
Multi-Key FHE from LWE, Revisited

Chris Peikert1? and Sina Shiehian1

Computer Science and Engineering, University of Michigan, Ann Arbor, USA

Abstract. Traditional fully homomorphic encryption (FHE) schemes
only allow computation on data encrypted under a single key. López-
Alt, Tromer, and Vaikuntanathan (STOC 2012) proposed the notion of
multi-key FHE, which allows homomorphic computation on ciphertexts
encrypted under different keys, and also gave a construction based on a
(somewhat nonstandard) assumption related to NTRU. More recently,
Clear and McGoldrick (CRYPTO 2015), followed by Mukherjee and Wichs
(EUROCRYPT 2016), proposed a multi-key FHE that builds upon the
LWE-based FHE of Gentry, Sahai, and Waters (CRYPTO 2013). However,
unlike the original construction of López-Alt et al., these later LWE-based
schemes have the somewhat undesirable property of being “single-hop for
keys:” all relevant keys must be known at the start of the homomorphic
computation, and the output cannot be usefully combined with ciphertexts
encrypted under other keys (unless an expensive “bootstrapping” step is
performed).
In this work we construct two multi-key FHE schemes, based on LWE
assumptions, which are multi-hop for keys: the output of a homomorphic
computation on ciphertexts encrypted under a set of keys can be used
in further homomorphic computation involving additional keys, and so
on. Moreover, incorporating ciphertexts associated with new keys is a
relatively efficient “native” operation akin to homomorphic multiplication,
and does not require bootstrapping (in contrast with all other LWE-based
solutions). Our systems also have smaller ciphertexts than the previous
LWE-based ones; in fact, ciphertexts in our second construction are simply
GSW ciphertexts with no auxiliary data.

1 Introduction

Secure multiparty computation (MPC) is an important and well-studied problem
in cryptography. In MPC, multiple users want to jointly perform a computation
on their respective inputs via an interactive protocol. Informally, the goal is for
the protocol to reveal nothing more than the output of the computation.

Fully homomorphic encryption (FHE) is a powerful tool for constructing
secure MPC protocols. One approach suggested in Gentry’s seminal work [9],

? This material is based upon work supported by the National Science Foundation
under CAREER Award CCF-1054495 and CNS-1606362, and by the Alfred P. Sloan
Foundation. The views expressed are those of the authors and do not necessarily
reflect the official policy or position of the National Science Foundation or the Sloan
Foundation.

and later optimized by Asharov et al. [4], is to have an initial phase in which
all parties run a protocol to generate a sharing of an FHE secret key, then use
the public key to encrypt their inputs and publish the ciphertexts. The parties
then locally compute an encryption of the output using homomorphic operations.
Finally, they run a protocol to decrypt the encrypted output, using their secret
key shares. Overall, this approach requires the set of involved parties to be known
in advance, and for them to run interactive protocols both before and after their
local computation.

López-Alt et al. [15] (hereafter LTV) introduced the interesting notion of on-
the-fly MPC, in which the set of parties who contribute inputs to the computation,
and even the computation itself, need not be fixed in advance, and can even
be chosen adaptively. In addition, there is no interaction among the parties at
the outset: any user whose data might potentially be used simply uploads her
encrypted input to a central server in advance, and can then go offline. The
server then uses the uploaded data to compute (or continue computing) a desired
function, and when finished, outputs an encrypted output. Finally, the parties
whose inputs were used in the computation—and only those parties—run an
interactive protocol to jointly decrypt the ciphertext and obtain the output.

Multi-key FHE. Traditional FHE schemes only allow computation on data en-
crypted under a single key, and therefore are not suitable for on-the-fly MPC,
where users’ inputs must be encrypted under different keys. As a tool for construct-
ing on-the-fly protocols, LTV proposed a new type of FHE scheme, which they
called multi-key FHE (MK-FHE). Such a scheme extends the FHE functionality
to allow homomorphic computation on ciphertexts encrypted under different, in-
dependent keys. Decrypting the result of such a computation necessarily requires
all of the corresponding secret keys.

In [15], LTV constructed an MK-FHE scheme based on a variant of the NTRU
cryptosystem [13]. Its security was based on a new and somewhat non-standard
assumption on polynomial rings, which, unlike the commonly used learning with
errors (LWE) assumption [20] or its ring-based analogue [16], is not currently
supported by a worst-case hardness theorem.1 (LTV also constructed MK-FHE
based on ring-LWE, but limited only to a logarithmic number of keys and circuit
depth.) Subsequently, Clear and McGoldrick [8] gave an LWE-based construction
for an unlimited number of keys, using a variant of the FHE scheme of Gentry
et al. [11] (hereafter GSW). Later, Mukherjee and Wichs [18] provided another
exposition of the Clear-McGoldrick scheme, and built a two-round (plain) MPC
protocol upon it.

Static versus dynamic. We observe that the LTV multi-key FHE, to extend the
terminology of [10], is “multi-hop for keys,” or, more concisely, “dynamic:” one

1 Indeed, Albrecht et al. [1], and later Kirchner and Fouque [14], recently gave attacks
on “overstretched” NTRU problems like those used in [15], where the running
times range from slightly subexponential to even polynomial-time, depending on the
parameterization.

can perform a homomorphic computation on a collection of ciphertexts encrypted
under some set of keys, then use the resulting ciphertext as an input to further
homomorphic computation on ciphertexts encrypted under additional keys, and
so on. (Multi-hop homomorphic computation is naturally supported by essentially
all known single-key FHE schemes as well.) The on-the-fly MPC protocol of [15]
naturally inherits this dynamic flavor, which is very much in the spirit of “on
the fly” computation, since it allows reusing encrypted results across different
computations.

By contrast, it turns out that neither of the MK-FHE constructions from [8, 18]
appear to be dynamic, but are instead only static (i.e., single-hop for keys): once
a homomorphic computation has been performed on a collection of ciphertexts
encrypted under some set of keys, the output cannot easily be used in further
computation involving additional keys. Instead, one must restart the whole
computation from scratch (incorporating all the relevant keys from the very
beginning), or perform an expensive “bootstrapping” step, which may be even
more costly.2 This rules out a dynamic computation, since all involved parties must
be known before the computation begins. In summary, existing constructions of
MK-FHE and on-the-fly MPC from standard (worst-case) lattice assumptions still
lack basic functionality that has been obtained from more heuristic assumptions.

