
Adaptive Succinct Garbled RAM
or: How To Delegate Your Database?

Ran Canetti1,2, Yilei Chen1, Justin Holmgren3, and Mariana Raykova4

1 Boston University
{canetti,chenyl}@bu.edu

2 Tel Aviv University & CPIIS
3 MIT

holmgren@mit.edu
4 Yale University & SRI

mariana.raykova@yale.edu

Abstract. We show how to garble a large persistent database and then
garble, one by one, a sequence of adaptively and adversarially chosen
RAM programs that query and modify the database in arbitrary ways.
The garbled database and programs reveal only the outputs of the pro-
grams when run in sequence on the database. Still, the runtime, space
requirements and description size of the garbled programs are propor-
tional only to those of the plaintext programs and the security parameter.
We assume indistinguishability obfuscation for circuits and somewhat-
regular collision-resistant hash functions. In contrast, all previous gar-
bling schemes with persistent data were shown secure only in the static
setting where all the programs are known in advance.
As an immediate application, we give the first scheme for efficiently out-
sourcing a large database and computations on the database to an un-
trusted server, then delegating computations on this database, where
these computations may update the database.
Our scheme extends the non-adaptive RAM garbling scheme of Canetti
and Holmgren [ITCS 2016]. We also define and use a new primitive of in-
dependent interest, called adaptive accumulators. The primitive extends
the positional accumulators of Koppula et al [STOC 2015] and some-
where statistical binding hashing of Hubáček and Wichs [ITCS 2015] to
an adaptive setting.

1 Introduction

Database delegation. Alice is embarking on a groundbreaking experiment
that involves collecting huge amounts of data over several months and then
querying and running analytics on the data in ways to be determined as the data
accumulates. Alas she does not have sufficient storage and processing power. Eve,
who runs a large competing lab, offers servers for rent, but charges proportionally
to storage and computing time. Can Alice make use of Eve’s offer while being

? This paper was presented jointly with “Delegating RAM Computations with Adap-
tive Soundness and Privacy” by Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung,
Huijia Lin and Wei-Kai Lin.

2 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

guaranteed that Eve does not learn or modify Alice’s data and algorithms? Can
she do it at a cost that’s reasonably proportional to the size of the actual data
and resource requirements?

The rich literature on verifiable delegation of computation, e.g. [20,12,25,31,4]
[34,24], provides Alice with ways to guarantee the correctness of the results on
her weak machines, while paying Eve only a relatively moderate cost. In par-
ticular, with [24] the cost is proportional only to the unprotected database size,
the complexity of her unprotected queries and the security parameter. However,
these schemes do not provide secrecy for Alice’s data and computations. Search-
able encryption schemes such as [6,32,26] provide varying levels of secrecy at a
reasonable cost, but no verifiability.

So Alice turns to delegation schemes based on garbling. Such schemes, start-
ing with [16], can indeed provide both verifiability and privacy. Here the client
garbles its input and program (along with some authentication information) and
hands them to the server, who evaluates the garbled program on the garbled in-
put and returns the result to the client. In Alice’s case the garbling scheme
should be persistent, namely it should be possible to garble multiple programs
that operate on the same garbled data, possibly updating the data over time.
Alice would also like the scheme to be succinct, in the sense that the overhead
of garbling each new query should be proportional to the description size of that
query as a RAM program, independently of on the size of the database. Further-
more, the evaluation process should be efficiency preserving, namely it should
preserve the RAM efficiency of the underlying computation.

Gennaro et al. [16] use the original Yao circuit-garbling scheme [35,33], which
is neither succinct, efficiency-preserving, nor persistent. [29,17,15,18] describe
garbling schemes that operate on persistent memory, improve on efficiency, but
haven’t yet achieved succinctness. Succinct, efficiency-preserving and persistent
garbling schemes, based on indistinguishability obfuscation for circuits and one
way functions are constructed in [9,11], building on techniques from [5,10,28].

However, the security of these schemes is only analyzed in a static setting,
where all the queries and data updates are fixed beforehand. Given the dynamic
and on-going character of Alice’s research, a static guarantee is hardly adequate.
Instead, Alice needs to consider a setting where new queries and updates may
depend on the public information released so far. The dependence may be arbi-
trary and potentially adversarially influenced. Adaptive security is considered in
[20,3,22] in the context of one-time, non-succinct garbling. An adaptive garbling
scheme for Turing machines is constructed in [2]. Still, adaptive security has not
been achieved in the pertinent setting of succinct and persistent RAM garbling.

1.1 This work

We construct an adaptively secure, efficiency-preserving, succinct and persistent
garbling scheme for RAM programs. That is, the scheme allows its user to gar-
ble an initial memory, and then garble RAM programs that arrive one by one in
sequence. The machines can read from and update the memory, and also have
local output. It is guaranteed that:

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 3

(1) Running the garbled programs one after another in sequence on the garbled
memory results in the same sequence of outputs as running the plaintext ma-
chines one by one in sequence on the plaintext memory.
(2) The view of any adversary that generates a database and programs and ob-
tains their garbled versions is simulatable by a machine that sees only the initial
database size and sequence of outputs of the plaintext programs when run in
sequence on the plaintext database. This holds even when the adversary chooses
new plaintext programs adaptively, based on the garbled memory and garbled
programs seen so far.
(3) The time to garble the memory is proportional to the plaintext memory.
Up to polynomial factors in the security parameter, the garbling time and size
of the garbled program are proportional only to the size of the plaintext RAM
program. The runtime and space usage of each garbled machine are comparable
to those of the plaintext machine.

Given such a scheme, constructing a database delegation scheme as specified
above is straightforward: Alice sends Eve a garbled version of her database. To
delegate a query, she garbles the program that executes the query. To guaran-
tee (public) verifiability Alice can use the following technique from [18]: Each
program signs its outputs using an embedded signing key, and Alice publishes
the corresponding public key. To hide the query results from the server, the pro-
gram encrypts its output under a secret key known to Alice. We provide herein
a more complete definition (within the UC framework), as well as an explicit
construction and analysis.

1.2 Overview of the construction

Our starting point is the statically-secure garbling scheme of Canetti and Holm-
gren [9]. We briefly sketch their construction, and then explain where the issues
with adaptivity come up and how we solve them.

Statically-secure garbling scheme for RAMs - an overview. The Canetti-
Holmgren construction consists of four main steps. They first build a fixed-
transcript garbling scheme, i.e. a garbling scheme which guarantees indistin-
guishability of the garbled machines and inputs as long as the entire transcripts
of the communication with the external memory, as well as the local states kept
between the RAM computation steps are the same in the two computations. In
other words, if the computation of machine M1 on input x1 has the same tran-
script as that of M2 on input x2, then the garbled machines M̃1, M̃2 and the gar-
bled inputs x̃1, x̃2 are computationally indistinguishable: (M̃1, x̃1) ≈ (M̃2, x̃2).
This step closely follows the scheme of Koppula, Lewko and Waters [28] for
garbling of Turing machines. The garbled program is essentially an obfuscated
RAM/CPU-step circuit, which takes as input a local state and a memory sym-
bol, and outputs an updated local state, as well as a memory operation. The
main challenge here is to guarantee the authenticity and freshness of the values
read from the memory. This is done using a number of mechanisms, namely
splittable signatures, iterators and positional accumulators.

4 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

The second step extends the construction to fixed-access garbling scheme,
which allows the intermediate local states of the two transcripts to differ while
everything else stays the same. This is achieved by encrypting the state in an
obfuscation-friendly way. The third step is to obtain a fixed-address garbling
scheme, namely a scheme that guarantees indistinguishability of the garbled
machines as long as only the sequence of addresses of memory accesses is the
same in the two computations. Here they apply the same type of encryption
used for the local state also to the memory content. The final step is to use
an obfuscation-friendly ORAM in order to hide the program’s memory access
pattern. (Specifically, they use the ORAM of Chung and Pass [13].)

The challenge of adaptive security. The first (and biggest) challenge has to
do with the positional accumulator, which is an iO-friendly variant of a Merkle-
hash-tree built on top of the memory. That is, the contents of the memory is
hashed down until a short root (called the accumulator value ac) is obtained.
Then this value is signed together with the current local state by the CPU and
is kept (in memory) for subsequent verification of database accesses. Using the
accumulator, the evaluator is later able to efficiently convince the CPU that the
contents of a certain memory location L is v. We call this operation “opening” the
accumulator value ac to contents v at location L. Intuitively, the main security
property is that it should be computationally infeasible to open an accumulator
to an incorrect value.

However, to be useful with indistinguishability obfuscation, the accumulator
needs an additional property, called enforceability. In [28], this property allows
to generate, given memory location L∗ and symbol v∗, a “rigged” public key for
the accumulator along with a “rigged” accumulator value ac∗. The rigged public
key and accumulator look indistinguishable from honestly generated public key
and accumulator value, and also have the property that there does not exist a
way to open ac∗ at location L∗ to any value other than v∗.5

The fact that the special values v∗, L∗, and ac∗ are encoded in the rigged
public key forces these values to be known before the adversary sees the public
key. This suffices for the case of static garbling, since the special values depend
only on the underlying computation, and this computation is fixed in advance
and does not depend on adversary’s view. However, in the adaptive setting, this

5 To get an idea of why enforceability is needed, consider two programs C0 and C1,
such that C0(L∗, v∗) = C1(L∗, v∗), but whose functionality may differ elsewhere,
and let C′i(L, v) be the program “if L, v are consistent with ac∗ then run Ci, else
output ⊥”. Let iO be an indistinguishability obfuscator, i.e. it is guaranteed that
iO(A) ≈ iO(B) whenever equal sized programs A,B have the same functionality
everywhere. We would like to argue that iO(C′0) ≈ iO(C′1); however, we cannot do
it directly using a plain Merkle hash tree, since collisions exist and so C′0 and C′1
have very different functionalities. Positional accumulators get around this difficulty:
Using enforceability it is possible to argue that, when C′0 and C′1 use the rigged public
key for the accumulator, the two programs have exactly the same functionality,
and so indistinguishability holds. Due to the indistinguishability of rigged public
accumulator keys from honest ones, indistinguishability holds even for the case of
non-rigged accumulator keys.

