
Interactive Oracle Proofs?

Eli Ben-Sasson1, Alessandro Chiesa2 and Nicholas Spooner3

1 Technion
eli@cs.technion.ac.il

2 UC Berkeley
alexch@berkeley.edu

3 University of Toronto
spooner@cs.toronto.edu

Abstract. We initiate the study of a proof system model that naturally combines
interactive proofs (IPs) and probabilistically-checkable proofs (PCPs), and gener-
alizes interactive PCPs (which consist of a PCP followed by an IP). We define an
interactive oracle proof (IOP) to be an interactive proof in which the verifier is
not required to read the prover’s messages in their entirety; rather, the verifier has
oracle access to the prover’s messages, and may probabilistically query them. IOPs
retain the expressiveness of PCPs, capturing NEXP rather than only PSPACE,
and also the flexibility of IPs, allowing multiple rounds of communication with
the prover. IOPs have already found several applications, including unconditional
zero knowledge [BCGV16], constant-rate constant-query probabilistic checking
[BCG+16], and doubly-efficient constant-round IPs for polynomial-time bounded-
space computations [RRR16].
We offer two main technical contributions. First, we give a compiler that maps any
public-coin IOP into a non-interactive proof in the random oracle model. We prove
that the soundness of the resulting proof is tightly characterized by the soundness
of the IOP against state restoration attacks, a class of rewinding attacks on the
IOP verifier that is reminiscent of, but incomparable to, resetting attacks.
Second, we study the notion of state-restoration soundness of an IOP: we prove
tight upper and lower bounds in terms of the IOP’s (standard) soundness and
round complexity; and describe a simple adversarial strategy that is optimal, in
expectation, across all state restoration attacks.
Our compiler can be viewed as a generalization of the Fiat–Shamir paradigm for
public-coin IPs (CRYPTO ’86), and of the “CS proof” constructions of Micali
(FOCS ’94) and Valiant (TCC ’08) for PCPs. Our analysis of the compiler gives,
in particular, a unified understanding of these constructions, and also motivates
the study of state restoration attacks, not only for IOPs, but also for IPs and PCPs.
When applied to known IOP constructions, our compiler implies, e.g., blackbox
unconditional ZK proofs in the random oracle model with quasilinear prover and
polylogarithmic verifier, improving on a result of [IMSX15].

? Parts of this paper appear in the third author’s master’s thesis (April 2015) in the Department
of Computer Science at ETH Zurich, supervised by Alessandro Chiesa and Thomas Holen-
stein. Independent of our work, [RRR16] introduce the notion of Probabilistically Checkable
Interactive Proofs, which is the same as our notion of Interactive Oracle Proofs.

1 Introduction

The notion of proof is central to modern cryptography and complexity theory. The
class NP, for example, is the set of languages whose membership can be decided by a
deterministic polynomial-time verifier by reading proof strings of polynomial length;
this class captures the traditional notion of a mathematical proof. Over the last three
decades, researchers have introduced and studied proof systems that generalize the above
traditional notion, and investigations from these points of view have led to breakthroughs
in cryptography, hardness of approximation, and other areas. In this work we introduce
and study a new model of proof system.

1.1 Models of proof systems

We give some context by recalling three of the most well-known among alternative
models of proof systems.
Interactive proofs (IPs). Interactive proofs were introduced by Goldwasser, Micali,
and Rackoff [GMR89]: in a k-round interactive proof, a probabilistic polynomial-time
verifier exchanges k messages with an all-powerful prover, and then accepts or rejects;
IP[k] is the class of languages with a k-round interactive proof. Independently, Babai
[Bab85] introduced Arthur–Merlin games: a k-round Arthur–Merlin game is a k-round
public-coin interactive proof (i.e., the verifier messages are uniformly and indepen-
dently random); AM[k] is the class of languages with a k-round Arthur–Merlin game.
Goldwasser and Sipser [GS86] showed that the two models are equally powerful: for
polynomial k, IP[k] ⊆ AM[k + 2]. Shamir [Sha92], building on the “sum-check” inter-
active proof of Lund, Fortnow, Karloff, and Nisan [LFKN92], proved that interactive
proofs correspond to languages decidable in polynomial space: IP[poly(n)] = PSPACE.
(Also see [Bab90].)
Multi-prover interactive proofs (MIPs). Multi-prover interactive proofs were in-
troduced by Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88]: in a k-round
p-prover interactive proof, a probabilistic polynomial-time verifier interacts k times with
p non-communicating all-powerful provers, and then accepts or rejects; MIP[p, k] is
the class of languages that have a k-round p-prover interactive proof. In [BGKW88],
the authors show that two provers always suffice (i.e., MIP[p, k] = MIP[2, k]), and
that all languages in NP have perfect zero knowledge proofs in this model. Fortnow,
Rompel, and Sipser [FRS88] show that interaction with two provers is equivalent to
interaction with one prover plus oracle access to a proof string, and from there obtain
that MIP[poly(n),poly(n)] ⊆ NEXP; Babai, Fortnow and Lund [BFL90] show that
NEXP has 1-round 2-prover interactive proofs, thus showing that MIP[2, 1] = NEXP.
Probabilistically checkable proofs (PCPs). Probabilistically checkable proofs were
introduced by [FRS88, BFLS91, AS98, ALM+98]: in a probabilistically-checkable
proof, a probabilistic polynomial-time verifier has oracle access to a proof string;
PCP[r, q] is the class of languages for which the verifier uses at most r bits of ran-
domness, and queries at most q locations of the proof (note that the proof length is
at most 2r). The above results on MIPs imply that PCP[poly(n),poly(n)] = NEXP.
Later works “scaled down” this result to NP: Babai, Fortnow, Levin and Szegedy