1.1 Our Results

In this work we construct two (leveled) multi-key FHE schemes, for any number
of keys, from LWE assumptions. Like the original MK-FHE scheme of [15], and
unlike those of [8, 18], both of our schemes are dynamic (i.e., multi-hop for keys),
and hence are suitable for dynamic on-the-fly MPC. Specifically, in our schemes
one can homomorphically compute on ciphertexts encrypted under several keys,
then use the result in further computation on ciphertexts under additional keys,
and so on. Moreover, incorporating ciphertexts associated with new keys into the
computation is a relatively efficient “native” operation, akin to GSW ciphertext
multiplication, which does not require bootstrapping. In addition, our schemes
are also naturally bootstrappable (as usual, under appropriate circular-security
assumptions), and can therefore support unbounded homomorphic computations
for any polynomial number of keys. We now describe our two systems in more
detail, and discuss their different efficiency and security tradeoffs.

Scheme #1: large ciphertexts, standard LWE. The security of our first scheme,
which is described in Section 3, is based on the standard n-dimensional decision-
LWE assumption (appropriately parameterized), but has rather large ciphertexts
and correspondingly slow homomorphic operations. Actually, the ciphertexts are
about an n factor smaller than fresh ciphertexts in the systems from [8, 18] (see
Figure 1), but unlike in those systems, our ciphertexts remain rather large even

2 Indeed, a recent concurrent and independent work by Brakerski and Perlman [6]
follows this bootstrapping approach; we provide a comparison to our work in Sec-
tion 1.1.

after multi-key homomorphic operations. Essentially, this is the price of being
dynamic—indeed, it is possible at any point to “downgrade” our ciphertexts
to ordinary GSW ciphertexts, by giving up the ability to extend ciphertexts to
additional keys.

Scheme #2: small ciphertexts, circular LWE. In our second scheme, which
is described in Section 4, ciphertexts are simply GSW ciphertexts, and are
therefore (relatively) small and admit correspondingly efficient homomorphic
operations. This efficiency comes at the price of rather large public keys (which are
comparable to fresh ciphertexts in the systems from [8, 18]) and a correspondingly
slow algorithm for extending ciphertexts to additional keys. This efficiency profile
seems preferable to our first scheme’s, because applications of MK-FHE would
typically involve many more homomorphic operations than extensions to new
keys. Therefore, we consider this scheme to be our main contribution.

Interestingly, the security of our second scheme appears to require a natural
circular security assumption for LWE. Despite some positive results for circular
security of LWE-based encryption [3], we do not yet see a way to prove security
under standard LWE. We point out, however, that our assumption is no stronger
than the circular-security assumptions that are used to “bootstrap” FHE, because
any circular-secure FHE is itself fully key-dependent message secure [9]. So in a
context where our system is bootstrapped to obtain unbounded FHE, we actually
incur no additional assumption.

Public key Ciphertext Key Hops Must Bootstrap?

[8, 18] Õ(nd2) Õ(n4d4)→ Õ(n2k2d2) Single No

[6] Õ(n3) Õ(nk) Multiple Yes

Our Scheme #1 Õ(n(K + d)2) Õ(n3k(K + d)4) Multiple No

Our Scheme #2 Õ(n4(K + d)4) Õ(n2k2(K + d)2) Multiple No

Fig. 1. Properties of LWE-based MK-FHE schemes, where all sizes are in bits. Here k
denotes the actual number of secret keys associated with the ciphertext, with a designed
upper bound of K; d denotes the boolean circuit depth the scheme is designed to
homomorphically evaluate (without bootstrapping); and n is the dimension of the
underlying LWE problem used for security. (The Õ notation hides logarithmic factors
in these parameters.) The arrow → for [8, 18] denotes the change in size following the
single “hop” from fresh ciphertexts (under single keys) to multi-key ciphertexts.

Comparison with [6]. A concurrent and independent work by Brakerski and
Perlman [6], which also constructs (unbounded) dynamic multi-key FHE from
LWE, was posted to ePrint shortly after our original preprint appeared there.
(Both works were submitted to CRYPTO’16, but only [6] was accepted.) The

construction of Brakerski and Perlman follows the “bootstrapping” approach
mentioned above, and is focused on minimizing the ciphertext size. Specifically,
their multi-key ciphertexts grow only linearly in the number of secret keys associ-
ated with the ciphertext. In addition, they describe an “on-the-fly” bootstrapping
algorithm that requires only a linear amount of “local” memory (even though
the encrypted secret keys are much larger). However, all this comes at the cost
of needing to perform an expensive bootstrapping operation whenever incorpo-
rating a ciphertext encrypted under a new key, and also for every homomorphic
multiplication/NAND operation. (Essentially, this is because the linear-sized
ciphertexts are ordinary LWE vectors, not GSW matrices.)

By contrast, our work gives (leveled) dynamic multi-key FHE schemes for
which both homomorphic multiplication and incorporation of new keys are much
more efficient “native” operations, requiring only a few standard GSW-style
matrix operations. This comes at the cost of relatively larger ciphertexts, which
näıvely grow at least quartically in the maximum number of keys (see Figure 1).
However, we point out that using ordinary bootstrapping, our constructions can
also be made to support an unbounded number of keys, and with ciphertext sizes
that grow only quadratically in the number of associated keys.

1.2 Technical Overview

For context, we start with a brief overview of the prior (single-hop for keys)
MK-FHE constructions of [8, 18], and the challenge in making them dynamic.
In these systems, a fresh ciphertext that decrypts under secret key t ∈ Zn is a
GSW ciphertext C ∈ Zn×mq encrypted to the corresponding public key P, along
with an encryption D of the encryption randomness used to produce C from P.
(Specifically, each entry of the randomness matrix is encrypted as a separate
GSW ciphertext.)

To perform a homomorphic computation on fresh ciphertexts (Ci,Di) that
are respectively encrypted under secret keys ti for (say) i = 1, 2, we first extend
each ciphertext to an ordinary GSW ciphertext

Ĉi =

[
Ci Xi

Ci

]
∈ Z2n×2m

q (1)

that decrypts to the same message under the concatenated key (t1, t2), and then
perform normal GSW homomorphic operations on these extended ciphertexts.
Essentially, extending C1 is done by considering the extra “junk” term (t2−t1)·C1

that arises from decrypting C1 under the wrong secret key t2, and cancelling
it out via a ciphertext X1 that “decrypts” under t1 to (the negation of) the
same junk term. To produce X1 we use linearly homomorphic operations on D1

(the encryption of C1’s randomness relative to P1), along with some additional
information about t1 relative to a shared public parameter.