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 5

is not the case. This is so since the adversary can choose new computations
— and thus new special values v∗, L∗ — depending on its view so far, which
includes the public key of the accumulator.

Adaptive Accumulators. We get around this problem by defining and con-
structing a new primitive, called adaptive accumulators, which are an adaptive
alternative to positional accumulators. In our adaptive accumulators there are
no “rigged” public keys. Instead, correctness of an opening of a hash value at
some location is verified using a verification key which can be generated later.
In addition to the usual computational binding guarantees, it should be pos-
sible to generate, given a special accumulator value ac∗, value v∗ and location
L∗, a “rigged” verification key vk∗ that looks indistinguishable from an honestly
generated one, and such that vk∗ does not verify an opening of ac∗ at location
L∗ to any value other than v∗. Furthermore, it is possible to generate multiple
verification keys, that are all rigged to enforce the same accumulator value ac∗

to different values v∗ at different locations L∗, where all are indistinguishable
from honest verification keys.

We then use adaptive accumulators as follows: There is a single set of pub-
lic parameters that is posted together with the garbled database and is used
throughout the lifetime of the system. Now, each new garbled machine is given
a different, independently generated verification key. This allows us, at the proof
of security, to use a different rigged verification key for each machine. Since the
key is determined only when a machine is being garbled (and its computation
and output values are already fixed), we can use a rigged verification key that
enforces the correct values, and obtain the same tight security reduction as in
the static setting.

Adaptively accumulators from adaptive puncturable hash functions.
We build adaptive accumulators from a new primitive called adaptively punc-
turable (AP) hash function ensembles. In this primitive a standard collision re-
sistant hash function h(x) is augmented with three algorithms Verify, GenVK,
GenBindingVK. GenVK generates a verification key vk, which can be later used
in Verify(vk, x, y) to check that h(x) = y. GenBindingVK(x∗) produces a binding
key vk∗ such that Verify(vk∗, x, y = h(x∗)) accepts only if x = x∗. Finally, we
require that real and binding verification keys should be indistinguishable even
for the adversary which chooses x∗ adaptively after seeing h.

The construction of adaptive accumulators from AP hash functions proceeds
as follows. The public key is an AP hash function h, and the initial accumulator
value ac0 is the root of a Merkle tree on the initial data store (which can be
thought of as empty, or the all-0 string) using h. We maintain the invariant that
at every moment the root value ac is the result of hashing down the memory
store. In order to write a new symbol v to a position L the evaluator recomputes
all hashes on the path from the root to L. The “opening information” for v at
L is all hashes of siblings on the path from the root to L.

The verification key is a sequence of d = log |S| (honest) verification keys for
h - one for each level of the tree. The “rigged” verification key for accumulator
value ac∗ and value v∗ at location L∗ consists of a sequence of d rigged verification

6 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

keys for the AP hash, where each key forces the opening of a single value along
the path from the root to leaf L∗. Security of the adaptive accumulator follows
from the security of the AP hash via standard reduction.

Constructing AP hash. We construct adaptively puncturable hash func-
tion ensembles from indistinguishability obfuscation for circuits, plus collision-
resistant hash functions with the property that any image has at most polyno-
mially many preimages. (This implies that the CRHF shrinks at most logarith-
mically many bits). We say that a hash function is c-bounded if the number of
preimages for any image is no more than c. To be usable in the Merkle-Damg̊ard
construction, we will also need that the hash functions have domain {0, 1}λ and
range {0, 1}λ′ for some λ′ < λ. For simplicity we focus on the setting where
λ = λ′ + 1. We construct 4-bounded CRHFs assuming hardness of discrete log
and 64-bounded CRHFs assuming hardness of factoring.

Our construction of an AP hash ensemble can be understood in two steps.

1. First we construct a c-bounded AP hash ensemble from any c-bounded hash
ensemble {hk}. This is done as follows: The public key is a hash function hk.
A verification key vk is iO(V), where V is the program that on input x, y
outputs 1 if hk(x) = y. A “rigged” verification key vk∗ that is binding for
input x∗ is iO(Vx∗) where Vx∗ is the program that on input (x, y) does the
following:
– if y = fhk(x∗), it accepts if and only if x = x∗;
– otherwise it accepts if and only if y = hk(x).

Since hk is c-bounded, the functionality of V and Vx∗ differ only on poly-
nomially many inputs. Therefore, the real and “rigged” verification keys are
indistinguishable following the diO-iO equivalence for circuits with polyno-
mially many differing inputs [7].

2. Next we construct AP hash functions which are length halving (and are
thus not polynomially bounded) from bounded AP hashing. This is done
in the natural way by extending the hash function’s domain using Merkle-
Damg̊ard. Suppose we start with a function h′ : {0, 1}λ+1 → λ, and build
h : {0, 1}2λ → {0, 1}λ. A verification key vk for h is an obfuscated circuit C
which takes x and y, and directly checks that h(x) = y.

The proof of security involves a sequence of hybrids, in which C is modified to
contain a verification key for h′. This implies that in the real world, C must also
be padded to this same size. In other words, the verification key vk must be as
large as twice-obfuscated circuit computing h′. We note that it is possible to
avoid this overhead by instead distributing λ different verification keys for h′,
but we avoid this approach for conceptual simplicity.

From adaptive accumulators to adaptively secure fixed-transcript gar-
bling. We return to the challenges encountered when trying to use the [9] con-
struction in our adaptive setting. With adaptive accumulators in hand, the ad-
ditional modifications made on the use of iterator and splittable signatures are
relatively local. Since these primitives do not access the long-lived shared mem-
ory, it suffices to generate a fresh instance of each primitive for each new query.

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 7

Adaptively secure fixed-access and fixed-address garbling. Next we up-
grade the next two layers in the [9] construction, namely the fixed-access and
fixed-address garbling schemes, to adaptively secure ones. This is done with rel-
atively local changes from the original construction. Specifically we include the
index and time step in the domain of puncturable PRF that is used to derive
the randomness of the one-time-pad-like encryption on the state and memory.
The technical details can be found in the main construction.

Adaptive full garbling. Recall that in [9] full garbling is achieved by applying
an Oblivious RAM scheme on top of the fixed-access garbling. The randomness
for the ORAM accesses is sampled using a PRF. This leads to a situation where
a PRF key is first used inside a program Mi for some execution i. Later, the
key needs to be punctured at a point that may depend on the PRF values. This
leads to another adaptivity problem.

We get around this problem by noticing that the Chung-Pass ORAM has a
special property which allows us to guess which points to puncture with only
polynomial security loss. This property, which we call strong localized random-
ness, is sketched as follows. Let R be the randomness used by the ORAM. Let
Ai = ai1, . . . ,aim be a set of locations accessed by the ORAM during emula-
tion of access i. The strong localized randomness property guarantees that there
exists a set of intervals I11, . . . , ITm, Iij ⊂ [1, |R|], such that:

1. Each aij depends only on RIij , i.e., the part of the randomness R indexed
with Iij ; furthermore, aij is efficiently computable from Iij ;

2. All Iij are mutually disjoint;
3. All Iij are efficiently computable given the sequence of memory operations.

To see that the Chung-Pass ORAM has strong localized randomness, ob-
serve that in its non-recursive form, each virtual access of addr touches two
paths: one is the path used for the eviction, which is purely random, and the
other is determined by the randomness chosen in the previous virtual access of
addr. Therefore, the set of accessed locations is determined by two randomness
intervals. When the ORAM is applied recursively, each virtual access consists of
O(logS) phases, each of whose physical addresses are determined by two ran-
domness intervals. Since the number of intervals in the range [1, . . . , |R|] is only
polynomial in the security parameter, the reduction can guess the intervals for
a phase (and therefore the points to puncture at) with only polynomial security
loss.

In contrast, the localized randomness property used in [9] differs in property
1 above, requiring only that each Ai depends on polylogarithmically many bits
of R. This does not suffice for us, because there are superpolynomially many
possible dependencies, and so the reduction cannot guess correctly with any
non-negligible probability.

Concurrent and independent work. A potential alternative to our adaptive
positional accumulators is to build on the somewhere statistically binding (SSB)
hash of Hubáček and Wichs [23] or Okamoto et al. [30]. SSB hashes have a similar
flavor to positional accumulators, but they allow rigging to be statistically bind-
ing at a hidden location L∗. However it turns out that SSB hashes alone do not

8 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

suffice for positional accumulators, even in the non-adaptive case! In concurrent
and independent work, Ananth et al. [1] give a stronger definition of SSBs which
does suffice, and then show that a known construction [30] satisfies this stronger
property. Their reduction can then be made adaptive by guessing L∗, at the price
of reducing the reduction’s winning probability by a factor proportional to the
database size. In all, their construction uses a somewhat stronger assumption
than ours (DDH vs. discrete log) and their security reduction is somewhat less
efficient than ours.