2

[BFLS91] show that NP = PCP[O(log n),poly(log n)]; Arora and Safra [AS98] show
that NP = PCP[O(log n), O(

√
log n)]; and Arora, Lund, Motwani, Sudan, and Szegedy

[ALM+92] show that NP = PCP[O(log n), O(1)]. This last is known as the PCP
Theorem.

Researchers have studied other models of proof systems, and here we name only a few:
linear IPs [BCI+13], no-signaling MIPs [IKM09, Ito10, KRR13, KRR14], linear PCPs
[IKO07, Gro10, Lip12, BCI+13, GGPR13, PGHR13, BCI+13, SBW11, SMBW12,
SVP+12, SBV+13], interactive PCPs [KR08, KR09, GIMS10].

We introduce interactive oracle proofs (IOPs), a model of proof system that com-
bines aspects of IPs and PCPs, and also generalizes interactive PCPs (which consist of a
PCP followed by an IP). Our work focuses on cryptographic applications of this proof
system, as we discuss next.

1.2 Compiling proof systems into argument systems

The proof systems mentioned so far share a common feature: they make no assumptions
on the computational resources of a (malicious) prover trying to convince the verifier.
Instead, many proof systems make “structural” assumptions on the prover: MIPs assume
that the prover is a collection of non-communicating strategies (each representing a
“sub-prover”); PCPs assume that the prover is non-adaptive (the answer to a message
does not depend on previous messages); linear IPs assume that the prover is a linear
function; and so on.

In contrast, in cryptography, one often considers argument systems [BC86, BCC88,
Kil92, Mic00]: these are proof systems where soundness holds only against provers
that have a bound on computational resources (e.g., provers that run in probabilistic
polynomial time). The relaxation from statistical soundness to computational soundness
allows circumventing various limitations of IPs [BHZ87, GH98, GVW02, PSSV07],
while also avoiding “structural” assumptions on the prover, which can be hard to enforce
in applications.
Constructing argument systems. A common methodology to construct argument
systems with desirable properties (e.g., sublinear communication complexity) follows
these two steps: (1) give a proof system that achieves these properties in a model with
structural restrictions on (all-powerful) provers; (2) use cryptographic tools to compile
that proof system into an argument system, i.e., one where the only restriction on the
prover is that it is an efficient algorithm. Thus, the compilation trades any structural
assumptions for computational ones. This methodology has been highly productive.
Proofs in the random oracle model. An idealized model for studying computationally-
bounded provers is the random oracle model [FS86, BR93], where every party has
access to the same random function. A protocol proved secure in this model can
potentially be instantiated in practice by replacing the random function with a con-
crete “random-looking” efficient function. While this intuition fails in the general case
[CGH04, BBP04, GK03, BDG+13], the random oracle model is nonetheless a useful
testbed for cryptographic primitives. In this paper we focus on proof systems in this
model for which the proof consists of a single message from the prover to the verifier.
A non-interactive random-oracle argument (NIROA) for a relation R is a pair of

3

probabilistic polynomial-time algorithms, the prover P and verifier V, that satisfy the
following. (1) Completeness: for every instance-witness pair (x,w) in the relation R,
Pr[Vρ(x,Pρ(x,w)) = 1] = 1, where the probability is taken over the random oracle ρ
as well as any randomness of P and V. (2) Soundness: for every instance x not in the
language of R and every malicious prover P̃ that asks at most a polynomial number of
queries to the random oracle, it holds that Pr[Vρ(x, P̃ρ) = 1] is negligible in the security
parameter.

Prior NIROAs and our focus. Prior work uses the above 2-step methodology to
obtain NIROAs with desirable properties. For example, the Fiat–Shamir paradigm maps
3-message public-coin IPs to corresponding NIROAs [FS86, PS96]; when invoked on
suitable IP constructions, this yields efficient zero knowledge non-interactive proofs. As
another example, Micali’s “CS proof” construction, building on [Kil92], transforms PCPs
to corresponding NIROAs; Valiant [Val08] revisits Micali’s construction and proves that
it is a proof of knowledge; when invoked on suitable PCPs, these yield non-interactive
arguments of knowledge that are short and easy to verify. In this work we study the
question of how to compile IOPs (which generalize IPs and PCPs) into NIROAs;4 our
work ultimately leads to formulating and studying a game-theoretic property of IOPs,
which in turn motivates similar questions for IPs and PCPs. We now discuss our results.