We point out that in the above scheme, it is not clear how to obtain an
encryption of Ĉi’s underlying encryption randomness—indeed, it is not even
clear what composite public key P̂ the ciphertext Ĉi would be relative to, nor

whether valid encryption randomness for Ĉi exists at all! (Indeed, for certain
natural ways of combining the public keys Pi, valid encryption randomness is not
likely to exist.) This is what prevents the extended ciphertexts from satisfying
the same invariant that fresh ciphertexts satisfy, which makes the scheme only
single-hop for keys. Moreover, even if we could produce an encryption of the
ciphertext randomness (assuming it exists), it is not clear whether we could later
re-extend an arbitrary ciphertext C ∈ Z2n×2m

q that decrypts under (t1, t2) to an
additional key t3: the block upper-triangular structure from Equation (1) would
produce a 4n-by-4m matrix, which is too large.

Our Approach To overcome the above difficulties, our ciphertexts and/or pub-
lic keys consist of different information, whose invariants can be maintained after
extension to additional keys. In particular, we forego maintaining encryption ran-
domness relative to a varying public key, and instead only maintain commitment
randomness relative to a fixed public parameter, along with an encryption of that
randomness.3 Concretely, this works in two different ways in our two schemes, as
we now explain.

Scheme #1. In our first system (given in Section 3), a ciphertext under a secret
key t ∈ Zkn—which would typically be the concatenation of k ≥ 1 individual
secret keys—consists of three components:

1. a (symmetric-key) GSW ciphertext C ∈ Zkn×kmq that decrypts under t,
2. a GSW-style homomorphic commitment (à la [12]) F ∈ Zn×mq to the same

message, relative to a public parameter, and
3. a special encryption D under t of the commitment randomness underlying F.

To extend such a ciphertext to a new secret key t∗ ∈ Zn, we simply extend the
GSW ciphertext C to some

C′ =

[
C X

F

]
∈ Z(k+1)n×(k+1)m

q ,

where X is produced from D (in much the same way as above) to cancel out the
“junk” term that comes from “decrypting” F with t∗. The commitment F and its
encrypted randomness D remain unchanged, except that we need to pad D with
zeros to make it valid under (t, t∗).

Finally, it is not too hard to design homomorphic addition and multiplication
operations for ciphertexts having the above form: as shown in [12], GSW com-
mitments admit exactly the same homomorphic operations as GSW encryption,
so we can maintain a proper commitment. The homomorphic operations also
have a natural, predictable effect on the underlying commitment randomness, so
we can use the encrypted randomness Di along with the GSW ciphertexts Ci to
maintain correct encrypted commitment randomness.

3 We note that the previous constructions from [8, 18] also require a public parameter,
so we are not changing the model.

Scheme #2. Our second system (given in Section 4) works differently from
all the previous ones. In it, ciphertexts are simply GSW ciphertexts, with no
extra components, so they support the standard homomorphic operations. To
support extending ciphertexts to additional keys, each public key contains a
commitment to its secret key t, along with an appropriate encryption under t
of the commitment randomness. (This cyclical relation between secret key and
commitment randomness is what leads to our circular-security assumption.) We
show how to combine two public keys to get a ciphertext, under the concatenation
of their secret keys t1, t2, that encrypts the tensor product t1 ⊗ t2 of those keys.
By applying homomorphic operations, it is then fairly straightforward to extend
a ciphertext that decrypts under one of the keys to a ciphertext that decrypts
under their concatenation.

2 Preliminaries

In this work, vectors are denoted by lower-case bold letters (e.g., a), and are
row vectors unless otherwise indicated. Matrices are denoted by upper-case bold
letters (e.g., A). We define [k] := {1, . . . , k} for any non-negative integer k.

Approximations. As in many works in lattice cryptography, we work with “noisy
equations” and must quantify the quality of the approximation. For this purpose
we use the notation ≈ to indicate that the two sides are approximately equal up
to some additive error, and we always include a bound on the magnitude of this
error. For example,

x ≈ y (error E)

means that x = y + e for some e ∈ [−E,E]. In the case of vectors or matrices,
the error bound applies to every entry of the error term, i.e., it is an `∞ bound.

For simplicity of analysis, in this work we use the following rather crude
“expansion” bounds to quantify error growth. (Sharper bounds can be obtained
using more sophisticated tools like subgaussian random variables.) Because
‖x · yt‖∞ ≤ ‖x‖∞ · ‖y‖1 and ‖y‖1 ≤ dim(y) · ‖y‖∞, we have implications like

X ≈ Y (error E)

=⇒ X ·R ≈ Y ·R. (error height(R) · ‖R‖∞ · E)

for any X,Y,R.

Tensor products. The tensor (or Kronecker) product A ⊗ B of an m1-by-n1

matrix A with an m2-by-n2 matrix B, both over a common ring R, is the m1m2-
by-n1n2 matrix consisting of m2-by-n2 blocks, whose (i, j)th block is ai,j · B,
where ai,j denotes the (i, j)th entry of A.

It is clear that

r(A⊗B) = (rA)⊗B = A⊗ (rB)

for any scalar r ∈ R. We extensively use the mixed-product property of tensor
products, which says that

(A⊗B) · (C⊗D) = (AC)⊗ (BD)

for any matrices A,B,C,D of compatible dimensions. In particular,

(A⊗B) = (A⊗Iheight(B)) ·(Iwidth(A)⊗B) = (Iheight(A)⊗B) ·(A⊗Iwidth(B)).

2.1 Cryptographic Definitions

Definition 1. A leveled multi-hop, multi-key FHE scheme is a tuple of effi-
cient randomized algorithms (Setup,Gen,Enc,Dec,EvalNAND) having the follow-
ing properties:

– Setup(1λ, 1k, 1d), given the security parameter λ, a bound k on the number
of keys, and a bound d on the circuit depth, outputs a public parameter pp.
(All the following algorithms implicitly take pp as an input.)

– Gen() outputs a public key pk and secret key sk.

– Enc(pk, µ), given a public key pk and a message µ ∈ {0, 1}, outputs a ci-
phertext c. For convenience, we assume that c implicitly contains a reference
to pk.

– Dec((sk1, sk2, . . . , skt), c), given a tuple of secret keys sk1, . . . , skt and a
ciphertext c, outputs a bit.

– EvalNAND(c1, c2), given two ciphertexts c1, c2, outputs a ciphertext ĉ. For
convenience, we assume that ĉ implicitly contains a reference to each public
key associated with either c1 or c2 (or both).

These algorithms should satisfy correctness and compactness functionality prop-
erties, as defined below.