Organization. The rest of the paper is organized as follows. Section 2 pro-
vides definitions of RAM and adaptively secure garbled RAM. Sections 3, 4
and 5 define and construct bounded hashing, adaptively puncturable hashing
and adaptively secure positional accumulator. Sections 6, 7, 8 and 9 provide
the definitions and constructions of fixed-transcript, fixed-access, fixed-address,
and fully secure garbling. Section 10 includes the definition of secure database
delegation within the UC framework and our construction and proof.

Due to the page limitation, some missing details are only available in the full
version of this paper [8]. Those missing details include (1) The other primitives
used in our work; (2) The proofs of fixed-transcript, fixed-access, fixed-address
and fully secure garbling; (3) A construction of a (stateful) reusable GRAM with
persistent data.

2 Definitions

RAM Programs. A RAM M is defined as a tuple (Σ,Q, Y,C), where Σ is
the set of memory symbols, Q is the set of possible local states, Y is the output
space, and C is the transition function.

Memory Configurations A memory configuration on alphabet Σ is a function
s : N → Σ ∪ {ε}, where ε denotes the contents of an empty memory cell. Let
‖s‖0 denote |{a : s(a) 6= ε}| and, in an abuse of notation, let ‖s‖∞ denote
max({a : s(a) 6= ε}), which we will call the length of the memory configuration.
A memory configuration s can be implemented (say with a balanced binary
tree) by a data structure of size O(‖s‖0), supporting updates to any index in
O(log ‖s‖∞) time.

We can naturally identify a string x = x1 . . . xn ∈ Σ∗ with the memory
configuration sx, where sx(i) = xi if i ≤ |x| and sx(i) = ε, otherwise. Looking
ahead, efficient representations of sparse memory configurations (in which ‖s‖0 <
‖s‖∞) are convenient for succinctly garbling computations where the space usage
is larger than the input length.

Execution A RAM M = (Σ,Q, Y,C) is executed on an initial memory s0 ∈ ΣN

to obtainM(s0) by iteratively computing (qi, ai, vi) = C(qi−1, si−1(ai−1)), where
a0 = 0, and defining si(a) = v if a = ai and si(a) = si−1 otherwise.

When M(s0) 6= ⊥, it is convenient to define the following functions:

Time(M, s0): runtime of M on s0, i.e., the number of iterations of C.

Space(M, s0): space usage of M on s0, i.e., maxt−1i=0(‖si‖∞).

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 9

T (M, s0): execution transcript of M on s0 defined as ((q0, a0, v0), . . . ,
(qt−1, at−1, vt−1), y).

Addr(M, s0): addresses accessed by M on s0, i.e, (a0, . . . , at−1).

NextMem(M, s0): resultant memory configuration st after executing M on s0.

Garbled RAM

Syntax. A garbling scheme for RAM programs is a tuple of p.p.t. algorithms
(Setup,GbPrg,GbMem,Eval).

Setup(1λ, S) takes the security parameter λ in unary and a space bound S,
and outputs a secret key SK.
GbMem(SK, s) takes a secret key SK and a memory configuration s, and
then outputs a memory configuration s̃.
GbPrg(SK,Mi, Ti, i) takes a secret key SK, a RAM machine Mi, a run-
ning time bound Ti, and a sequence number i, and outputs a garbled RAM
machine M̃i.
Eval(M̃, x̃): takes a garbled RAM M̃ and gabled input x̃ and evaluates the
machine on the input, which we denote M̃(x̃).

Remark 1. The index number i given as input to GbPrg enforces defines a fixed
order, so that M1, . . . ,M` cannot be executed in any other order.

We are interested in garbling schemes which are correct, efficient, and secure.

Correctness. A garbling scheme is said to be correct if for all p.p.t. adversaries
A and every t = poly(λ)

Pr


M̃t(s̃t−1) = Mt(st−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(s0, S)← A(1λ)
SK ← Setup(1λ, S)
s̃0 ← GbMem(SK, s0)
for i = 1, . . . , t

Mi, Ti ← A(s̃0, M̃1, . . . M̃i−1)

M̃i ← GbPrg(SK,Mi, Ti, i)
si = NextMem(Mi, si−1)

s̃i = NextMem(M̃i, s̃i−1)


≥ 1− negl(λ),

where

–
∑
Ti ≤ poly(λ), |s0| ≤ S ≤ poly(λ);

– Space(Mi, si−1) ≤ S and Time(Mi, si−1) ≤ Ti for each i.

Efficiency. A garbling scheme is said to be efficient if:

1. Setup, GbPrg, and GbMem are probabilistic polynomial-time algorithms. Fur-
thermore, GbMem runs in time linear in ‖s0‖. We require succinctness for
the garbled programs, which means that the size of a garbled program M̃
is linear in the description length of the plaintext program M . The bounds
Ti and S are encoded in binary, so the time to garble does not significantly
depend on either of these quantities.

10 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

2. With M̃i and s̃i defined as above, it holds that Space(M̃i, s̃i−1) = Õ(S) and
Time(M̃i, s̃i−1) = Õ(Time(Mi, si−1)) (hiding polylogarithmic factors in S).

Security. We define the security property of GRAM as follows.

Definition 1. Let GRAM = (Setup,GbMem,GbPrg) be a garbling scheme. We
define the following two experiments, where each Mi is a program with time
and space complexity bounded byTi and S. We denote yi = Mi(si−1), si =
NextMem(Mi, si−1), and ti = Time(Mi, si−1).

Experiment REALA(1λ) Experiment IDEALA(1λ)

(s0, S)← A(1λ) (s0, S)← A(1λ)

SK ← Setup(1λ, S), s̃0 ← GbMem(SK, s0) s̃0 ← Sim(1λ, ‖s0‖0)

(M1, 1
T1)← A(s̃0) (M1, 1

T1)← A(s̃0)

M̃1 ← GbPrg(SK,M1, T1, 1) M̃1 ← Sim(y1, |M1|, t1)

for i = 1 to ` = poly(λ) for i = 1 to ` = poly(λ)

(Mi+1, 1
Ti+1)← A(M̃[i,...,1], s̃0) (Mi+1, 1

Ti+1)← A(M̃[i,...,1], s̃0)

M̃i+1 ← GbPrg(SK,Mi+1, Ti+1, i+ 1) M̃i+1 ← Sim(yi+1, |Mi+1|, ti+1)

Output : b← A(M̃, s̃0) Output : b′ ← A(M̃, s̃0)

The garbling scheme GRAM is ε(·)-adaptively secure if∣∣Pr[1← REALA(1λ)]− Pr[1← IDEALA(1λ)]
∣∣ < ε(λ).

3 c-Bounded Collision-Resistant Hash Functions

We say that a hash function ensemble H = {Hλ}λ∈N with Hλ = {hk : Dλ →
Rλ}k∈Kλ is c(·)-bounded if

Pr
h←Hλ

[∀y ∈ Rλ,#{x : h(x) = y} ≤ c(λ)] ≥ 1− negl(λ)

That is, with high probability, every element in the codomain of h has at most
c(λ) pre-images. In our adaptively secure garbling scheme, we need c(·) to be
any polynomial (smaller is better for the security reduction), and we need Dλ =
{0, 1}λ′ and Rλ = {0, 1}λ′−1 for some λ′ = poly(λ). For both of the constructions
in this section, we obtain constant c(·).

The starting point for our constructions is the construction of [14], using a
claw-free pair of permutations (π0, π1) on a domain Dλ, where for some fixed
y0, the hash h(x) is defined as (πx0

◦ · · · ◦ πxn)(y0). Unfortunately, while this

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 11

construction allows an arbitrarily-compressing hash function, it in general may
not be poly(n)-bounded even if n = log |Dλ|+O(1).

However, a slight modification of this construction allows us to take any
injective functions ιin : {0, 1}n ↪→ Dλ and ιout : Dλ ↪→ {0, 1}m, and produce a
2k-bounded collision-resistant function mapping {0, 1}n+k → {0, 1}m. As long
there is such injections exist withm−n = O(log λ), this yields a poly(λ)-bounded
collision-resistant hash family.

Theorem 1. If for a random λ-bit prime p, it is hard to solve the discrete log
problem in Z∗p, then there exists a 4-bounded CRHF ensemble H = {Hλ}λ∈N
where Hλ consists of functions mapping {0, 1}λ+1 → {0, 1}λ.

Proof. Let p be a random λ-bit prime, and let g and h be randomly chosen
generators of Z∗p. Our hash function is keyed by p, g, h. It is well-known that the
permutations π0(x) = gx and π1(x) = gxh are claw-free. It is easy to see there
is an injection ιin : {0, 1}λ−1 → Z∗p and an injection ιout : Z∗p → {0, 1}λ. Define
a hash function

f : {0, 1}λ−1 × {0, 1} × {0, 1} → {0, 1}λ

a, b, c 7→ ιout(πc(πb(ιin(a))))

Clearly given x 6= x′ such that f(x) = f(x′), one can find a claw (and therefore
find logg h), so f is collision-resistant. Also for any given image, there is at most
one corresponding pre-image per choice of b, c, so f is 4-bounded.