1.3 Results

We present three main contributions: one is definitional and the other two are technical
in nature.

Interactive oracle proofs A new proof system model. We introduce a new proof
system model: interactive oracle proofs (IOPs).5 This model naturally combines aspects
of IPs and PCPs, and also generalizes IPCPs (see comparison in Remark 1 below);
namely, an IOP is a “multi-round PCP” that generalizes an interactive proof as follows:
the verifier has oracle access to the prover’s messages, and may probabilistically query
them (rather than having to read them in full). In more detail, a k-round IOP comprises
k rounds of interaction. In the i-th round of interaction: the verifier sends a message mi

to the prover, which he reads in full; then the prover replies with a message fi to the
verifier, which he can query, as an oracle proof string, in this and all later rounds. After
the k rounds of interaction, the verifier either accepts or rejects.

Like the PCP model, two fundamental measures of efficiency in the IOP model are
the proof length p, which is the total number of bits in all of the prover’s messages, and
the query complexity q, which is the total number of locations queried by the verifier

4 We do not study the question of avoiding assuming random oracles: this is not our focus.
Reducing assumptions when compiling constant-round IPs is the subject of much research,
obtaining arguments with non-programmable random oracles and a common random string
[Lin15, CPSV16], obfuscation [KRR16, MV16], and others. Extending such ideas to IOPs is
an interesting direction.

5 Independent of our work, [RRR16] introduce Probabilistically Checkable Interactive Proofs,
which are equivalent to our IOPs.

4

across all of the prover’s messages. Unlike the PCP model, another fundamental measure
of efficiency is the round complexity k; the PCP model can then be viewed as a special
case where k = 1 (and the first verifier message is empty).

We show that IOPs characterize NEXP (like PCPs); both sequential and parallel
repetition of IOPs yield (perfect) exponential soundness error reduction (like IPs); and
any IOP can be converted into a public-coin one (like IPs). These basic complexity-
theoretic properties confirm that our definition of IOP is a natural way to combine aspects
of PCPs and IPs, and to generalize IPCPs.
Motivation: efficiency. IOPs extend IPs, by treating the prover’s messages as oracle
strings, and PCPs, by allowing for more than 1 round. These additional degrees of
freedom enable IOPs to retain the expressive power of PCP while also allowing for
additional efficiency, as already demonstrated in several works.

For example, [BCGV16] obtain unconditional zero knowledge via a 2-round IOP
with quasilinear proof length; such a result is not known for PCPs (or even IPCPs
[KR08]). Moreover, when combined with our compiler (see next contribution) we obtain
blackbox unconditional zero-knowledge with quasilinear prover and polylogarithmic
verifier in the random-oracle model, improving prover runtime of [IMSX15, Sec 2.3];

As another example, [BCG+16] obtain 3-round IOPs for circuit satisfiability with
linear proof length and constant query complexity, while for PCPs prior work only
achieves sublinear query complexity [BKK+13]. To do so, [BCG+16] show that sum-
check [LFKN92, Sha92] and proof composition [AS98] (used in many PCP constructions
such as [ALM+98, HS00, BGH+04]) have more efficient “IOP analogues”, which in
turn imply a number of probabilistic checking results that are more efficient than corre-
sponding ones that only rely on PCPs. We briefly sketch the intuition for why interactive
proof composition, via IOPs, is more efficient. In a composed proof, the prover first
writes a part π0 of the proof (e.g., in [ALM+98] π0 is an evaluation of a low-degree
multivariate polynomial, and in [BS08] it is an evaluation of a low-degree univariate
polynomial). Then, to demonstrate that π0 has certain good properties (e.g., it is low
degree), the prover also appends a (long) sequence of sub-proofs, where each sub-proof
allegedly demonstrates to the verifier that a subset of entries of π0 is “good”. Afterwards,
in another invocation of the recursion, the prover appends to each sub-proof a sequence
of sub-sub-proofs, and so on. A crucial observation is that the verifier typically queries
locations of only a small number of such sub-proofs; moreover, once the initial proof π0
is fixed, soundness is not harmed if the verifier randomly selects the set of sub-proofs he
wants to see and tells this to the prover. In sum, in many PCP constructions (including the
aforementioned ones), the proof length can be greatly reduced via interaction between
the prover and verifier, via an IOP.

As yet another example, [RRR16] use IOPs to obtain doubly-efficient constant-
round IPs for polynomial-time bounded-space computations. The result relies on an
“amortization theorem” for IOPs that states that, for a so-called unambiguous IOPs,
batch verification of multiple statements can be more efficient than simply running an
independent IOP for each statement.