We now describe how to homomorphically evaluate a given boolean circuit
composed of NAND gates and having one output wire, which is without loss of
generality. The algorithm Eval(C, (c1, . . . , cN)), given a circuit C having N input
wires, first associates ci with the ith input wire for each i = 1, . . . , N . Then for
each gate (in some topological order) having input wires i, j and output wire k,
it computes ck ← EvalNAND(ci, cj). Finally, it outputs the ciphertext associated
with the output wire.

We stress that the above homomorphic evaluation process is qualitatively
different from the ones defined in [15, 18], because when homomorphically evalu-
ating each gate we can only use the key(s) associated with the input ciphertexts
for that gate alone; this is what makes the computation multi-hop. By contrast,
homomorphic evaluation in [15, 18] is given all the input ciphertexts and public
keys from the start, so it can (and does, in the case of [18]) use this knowledge
before evaluating any gates.

Definition 2 (Correctness). A leveled multi-hop, multi-key FHE scheme is
correct if for all positive integers λ, k, d, for every circuit C of depth at most d
having N input wires, for every function π : [N]→ [k] (which associates each input

wire with a key pair), and for every x ∈ {0, 1}N , the following experiment succeeds
with 1− negl(λ) probability: generate a public parameter pp← Setup(1λ, 1k, 1d),
generate key pairs (pkj , skj) ← Gen() for each j ∈ [k], generate ciphertexts
ci ← Enc(pkπ(i), xi) for each i ∈ [N], let ĉ ← Eval(C, (c1, . . . , cN)), and finally
test whether

Dec((skj), ĉ) = C(x1, . . . , xN),

where Dec is given those secret keys skj corresponding to the public keys referenced
by ĉ.

Definition 3 (Compactness). A leveled multi-hop, multi-key FHE scheme is
compact if there exists a polynomial p(·, ·, ·) such that in the experiment from
Definition 2, |ĉ| ≤ p(λ, k, d). In other words, the length of ĉ is independent of C
and N , but can depend polynomially on λ, k, and d.

2.2 Learning With Errors

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Zn, the LWE distribution As,χ is sampled by choosing a uniformly random
a← Znq and an error term e← χ, and outputting (a, b = 〈s,a〉+ e) ∈ Zn+1

q .

Definition 4. The decision-LWEn,q,χ problem is to distinguish, with non-negligible
advantage, between any desired (but polynomially bounded) number of independent
samples drawn from As,χ for a single s← χn, and the same number of uniformly
random and independent samples over Zn+1

q .4

A standard instantiation of LWE is to let χ be a discrete Gaussian distribution
(over Z) with parameter r = 2

√
n. A sample drawn from this distribution has

magnitude bounded by, say, r
√
n = Θ(n) except with probability at most 2−n.

For this parameterization, it is known that LWE is at least as hard as quantumly
approximating certain “short vector” problems on n-dimensional lattices, in the
worst case, to within Õ(q

√
n) factors [20]. Classical reductions are also known

for different parameterizations [19, 5].
In this work it will be convenient to use a form of LWE that is somewhat

syntactically different from, but computationally equivalent to, the one defined
above. Letting s = (−s̄, 1) ∈ Zn where s̄ ← χn−1, notice that an LWE sample
b = (a, b = 〈s,a〉+e) ∈ Znq drawn from As̄,χ is simply a uniformly random vector
satisfying

〈s,b〉 = s · bt = e ≈ 0. (2)

4 Notice that in the above definition, the coordinates of s are drawn from the error
distribution χ; as shown in [3], this form of the problem is equivalent to the one
where s← Zn

q is drawn uniformly at random.

Therefore, decision-LWEn−1,q,χ is equivalent to the problem of distinguishing
samples having the above form (and in particular, satisfying Equation (2)) from
uniformly random ones.

More generally, for s ∈ Zn as above and some t = poly(n), we will need to
generate uniformly random vectors b ∈ Ztnq that satisfy

(It ⊗ s) · b = e ≈ 0,

for some e ← χt. This is easily done by concatenating t independent samples
from As̄,χ; clearly, the result is indistinguishable from uniform assuming the
hardness of decision-LWEn,q,χ.

2.3 Gadgets and Decomposition

Here we recall the notion of a “gadget” [17], which is used for decomposing
Zq-elements—or more generally, vectors or matrices over Zq—into short vectors
or matrices over Z. We also define some new notation that will be convenient for
our application.

For simplicity, throughout this work we use the standard “powers of two”
gadget vector

g = (1, 2, 4, 8, . . . , 2`−1) ∈ Z`q, where ` = dlg qe.

The “bit decomposition” function g−1 : Zq → {0, 1}` outputs a binary column
vector (over Z) consisting of the binary representation of (the canonical repre-
sentative in {0, 1, . . . , q − 1} of) its argument. As such, it satisfies the identity
g · g−1[a] = a. (This identity explains the choice of notation g−1; we stress
that g−1 is a function, not a vector itself.) Symmetrically, we define the notation

[a]g−t := g−1[a]t,

which outputs a binary row vector and satisfies the identity [a]g−t ·gt = a. (This
identity explains why we place the bracketed argument to the left of g−t.)

More generally, we define the operation denoted by (In⊗g−1)[·], which applies
g−1 entrywise to a height-n vector/matrix, and thereby produces a height-n`
binary output that satisfies the convenient identity

(In ⊗ g) · (In ⊗ g−1)[A] = A.

Similarly, we define [·](In⊗g−t) to apply g−t entrywise to a width-n vector/matrix,
thereby producing a width-n` output that satisfies

[A](In ⊗ g−t) · (In ⊗ gt) = A.

For the reader who is familiar with previous works that use gadget techniques,
the matrix In⊗g is exactly the n-row gadget matrix G, and (In⊗g−1)[·] is exactly
the bit-decomposition operation G−1 on height-n vectors/matrices. In this work
we adopt the present notation because we use several different dimensions n, and
because it interacts cleanly with tensor products of vectors and matrices, which
we use extensively in what follows.

3 Large-Ciphertext Construction

In this section we describe our first construction of a multi-hop, multi-key FHE,
which has small keys but rather large ciphertexts (although fresh ciphertexts are
still smaller than in prior constructions). For simplicity, we describe the scheme
in the symmetric-key setting, but then note how to obtain a public-key scheme
using a standard transformation.