Theorem 2. If for random λ-bit primes p and q, with p ≡ 3 (mod 8) and q ≡ 7
(mod 8), it is hard to factor N = pq, then there exists a 64-bounded CRHF
ensemble H = {Hλ}λ∈N where Hλ consists of functions mapping {0, 1}2λ+1 →
{0, 1}2λ.

Proof. First, we construct injections ι0 : {0, 1}2λ−4 → [N/6] and ι1 : [N/6] →
Z∗N ∩ [N/2], using the fact that for sufficiently large p and q, for any integer
x ∈ [N/6], at least one of 3x, 3x + 1, and 3x + 2 is relatively prime to N .
ι1(x) is therefore well-defined as the smallest of {3x, 3x + 1, 3x + 2} ∩ Z∗n. Let
ιin : {0, 1}2λ−4 → Z∗N ∩ [N/2] denote ι1 ◦ ι0. Let ιout denote an injection from
Z∗N → {0, 1}2λ.

Next, following [21], we define the claw-free pair of permutations π0(x) = x2

(mod N) and π1(x) = 4x2 (mod N), where the domain of π0 and π1 is the set
of quadratic residues mod N .

Now we define the hash function

f : {0, 1}2λ−4 × {0, 1}5 → {0, 1}2λ

f(x, y) = (ιout ◦ πy5 ◦ · · · ◦ πy1)(ιin(x)2 mod N)

This is 64-bounded because for any given image, there is at most one pre-
image under ιout ◦πy5 ◦· · ·◦πy1 per possible y value. This accounts for a factor of
32. The remaining factor of 2 comes from the fact that every quadratic residue

12 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

has four square roots, two of which are in [N/2] (the image of ιin). The collision
resistance of x 7→ ιin(x)2 (mod N) follows from the fact that the two square
roots are nontrivially related, i.e., neither is the negative of the other, so given
both it would be possible to factor N .

Notation. For a function h : {0, 1}λ+1 → {0, 1}λ, we let h0 denote the identity
function and for k > 0 inductively define

hk : {0, 1}λ+k → {0, 1}λ
hk(x) = h(x1‖hk−1(x2‖ · · · ‖xλ+k))

4 Adaptively Puncturable Hash Functions

We say that an ensemble H is adaptively puncturable if there are algorithms
Verify, GenVK, and ForceGenVK such that:

Correctness
For all x, y, and h ∈ H, Verify(vk, x, y) = 1 iff y = h(x), where vk ←
GenVK(1λ, h).

Forced Verification
For all x∗ and h ∈ H, let y∗ = h(x∗). Verify(vk, x, y∗) = 1 iff x = x∗, where
vk← ForceGenVK(1λ, h, x∗).

Indistinguishability
For all p.p.t. A1, A2

Pr

A2(s, vkb) = b

∣∣∣∣∣∣∣∣∣∣
h← Hλ
x∗, s← A1(1λ, h)
vk0 ← GenVK(1λ, h)
vk1 ← ForceGenVK(1λ, h, x∗)
b← {0, 1}

 ≤ 1

2
+ negl(λ)

Theorem 3. If iO exists and there is a poly(λ)-bounded CRHF ensemble map-
ping {0, 1}λ′+1 → {0, 1}λ′ , then there is an adaptively puncturable hash function
ensemble mapping {0, 1}2λ′ to {0, 1}λ′ .

Let H = {Hλ} be a poly(λ)-bounded CRHF ensemble, where Hλ is a family
of functions mapping {0, 1}λ+1 → {0, 1}λ. We define an adaptively puncturable
hash function ensemble F = {Fλ}, where Fλ is a family of functions mapping
{0, 1}2λ → {0, 1}λ.

Setup
The key space for Fλ is the same as the key space for Hλ.

Evaluation
For a key h ∈ Hλ and a string x ∈ {0, 1}2λ, we define

fh(x) = hλ(x)

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 13

Verification
GenVK(1λ, fh) outputs an iO-obfuscation of a circuit which directly com-
putes

x, y 7→

{
1 if fh(x) = y

0 otherwise

ForceGenVK(1λ, fh, x
∗) outputs an iO-obfuscation of a circuit which directly

computes

x, y 7→


1 if y 6= fh(x∗) ∧ y = fh(x)

1 if (x, y) = (x∗, fh(x∗))

0 otherwise

Verify(vk, x, y) simply evaluates and outputs vk(x, y).

Claim. No p.p.t. adversary which adaptively chooses x∗ after seeing h can dis-
tinguish between GenVK(1λ, h) and ForceGenVK(1λ, h, x∗).

Proof. We present λ + 1 hybrid games H0, . . . ,Hλ. In each game h is sampled
from Hλ, but the circuit given by the challenger to the adversary depends on
the game and on x∗. In hybrid Hi, the challenger computes y∗ = hλ(x∗) and
yλ−i = hλ−i(x∗i+1‖ · · · ‖x∗2λ). The challenger then sends iO(Ci) to the adversary,
where Ci has y∗, yλ−i, and x∗1, . . . , x

∗
i hard-coded and is defined as

Ci(x, y) =


1 if y 6= y∗ ∧ y = hλ(x)

1 if y = y∗ ∧ x1 = x∗1 ∧ · · · ∧ xi = x∗i ∧ hλ−i(xi+1‖ · · · ‖x2λ) = yλ−i

0 otherwise

The challenger sends iO(Ci) to the adversary.
It is easy to see that C0 is functionally equivalent to the circuit produced by

GenVK, and Cλ is functionally equivalent to the circuit produced by ForceGenVK.
So we only need to show that Hi ≈ Hi+1 for 0 ≤ i < λ. We give a sequence of
indistinguishable changes to the challenger, by which we transform the circuit
C given to the adversary from Ci to Ci+1.

1. We first change C so that when y = y∗, it computes the intermediate value
y′ = hλ−i−1(xi+2‖ · · · ‖x2λ) and outputs 1 if:
– h(xi+1‖y′) = yλ−i
– For all 1 ≤ j ≤ i, xi = x∗i .

When y 6= y∗, the behavior of C is unchanged.
This change preserves functionality (we only introduced a name y′ for an
intermediate value in the computation) and hence is indistinguishable by
iO.

2. Now we change C so that instead of directly checking whether h(xi+1‖y′) =
yλ−i, it uses a hard-coded helper circuit Ṽ = iO(V), where

V : {0, 1} × {0, 1}λ × {0, 1}λ → {0, 1}

V (a, b, c) =

{
1 if c = h(a‖b)
0 otherwise

14 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

This is functionally equivalent and hence indistinguishable by iO.
3. Now we change V . The challenger computes yλ−i−1 = hλ−i−1(x∗i+2‖ · · · ‖x∗2λ)

and yλ−i = h(x∗i+1‖yλ−i−1), and define

V (a, b, c) =


1 if c 6= yλ−i ∧ c = h(a‖b)
1 if (a, b, c) = (x∗i+1, yλ−i−1, yλ−i)

0 otherwise

,

with yλ−i, yλ−i−1, and x∗i+1 hard-coded. The old and new Ṽ ’s are indistin-
guishable because:
– By the collision-resistance of h, it is difficult to find an input on which

they differ.
– Because Hλ is poly(λ)-bounded, they differ on only polynomially many

points.
– iO is equivalent to diO for circuits which differ on polynomially many

points.
4. C is now functionally equivalent to Ci+1 and hence is indistinguishable by

iO.

5 Adaptively Secure Positional Accumulators

In this section we define and construct adaptive positional accumulators (APA).
We use this primitive for memory authentication in our garbling construction.
A garbled program will be an obfuscated functionality where one input is a
succinct commitment ac to some memory contents, another is a piece of data v
allegedly resulting from a memory operation op, and another is a commitment
ac′, allegedly to the resulting memory configuration. Informally, APAs provide a
way for the garbled program to check the consistency of v and ac′ with ac (given
a short proof),

As described so far, Merkle trees satisfy our needs, and indeed our construc-
tion is built around a Merkle tree. However, we require more. As in the positional
accumulators of [28], we need a way to indistinguishably “rig” the public param-
eters so that for some ac and op, there is exactly one (ac′, v) with any accepting
proof. We differ from [27] by separating the parameters used for proof verification
from those used for updating the accumulator, and allowing the rigged (ac, op)
to be chosen adaptively as an adversarial function of the update parameters.

We now formally define the algorithms of the APA primitive.

SetupAcc(1λ, S)→ PP, ac0, store0
The setup algorithm takes as input the security parameter λ in unary and a
bound S (in binary) on the memory addresses accessed. SetupAcc produces
as output public parameters PP, an initial accumulator value ac0, and an
initial data store store0.

Update(PP, store, op)→ store′, ac′, v, π
The update algorithm takes as input the public parameters PP, a data store
store, and a memory operation op. Update then outputs a new store store′,
a memory value v, a succinct accumulator ac′, and a succinct proof π.

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 15

Verify(vk, ac, op, ac′, v, π)→ {0, 1}
The verification algorithm takes as inputs a verification key vk, an initial
accumulator value ac, a memory operation op, a resulting accumulator ac′, a
memory value v, and a proof π. Verify then outputs 0 or 1. Intuitively, Verify
checks the following statement:

π is a proof that the operation op, when applied to the memory config-
uration corresponding to ac, yields a value v and results in a memory
configuration corresponding to ac′.

Verify is run by a garbled program to authenticate the memory values that
the evaluator gives it.

SetupVerify(PP)→ vk
SetupVerify generates a regular verification key for checking Update’s proofs.
This is the verification key that is used in the “real world” garbled programs.