Remark 1 (comparison with IPCP). Kalai and Raz [KR08] introduce and study inter-
active PCPs (IPCPs), a model of proof system that also combines aspects of IPs and
PCPs, but in a different way: an IPCP is a PCP followed by an IP, i.e., the prover sends

5

to the verifier a PCP and then the prover and verifier engage in an interactive proof.
An IPCP can be viewed as a special case of an IOP, i.e., it is an IOP in which the
verifier has oracle access to the first prover message, but must read in full subsequent
prover messages. The works of [KR08, GKR08] show that boolean formulas with n
variables, size m, and depth d have IPCPs where the PCP’s size is polynomial in d and
n and the communication complexity of the subsequent IP is polynomial in d and logm.
This shows that even IPCPs give efficiency advantages over both IPs and PCPs given
separately.

From interactive oracle proofs to non-interactive random-oracle arguments We
give a polynomial-time transformation that maps any public-coin interactive oracle proof
(IOP) to a corresponding non-interactive random-oracle argument (NIROA). We prove
that the soundness of the output proof is tightly characterized by the soundness of the
IOP verifier against state restoration attacks, a class of rewinding attacks on the verifier
that we now describe.

At a high level, a state restoration attack against an IOP verifier works as follows:
the malicious prover and the verifier start interacting, as they normally would in an
IOP; at any moment, however, the prover can choose to set the verifier to any state at
which the verifier has previously been, and the verifier then continues onwards from
that point with fresh randomness. Of course, if the prover could restore the verifier’s
state an unbounded number of times, the prover would eventually succeed in making the
verifier accept. We thus only consider malicious provers that interact with the verifier
for at most a certain number of rounds: for b ∈ N, we say a prover is b-round if it plays
at most b rounds during any interaction with any verifier. Then, we say that an IOP has
state restoration soundness ssr(x, b) if every b-round state-restoring prover cannot make
the IOP verifier accept an instance x (not in the language) with probability greater than
ssr(x, b). This notion is reminiscent of, but incomparable to, the notion of resettable
soundness [BGGL01]; see Remark 2 below.

Informally, our result about transforming IOPs into NIROAs can be stated as follows.

Theorem 1 (IOP→ NIROA). There exists a polynomial-time transformation T such
that, for every relation R, if (P, V) is a public-coin interactive oracle proof system for R
with state restoration soundness ssr(x, b), then (P,V) := T (P, V) is a non-interactive
random-oracle argument system for R with soundness

ssr(x,m) +O(m22−λ) ,

where m is an upper bound on the number of queries to the random oracle that a
malicious prover can make, and λ is a security parameter. The aforementioned soundness
is tight up to small factors. (Good state restoration soundness can be obtained, e.g., via
parallel repetition as in Remark 4.)

Moreover, we prove that the transformation T is benign in the sense that it preserves
natural properties of the IOP. Namely, (1) the runtimes of the NIROA prover and verifier
are linear in those of the IOP prover and verifier (up to a polynomial factor in λ); (2) the
NIROA is a proof of knowledge if the IOP is a proof of knowledge (and the extractor

6

strategy straight-line, which has desirable properties [BW15]); and (3) the NIROA is
(malicious-verifier) statistical zero knowledge if the IOP is honest-verifier statistical
zero knowledge.6 See Theorem 3 for the formal statement; the statement employs the
notion of restricted state restoration soundness as it allows for a tighter lower bound on
soundness.

An immediate application is obtained by plugging the work of [BCGV16] into our
compiler, thereby achieving a variant of the black-box ZK results of [IMSX15, Sec 2.3]
where the prover runs in quasilinear (rather than merely polynomial) time.

Corollary 1 (informal). There is a blackbox non-interactive argument system for NP,
in the random-oracle model, with unconditional zero knowledge, quasilinear-time prover,
and polylogarithmic-time verifier.

Our compiler can be viewed as a generalization of the Fiat–Shamir paradigm for
public-coin IPs [FS86, PS96], and of the “CS proof” constructions of Micali [Mic00]
and Valiant [Val08] for PCPs. Our analysis of the compiler gives, in particular, a unified
understanding of these constructions, and motivates the study of state restoration attacks,
not only for IOPs, but also for IPs and PCPs. (Indeed, we are not aware of works that
study the security of the Fiat–Shamir paradigm, in the random oracle model, applied to a
public-coin IP with arbitrary number of rounds; the analyses that we are aware of focus
on the case of 2 rounds.)

Our next contribution is a first set of results about such kinds of attacks, as described
in the next section.

Remark 2 (resetting, backtracking). We compare state restoration soundness with other
soundness notions:
– State restoration attacks are reminiscent of, but incomparable to, resetting attacks

[BGGL01]. In the latter, the prover invokes multiple verifier incarnations with inde-
pendent randomness, and may interact multiple times with each incarnation; also, this
notion does not assume that the verifier is public-coin. Instead, in a state restoration
attack, the verifier must be public-coin and its randomness is not fixed at the start but,
instead, a new fresh random message is sampled each time the prover restores to a
previously-seen state.