The system is parameterized by a dimension n, modulus q, and error dis-
tribution χ for the underlying LWE problem; we also let m = d2n log qe. For
concreteness, we let χ be the standard discrete Gaussian error distribution with
parameter 2

√
n; to recall, the samples it produces have magnitudes bounded

by some E = Θ(n) except with exponentially small 2−Ω(n) probability. The
modulus q is instantiated in Section 3.3 below, based on a desired depth of
homomorphic computation and number of distinct keys. The scheme is defined
as follows.

– Setup: output a uniformly random A ∈ Zn×mq .
– Gen(A): choose t̄← χn−1 and define t := (−t̄, 1) ∈ Zn. Choose e← χm and

define

b := tA + e

≈ tA ∈ Zmq . (error E) (3)

Output t as the secret key and b as the associated public extension key.
– Enc(t, µ ∈ {0, 1}): do the following, outputting (C,F,D) as the ciphertext.

1. As described in Section 2.2, choose an LWE matrix C̄ ∈ Zn×n`q that

satisfies tC̄ ≈ 0, and define

C := C̄ + µ(In ⊗ g) ∈ Zn×n`q .

Notice that C is simply a GSW ciphertext encrypting µ under secret
key t:

tC = tC̄ + µ(t⊗ 1) · (In ⊗ g) ≈ µ(t⊗ g). (error EC) (4)

2. In addition, choose a uniformly random R ∈ {0, 1}m×n` and define

F := AR + µ(In ⊗ g) ∈ Zn×n`q . (5)

We view F as a commitment to the message µ under randomness R.
3. Finally, choose (as described in Section 2.2) an LWE matrix D̄ ∈ Znm`×n`q

that satisfies

(Im` ⊗ t) · D̄ ≈ 0,

and define D := D̄ + (R⊗ gt ⊗ etn), where en ∈ Zn is the nth standard
basis vector (so t · et = 1). We therefore have

(Im` ⊗ t) ·D ≈ R⊗ gt. (error ED) (6)

We view D as a kind of encryption of the commitment randomness R.

– Dec(t, (C,F,D)): this is standard GSW decryption of C under t, which
works due to Equation (4).

Remark 1. The above scheme is defined in the symmetric-key setting, i.e., Enc
uses the secret key t to generate LWE samples. We can obtain a public-key scheme
using a standard technique, namely, have the encryption algorithm rerandomize
some public LWE samples to generate as many additional samples as needed.
More formally, we define B := A− etn ⊗ b. Then because t · etn = 1, we have

tB ≈ 0. (error E)

The public-key encryption algorithm then constructs C̄, D̄ by generating fresh
samples as B · x for fresh uniformly random x ∈ {0, 1}m. It is easy to verify that
t(Bx) ≈ 0 with error m · E. Security follows from a standard argument, using
the LWE assumption to make b (and thereby B) uniformly random, and then
the leftover hash lemma to argue that the distribution of the fresh samples is
negligibly far from uniform.

Theorem 1. The above scheme is IND-CPA secure assuming the hardness of
the decision-LWEn−1,q,χ problem.

Proof. We prove that the view of an attacker in the real game is indistinguishable
from its view in a game in which the public extension key and every ciphertext
are uniformly random and independent of the message; this clearly suffices for
IND-CPA security. We proceed by a considering the following sequence of hybrid
experiments:

Game 0: This is the real IND-CPA game.
Game 1: In this game the public extension key and the C,D components of

every ciphertext are uniformly random and independent (but F is constructed
in the same way). More precisely:
1. Choose uniformly random public parameter A and extension key b, and

give them to the adversary.
2. For each encryption query, choose uniformly random and independent

C ∈ Zn×n`q and D ∈ Znm`×n`q , construct F exactly as in Enc, and give
ciphertext (C,F,D) to the adversary.

Game 2: This is the ideal game; the only change from the previous game is
that each F is chosen uniformly at random.

We claim that Games 0 and 1 are computationally indistinguishable under
the LWE hypothesis. To prove this we describe a simulator S that is given an
unbounded source of samples; when they are LWE samples it simulates Game 0,
and when they are uniformly random samples it simulates Game 1. It works as
follows:

– Draw m samples and form a matrix Ā ∈ Zn×mq with the samples as its
columns. Choose a uniformly random extension key b ∈ Zmq , and let the

public parameter A = Ā + etn ⊗ b.

– On encryption query µ, draw samples to construct matrices C̄ and D̄, and
define C,D from these as in Enc. Also construct F exactly as in Enc.

If the simulator’s input distribution is At̄,χ for some t̄ ← χn−1, then the
first n − 1 rows of Ā are uniformly random, hence A is uniformly random by
construction. Moreover, b ≈ (−t̄, 1) ·A has the same distribution as in the real
game. Finally, C̄ and D̄ are constructed exactly as in the real game, so S perfectly
simulates Game 0.

By contrast, if the simulator’s input distribution is uniform, then A and b are
uniformly random and independent. Similarly, because C̄ and D̄ are uniform and
independent of everything else, so are C and D. Therefore, S perfectly simulates
Game 1. This proves the first claim.

Finally, we claim that Games 1 and 2 are statistically indistinguishable. This
follows directly from the leftover hash lemma. This concludes the proof.

3.1 Extending Ciphertexts

We first describe how to extend a ciphertext to an additional secret key t∗, using
the associated public extension key b∗ ≈ t∗A ∈ Zmq . More precisely, suppose we

have a ciphertext that encrypts µ under secret key t ∈ Zn′ . (Here the dimension n′

can be arbitrary, but typically n′ = nk for some positive integer k, and t is the
concatenation of k individual secret keys, each of dimension n.) The ciphertext
therefore consists of component matrices

C ∈ Zn
′×n′`
q , F ∈ Zn×n`q , D ∈ Zn

′m`×n`
q

that satisfy Equations (4), (5), and (6) for some short commitment randomness
R ∈ Zm×n`. (Notice that the dimensions of F and the width of D do not depend
on n′.)

Our goal is to extend (C,F,D) to a new ciphertext (C′,F′,D′) that satisfies
Equations (4), (5), and (6) with respect to the concatenated secret key t′ =
(t, t∗) ∈ Zn′+n and some short commitment randomness R′. We do so as follows.

– The commitment and its randomness are unchanged: we define F′ := F and
R′ := R. This clearly preserves Equation (5).

– Similarly, the encrypted randomness also is essentially unchanged, up to some
padding by zeros: we define

D′ := (Im` ⊗
(

In′

0n×n′

)
) ·D ∈ Z(n′+n)m`×n`

q .

Then Equation (6) is preserved: (Im` ⊗ t′) ·D′ = (Im` ⊗ t) ·D ≈ R⊗ gt =
R′ ⊗ gt.

