indirectly via a cut-and-choose mechanism. More formally,
the sender chooses κ pairs of vectors that add up to [xb]. It is instructive to view them
as matrices A0, B0, A1, B1 ∈ Zκ×2κp where for every row i ∈ [κ] and b ∈ {0, 1}, it
holds that Ab[i, ·] ⊕ Bb[i, ·] = [xb]. Next, the sender commits to each entry of each
matrix separately and sets as input to the jth OT the decommitment information of the
entire column ((A0[·, j], B0[·, j]), (A1[·, j], B1[·, j])). Upon receiving the information
for a particular column j, the receiver checks if for all i, Ab[i, j]⊕Bb[i, j] agree on the
same value. We refer to this as the shares consistency check.

Next, to check the validity of the shares, the sender additionally sends vectors
[zb1], . . . , [z

b
κ] in the clear along with the sender’s message where it commits to the

entries of A0, A1, B0 and B1 such that [zbi ] is set to φ(A0[i, ·]). Depending on the chal-
lenge message, the sender decommits to A0[i, ·] and A1[i, ·] if ci = 0 and B0[i, ·] and
B1[i, ·] if ci = 1. If ci = 0, then the receiver checks whether φ(Ab[i, ·]) = [zbi ],
and if ci = 1 it checks whether φ(Bb[i, ·]) + zbi = 0. This check ensures that ex-
cept for at most s ∈ ω(log κ) of the rows (Ab[i, ·], Bb[i, ·]) satisfy the condition that
φ(Ab[i, ·]) + φ(Bb[i, ·]) = 0 and for each such row i, Ab[i, ·] + Bb[i, ·] represents a
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valid set of shares for both b = 0 and b = 1. This check is denoted by the shares
validity check. In the final protocol, the sender sets as input in the jth parallel OT, the
decommitment to the entire jth columns of A0 and B0 corresponding to the receiver’s
input 0 and A1 and B1 for input 1. Upon receiving the decommitment information on
input bj , the receiver considers a column “good” only if Abj [i, j] + Bbj [i, j] add up
to the same value for every i. Using another cut-and-choose mechanism, the receiver
ensures that there are sufficiently many good columns which consequently prevents any
input-independent behavior. We refer this to the shares-validity check.

Our oblivious transfer protocol. We obtain a two-round oblivious transfer protocol as
follows. The receiver commits to its input bits b1, . . . , b2κ and the challenge bits for
the share consistency check c1, . . . , cκ using the PRF tokens. Then, the sender sends
all the commitments a la [54] and 2κ+ κ tokens, where the first 2κ tokens provide the
decommitments to the columns, and the second set of κ tokens give the decommitments
of the rows for the shares consistency check. The simulator now extracts the sender’s
inputs by retrieving its queries and we are able to show that there cannot be any input
dependent behavior of the token if it passes both the shares consistency check and the
shares validity check.

We now describe our protocol ΠGUC
OT with sender S and receiver R using the fol-

lowing building blocks: let (1) Com be a non-interactive perfectly binding commitment
scheme, (2) let SS = (Share,Recon) be a (κ + 1)-out-of-2κ Shamir secret-sharing
scheme over Zp, together with a linear map φ : Z2κ

p → Zκ−1p such that φ(v) = 0 iff v
is a valid sharing of some secret, (3) F, F ′ be two families of pseudorandom functions
that map {0, 1}5κ → {0, 1}κ and {0, 1}κ → {0, 1}p(κ), respectively (4) H denote a
hardcore bit function and (5) Ext : {0, 1}5κ × {0, 1}d → {0, 1} denote a randomness
extractor where the source has length 5κ and the seed has length d. See Protocol 1 for
the complete description.

Protocol 1 Protocol ΠOT
GUC - GUC OT with stateless tokens.

– Inputs: S holds two strings s0, s1 ∈ {0, 1}κ and R holds a bit b. The common input is sid.
– The protocol:

1. S → R: S chooses 3κ random PRF keys {γl}[l∈3κ] for familyF . Let PRFγl : {0, 1}
5κ →

{0, 1}κ denote the pseudorandom function. S creates token TKPRF,l
S sending (Create, sid,

S,R,midl,M1) to FgWRAP where M1 is the functionality of the token that on input
(sid, x) outputs PRFγl(x) for all l ∈ [3κ]; For the case where sid 6= sid the token
aborts;

2. R → S: R selects a random subset T1−b ⊂ [2κ] of size κ/2 and defines Tb =
[2κ]/T1−b. For every j ∈ [2κ], R sets bj = β if j ∈ Tβ . R samples uniformly at
random c1, . . . , cκ ← {0, 1}. Finally, R sends
(a) ({combj}j∈[2κ], {comci}i∈[κ]) to S where

∀ j ∈ [2κ], i ∈ [κ] combj = (Ext(uj)⊕bj , vj) and comci = (Ext(u′i)⊕ci, v′i)

uj , u
′
i ← {0, 1}5κ and vj , v′i are obtained by sending respectively (Run, sid,midj , uj)

and (Run, sid,mid2κ+i, u
′
i).