– State restoration is closely related to backtracking [BD16] (independent work). The
two notions differ in that: (1) backtracking “charges” more for restoring verifier states
that are further in the past, and (2) backtracking also allows the verifier to restore states
of the prover (as part of the completeness property of the protocol); backtracking
soundness is thus polynomially related to state restoration soundness.
Bishop and Dodis [BD16] give a compiler from a public-coin IP to an error-resilient
IP, whose soundness is related to the backtracking soundness of the original IP;
essentially, they use hashing techniques to limit a malicious prover impersonating

6 Security in the random oracle model sometimes does not imply security when the oracle
is substituted with a hash function, e.g., when applying the Fiat–Shamir paradigm to zero-
knowledge proofs/arguments [HT98, DNRS03, GOSV14]. However, our transformation T only
assumes that the IOP is zero knowledge against the honest verifier, seemingly avoiding the
above limitations.

7

an adversarial channel to choosing when to backtrack the protocol. Their setting is a
completely different example in which backtracking, and thus state restoration, plays
a role.

Remark 3 (programmability). As in most prior works, soundness and proof of knowledge
do not rely on programming the random oracle. As for zero knowledge, the situation
is more complicated: there are several notions of zero knowledge in the random oracle
model, depending on “how programmable” the random oracle is (see [Wee09]). The
notion that we use is zero knowledge in the explicitly-programmable random oracle
(EPRO) model; the stronger notion in the non-programmable random oracle model is
not achievable for NIROAs. Such a limitation can sometimes be avoided by also using a
common random string [Lin15, CPSV16], and extending such techniques to the setting
of IOPs is an interesting problem.

State restoration attacks on interactive oracle proofs The analysis of our transforma-
tion from public-coin IOPs to NIROAs highlights state restoration soundness as a notion
that merits further study. We provide two results in this direction. First, we prove tight
upper and lower bounds on state restoration soundness in terms of the IOP’s (standard)
soundness and round complexity.

Theorem 2. For any relation R, public-coin k-round IOP for R, and instance x not in
the language of R,

∀ b ≥ k(x) + 1,
⌊

b

k(x) + 1

⌋
s(x)(1− o(1)) ≤ ssr(x, b) ≤

(
b

k(x) + 1

)
s(x) , 7

where ssr(x, b) is the state restoration soundness of IOP and s(x) its (standard) sound-
ness for the instance x. Also, the bounds are tight: there are IOPs that meet the lower
bound and IOPs that meet the upper bound.

Remark 4 (good state restoration soundness). A trivial way to obtain state restoration
soundness 2−λ in the general case is to apply r-fold parallel repetition to the IOP with
r = Ω(k log b+λ

log s(x)); note that r is polynomially bounded for natural choices of k, b, λ.
This choice of r is pessimistic, because for IOPs that do not meet the upper bound (i.e.,
are “robust” against such attacks) a smaller r suffices. This use of parallel repetition
is analogous to its use in achieving the incomparable notion of resettable soundness
[PTW09, COPV13].

Second, we study the structure of optimal state restoration attacks: we prove that, for
any public-coin IOP, there is a simple state restoration attack that has optimal expected
cost, where cost is the number of rounds until the prover wins. This result relies on a
correspondence that we establish between IOP verifiers and certain games, which we

7 We note that [BGGL01] prove an analogous upper bound for the incomparable notion of
resettable soundness (see Remark 2). Also, [BD16] prove an analogous, weaker upper bound
on the related notion of backtracking soundness (see Remark 2). Neither of the two studies
lower bounds, or tightness of bounds.

8

call tree exploration games, pitting one player against Nature. We go in more detail
about this result in later sections (see Section 1.4 and full version [BCS16].). A better
understanding of state restoration soundness may enable us to avoid trivial soundness
amplification (see Remark 4) for IOPs of interest.

1.4 Techniques

We summarize the techniques that we use to prove our technical contributions.

The transformation. Our transformation maps any public-coin IOP to a corresponding
NIROA, and it generalizes two transformations that we now recall.

The first transformation is the Fiat–Shamir paradigm [FS86, PS96], which maps any
public-coin IP to a corresponding NIROA, and it works as follows. The NIROA prover
runs the interaction between the IP prover and the IP verifier “in his head”, by setting
the IP verifier’s next message to be the output of the random oracle on the query that
equals the transcript of previously exchanged messages. The NIROA prover sends a
non-interactive proof that contains the final transcript of interaction; the NIROA verifier
checks the proof’s validity by checking that all the IP verifier’s messages are computed
correctly via the random oracle.