– Lastly, we define

C′ :=

(
C X

F

)
∈ Z(n′+n)×(n′+n)`

q

where X is defined as follows:

s := [−b∗](Im ⊗ g−t) ∈ {0, 1}m`, (7)

X := (s⊗ In′) ·D ∈ Zn
′×n`
q .

We now do the error analysis for ciphertext extension. Notice that by construction,

tX = (1⊗ t) · (s⊗ In′) ·D
= (s⊗ 1) · (Im` ⊗ t) ·D
≈ s · (R⊗ gt) (Equation (6), error m` · ED)

= −b∗R. (Equation (7))

Putting everything together, we see that Equation (4) is preserved:

t′C′ ≈
(
µ(t⊗ g) tX + t∗F

)
(Equation (4); error EC)

=
(
µ(t⊗ g) tX + t∗AR + µ(t∗ ⊗ g)

)
(Equation (5))

≈
(
µ(t⊗ g) tX + b∗R + µ(t∗ ⊗ g)

)
(Equation (3); error m‖R‖∞ · E)

≈ µ(t′ ⊗ g). (error m` · ED)

In total, the error in the new ciphertext C′ is

EC′ = EC +m‖R‖∞ · E +m` · ED.

We remark that the error growth is merely additive, so we can extend to multiple
new keys with only additive error growth per key. This is important for boot-
strapping a multi-key ciphertext, where the first step is to extend the circularly
encrypted secret keys to the keys that the ciphertext is encrypted under.

3.2 Homomorphic Operations

We now describe homomorphic addition and multiplication for the above cryp-
tosystem. Suppose we have two ciphertexts (C1,F1,D1) and (C2,F2,D2) that
respectively encrypt µ1 and µ2, with commitment randomness R1 and R2, under
a common secret key t ∈ Zn′ . (As in the previous subsection, everything below
works for arbitrary dimension n′ and key t, but typically n′ = nk for some
positive integer k, and t is the concatenation of k individual secret keys.) Recall
that the ciphertext components

Ci ∈ Zn
′×n′`
q , Fi ∈ Zn×n`q , Di ∈ Zn

′m`×n`
q

satisfy Equations (4), (5), and (6) for some short commitment randomness
Ri ∈ Zm×n`.

– Negation and scalar addition. (These are used to homomorphically com-
pute NAND(µ1, µ2) = 1− µ1µ2 for µi ∈ {0, 1}.) To homomorphically negate
a message for a ciphertext (C,F,D), just negate each of the components. It

is clear that this has the desired effect, and that the associated commitment
randomness and error terms are also negated. To homomorphically add a
constant c ∈ Z to a message, just add c(In′ ⊗ g) to both C and F. It is clear
that this has the desired effect, and leaves the commitment randomness and
error terms unchanged.

– Addition. To homomorphically add, we simply add the corresponding ma-
trices, outputting

(Cadd,Fadd,Dadd) := (C1 + C2,F1 + F2,D1 + D2).

It is easy to verify that Equations (4), (5), and (6) hold for the new ciphertext
with message µadd = µ1 +µ2 and commitment randomness Radd = R1 + R2,
where the errors in the approximations are also added.

– Multiplication. To homomorphically multiply, we define the short matrices

Sc := (In′ ⊗ g−1)[C2] ∈ {0, 1}n
′`×n′`

, (8)

Sf := (In ⊗ g−1)[F2] ∈ {0, 1}n`×n`, (9)

Sd := (In′m` ⊗ g−1)[D2] ∈ {0, 1}n
′m`2×n`

, (10)

and output the ciphertext consisting of

Cmul := C1 · Sc
Fmul := F1 · Sf
Dmul := D1 · Sf + (Im` ⊗C1) · Sd.

The associated commitment randomness is defined as

Rmul := R1 · Sf + µ1R2.

We now show that the ciphertext output by homomorphic multiplication
satisfies Equations (4), (5), and (6) for key t, message µmul = µ1µ2, and commit-
ment randomness Rmul. We already know that Equation (4), the GSW ciphertext
relation, is satisfied by construction of Cmul as the homomorphic product of
GSW ciphertexts C1,C2. Specifically:

tCmult = tC1 · Sc
≈ µ1(t⊗ g) · Sc (error n′` · EC1)

= µ1tC2 (Equation (8))

≈ µ1µ2(t⊗ g). (error µ1EC2)

Similarly, Equation (5) is satisfied by construction of Fmul as the homomorphic
product of commitments F1,F2:

Fmul = F1 · Sf
= (AR1 + µ1(In ⊗ g)) · Sf
= AR1 · Sf + µ1F2 (Equation (9))

= AR1 · Sf + µ1AR2 + µ1µ2(In ⊗ g)

= ARmult + µ1µ2(In ⊗ g).

Finally, to see that Equation (6) holds for Dmul, first notice that

(Im` ⊗ t) ·D1 · Sf ≈ (R1 ⊗ gt) · (Sf ⊗ 1) (Equations (6); error n` · ED1
)

= (R1 · Sf)⊗ gt. (11)

In addition,

(Im` ⊗ t) · (Im` ⊗C1) · Sd = (Im` ⊗ tC1) · Sd
≈ µ1(Im` ⊗ t⊗ g) · Sd (Equation (4); error n′` · EC1)

= µ1(Im` ⊗ t) ·D2 (Equation (10))

≈ (µ1R2)⊗ gt (Equation (6); error µ1 · ED2)
(12)

Summing Equations (11) and (12) yields

(Im` ⊗ t) ·Dmul ≈ Rmul ⊗ gt

with error n` · ED1 + n′` · EC1 + µ1 · ED2 as desired.

3.3 Instantiating the Parameters

We now bound the worst-case error growth when homomorphically evaluating a
depth-d circuit of NAND gates for up to k individual keys. As above, let n′ = nk.
For a ciphertext (C,F,D) with commitment randomness R, define the “max
error”

E∗ := max(EC, ED, E · ‖R‖∞).

By the bounds from the previous subsection, for two ciphertexts with max error at
most E∗, their homomorphic NAND has max error at most (n(k+ 1)`+ 1) ·E∗ =
poly(n, k, `) · E∗. Similarly, when we extend a ciphertext with max error at
most E∗, the result has max error at most (m(` + 1) + 1) · E∗ = poly(n, `) ·
E∗. Therefore, for any depth-d homomorphic computation on fresh ciphertexts
encrypted under k keys, the result has max error at most

poly(n, k, `)k+d.