(b) R generates the tokens {TKPRF,l′

R }l′∈[8κ2] which are analogous to the PRF tokens
{TKPRF,l

S }l∈[3κ] by sending (Create, sid,R,S,midl′ ,M2) to FgWRAP for all l′ ∈
[8κ2].
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3. S → R: S picks two random strings x0, x1 ← Zp and secret shares them using SS. In
particular, S computes [xb] = (x1b , . . . , x

2κ
b ) ← Share(xb) for b ∈ {0, 1}. S commits

to the shares [x0], [x1] as follows. It picks random matrices A0, B0 ← Zκ×2κ
p and

A1, B1 ← Zκ×2κ
p such that ∀i ∈ [κ]:

A0[i, ·] +B0[i, ·] = [x0], A1[i, ·] +B1[i, ·] = [x1].

S computes two matrices Z0, Z1 ∈ Zκ×κ−1
p and sends them in the clear such that:

Z0[i, ·] = φ(A0[i, ·]), Z1[i, ·] = φ(A1[i, ·]).

S sends:
(a) Matrices (comA0 , comB0 , comA1 , comB1) to R, where,

∀ i ∈ [κ], j ∈ [2κ], β ∈ {0, 1} comAβ [i,j] = (Ext(uAβ [i,j] ⊕Aβ [i, j], vAβ [i,j])

comBβ [i,j] = (Ext(uBβ [i,j] ⊕Bβ [i, j], vBβ [i,j])

where (uAβ [i,j], uBβ [i,j]) ← {0, 1}5κ and (vAβ [i,j], vBβ [i,j]) are obtained by
sending (Run, sid,mid[i,j,β], u

Aβ [i,j]) and (Run, sid,mid2κ2+[i,j,β], u
Bβ [i,j]), re-

spectively, to the token TK
PRF,[i,j,β]
R where [i, j, β] is an encoding of the indices

i, j, β into an integer in [2κ2].
(b) C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to R.
(c) For all j ∈ [2κ], S creates a token TKj sending (Create, sid, S,R,mid3κ+j ,M3)

to FgWRAP where M3 is the functionality that on input (sid, bj , decombj ), aborts
if sid 6= sid or if decombj is not verified correctly. Otherwise it outputs (Abj [·, j],
decomAbj

[·,j], Bbj [·, j], decomBbj
[·,j]).

(d) For all i ∈ [κ], S creates a token T̂Ki sending (Create, sid, S,R,mid5κ+i,M4)
to FgWRAP where M4 is the functionality that on input (sid, ci, decomci) aborts if
sid 6= sid or if decomci is not verified correctly. Otherwise it outputs,

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

4. Output Phase:
For all j ∈ [2κ], R sends (Run, sid,mid3κ+j , (bj , decombj )) and receives

(Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j]).

For all i ∈ [κ], R sends (Run, sid,mid5κ+i, (ci, decomci)) and receives

(A0[·, i], A1[·, i]) or (B0[·, i], B1[·, i]).

(a) SHARES VALIDITY CHECK PHASE: For all i ∈ [κ], if ci = 0 check that Z0[i, ·] =
φ(A0[i, ·]) and Z1[i, ·] = φ(A1[i, ·]). Otherwise, if ci = 1 check that φ(B0[i, ·])+
Z0[i, ·] = 0 and φ(B1[i, ·]) + Z1[i, ·] = 0. If the tokens do not abort and all the
checks pass, the receiver proceeds to the next phase.