SetupEnforceVerify(PP, (op1, . . . , opk))→ vk
SetupEnforceVerify takes a sequence of memory operations, and generates a
verification key which is perfectly sound when verifying the action of opk
in the sequence (op1, . . . , opk). This type of verification key is used in the
hybrid garbled programs in our security proof.

An adaptive positional accumulator must satisfy the following properties.

Correctness
Let op0, . . . , opk be any arbitrary sequence of memory operations, and let
v∗i denote the result of the ith memory operation when (op0, . . . , opk−1) are
sequentially executed on an initially empty memory.

Correctness requires that, when sampling

PP, ac0, store0 ← SetupAcc(1λ, S)
vk← SetupVerify(PP)

For i = 0, . . . , k:
storei+1, aci+1, vi, πi ← Update(PP, storei, opi)
bi ← Verify(vk, aci, opi, aci+1, vi, πi)

it holds (with probability 1) that for all j ∈ {0, . . . , k}, vj = v∗j and bj = 1

Enforcing
Enforcing requires that for all space bounds S, all sequences of operations
op0, . . . , opk−1, when sampling

PP, ac0, store0 ← SetupAcc(1λ, S)
vk← SetupEnforceVerify(PP, (op0, . . . , opk−1))

For i = 0, . . . , k − 1
storei+1, aci+1, vi, πi ← Update(PP, storei, opi)

it holds (with probability 1) that for all accumulators âc, all values v̂, and
all proofs π̂, if Verify(vk, ack−1, opk−1, âc, v̂, π̂) = 1, then (v̂, âc) = (vk−1, ack)

16 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

Indistinguishability of Enforcing Verify
Now we require that the output of SetupVerify(PP) is indistinguishable from
the output of SetupEnforceVerify(PP, (op1, . . . , opk)), even when (op1, . . . , opk)
are chosen adaptively as a function of PP.
More formally, for all p.p.t. A1 and A2,

Pr

A2(s, vkb) = b

∣∣∣∣∣∣∣∣∣∣∣∣

PP, ac0, store0 ← SetupAcc(1λ, S)
(op0, . . . , opk−1), s← A1(1λ,PP)
vk0 ← SetupVerify(PP)
vk1 ← SetupEnforceVerify(PP,

(op0, . . . , opk−1))
b← {0, 1}

 ≤
1

2
+ negl(λ)

Efficiency
In addition to all the algorithms being polynomial-time, we require that:
– The size of an accumulator is poly(λ).
– The size of proofs is poly(λ, logS).
– The size of a store is O(S)

Theorem 4. If there is an adaptively puncturable hash function ensemble H =
{Hλ}λ∈N with Hλ = {Hk : {0, 1}2λ → {0, 1}λ}k∈Kλ , then there exists an adap-
tive positional accumulator.

Proof. We construct an adaptive positional accumulator in which stores are low-
depth binary trees, each node of which contains a λ-bit value. The accumulator
corresponding to a given store is the value held by the root node. The public
parameters for the accumulator consist of an adaptively puncturable hash h :
{0, 1}2λ → {0, 1}λ, and we preserve the invariant that the value in any internal
node is equal to the hash h applied to its children’s values. It will be convenient
for us to assume the existence of a ⊥, which is represented as a λ-bit string not
in the image of h. Without loss of generality, h can be chosen to have such a
value.

Setup(1λ, S)→ PP, ac0, store0
Setup samples h← Hλ, and sets PP = h, ac0 = h(⊥‖⊥), and store0 to be a
root node with value h(⊥‖⊥).

Update(h, store, op)→ store′, ac′, v, π
Suppose op is ReadWrite(addr 7→ v′). There is a unique leaf node in store
which is indexed by a prefix of addr. Let v be the value of that leaf, and let
π be the values of all siblings on the path from the root to that leaf.
Update adds a leaf node indexed by the entirety of addr to store if no such
node already exists, and sets the value of the leaf to v′. Then Update updates
the value of ancestor of that leaf to preserve the invariant.

SetupVerify(h)→ vk
For i = 1, . . . , logS, SetupVerify samples

vki ← GenVK(1λ, h)

and sets vk = (vk1, . . . , vklogS).

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 17

Verify((vk1, . . . , vklogS), ac, op, ac′, v, (w1, . . . , wd))→ {0, 1}
Define zd := v. Let b1 · · · bd′ denote the bit representation of the address on
which op acts. For 0 ≤ i < d, Verify computes

zi =

{
h(wi+1‖zi+1) if bi+1 = 1

h(zi+1‖wi+1) otherwise

For all i such that bi = 1, Verify checks that vki(wi+1‖zi+1, zi) = 1. For all i
such that bi = 0, Verify checks that vki(zi+1‖wi+1, zi) = 1. If all these checks
pass, then Verify outputs 1; otherwise, Verify outputs 0.

SetupEnforceVerify(h, (op1, . . . , opk))→ vk
Computes the storek−1 which would result from processing op1, . . . , opk−1.
Suppose opk accesses address addrk ∈ {0, 1}logS . Then there is a unique leaf
node in storek−1 which is indexed by a prefix of addrk; write this prefix as
b1 · · · bd.
For each i ∈ {1, . . . , d}, define zi as the value of the node indexed by b1 · · · bi,
and let wi denote the value of that node’s sibling. If bi = 0, sample

vki ← ForceGenVK(1λ, h, zi‖wi).

Otherwise, sample

vki ← ForceGenVK(1λ, h, wi‖zi).

For i ∈ {d+ 1, . . . , logS}, just sample vki ← GenVK(1λ, h).
Finally we define the total verification key to be (vk1, . . . , vklogS).

All the requisite properties of this construction are easy to check.

6 Fixed-Transcript Garbling

Next we present the first step in our construction, a garbling scheme that pro-
vides adaptive security for RAM programs that have the same transcript. The
notion extends the first stage of Canetti-Holmgren scheme into the adaptive set-
ting, and the construction employs the adaptive positional accumulators plus
local changes in the other primitives.

We define fixed-transcript security via the following game.

1. The challenger samples SK← Setup(1λ, S) and b← {0, 1}.
2. The adversary sends a memory configuration s to the challenger. The chal-

lenger sends back GbMem(SK, s).
3. The adversary repeatedly sends pairs of RAM programs (M0

i ,M
1
i) along with

a time bound Ti, and the challenger sends back M̃ b
i ← GbPrg(SK,M b

i , Ti, i).
Each pair (M0

i ,M
1
i) is chosen adaptively after seeing M̃ b

i−1.
4. The adversary outputs a guess b′.

Let ((M0
1 ,M

1
1), . . . , (M0

` ,M
1
`)) denote the sequence of pairs of machines output

by the adversary. The adversary is said to win if b′ = b and:

18 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

– Sequentially executing M0
1 , . . . ,M

0
` on initial memory configuration s yields

the same transcript as executing M1
1 , . . . ,M

1
` .

– Each M b
i runs in time at most Ti and space at most S.

– For each i, |M0
i | = |M1

i |.

Definition 2. A garbling scheme is fixed-transcript secure if for all p.p.t. al-
gorithms A, there is a negligible function negl so that A’s probability of winning
the game is at most 1

2 + negl(λ).

Theorem 5. Assuming the existence of indistinguishability obfuscation and an
adaptive positional accumulator, there is a fixed-transcript secure garbling scheme.

Proof. Our construction follows closely the fixed-transcript garbling scheme of
[9], using our adaptive positional accumulator in place of [28]’s positional accu-
mulator. We also rely on puncturable PRFs (PPRFs), splittable signatures and
cryptographic iterators defined in the full version.

Setup(1λ, S)→ SK: sample (Acc.PP, acinit, storeinit)← Acc.Setup(1λ, S), a PPRF
F. Set SK = (Acc.PP, acinit, storeinit, Itr.PP, itrinit,F), and (Itr.PP, itrinit) ←
Itr.Setup(1λ).

GbMem(SK, s)→ s̃ : GbMem updates the APA (acinit, storeinit) to set the under-
lying memory to s (via a sequence of calls to Update) and let ac0, store0
denote the result. It then generates (sk, vk) ← Spl.Setup(1λ; F(1, 0)), where
(1, 0) represents the initial index number i and initial time-step number 06.
Finally, GbMem computes σ0 ← Spl.Sign(sk, (⊥,⊥, ac0,ReadWrite(0 7→ 0))).
Here the first ⊥ represents an initial local state q0 for M1, and the second ⊥
represents an initial iterator value itr0. GbMem outputs s̃ = (σ0, ac0, store0).

GbPrg(SK,Mi, Ti, i)→ M̃i: GbPrg first transforms Mi so that its initial state is
⊥. Note this can be done without loss of generality by hard-coding the “real”
initial state in the transition function. GbPrg then computes C̃i ← iO(Ci),
where Ci is described in Algorithm 1.
Finally, GbPrg defines and outputs a RAM machine M̃i, which has C̃i hard-
coded as part of its transition function, such that M̃i does the following:
1. Reads (ac0, σ0) from memory. Define op0 = ReadWrite(0 7→ 0), q0 = ⊥,

and itr0 = ⊥.
2. For t = 0, 1, 2, . . .:

(a) Compute storet+1, act+1, vt, πt ← Acc.Update(Acc.PP, storet, opt).
(b) Compute outt ← C̃i(t, qt, itrt, act, opt, σt, vt, act+1, πt).
(c) If outt parses as (y, σ), then write (act+1, σ) to memory, output y,

and terminate.
(d) Otherwise, parse outt as (qt+1, itrt+1, act+1, opt+1), σt+1 or terminate

if outt is not of this form.
We note that GbPrg can efficiently produce M̃i from C̃i and Acc.PP. This
means that later, when we prove security, it will suffice to analyze a game in
which the adversary receives C̃i instead of M̃i.