The GSW decryption algorithm works correctly on a ciphertext as long as its
error is smaller than q/4, hence it suffices to choose a modulus q that exceeds
the above quantity by a factor of four. Recalling that ` = Θ(log q) = Õ(k + d),
this corresponds to a worst-case approximation factor of poly(n, k, d)k+d for
n-dimensional lattice problems.

We also remark that when bootstrapping a k-key ciphertext, we first extend
the circularly encrypted secret keys to the k relevant keys, incurring only additive
poly(n, k, `) error growth, then we run the bootstrapping algorithm. Using an
algorithm from [7, 2] that incurs only additive poly(n, k, `) error growth, we can
use a modulus q that is as small as slightly super-polynomial q = nω(1) and still
support any polynomial number of keys.

4 Smaller-Ciphertext Construction

In this section we describe a multi-hop, multi-key FHE having smaller ciphertexts
and more efficient homomorphic operations than the one in Section 3. Indeed,
ciphertexts in this system are simply GSW ciphertexts (with no additional
information), which admit the usual homomorphic operations. These efficiency
improvements come at the cost of larger public extension keys, as well as a
circular-security assumption.

Recall that in the scheme from the previous section, a ciphertext includes a
commitment to the message, along with a special encryption of the commitment
randomness. By contrast, in the scheme described below, the extension key con-
tains a commitment to the secret key, along with an encryption (under the secret
key) of the commitment randomness. (Using the commitment randomness to
hide the secret key, and using the secret key to hide the commitment randomness,
is what leads to a circular-security assumption.) We show how to combine two
extension keys to get an encryption, under the concatenation of the secret keys, of
the tensor product of those keys; this in turn lets us extend a ciphertext encrypted
under one of the keys to their concatenation. We now describe the construction.

As in the previous section, the scheme is parameterized by LWE parameters n
and q, the standard error distribution χ (which is E-bounded for E = Θ(n)),
and m = d2n log qe. The system is defined as follows.

– Setup: output a uniformly random A ∈ Zn×mq .
– Gen(A): do the following, outputting t as the secret key and (b,P,D) as the

public extension key.
1. Choose t̄ ← χn−1 and define t := (−t̄, 1) ∈ Zn. Choose e ← χm and

define

b := tA + e

≈ tA ∈ Zmq . (error E)

2. Choose a uniformly random R← {0, 1}m×n
2`

and define

P := AR + (In ⊗ t⊗ g) ∈ Zn×n
2`

q .

3. As described in Section 2.2, choose an LWE matrix D̄ ∈ Znm`×n2`
q that

satisfies (Im`⊗t)·D̄ ≈ 0 (with error E), and define D := D̄+(R⊗gt⊗etn),
where en ∈ {0, 1}n denotes the nth standard basis vector. Notice that,
because t · etn = 1, we have

(Im` ⊗ t) ·D ≈ R⊗ gt. (error E)

– Enc(t, µ ∈ {0, 1}): This is standard GSW encryption. Specifically, as described
in Section 2.2, choose an LWE matrix C̄ ∈ Zn×n`q that satisfies tC̄ ≈ 0, and

output the ciphertext C := C̄ + µ(In ⊗ g). Notice that t, C satisfy the GSW
relation

tC = tC̄ + µ(t⊗ 1) · (In ⊗ g) ≈ µ(t⊗ g). (error EC)

– Dec(t,C): this is standard GSW decryption.

We again stress that ciphertexts in the above system are just GSW ciphertexts
(with no auxiliary information), so homomorphic addition and multiplication
work as usual (and as in Section 3). Therefore, we only need to show how to
extend ciphertexts to new keys, which we do below in Section 4.1.

For security, we rely on the following circular hardness assumption: that
LWE samples for secret t̄← χn are indistinguishable from uniform, even given
(b,A,P,D) as constructed by Setup and Gen (using secret t̄). We remark that
this assumption is “circular” because D computationally hides (but statistically
determines) R under t̄, and P hides t̄ using R.

The proof of the following theorem follows immediately from the assumption.

Theorem 2. The above scheme is IND-CPA secure under the above circular-
security assumption.

Proof. The proof follows immediately from the assumption: in the real IND-
CPA game, the adversary gets the public information (b,A,P,D) along with
ciphertexts generated from LWE samples with secret t̄. In the ideal world, these
samples are instead uniformly random, and hence perfectly hide the encrypted
messages. Indistinguishability of the two worlds follows directly from the circular-
security assumption.

4.1 Extending a Ciphertext to a New Key

We now show how to extend a (potentially multi-key) ciphertext to an additional
key, so as to preserve the GSW relation for the concatenation of the secret keys.
Specifically, suppose we have a ciphertext C ∈ Zn′×n′`q that encrypts µ under a

key t ∈ Zn′ , i.e.,

tC ≈ µ(t⊗ g). (error EC)

In this setting, n′ = nk for some positive integer k ≥ 1, and t = (t1, . . . , tk) is
the concatenation of k individual secret keys ti ∈ Zn for which we know the

associated vector bi ≈ tiA ∈ Zmq (with error E) from the public extension key.
(We will not need the extension key’s other components P, D.)

We wish to extend C to an additional secret key t∗ for which we know the
associated matrices P∗, D∗ from the public extension key (we will not need the
associated b∗). More precisely, we want to generate a ciphertext C′ that encrypts
µ under t′ = (t, t∗) ∈ Zn(k+1), i.e., we want

t′C′ ≈ µ(t′ ⊗ g) = µ
(
t⊗ g t∗ ⊗ g

)
.

To do this, we output

C′ :=

(
C X

X∗

)
(13)

where X′ =
(

X
X∗

)
is as defined below. Notice that by construction,

t′C′ ≈
(
µ(t⊗ g) t′X′

)
. (error EC)

Below we show how to satisfy

t′X′ = tX + t∗X∗ ≈ µ(t∗ ⊗ g) (14)

with error
EX′ = (n2 · (k`+ 1)2 ·m+ EC) · E,

which yields t′C′ ≈ µ(t′⊗g) with error EC′ = max{EC, EX′} = EX′ , as desired.

Remark 2. While the error bound EC′ = EC · E + poly(n, k, `) is multiplicative
in the original error EC, we can still extend to multiple new keys while incurring
just one factor-of-E increase in the error. This is important for bootstrapping a
multi-key ciphertext, where the first step is to extend the circularly encrypted
secret keys to all the keys that the ciphertext is encrypted under. The method
works by naturally generalizing Equation (13) to a matrix with blocks along the
diagonal and top row only.