The second transformation is the “CS proof” construction of Micali [Mic00] and
Valiant [Val08], which maps any PCP to a corresponding NIROA, and it works as
follows. The NIROA prover first commits to the PCP via a Merkle tree [Mer89a] based
on the random oracle, then queries the random oracle with the root of this tree to obtain
randomness for the PCP verifier, and finally sends a non-interactive proof that contains
the root as well as authentication paths for each query by the PCP verifier to the PCP;
the NIROA verifier checks the proof’s validity by checking that the PCP verifier’s
randomness is computed correctly through the random oracle, and that all authentication
paths are valid. (The transformation can be viewed as a non-interactive variant of Kilian’s
protocol [Kil92, BG08] that uses ideas from the aforementioned Fiat–Shamir paradigm.)

Our transformation takes as input IOPs, for which both IPs and PCPs are special
cases, and hence must support both (i) multiple rounds of interaction between the IOP
prover and IOP verifier, as well as (ii) oracle access by the IOP verifier to the IOP
prover messages. Given an instance x, the NIROA prover thus uses the random oracle
ρ to run the interaction between the IOP prover and the IOP verifier “in his head” in a
way that combines the aforementioned two approaches, as follows. First, the NIROA
prover computes an initial value σ0 := ρ(x). Then, for i = 1, 2, . . . , it simulates the i-th
round by deriving the IOP verifier’s i-th message mi as ρ(x‖σi−1), compressing the
IOP prover’s i-th message fi via a Merkle tree to obtain the root rti, and computing the
new value σi := ρ(rti‖σi−1). The values σ0, σ1, . . . are related by the Merkle–Damgård
transform [Dam89, Mer89b] that, intuitively, enforces ordering between rounds. If there
are k(x) rounds of interaction, then ρ(x‖σk(x)) is used as randomness for the queries
to f1, . . . , fk(x). The NIROA prover provides in the non-interactive proof all the roots
rti, the final value σk(x), the answers to the queries, and an authentication path for each
query. This sketch omits several details; see Section 5.

Soundness analysis of the transformation. We prove that the soundness of the
NIROA produced by the above transformation is tightly characterized by the state

9

restoration soundness of the underlying IOP. This characterization comprises two argu-
ments: an upper bound and a lower bound on the NIROA’s soundness. We only discuss
the upper bound here: proving that the soundness (error) of the NIROA is at most the
soundness (error) of the IOP against state restoration attacks, up to small additive factors.

The upper bound essentially implies that all that a malicious prover P̃ can do to
attack the NIROA verifier is to conduct a state restoration attack against the underlying
IOP verifier “in his own head”: roughly, P̃ can provide multiple inputs to the random
oracle in order to induce multiple fresh samples of verifier messages for a given round
so to find a lucky one, or instead go back to previous rounds and do the same there.

In more detail, the proof itself relies on a reduction: given a malicious prover P̃
against the NIROA verifier, we show how to construct a corresponding malicious prover
P̃ that conducts a state restoration attack against the underlying IOP verifier. We prove
that the winning probability of P̃ is essentially the same as that of P̃; moreover, we also
prove that the reduction preserves the resources needed for the attack in the sense that if
P̃ asks at most m queries to the random oracle, then P̃ plays at most m rounds during
the attack.

Intuitively, the construction of P̃ in terms of P̃ must use some form of extraction:
P̃ outputs a non-interactive proof that contains only (i) the roots that (allegedly) are
commitments to underlying IOP prover’s messages, and (ii) answers to the IOP verifier’s
queries and corresponding authentication paths; in contrast, P̃ needs to actually output
these IOP prover’s messages. In principle, the malicious prover P̃ may not have “in mind”
any underlying IOP prover, and we must prove that, nevertheless, there is a way for P̃
to extract some IOP prover message for each round that convince the verifier with the
claimed probability.

Our starting point is the extractor algorithm of Valiant [Val08] for the “CS proof”
construction of Micali [Mic00]: Valiant proves that Micali’s NIROA construction is a
proof of knowledge by exhibiting an algorithm, let us call it Valiant’s extractor, that
recovers the underlying PCP whenever the NIROA prover convinces the NIROA verifier
with sufficient probability. (In particular, our proof is not based on a “forking lemma”
[PS96].) Our setting differs from Valiant’s in that the IOP prover P̃ obtained from the
NIROA prover P̃ needs to be able to extract multiple times, “on the fly”, while interacting
with the IOP verifier; this more complex setting can potentially cause difficulties in
terms of extractor size (e.g., if relying on rewinding the NIROA prover) or correlations
(e.g., when extracting multiple times from the same NIROA prover). We tackle the more
complex setting in two steps.

First, we prove an extractability property of Valiant’s extractor and state it as a
property of Merkle trees in the random oracle model (see Section A.1). Informally, we
prove that, except with negligible probability, whenever an algorithm with access to a
random oracle outputs multiple Merkle tree roots each accompanied with some number
of (valid) authentication paths, it holds that Valiant’s extractor run separately on each of
these roots outputs a decommitment that is consistent with each of the values revealed
in authentication paths relative to that root. We believe that distilling and proving this
extractability property of Valiant’s extractor is of independent interest.