6 Looking ahead, all the intermediate (sk, vk) key pairs are generated by applying F
to the (index, time-step) tuple.

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 19

Input: Time t, state q, iterator itr, accumulator ac, operation op, signature σ,
memory value v, new accumulator ac′, proof π

Data: Puncturable PRF F, RAM machine Mi with transition function δi,
Accumulator verification key vkAcc, index i, iterator public parameters
Itr.PP, time bound Ti

1 (sk, vk)← Spl.Setup(1λ;F(i, t));
2 if t > Ti or Spl.Verify(vk, (q, itr, ac, op), σ) = 0 or

Acc.Verify(vkAcc, ac, op, ac
′, v, π) = 0 then return ⊥;

3 out← δi(q, v);
4 if out ∈ Y then

5 (sk′, vk′)← Spl.Setup(1λ;F(i+ 1, 0));
6 return out, Sign(sk′, (⊥,⊥, ac′,ReadWrite(0 7→ 0))

7 else
8 Parse out as (q′, op′);
9 itr′ ← Itr.Iterate(Itr.PP, (q, itr, ac, op));

10 (sk′, vk′)← Spl.Setup(1λ;F(i, t+ 1));
11 return (q′, itr′, ac′, op′), Sign(sk′, (q′, itr′, ac′, op′))

Algorithm 1: Transition function for Mi, with memory verified by a signed
accumulator.

Eval(M̃, s̃) The evaluation algorithm runs M̃ on the garbled memory s̃, and
outputs M̃(s̃).

Correctness and efficiency are easy to verify. For the proof of security we refer
the readers to the full version.

7 Fixed-Access Garbling

Fixed-access security is defined in the same way as fixed-transcript security,
but the left and right machines produced by A do not need to have the same
transcripts for A to win - they may not have the same intermediate states, but
only need to perform the same memory operations.

Definition 3 (Fixed-access security).
We define fixed-access security via the following game.

1. The challenger samples SK ← Setup(1λ, S) and b← {0, 1}.
2. The adversary sends a memory configuration s to the challenger. The chal-

lenger sends back GbMem(SK, s).
3. The adversary repeatedly sends pairs of RAM programs (M0

i ,M
1
i) to the

challenger, together with a time bound 1Ti , and the challenger sends back
M̃ b
i ← GbPrg(SK,M b

i , Ti, i). Each pair (M0
i ,M

1
i) is chosen adaptively after

seeing M̃ b
i−1.

4. The adversary outputs a guess b′.

Let ((M0
1 ,M

1
1), . . . , (M0

` ,M
1
`)) denote the sequence of pairs of machines output

by the adversary. The adversary is said to win if b′ = b and:

20 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

– Sequentially executing M0
1 , . . . ,M

0
` on initial memory configuration s yields

the same transcript as executing M1
1 , . . . ,M

1
` , except that the local states can

be different.
– Each M b

i runs in time at most Ti and space at most S.

A garbling scheme is said to have fixed-access security if all p.p.t. adversaries A
win in the game above with probability less than 1/2 + negl(λ).

To achieve fixed-access security, we adapt the exact same technique from [9]:
xoring the state with a pseudorandom function applied on the local time t. The
PRF keys used in different machines are sampled independently.

Theorem 6. If there is a fixed-transcript garbling scheme, then there is a fixed-
access garbling scheme.

Proof. From a fixed-transcript garbling scheme (Setup′,GbMem′,GbPrg′,Eval′),
we construct a fixed-access garbling scheme (Setup,GbMem,GbPrg,Eval).

Setup(1λ, S) samples SK ′ ← Setup′(1λ, S), sets it as SK.
GbMem(SK, s) outputs s̃′ ← GbMem′(SK ′, s).
GbPrg(SK,Mi, Ti, i) samples a PPRF Fi, outputs M̃ ′i ← GbPrg′(SK ′,M ′i , Ti, i),

where M ′i is defined as in Algorithm 2. If Mi’s initial state is q0, the initial
state of M ′i is (0, q0 ⊕ Fi(0)).

Eval(M̃, s̃) outputs Eval′(M̃ ′, s̃′).

Input: State (t, cq), memory symbol σ
Data: RAM machine Mi, puncturable PRF Fi

1 q ← cq ⊕ Fi(t);
2 out←Mi(q, σ);
3 if out ∈ Y then return out;
4 Parse out as (q′, op);
5 return ((t+ 1, q′ ⊕ Fi(t+ 1)), op);

Algorithm 2: M ′i , the modified version of Mi which encrypts its state.

For the proof that this construction satisfies the requisite security, we refer
the readers to the full version.

8 Fixed-Address Garbling

Fixed-address security is defined in the same way as fixed-access security, but the
left and right machines produced by A do not need to make the same memory
operations for A to win - their memory operations only need to access the same
addresses. Additionally, the adversary A now provides not only a single mem-
ory configuration s0, but two memory configurations s00 and s10. The challenger
returns GbMem(SK, sb0). In keeping with the spirit of fixed-address garbling, we
require s00 and s10 to have the same set of addresses storing non-ε values.

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 21

Definition 4 (Fixed-address security). We define fixed-address security via
the following game.

1. The challenger samples SK ← Setup(1λ, S) and b← {0, 1}.
2. The adversary sends the initial memory configurations s00, s10 to the chal-

lenger. The challenger sends back s̃b0 ← GbMem(SK, sb0).
3. The adversary repeatedly sends pairs of RAM programs (M0

i ,M
1
i) to the

challenger, together with a time bound 1Ti , and the challenger sends back
M̃ b
i ← GbPrg(SK,M b

i , Ti, i). Each pair (M0
i ,M

1
i) is chosen adaptively after

seeing M̃ b
i−1.

4. The adversary outputs a guess b′.

Let ((s00, s
1
0), (M0

1 ,M
1
1), . . . , (M0

` ,M
1
`)) denote the sequence of pairs of memory

configurations and machines output by the adversary. The adversary is said to
win if b′ = b and:

– {a : s00(a) 6= ε} = {a : s10(a) 6= ε}.
– The sequence of addresses accessed and the outputs during the sequential

execution of M0
1 , . . . ,M

0
` on initial memory configuration s00 are the same as

when executing M1
1 , . . . ,M

1
` on s10.

– Each M b
i runs in time at most Ti and space at most S.

– For each i, |M0
i | = |M1

i |.

A garbling scheme is said to have fixed-address security if all p.p.t. adver-
saries A win in the game above with probability less than 1/2 + negl(λ).

Our construction of fixed-address garbling is almost the same with the two-
track solution in [9], with a slight modification at the way to “encrypt” the
memory configuration. In [9], the memory configurations are xored with different
puncturable PRF values in the two tracks, where the PRFs are applied on the
time t and address a. In this work, the PRFs are applied on the execution index
i and time t, not on the address a. This is enough for our purpose, because in
each execution index i and step t, the machine only writes on a single address
(for the initial memory configuration, the index is assigned as 0, and different
timestamps will be assigned on different addresses). By this modification, we are
able to prove adaptive security based on selective secure puncturable PRF, and
adaptively secure fixed-access garbling.

We note that, even if the address a is included in the domain of PRF, as in
[9], the construction is still adaptively secure if the underlying PRF is based on
GGM’s tree construction. Here we choose to present the simplified version which
suffices for our purpose.

Construction 7. Suppose (Setup′,GbMem′,GbPrg′,Eval′) is a fixed-access gar-
bling scheme, we construct a fixed-address garbling scheme (Setup,GbMem,
GbPrg,Eval):

Setup(1λ, S) samples SK ′ ← Setup′(1λ, S) and puncturable PRFs FA and FB .

22 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

GbMem(SK, s) outputs s̃′0 ← GbMem′(SK ′, s′0), where

s′0(a) =

{
(0,−a, FA(0,−a)⊕ s0(a), FB(0,−a)⊕ s0(a)) if s0(a) 6= ε

ε otherwise

GbPrg(SK,Mi, Ti, i) outputs M̃ ′i ← GbPrg′(SK ′,M ′i , Ti, i), where M ′i is defined
as in Algorithm 3. If the initial state of Mi was q0, the initial state of M ′i is
(0, q0, q0).

Eval(M̃, s̃) outputs Eval′(M̃ ′, s̃′0).

Input: State (tq, qA, qB), memory symbol (iin, tin, cA, cB)
Data: RAM machine Mi, puncturable PRFs FA, FB

1 out←Mi(qA, FA(iin, tin)⊕ cA);
2 if out ∈ Y then return out;
3 Parse out as (q′,ReadWrite(addr′ 7→ v′));
4 op′ := ReadWrite(addr′ 7→ (i, tq, FA(i, tq)⊕ v′, FB(i, tq)⊕ v′);
5 return (tq + 1, q′, q′), op′;

Algorithm 3:M ′i : Modified version of Mi which encrypts its memory twice
in parallel.

Theorem 8. If (Setup′,GbMem′,GbPrg′) is a fixed-access garbling scheme, then
Construction 7 is a fixed-address garbling scheme.