(b) SHARES CONSISTENCY CHECK PHASE: For each b ∈ {0, 1}, R randomly chooses
a set Tb for which bj = b of κ/2 coordinates. For each j ∈ Tb, R checks that there
exists a unique xjb such that Ab[i, j] + Bb[i, j] = xjb for all i ∈ [κ]. If so, xjb is
marked as consistent. If the tokens do not abort and all the shares obtained in this
phase are consistent, R proceeds to the reconstruction phase. Else it abort.
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(c) OUTPUT RECONSTRUCTION: For j ∈ [2κ]/T1−b, if there exists a unique xjb such
that Ab[i, j] + Bb[i, j] = xjb, mark share j as a good column. If R obtains less
than κ + 1 good shares, it aborts. Otherwise, let xj1b , . . . , x

jκ+1

b be any set of
κ + 1 consistent shares. R computes xb ← Recon(xj1b , . . . , x

jκ+1

b ) and outputs
sb = Cb ⊕ xb.

Next, we state the following theorem, the proof can be found in [34].

Theorem 4.1 Assume the existence of one-way functions, then protocol ΠOT
GUC GUC

realizes FOT in the FgWRAP-hybrid.

Proof overview. On a high-level, when the sender is corrupted our simulation proceeds
analogously to the simulation from [54] where the simulator generates the view of the
malicious sender by honestly generating the receiver’s messages and then extracting all
the values committed to by the sender. Nevertheless, while in [54] the authors rely on
extractable commitments and extract the sender’s inputs via rewinding, we directly ex-
tract its inputs by retrieving the queries made by the malicious sender to the {TKPRF,i

R }i
tokens. The proof of correctness follows analogously. More explicitly, the share consis-
tency check ensures that for any particular column that the receiver obtains, if the sum
of the values agree on the same bit, then the receiver extracts the correct share of [xb]
with high probability. Note that it suffices for the receiver to obtain κ+1 good columns
for its input b to extract enough shares to reconstruct xb since the shares can be checked
for validity. Namely, the receiver chooses κ/2 indices Tb and sets its input for these
OT executions as b. For the rest of the OT executions, the receiver sets its input as
1 − b. Denote this set of indices by T1−b. Then, upon receiving the sender’s response
to its challenge and the OT responses, the receiver first performs the shares consistency
check. If this check passes, it performs the shares validity check for all columns, both
with indices in T1−b and for the indices in a random subset of size κ/2 within Tb. If
one of these checks do not pass, the receiver aborts. If both checks pass, it holds with
high probability that the decommitment information for b = 0 and b = 1 are correct
in all but s ∈ ω(log n) indices. Therefore, the receiver will extract [xb] successfully
both when its input b = 0 and b = 1. Furthermore, it is ensured that if the two checks
performed by the receiver pass, then a simulator can extract both x0 and x1 correctly
by simply extracting the sender’s input to the OT protocol and following the receiver’s
strategy to extract.

On the other hand, when the receiver is corrupted, our simulation proceeds analo-
gous to the simulation in [54] where the simulator generates the view of the malicious
receiver by first extracting the receiver’s input b and then obtaining sb from the ideal
functionality. It then completes the execution following the honest sender’s code with
(s0, s1), where s1−b is set to random. Moreover, while in [54] the authors rely on a
special type of interactive commitment that allows the extraction of the receiver’s input
via rewinding, we instead extract this input directly by retrieving the queries made by
the malicious receiver to the {TKPRF,l

S }l∈[3κ] tokens. The proof of correctness follows
analogously. Informally, the idea is to show that the receiver can learn κ + 1 or more
shares for either x0 or x1 but not both. In other words there exists a bit b for which a
corrupted receiver can learn at most κ shares relative to s1−b. Thus, by replacing s1−b
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with a random string, it follows from the secret-sharing property that obtaining at most
κ shares keeps s1−b information theoretically hidden.

On relying on one-way functions. In this protocol the only place where one-way per-
mutations are used is in the commitments made by the sender in the second round
of the protocol via a non-interactive perfectly-binding commitment. This protocol can
be easily modified to rely on statistically-binding commitments which have two-round
constructions based on one-way functions [52]. Specifically, since the sender commits
to its messages only in the second-round, the receiver can provide the first message of
the two-round commitment scheme along with the first message of the protocol.