Constructing X′. We construct X′ in two steps:

1. Using just the bi and P∗, D∗ (but not the ciphertext C), we construct
Y′ =

(
Y
Y∗

)
that satisfies

t′Y′ = tY + t∗Y∗ ≈ (t⊗ t∗ ⊗ g) (15)

with error EY′ = (k`+ 1) ·m · E. This construction is described below.
2. We then obtain X′ by multiplying Y′ by a certain binary matrix that is

derived from the ciphertext C. Essentially, this step just replaces t with µg
in the right-hand side of Equation (15), while consuming the existing g.
Let C̄ := C · (etn ⊗ I`) ∈ Znk×`q consist of the last ` columns of C, so that

tC̄ ≈ µ(t⊗ g) · (etn ⊗ I`) = µg. (error EC) (16)

Define the binary matrix

S := (Ink ⊗ In ⊗ g−1)
[
C̄⊗ In

]
∈ {0, 1}n

2k`×`
, (17)

and observe that

t′Y′ · S ≈ (t⊗ t∗ ⊗ g) · S (Equation (15); error n2k` · EY′)

= (t⊗ t∗) · (C̄⊗ In) (Equation (17))

= (tC̄)⊗ t∗

≈ µ(g ⊗ t∗). (Equation (16), ‖t∗‖∞ ≤ E, so error EC · E)
(18)

Notice that the right-hand side of Equation (18) is exactly the desired right-
hand side of Equation (14), but permuted (because the arguments of the
Kronecker product are swapped). So let Π be the permutation matrix for
which (g ⊗ t∗)Π = (t∗ ⊗ g) for any t∗, and define

X′ := Y′ · S ·Π,

which by the above satisfies Equation (14), as desired.

Constructing Y′. We now describe the construction of Y′ =
(

Y
Y∗

)
to satisfy

Equation (15). To do this we use the public matrices P∗,D∗ associated with t∗,
which by construction satisfy

P∗ = AR∗ + (In ⊗ t∗ ⊗ g)

(Im` ⊗ t∗) ·D∗ ≈ R∗ ⊗ gt (error E) (19)

for some binary matrix R∗ ∈ {0, 1}m×n
2`

. Recalling that t ∈ Znk is the concate-
nation of k individual secret keys ti ∈ Zn, we also define b ∈ Zmkq to be the
concatenation of the associated bi ≈ tiA ∈ Zmq (all with error E), so

b ≈ t · (Ik ⊗A). (error E) (20)

First, we define

Y := Ik ⊗P∗ = (Ik ⊗AR∗) + (Ink ⊗ t∗ ⊗ g).

Observe that

tY = t · (Ik ⊗AR∗) + (t⊗ 1⊗ 1) · (Ink ⊗ t∗ ⊗ g)

= t · (Ik ⊗A) · (Ik ⊗R∗) + (t⊗ t∗ ⊗ g)

≈ b · (Ik ⊗R∗) + (t⊗ t∗ ⊗ g). (Equation (20); error m · E.)

Therefore, in order to satisfy Equation (15), it suffices to construct Y∗ to satisfy

t∗Y∗ ≈ −b · (Ik ⊗R∗).

with error km` · E. To do this, we define

s := −[b](Ik ⊗ Im ⊗ g−t) ∈ {0, 1}km` (21)

Y∗ := (s⊗ In) · (Ik ⊗D∗).

Then observe that

t∗Y∗ = (1⊗ t∗) · (s⊗ In) · (Ik ⊗D∗)

= (s⊗ 1) · (Ikm` ⊗ t∗) · (Ik ⊗D∗)

≈ s · (Ik ⊗R∗ ⊗ gt) (Equation (19); error km` · E)

= −b · (Ik ⊗R∗) (Equation (21))

as desired. This completes the construction and analysis.

4.2 Instantiating the Parameters

We now bound the worst-case error growth when homomorphically evaluating
a depth-d circuit of NAND gates for up to k individual keys. As above, let
n′ = nk. For two ciphertexts with error bounded by E∗, their homomorphic
NAND has error bounded by (n′`+ 1) · E∗ = poly(n, k, `) · E∗. Similarly, when
we extend a ciphertext with error bounded by E∗, the result has error bounded
by (n2 · (k` + 1)2 ·m + E∗) · E = poly(n, k, `) · E∗. Therefore, for any depth-d
homomorphic computation on fresh ciphertexts encrypted under k keys, the result
has error bounded by poly(n, k, `)k+d. Therefore, it suffices to choose a modulus q
that exceeds four times this bound. Recalling that ` = Θ(log q) = Õ(k + d),
this corresponds to a worst-case approximation factor of poly(n, k, d)k+d for
n-dimensional lattice problems.

We also remark that when bootstrapping a k-key ciphertext, we first extend
the circularly encrypted secret keys to the k relevant keys, incurring only a single
factor-of-E plus additive poly(n, k, `) error growth, then we run the bootstrapping
algorithm. Using an algorithm from [7, 2] that incurs only additive poly(n, k, `)
error growth, we can use a modulus q that is as small as slightly super-polynomial
q = nω(1) and still support any polynomial number of keys.

References

1. Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes. In
CRYPTO, pages 153–178, 2016.

2. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial
error. In CRYPTO, pages 297–314, 2014.

3. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In
CRYPTO, pages 595–618, 2009.

4. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication,
computation and interaction via threshold FHE. In EUROCRYPT, pages 483–501,
2012.

5. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

6. Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In CRYPTO, pages 190–213, 2016.

7. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE.
In ITCS, pages 1–12, 2014.

8. Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In CRYPTO, pages 630–656, 2015.

9. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. http://crypto.stanford.edu/craig.

10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic encryp-
tion and rerandomizable Yao circuits. In CRYPTO, pages 155–172, 2010.

11. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In CRYPTO, pages 75–92, 2013.

12. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homo-
morphic signatures from standard lattices. In STOC, pages 469–477, 2015.

13. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In ANTS, pages 267–288, 1998.

14. Paul Kirchner and Pierre-Alain Fouque. Comparison between subfield and straight-
forward attacks on NTRU. Cryptology ePrint Archive, Report 2016/717, 2016.
http://eprint.iacr.org/2016/717.

15. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC,
pages 1219–1234, 2012.

16. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. Journal of the ACM, 60(6):43:1–43:35, November
2013. Preliminary version in Eurocrypt 2010.

17. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT, pages 700–718, 2012.

18. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via
multi-key FHE. In EUROCRYPT, pages 735–763, 2016.

19. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, pages 333–342, 2009.

20. Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM, 56(6):1–40, 2009. Preliminary version in STOC 2005.