Proof. For the proof of security we refer the readers to the full version.

9 Full Garbling

In order to construct a fully secure garbling scheme, we will need to make use of
an oblivious RAM (ORAM) [19] to hide the addresses accessed by the machine.

9.1 Oblivious RAMs with strong localized randomness

We require that the ORAM has a strong localized randomness property7, which
is satisfied by the ORAM construction of [13]. Below we give a brief definition
of ORAM and the property we need.

An ORAM is a probabilistic scheme for memory storage and access that
provides obliviousness for access patterns with sublinear access complexity. It is
convenient for us to model an ORAM scheme as follows. We define a determin-
istic algorithm OProg so that for a security parameter 1λ, a memory operation
op, and a space bound S, OProg(1λ, op, S) outputs a probabilistic RAM machine

7 This notion is similar but stronger to the “localized randomness” defined in [9]

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 23

Mop. More generally, for a RAM machine M , we can define OProg(1λ,M, S) as
the (probabilistic) machine which executes OProg(1λ, op, S) for every operation
op output by M .

We also define OMem, a procedure for making a memory configuration obliv-
ious, in terms of OProg, as follows: Given a memory configuration s with n
non-empty addresses a1, . . . , an, all less than or equal to a space bound S,
OMem(1λ, s, S) iteratively samples

s′0 ← εN

and
s′i = NextMem(OProg(1λ,ReadWrite(ai 7→ s(ai)), S), s′i−1)

and outputs s′n.
Security (Strong Localized Randomness).

Informally, we consider obliviously executing operations op1, . . . , opt on a
memory of size S, i.e. executing machines Mop1 ; . . . ;Mopt using a random tape
R ∈ {0, 1}N. This yields a sequence of addresses A = a1‖ · · · ‖at. There should be
a natural way to decompose each ai (in the Chung-Pass ORAM, we consider each
recursive level of the construction) such that we can write ai = ai,1‖ · · · ‖ai,m.
Our notion of strong localized randomness requires that (after having fixed
op1, . . . , opt), each ai,j depends on some small substring of R, which does not
influence any other ai′,j′ . In other words:

– There is some αi,j , βi,j ∈ N such that 0 < βi,j − αi,j ≤ poly(logS) and such
that ai,j is a function of Rαi,j , . . . , Rβi,j .

– The collection of intervals [αi,j , βi,j] for i ∈ {1, . . . , t}, j ∈ {1, . . . ,m} is
pairwise disjoint.

Formally, we say that an ORAM with multiplicative time overhead η has
strong localized randomness if:

– For all λ and S, there exists m and τ1 < τ2 < · · · < τm with τ1 = 1 and
τm = η(S, λ)+1, and there exist circuits C1, . . . , Cm, such that for all memory
operations op1, . . . , opt, there exist pairwise disjoint intervals I1, . . . , Im ⊂ N
such that:
• If we write

A1‖ · · · ‖At ← addr(MR1
op1

; . . . ;MRt
opt
, εN)

where R = R1‖ · · · ‖Rt denotes the randomness used by the oblivious
accesses and each Ai denotes the addresses accessed by MRi

opi
, then

(At)[τj ,τj+1) = Cj(RIj) with high probability over R. Here RIj denotes
the contiguous substring of R indexed by the interval Ij ⊂ [|R|].
• With high probability over the choice of RN\Ij , A1, . . . ,At−1 does not

depend on RIj as a function.
– τj and the circuits Cj are computable in polynomial time given 1λ, S, and
j.

– Ij is computable in polynomial time given 1λ, S, op1, . . . , opt, and j.

A full exposure, including the full definition and proof that Chung-Pass
ORAM satisfies the strong localized randomness property can be found in the
full version.

24 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

9.2 Full Garbling Construction

Theorem 9. If there is an efficient fixed-address garbling scheme, then there is
an efficient full garbling scheme.

Proof. Given a fixed-address garbling scheme (Setup′,GbMem′,GbPrg′,Eval′) and
an oblivious RAM OProg with space overhead ζ and time overhead η. We con-
struct a full garbling scheme (Setup,GbMem,GbPrg,Eval).

Setup(1λ, T, S) samples SK ′ ← Setup′(1λ, η(S, λ) · T, ζ(S, λ) · S) and samples a
PPRF F : {0, 1}λ×{0, 1}λ → {0, 1}`R , where `R is the length of randomness
needed to obliviously execute one memory operation. We will sometimes
think of the domain of F as [22λ].

GbMem(SK, s0) outputs s̃′0 ← GbMem′(SK′,OMem(1λ, s0, S)).

GbPrg(SK,Mi, i) outputs M̃ ′i ← GbPrg′(SK′,OProg(1λ,Mi, S)F(i,·), i).

Eval(M̃, s̃) outputs Eval′(M̃ ′, s̃′0).

Simulator To show security of this construction, we define the following simu-
lator.

1. The adversary provides S, and an initial memory configuration s0. Say that
s0 has n non-ε addresses. The simulator is given S and n, and samples
SK ′ ← Setup′(1λ, ζ(S, λ) · S) and sends GbMem′(SK ′,OMem(1λ, 0n, S)) to
the adversary.

2. When the adversary makes a query Mi, 1
Ti , the simulator is given yi =

Mi(si−1) and ti = Time(Mi, si−1), where si = NextMem(Mi, si−1), and out-
puts GbPrg′(SK ′, Di, η(S, λ) · Ti, i), where Di is a “dummy program”. As
described in Algorithm 4, Di independently samples addresses to access for
ti steps, and then outputs yi.

Data: Underlying running time ti, output value yi, PPRF Gi, circuits
C1, . . . , Cm guaranteed by localized randomness

1 for t = 1, . . . , ti do
2 for k = 1, . . . ,m do
3 rk ← Gi(t, k);
4 Access addresses given by Ck(rk)

5 return yi.

Algorithm 4: Pseudocode for a dummy RAM machine which simulates
pseudorandom addresses to access using the circuits C1, . . . , Cm given in
the definition of localized randomness, and then outputs yi.

We refer the readers to the full version for the proof.

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 25

10 Database delegation

We define security for the task of delegating a database to an untrusted server.
Here we have a database owner that wishes to keep the database on a remote
server. Over time, the owner wishes to update the database and query it. Fur-
thermore, the owner wishes to enable other parties to do so as well, perhaps
under some restrictions. Informally, the security requirements from the scheme
are:

Verifiability: The data owner should be able to verify the correctness of the an-
swers to its queries, relative to the up-to-date state of the database following
all the updates made so far.

Secrecy of database and queries: For queries made by the database owner
and honest third parties, the adversary does not learn anything other than
the size of the database, the sizes and runtimes of the queries, and the sizes
of the answers. This holds even if the answers to the queries become partially
or fully known by other means.
For queries made by adversarially controlled third parties, the adversary
learns in addition only the answers to the queries.
(We stress that the secrecy requirement for the case of a corrupted third
party is incomparable to the secrecy requirement in the case of an honest
third party. In particular, the case of corrupted third parties guarantees
secrecy even when the entire evaluation and verification processes are com-
pletely exposed.)

More precisely, a database delegation scheme (or, protocol) consists of the fol-
lowing algorithms:

DBDelegate: Initial delegation of the database. Takes as input a plain database,
and outputs an encrypted database (to be sent to the server), public verifi-
cation key vk and private master key msk to be kept secret.

Query: Delegation of a query or database update. Takes a RAM program and
the master secret key msk, and outputs a delegated program to be sent to
the server and a secret key skenc that allows recovering the result of the
evaluation from the returned response.

Eval: Evaluation of a query or update. Takes a delegated database D̃ and a
delegated program M̃ , runs M̃ on D̃. Returns a response value a and an
updated database D̃′.

AnsDecVer: Local processing of the server’s answer. Takes the public verification
key vk, the private decryption key skenc and outputs either an answer value
or ⊥.

Security. The security requirement from a database delegation scheme S =
(DBDelegate,Query,Eval,AnsDecVer) is that it UC-realize the database delega-
tion ideal functionality Fdd defined as follows. (For simplicity we assume that
the database owner is uncorrupted, and that the communication channels are
authenticated.)

26 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

1. When activated for the first time, Fdd expects to obtain from the activating
party (the database owner) a database D. It then records D and discloses
‖D‖0 to the adversary.

2. In each subsequent activation by the owner, that specifies a program M and
party P , run M on D, obtain an answer a and a modified database D′,
store D′ and disclose |M |, the running time of M , and the length of a to the
adversary. If the adversary returns ok then output (M,a) to P .

To make the requirements imposed by Fdd more explicit, we also provide
an alternative (and equivalent) formulation of the definition in terms of a dis-
tinguishability game. Specifically, we require that there exists a simulator Sim
such that no adversary (environment) A will be able to distinguish whether it
is interacting with the real or the ideal games as described here:

Real game REALA(1λ):

1. A provides a database D, receives the public outputs of DBDelegate(D).
2. A repeatedly provides a program Mi and a bit that indicates either

honest or dishonest. In response, Query is run to obtain skienc and M̃i. A
obtains M̃i, and in the dishonest case also the decryption key skienc.

3. In the honest case A provides the server’s output outi for the execution
of Mi, and obtains in response the result of AnsDecVer(vk, skenc, outi).

Ideal game IDEALA(1λ):

1. A provides a database D, receives the output of Sim(‖D‖0).
2. A repeatedly provides a program Mi and either honest or dishonest.