5 Three-Round Token-Based GUC Secure Multi-Party
Computation

In this section, we show how to compile an arbitrary round semi-honest protocolΠ to a
three-round protocol using stateless tokens. As discussed in the introduction, the high-
level of our approach is borrowing the compressing round idea from [27] which pro-
ceeds in three steps. In the first step, all parties commit to their inputs via an extractable
commitment and then in the second step, each party provides a token to emulate their
actions with respect to Π given the commitments. Finally, each party runs the protocol
Π locally and obtains the result of the computation. For such an approach to work, it is
crucial that an adversary, upon receiving the tokens, is not be able to “rewind” the com-
putation and launch a resetting attack. This is ensured via zero-knowledge proofs that
are provided in each round. In essence, the zero-knowledge proofs validates the actions
of each party with respect to the commitments made in the first step. Such a mechanism
is also referred to as a commit-and-prove strategy. In Section 5.1, we will present a
construction of a commit-and-prove protocol in the FgWRAP-hybrid and then design our
MPC protocol using this protocol. We then take a modular approach by describing our
MPC protocol in an idealized version of the commit-and-prove functionality analogous
to [12] and then show how to realize this functionality. As we mentioned before we then
rely on the approach of [27] to compress the rounds of our MPC protocol compiled with
our commit and prove protocol in 3 rounds. This is presented in the full version [34].

5.1 One-Many Commit-and-Prove Functionality

The commit and prove functionality FCP introduced in [12] is a generalization of the
commitment functionality and is core to constructing protocols in the GUC-setting.
The functionality parameterized by an NP-relation R proceeds in two stages: The first
stage is a commit phase where the receiver obtains a commitment to some value w.
The second phase is a prove phase where the functionality upon receiving a statement
x from the committer sends x to the receiver along with the value R(x,w). We will
generalize the FCP-functionality in two ways. First, we will allow for asserting multiple
statements on a single committed value w in the FgWRAP-hybrid. Second, we will allow
a single party to assert the statement to many parties. In an MPC setting this will be
useful as each party will assert the correctness of its message to all parties in each step.
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Our generalized functionality can be found in Figure 3 and is parameterized by an NP
relationR and integer m ∈ N denoting the number of statements to be proved.

Functionality F1:M
CP

Functionality F1:M
CP is parameterized by an NP-relationR, an integerm and an implicit

security parameter κ, and runs with set of parties P = {P1, . . . , Pn}.

Commit Phase: Upon receiving a message (commit, sid,P, w) from Pi, where w ∈
{0, 1}κ, record the tuple (sid, Pi,P, w, 0) and send (receipt, Pi,P, sid) to all par-
ties in P .

Prove Phase: Upon receiving a message (prove, sid,P, x) from Pi, where w ∈
{0, 1}poly(κ), find the record (sid, Pi,P, w, ctrsid). If no such record is found or
ctrsid ≥ m then ignore. Otherwise, send (proof, sid,P, (x,R(x,w))) to all parties
in P . Replace the tuple (sid, Pi,P, w, ctrsid) with (sid, Pi,P, w, ctrsid + 1).

Fig. 3. The one-many multi-theorem commit and prove functionality [12].

To realize this functionality, we will rely on the so-called input-delayed proofs [45,
20, 21, 36]. In particular, we rely on the recent work of Hazay and Venkitasubramaniam
[36], who showed how to obtain a 4-round commit-and-prove protocol where the un-
derlying commitment scheme and one-way permutation are used in a black-box way,
and requires the statement only in the last round. Below, we extend their construction
and design a protocol ΠCP that securely realizes functionality F1:M

CP , and then prove the
following theorem.

Theorem 5.1 Assuming the existence of one-way functions, then protocolΠCP securely
realizes the F1:M

CP -functionality in the FgWRAP-hybrid.

Realizing F1:M
CP

in the FgWRAP-Hybrid In the following section we extend ideas
from [36] in order to obtain a one-many commit-and-prove protocol with negligible
soundness using a specialized randomized encodings (RE) [38, 1], where the statement
is only known at the last round. Loosely speaking, RE allows to represent a “complex”
function by a “simpler” randomized function. Given a string w0 ∈ {0, 1}n, the [36]
protocol considers a randomized encoding of the following function:

fw0
(x,w1) = (R(x,w0 ⊕ w1), x, w1)

where R is the underlying NP relation and the function has the value w0 hardwired
in it. The RE we consider needs to be secure against adaptively chosen inputs and
robust. Loosely speaking, an RE is secure against adaptive chosen inputs if both the
encoding and the simulation can be decomposed into offline and online algorithms and
security should hold even if the input is chosen adaptively after seeing the offline part
of the encoding. Moreover, an offline/online RE is said to be robust if no adversary
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can produce an offline part following the honest encoding algorithm and a (maliciously
generated) online part that evaluates to a value outside the range of the function. Then
the ZK proof follows by having the prover generate the offline phase of the randomized
encoding for this functionality together with commitments to the randomness r used
for this generation and w1. Next, upon receiving a challenge bit ch from the verifier,
the prover completes the proof as follows. In case ch = 0, then the prover reveals r and
w1 for which the verifier checks the validity of the offline phase. Otherwise, the prover
sends the online part of the encoding and a decommitment of w1 for which the verifier
runs the decoder and checks that the outcome is (1, x, w1).