Second, we show how the IOP prover P̃ can interact with an IOP verifier, by suc-
cessively extracting messages to send, throughout the interaction, by invoking Valiant’s

10

extractor multiple times on P̃ relative to different roots. The IOP prover P̃ does not rely
on rewinding P̃, and its complexity is essentially that of a single run of P̃ plus a small
amount of work.
Preserving proof of knowledge. We prove that the above soundness analysis can be
adapted so that, if the underlying IOP is a proof of knowledge, then we can construct an
extractor to show that the resulting NIROA is also a proof of knowledge. Moreover, the
extractor algorithm only needs to inspect the queries and answers of one execution of P̃
if the underlying IOP extractor does not use rewinding (known IOP constructions are of
this type [BCGV16, BCG+16]); such extractors are known as straight line [Pas03] or
online [Fis05], and have very desirable properties [BW15].
Preserving zero knowledge. We prove that, if the underlying IOP is honest-verifier
statistical zero knowledge, then the resulting NIROA is statistical zero knowledge (i.e., is
a non-interactive statistical zero knowledge proof in the explicitly-programmable random
oracle model). This is because the transformation uses a Merkle tree with suitable privacy
guarantees (see Section A.2) to construct the NIROA. Indeed, the authentication path
for a leaf in the Merkle tree reveals the sibling leaf, so one must ensure that the sibling
leaf does not leak information about other values; this follows by letting leaves be
commitments to the underlying values. A Merkle tree with privacy is similarly used
by [IMS12, IMSX15], along with honest-verifier PCPs, to achieve zero knowledge in
modifications of Kilian’s [Kil92, BG08] and Micali’s [Mic00] constructions. (Note that
the considerations [HT98, DNRS03, GOSV14] seem to only apply to compilation of
malicious-verifier IOPs, which neither [IMS12, IMSX15] nor we require.)
Understanding state restoration attacks. We prove tight upper and lower bounds
to state restoration soundness in terms of the IOP’s (standard) soundness and round
complexity k. The upper bound takes the form of a reduction: given a b-round state-
restoring malicious prover P̃sr that makes the IOP verifier accept with probability ssr,
we construct a (non state-restoring) malicious prover P̃ that makes the IOP verifier
accept with probability at least

(
b

k+1

)−1
ssr. Informally, P̃ internally simulates P̃sr, while

interacting with the “real” IOP verifier, as follows: P̃ first selects a random subset S of
{1, . . . , b} with cardinality k + 1, and lets S[i] be the i-th smallest value in S; then, P̃
runs P̃sr and simulates its state restoration attack on a “virtual” IOP verifier, executing
round j (a) by interacting with the real verifier if j = S[i] for some i; (b) by sampling
fresh randomness otherwise. While this reduction appears wasteful (since it relies on
S being a good guess), we show that there are IOPs for which the upper bound is tight.
In other words, the sharp degradation as a function of round complexity (for large b,(
b

k+1

)
≈ bk+1/(k + 1)!) is inherent for some choices of IOPs; this also gives a concrete

answer to the intuition that compiling IOPs with large round complexity to NIROAs
is “harder” (i.e., incurs in a greater soundness loss) than for IOPs with small round
complexity. As for the lower bound on state restoration soundness, it takes the form of
a universal state restoration attack that always achieves the lower bound; this bound is
also tight.

While state restoration soundness may be far, in the worst case, from (standard)
soundness for IOPs with large round complexity, it need not always be far. We thus
investigate state restoration soundness for any particular IOP, and derive a simple attack
strategy (which depends on the IOP) that we prove has optimal expected cost, where

11

cost is the number of rounds until the prover wins. To do so, we “abstract away” various
details of the proof system to obtain a simple game-theoretic notion, which we call
tree exploration games, that pits a single player against Nature in reaching a node
of a tree with label 1. Informally, such a game is specified by a rooted tree T and a
predicate function φ that maps T ’s vertices to {0, 1}. The game proceeds in rounds: in
the i-th round, a subtree Si−1 ⊆ T is accessible to the player; the player picks a node
v ∈ Si−1, and Nature randomly samples a child u of v; the next accessible subtree is
Si := Si−1 ∪{u}. The initial S0 is the set consisting of T ’s root vertex. The player wins
in round r if there is v ∈ Sr with φ(v) = 1.

We establish a correspondence between state restoration attacks and strategies for
tree exploration games, and then show a simple greedy strategy for such games with
optimal expected cost. Via the correspondence, a strategy’s cost determines whether the
underlying IOP is strong or weak against sate restoration attacks.