In response, Mi runs on the current state of the database D to obtain
output a and modified database D′. D′ is stored instead of D. In the
case of dishonest, A obtains Sim(a, s, t), where s is the description size of
M and t is the runtime of M . In the case of honest, A obtains Sim(s, t).

3. In the honest case A provides the server’s output outi for the execution
of Mi, and obtains in response Sim(outi), where here Sim(outi) can take
one out of only two values: either a or ⊥.

Definition 5. A delegation scheme S = (DBDelegate,Query,Eval,AnsDecVer)
is secure if it UC-realizes Fdd. Equivalently, it is secure if there exists a simu-
lator Sim such that no A can guess with non-negligible advantage whether it is
interacting in the real interaction with S or in the ideal interaction with Sim.

Theorem 10. If there exist adaptive succinct garbled RAMs with persistent
memory, unforgeable signature schemes and symmetric encryption schemes with
pseudorandom ciphertexts, then there exist secure database delegation schemes
with succinct queries and efficient delegation, query preparation, query evalua-
tion, and response verification.

Proof. Let (Setup,GbMem,GbPrg,Eval) be an adaptively secure garbling scheme
for RAM with persistent memory. We construct a database delegation scheme
as follows:

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 27

DBDelegate(1λ): Run SK ← Setup(1λ, D) and D̃ ← GbMem(SK,D, |D|). Gen-
erate signing and verification keys (vksign, sksign) for the signature scheme.
Set msk← (SK, sksign) and vk← vksign.

Query(Mi,msk, pk): Generate a symmetric encryption key skenc. Generate the
extended version of M ′i of Mi as in Algorithm 5.
Output M̃ ← GbPrg(SK,M ′i [sksign, skenc], i)

Input: State q, memory value v
Data: RAM program Mi with transition function δi and output space Y , and

signing and encryption keys sksign, skenc
1 out← δi(q, v);
2 if out ∈ Y then
3 ctout ← Enc(skenc, out)
4 σout ← Sign(sksign, ctout‖i)
5 return (ctout, σout);

6 return out

Algorithm 5: M ′i : modified version of Mi which encrypts and signs its
final output

Eval: Run M̃ on D̃ and return the output value a and an updated database D̃′.
AnsDecVer(i, out, vk, sk): Parse out = (ct, σ). If Verify(vk, ct‖i, σ) 6= 1, output ⊥.

Else output Dec(sk, ct).

We construct a simulator Sim for the delegation scheme as follows:

– DBDelegate: Sim generates signing and verifications keys sksign, vksign. Sim
runs the simulator SimGRAM for a GRAM scheme to obtain a simulated gar-
bled database D̃. It provides D̃ and vksign as output to the adversary A.

– Query: If Sim is executed with inputs (a, s, t) on the i-th iteration, it gen-
erates symmetric encryption key skenc. It computes ct = Enc(skenc, a), σ ←
Sign(sksign, ct‖i) and runs the simulator SimGRAM with inputs (ct‖i, σ) to ob-

tain simulated garbled RAM M̃i. It returns M̃i and skenc to A.
If Sim is executed with inputs (s, t) on the i-th iteration, it generates a
random value ct, computes σ ← Sign(sksign, ct‖i) and runs the simulator

SimGRAM with inputs (ct‖i, σ) to obtain simulated garbled RAM M̃i. It re-
turns M̃i to A.

– AnsDecVer: If Sim executes on input outi then it outputs AnsDecVer(vk, skenc,
outi).

To show validity of Sim, we construct the following hybrids.

H0: This is the real world execution.
H1: In this hybrid we start using the simulator for the GRAM SimGRAM to

generate simulated database D̃′. We generate the signature scheme keys
(vksign, sksign) honestly. We also use SimGRAM to generate the garbling for the

28 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

programs M ′i given inputs cti ← Enc(pkenc, out)‖i , σi ← Sign(sksign, cti) and
out is the result of the evaluation of Mi with the memory state after the
previous i− 1 evaluations.
The indistinguishability of H0 and H1 follows from the simulation security
of the GRAM scheme.

H2: In this hybrid for all honest executions for machines Mi where the adver-
sary A does not get skenc, we run SimGRAM to generate the garbling for
the programs M ′i with inputs cti ← r, where r is a random value, and
σi ← Sign(sksign, cti‖i).
The indistinguishability of H1 and H2 follows from the pseudorandom prop-
erty of symmetric encryption ciphertexts.

Now, consider the event where, in execution H2, the adversary provides a
value outi such that AnsDecVer(vk, skenc, outi) = a′ and a 6= a′ 6=⊥, where a
is the correct answer for the i-th query in this execution. We argue that:
• Conditioned on this event not happening, A’s view of H2 is identical to

its view in the ideal interaction.
• The event happens with at most negligible probability. Otherwise A can

be used to break the unforgeability of the signature scheme. To see this
consider an interaction between A and Sim that is the same as H2 except
that Sim queries the signature scheme challenger C to obtain verification
key vksign and signatures σi for the values cti. Then outi, whichA returns,
contains a signature of a message that Sim has not queried. Hence, Sim
breaks the unforgeability property of the signature scheme.

Acknowledgments

We would like to thank Oxana Poburinnaya. Although she preferred not to co-
author this paper, her constructive suggestions and criticisms played an essential
role throughout the creation of this work.

This work is supported by US NSF grants 1413920, 1218461, 1012798, 1012910,
1421102, 1562888, 1565208, 1633282, ISF grant 1523/14, and DARPA SafeWare
W911NF-15-C-0236. Part of the research by Y.C. was conducted while at SRI
funded by the NSF grant 1421102.

References

1. Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin.
Delegating ram computations with adaptive soundness and privacy. Cryptology
ePrint Archive, Report 2015/1082, 2015.

2. Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines.
IACR Cryptology ePrint Archive, 2015:776, 2015.

3. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In ASIACRYPT,
pages 134–153, 2012.

4. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the SNARK. IACR Cryptology
ePrint Archive, 2014:580, 2014.

Adaptive Succinct Garbled RAM (How To Delegate Your Database) 29

5. Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Suc-
cinct randomized encodings and their applications. In Ronitt Rubinfeld, editor,
Symposium on the Theory of Computing (STOC), 2015.

6. C. T. Bösch, P. H. Hartel, W. Jonker, and A. Peter. A survey of provably secure
searchable encryption. ACM computing surveys, 47(2):18:1–18:51, August 2014.

7. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
TCC, pages 52–73, 2014.

8. Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Succinct adap-
tive garbled ram. Cryptology ePrint Archive, Report 2015/1074, 2015.

9. Ran Canetti and Justin Holmgren. Fully succinct garbled ram. In ITCS, 2016.
10. Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. In-

distinguishability obfuscation of iterated circuits and ram programs. Cryptology
ePrint Archive, Report 2014/769, 2014.

11. Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai
Lin, and Hong-Sheng Zhou. Computation-trace indistinguishability obfuscation
and its applications. IACR Cryptology ePrint Archive, 2015.

12. Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation
of computation using fully homomorphic encryption. In CRYPTO, 2010, pages
483–501, 2010.

13. Kai-Min Chung and Rafael Pass. A simple ORAM. IACR Cryptology ePrint
Archive, 2013:243, 2013.

14. Ivan Bjerre Damg̊ard. Collision free hash functions and public key signature
schemes. In EUROCRYPT, pages 203–216, 1988.

15. Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled ram
from one-way functions. In STOC, 2015.

16. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In CRYPTO, 2010, pages
465–482, 2010.

17. Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and
Daniel Wichs. Garbled RAM revisited. In EUROCRYPT, pages 405–422, 2014.

18. Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing
private ram computation. In FOCS, 2014.

19. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, 1996.

20. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In Proceedings of the 28th Annual Conference on Cryptology: Advances in Cryp-
tology, CRYPTO 2008, 2008.

21. Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

22. Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and
Daniel Wichs. Adaptively secure garbled circuits from one-way functions.

23. Pavel Hubáček and Daniel Wichs. On the communication complexity of secure
function evaluation with long output. ITCS, 2015.

24. Yael Tauman Kalai and Omer Paneth. Delegating ram computations. Cryptology
ePrint Archive, Report 2015/957, 2015.

25. Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computa-
tions: the power of no-signaling proofs. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 485–494, 2014.

26. Seny Kamara. Encrypted search. ACM Crossroads, 21(3):30–34, 2015.

30 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

27. Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishabil-
ity obfuscation for turing machines with unbounded memory. Cryptology ePrint
Archive, Report 2014/925, 2014.

28. Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In STOC, 2015.

29. Steve Lu and Rafail Ostrovsky. How to garble ram programs? In EUROCRYPT.
2013.

30. Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New re-
alizations of somewhere statistically binding hashing and positional accumulators.
IACR Cryptology ePrint Archive, 2015:869, 2015.

31. Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Opti-
mal verification of operations on dynamic sets. In CRYPTO, 2011, pages 91–110,
2011.

32. Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. Cryptdb: protecting confidentiality with encrypted query processing. In
SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 85–100, 2011.

33. Phillip Rogaway. The round complexity of secure protocols. PhD thesis, Mas-
sachusetts Institute of Technology, 1991.

34. Michael Walfish and Andrew J. Blumberg. Verifying computations without reex-
ecuting them. Commun. ACM, 58(2):74–84, 2015.

35. Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS, pages
162–167, 1986.

	Adaptive Succinct Garbled RAM or: How To Delegate Your Database