A concrete example based on garbled circuits [58] implies that the offline part of
the randomized encoding is associated with the garbled circuit, where the randomness
r can be associated with the input key labels for the garbling. Moreover, the online part
can be associated with the corresponding input labels that enable to evaluate the garbled
circuit on input x,w1. Clearly, a dishonest prover cannot provide both a valid garbling
and a set of input labels that evaluates the circuits to 1 in case x is a false statement.
Finally, adaptive security is achieved by employing the construction from [37] (see [36]
for a discussion regarding the robustness of this scheme).

We discuss next how to extend Theorem 5.5 from [36] by adding the one-many
multi-theorem features. In order to improve the soundness parameter of their ZK proof
Hazay and Venkitasubramaniam repeated their basic proof sufficiently many times in
parallel, using fresh witness shares each time embedding the [39] approach in order to
add a mechanism that verifies the consistency of the shares. Consider a parameter N
to be the number of repetitions and let m denote the number of proven theorems. Our
protocol employs two types of commitments schemes: (1) Naor’s commitment scheme
[52] denoted by Com. (2) Token based extractable commitment scheme in the FgWRAP-
hybrid denoted by ComgWRAP and defined as follows. First, the receiver R in the com-
mitment scheme will prepare a token that computes a PRF under a randomly chosen key
k and send it to the committer in an initial setup phase, incorporated with the session
identifier sid. Such that on input (x, sid) the token outputs PRF evaluated on the input
x. More, precisely, the receiver on input sid creates a token TKPRFk with the following
code:

– On input (x, s̃id): If s̃id = sid output PRFk(x). Otherwise, output ⊥.

Then, to commit to a bit b, the committer C first queries the token TKPRFk on input
(u, sid) where u ∈ {0, 1}5κ is chosen at random and sid is the session identifier. Upon
receiving the output v from the token, it sends (Ext(u)⊕b, v) where Ext is a randomness
extractor as used in Section 4. We remark here that if the tokens are exchanged initially
in a token exchange phase, then the commitment scheme is non-interactive.

Protocol 2 Protocol ΠCP - one-many commit-and-prove protocol.

– Input: The prover holds a witness w, where the prover is a designated party Pτ for some
τ ∈ [n].

– The Protocol:
1. Each party Pk for k 6= τ plays the role of the verifier and picks random m t-subsets Ikj

of [N ] for each j ∈ [m] and k ∈ [n−1] wherem is the number of proven statements. It
also picks t random challenge bits {chki,j}i∈Ikj and commits to them using Comk

gWRAP.
It further sends the first message of the Naor’s commitment scheme.
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2. The prover then continues as follows:
(a) It first generates N ×m × (n − 1) independent XOR sharings of the witness w,

say
{w0

i,j,k, w
1
i,j,k}(i×j×k)∈[N×m×(n−1)].

(b) Next, for each j ∈ [m] and k ∈ [n− 1], it generates the views of 2N parties P 0
i,j,k

and P 1
i,j,k for all i ∈ [N ] executing a t-robust t-private MPC protocol, where

P bi,j,k has input wbi,j,k, that realizes the functionality that checks if w0
i,j,k ⊕ w1

i,j,k

are all equal. Let V bi,j,k be the view of party P bi,j,k.
(c) Next, for each j ∈ [m] and k ∈ [n − 1], it computes N offline encodings of the

following set of functions:

fw0
i,j,k

,V 0
i,j,k

(xj , w
1
i,j,k, V

1
i,j,k) = (b, xj , w

1
i,j,k, V

1
i,j,k)

where b = 1 if and only if R(xj , w0
i,j,k ⊕ w1

i,j,k) holds and the views V 0
i,j,k and

V 1
i,j,k are consistent with each other.

(d) Finally, the prover broadcasts to all parties the set containing{
(f off
w0
i,j,k

,V 0
i,j,k

(ri,j,k),Com(ri,j,k),Com(w0
i,j,k),Com(w1

i,j,k),

Com(V 0
i,j,k),Com(V 1

i,j,k))
}
(i×j×k)∈[N×m×(n−1)]

.

Moreover, let decomri,j,k , decomw0
i,j,k

, decomw1
i,j,k

, decomV 0
i,j,k

, decomV 1
i,j,k

be
the respective decommitment information of the above commitments. Then for ev-
ery k ∈ [n − 1], Pi commits to the above decommitment information with respect
to party Pk and all (i× j) ∈ [N ]× [m], using ComgWRAP.

3. The verifier decommits to all its challenges.
4. For every index (i, j) in the t subset the prover replies as follows:

• If chij,k = 0 then it decommits to ri,j,k, w0
i,j,k and V 0

i,j,k. The verifier then checks
if the offline part was constructed correctly.

• If chij,k = 1 then it sends f on
w0
i,j,k

,V 0
i,j,k

(ri,j,k, xj , w
1
i,j,k, V

1
i,j,k) and decommits

w1
i,j,k and V 1

i,j,k. The verifier then runs the decoder and checks if it obtains (1, xj ,
w1
i,j,k, V

1
i,j,k).

Furthermore, from the decommitted views V
chij,k
i,j,k for every index (i, j) that the prover

sends, the verifier checks if the MPC-in-the-head protocol was executed correctly and
that the views are consistent.

Theorem 5.2 Assuming the existence of one-way functions, then protocol ΠCP GUC
realizes F1:M

CP in the FgWRAP-hybrid.

Proof: LetA be a malicious PPT real adversary attacking protocolΠCP in theFgWRAP-
hybrid model. We construct an ideal adversary S with access to F1:M

CP which simulates
a real execution of ΠCP with A such that no environment Z can distinguish the ideal
process with S andFgWRAP-hybrid from a real execution ofΠCP withA in theFgWRAP-
hybrid. S starts by invoking a copy of A and running a simulated interaction of A with
environment Z , emulating the honest party. We describe the actions of S for every
corruption case.

Simulating the communication with Z: Every message that S receives from Z it in-
ternally feeds to A and every output written by A is relayed back to Z . In case the
adversary A issues a transfer query on any token (transfer, ·), S relays the query to the
FgWRAP.

24



Party Pτ is not corrupted. In this scenario the adversary only corrupts a subset of
parties I playing the role of the verifiers in our protocol. The simulator proceeds as
follows.

1. Upon receiving a commitment Comk
gWRAP from a corrupted party Pk, the simulator

extracts the m committed t-subsets Ikj and the challenge bits {chki,j}i∈Ikj for all
j ∈ [m], by retrieving the queries made to the tokens.

2. For each j ∈ [m] and k ∈ [I], the simulator generates the views of 2N parties
P 0
i,j,k and P 1

i,j,k for all i ∈ [N ] emulating the simulator of the t-robust t-private
MPC protocol underlying in the real proof, where the set of corrupted parties for
the (j, k)th execution is fixed to be Ikj extracted above. Let V bi,j,k be the view of
party P bi,j,k.

3. Next, for each j ∈ [m] and k ∈ [I], the simulator computes N offline encodings as
follows.

– For every index i in the t subset Ikj the simulator replies as follows:
• If chki,j = 0, then the simulator broadcasts the following honestly gener-

ated message: foff
w0
i,j,k,V

0
i,j,k

(ri,j,k),Com(ri,j,k),Com(w0
i,j,k),Com(0),

Com(V ′0i,j,k),Com(V ′1i,j,k). where V ′0i,j,k = 0 and V ′1i,j,k = V 1
i,j,k if the

matched challenge bit equals one, and vice versa.
• Else, if chki,j = 1, then the simulator invokes the simulator for the random-

ized encoding and broadcasts the following message:{
Soff
w0
i,j,k,V

0
i,j,k

(ri,j,k),Com(0),Com(0),Com(w1
i,j,k),

Com(V ′0i,j,k),Com(V ′1i,j,k)
}
(i×j×k)∈[N×m×(n−1)]

where w1
i,j,k is a random string and V ′0i,j,k = 0 and V ′1i,j,k = V 1

i,j,k if the
matched challenge bit equals one, and vice versa.

– For every index i not in the t subset Ikj the simulator broadcasts

foff
w0
i,j,k,V

0
i,j,k

(ri,j,k),Com(ri,j,k),Com(w0
i,j,k),Com(0),Com(0),Com(0).

The simulator correctly commits to the decommitments information with respect
to the honestly generated commitments (namely, as the honest prover would have
done) using ComgWRAP. Else, it commits to the zero string.

4. Upon receiving the decommitment information from the adversary, the simulator
aborts if the adversary decommits correctly to a different set of messages than the
one extracted above by the simulator.

5. Else, S completes the protocol by replying to the adversary as the honest prover
would do.

Note that the adversary’s view is modified with respect to the views it obtains with re-
spect to the underlying MPC and both types of commitments. Indistinguishability fol-
lows by first replacing the simulated views of the MPC execution with a real execution.
Namely the simulator for this hybrid game commits to the real views. Indistinguishabil-
ity follows from the privacy of the protocol. Next, we modify the fake commitments into
real commitments computed as in the real proof. The reduction for this proof follows
easily as the simulator is not required to open these commitments.
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Party Pτ is corrupted. In this scenario the adversary corrupts a subset of parties I
playing the role of the verifiers in our protocol as well as the prover. The simulator
for this case follows the honest verifier’s strategy {Pk}k/∈[I], with the exception that it
extracts the prover’s witness by extracting one of the witness’ pairs. Recall that only
the decommitment information is committed via the extractable commitment scheme
ComgWRAP. Since a commitment is made using tokens from every other party and there
is at least one honest party, the simulator can extract the decommitment information
and from that extract the real value. We point out that in general extracting out shares
from only one-pair could cause the problem of “over-extraction” where the adversary
does not necessarily commit to shares of the same string in each pair. In our protocol
this is not an issue because in conjunction with committing to these shares, it also
commits to the views of an MPC-in-the-head protocol which verifies that all shares are
correct. Essentially, the soundness argument follows by showing that if an adversary
deviates, then with high-probability the set I will include a party with an “inconsistent
view”. This involves a careful argument relying on the so-called t-robustness of the
underlying MPC-in-the-head protocol. Such an argument is presented in [36] to get
negligible soundness from constant soundness and this proof can be naturally extended
to our setting (our protocol simply involves more repetitions but the MPC-in-the-head
views still ensure correctness of all repetition simultaneously).

As for straight-line extraction, the argument follows as for the simpler protocol.
Namely, when simulating the verifier’s role the simulator extracts the committed val-
ues within the forth message of the prover. That is, following a similar procedure of
extracting the committed message via obtaining the queries to the token, it is sufficient
to obtain two shares of the witness as the robustness of the MPC protocol ensures that
all the pairs correspond to the same witness.

5.2 Warmup: Simple MPC Protocol in the F1:M
CP

-Hybrid

We next describe our MPC protocol in the F1:M
CP -hybrid. On a high-level, we follow

GMW-style compilation [29] of a semi-honest secure protocol Π to achieve malicious
security using the F1:M

CP -functionality. Without loss of generality, we assume that in
each round of the semi-honest MPC protocol Π , each party broadcasts a single mes-
sage that depends on its input and randomness and on the messages that it received
from all parties in all previous rounds. We let mi,j denote the message sent by the
ith party in the jth round in the protocol Π . We define the function πi such that
mi,t = πi(xi, ri, (M1, . . . ,Mt−1)) where mi,t is the tth message generated by party
Pi in protocol Π with input xi, randomness ri and where Mr is the message sent by all
parties in round i of Π . We leave the complete construction to the full version [34].

Protocol description. Our protocol ΠMPC proceeds as follows:

Round 1. In the first round, the parties commit to their inputs and randomness. More
precisely, on input xi, party Pi samples random strings ri,1, ri,2, . . . , ri,n and sends
(commit, sid,P, w) to F1:M

CP and w = (x,Ri) where Ri = (ri,1, ri,2, . . . , ri,n).
Round 2. Pi broadcasts shares Ri = Ri − {ri,i} and sends (prove, Pi,P, Ri). Let

M0 = (R1, . . . , Rn).
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Round 2 + δ. LetMδ−1 be the messages broadcast by all parties in rounds 3, 4, . . . , 2+
(δ − 1) and let mi,δ = πi(xi, ri, (M1, . . . ,Mδ−1)) where ri = ⊕jrj,i. Pi broad-
casts mi,δ and sends to F1:M

CP the message (prove, Pi,P,M t−1 : mi,δ) where
Mδ−1 = (M0,M1, . . . ,Mδ−1).

The NP-relationR used to instantiate the F1:M
CP functionality will include:

1. (M0, Ri) : if M0 contains Ri as its ith component where Ri = Ri − {ri,i} and
Ri = {ri,1, . . . , ri,n}.

2. ((Mδ−1,mi,δ), (xi, Ri)) : if (M0, Ri) ∈ R andmi,δ = πi(xi, ri, (M1, . . . ,Mδ−1))
where ri = ⊕j∈[n]rj,i, Mδ−1 = (M0,M1 . . . ,Mδ−1) and Ri = {ri,1, . . . , ri,n}.

Theorem 5.3 Let f be any deterministic polynomial-time function with n inputs and a
single output. Assume the existence of one-way functions and an n-party semi-honest
MPC protocol Π . Then the protocol ΠMPC GUC realizes Ff in the F1:M

CP -hybrid.

Proof: LetA be a malicious PPT real adversary attacking protocol ΠMPC in the F1:M
CP -

hybrid model. We construct an ideal adversary S with access to Ff which simulates a
real execution of ΠMPC with A such that no environment Z can distinguish the ideal
process with S interacting with Ff from a real execution of ΠMPC with A in the F1:M

CP -
hybrid. S starts by invoking a copy of A and running a simulated interaction of A
with environment Z , emulating the honest party. We describe the actions of S for every
corruption case.

Simulating honest parties: Let I be the set of parties corrupted by the adversary
A. This means S needs to simulate all messages from parties in P/I. S emulates
the F1:M

CP functionality for A as follows. For every Pj ∈ P/I it sends the commit-
ment message (receipt, Pj ,P, sid) to all parties Pi ∈ I. Next, for every message
(commit, sid, Pi,P, wi) received from A, it records wi = (xi, ri,1, . . . , ri,n). Upon
receiving this message on behalf of every Pi ∈ I, the simulator S sends xi on behalf
of every Pi ∈ I to Ff and obtains the result of the computation output. Then using the
simulator of the semi-honest protocol Π , it generates random tapes ri for every Pi ∈ I
and messages mj,δ for all honest parties Pj ∈ P/I and all rounds δ. Next, it sends Rj
on behalf of the honest parties Pj ∈ P/I so that for every Pi ∈ I, ri = ⊕rj,i. This is
possible since there is at least one party Pj outside I and S can set rj,i so that it adds
to ri. Next, in round 2+ δ, it receives the messages from Pi ∈ I and supplies messages
from the honest parties according to the simulation of Pi. Along with each message it
receives the prove message that the parties in I send to F1:M

CP . S simply honestly em-
ulates F1:M

CP for these messages. For messages that the honest parties send to F1:M
CP , S

simply sends the receipt message to all parties in I.
Indistinguishability of the simulation follows from the following two facts:

– Given an input xi and random tape ri for every Pi ∈ I and the messages from the
honest parties, there is a unique emulation of the semi-honest protocol Π where all
the messages from parties Pi if honestly generated are deterministic.

– Since the simulation is emulating the F1:M
CP functionality, the computation immedi-

ately aborts if a corrupted party Pi deviates from the deterministic strategy.

27



6 Acknowledgements

We thank Yuval Ishai, Amit Sahai, and Vipul Goyal for fruitful discussions regarding
token-based cryptography. The first author acknowledges support from the Israel Min-
istry of Science and Technology (grant No. 3-10883) and support by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office. The second author was also sup-
ported by the Danish National Research Foundation; the National Science Foundation
of China (grant no. 61061130540) for the Sino-Danish CTIC; the CFEM supported by
the Danish Strategic Research Council. In addition, this work was done in part while
visiting the Simons Institute for the Theory of Computing, supported by the Simons
Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF
grant CNS-1523467. The third author was supported by Google Faculty Research Grant
and NSF Award CNS-1526377.

References

1. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In FOCS,
pages 166–175, 2004.

2. Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

3. Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In FOCS, pages 543–552, 2005.

4. Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377–391,
1991.

5. Ioana Boureanu, Miyako Ohkubo, and Serge Vaudenay. The limits of composable crypto
with transferable setup devices. In CCS, pages 381–392, 2015.

6. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

7. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In TCC, pages 61–85, 2007.

8. Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO, pages
19–40, 2001.

9. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global
random oracle. In CCS, pages 597–608, 2014.

10. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptology, 19(2):135–167,
2006.

11. Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in the
plain model from standard assumptions. In FOCS, pages 541–550, 2010.

12. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, 2002.

13. Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an
imperfect reference string. In FOCS, pages 249–259, 2007.

14. Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, pages
265–281, 2003.

15. Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure com-
putation using tamper-proof hardware. In EUROCRYPT, pages 545–562, 2008.

28



16. Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and Hong-
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