2 Preliminaries

2.1 Basic notations

We denote the security parameter by λ. For f : {0, 1}∗ → R, we define f̂ : N → R as
f̂(n) := maxx∈{0,1}n f(x).
Languages and relations. We denote by R a relation consisting of pairs (x,w), where
x is the instance and w is the witness, and by Rn the restriction of R to instances of size
n. We denote by L (R) the language corresponding to R. For notational convenience,
we define L̄ (Rn) := {x ∈ {0, 1}n | x /∈ L (R)}.
Random oracles. We denote by U(λ) the uniform distribution over all functions
ρ : {0, 1}∗ → {0, 1}λ (implicitly defined by the probabilistic algorithm that assigns,
uniformly and independently at random, a λ-bit string to each new input). If ρ is sampled
from U(λ), then we write ρ← U(λ) and say that ρ is a random oracle. Given an oracle
algorithm A, NumQueries(A, ρ) is the number of oracle queries that Aρ makes. We say
that A is m-query if NumQueries(A, ρ) ≤ m for any ρ ∈ U(λ) (i.e., for any ρ in U(λ)’s
support).
Statistical distance. The statistical distance between two discrete random variables X
and Y with support V is ∆(X;Y) := 1

2

∑
v∈V |Pr[X = v]− Pr[Y = v]|. We say that

X and Y are δ-close if ∆(X;Y) ≤ δ.

Remark 5. An oracle ρ ∈ U(λ) outputs λ bits. Occasionally we need ρ to output more
than λ bits; in such cases (we point out where), we implicitly extend ρ’s output via a
simple strategy, e.g., we set y := y1‖y2‖ · · · where yi := ρ(i‖x) and prefix 0 to all
inputs that do not require an output extension.

2.2 Merkle trees

We use Merkle trees [Mer89a] based on random oracles as succinct commitments to
long lists of values for which one can cheaply decommit to particular values in the
list. Concretely, a Merkle-tree scheme is a tuple MERKLE = (MERKLE.GetRoot,

12

MERKLE.GetPath,MERKLE.CheckPath) that uses a random oracle ρ sampled from
U(λ) and works as follows.
– MERKLE.GetRootρ(v) → rt. Given input list v = (vi)

n
i=1, the root generator

MERKLE.GetRoot computes, in time Oλ(n), a root rt of the Merkle tree over v.
– MERKLE.GetPathρ(v, i) → ap. Given input list v and index i, the authentication

path generator MERKLE.GetPath computes the authentication path ap for the i-th
value in v.

– MERKLE.CheckPathρ(rt, i, v, ap) → b. Given root rt, index i, input value v, and
authentication path ap, the path checker MERKLE.CheckPath outputs b = 1 if ap
is a valid path for v as the i-th value in a Merkle tree with root rt; the check can be
carried out in time Oλ(log2 n).

We assume that an authentication path ap contains the root rt, position i, and value v;
accordingly, we define Root(ap) := rt, Position(ap) := i, and Value(ap) := v.

Merkle trees are well known, so we do not review their construction. Less known,
however, are the hiding and extractability properties of Merkle trees that we rely on in
this work; we describe these in Appendix A.

2.3 Non-interactive random-oracle arguments

A non-interactive random-oracle argument system for a relation R with soundness
s : {0, 1}∗ → [0, 1] is a tuple (P,V), where P,V are (oracle) probabilistic algorithms,
that satisfies the following properties.

1. COMPLETENESS. For every (x,w) ∈ R and λ ∈ N,

Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)
π ← Pρ(x,w)

]
= 1 .

2. SOUNDNESS. For every x /∈ L (R), m-query P̃, and λ ∈ N,

Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
≤ s(x,m, λ) .

Complexity measures. Beyond soundness, we consider other complexity measures.
Given p : {0, 1}∗ → N, we say that (P,V) has proof length p if π has length p(x, λ).
Given tprv, tver : {0, 1}∗ → N, we say that (P,V) has prover time complexity tprv and
verifier time complexity tver if Pρ(x,w) runs in time tprv(x, λ) and Vρ(x, π) runs in
time tver(x, λ). In sum, we say that (P,V) has complexity (s, p, tprv, tver) if (P,V) has
soundness s, proof length p, prover time complexity tprv, and verifier time complexity
tver.

Proof of knowledge. Given e : {0, 1}∗ → [0, 1], we say that (P,V) has proof of
knowledge e if there exists a probabilistic polynomial-time algorithm E (the extractor)
such that, for every x, m-query P̃, and λ ∈ N,

Pr
[
(x,w) ∈ R

∣∣∣ w← EP̃(x, 1m, 1λ)
]
≥ Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
−e(x,m, λ) .

13

The notation EP̃(x, 1m, 1λ) means that E receives as input (x, 1m, 1λ) and may obtain
an output of P̃ρ for choices of oracles ρ, as we now describe. At any time, E may send a
λ-bit string z to P̃; then P̃ interprets z as the answer to its last query to ρ (if any) and
then continues computing until it reaches either its next query θ or its output π; then
this query or output is sent to E (distinguishing the two cases in some way); in the latter
case, P̃ goes back to the start of its computation (with the same randomness and any
auxiliary inputs). Throughout, the code, randomness, and any auxiliary inputs of P̃ are
not available to E.
Zero knowledge. Given z : {0, 1}∗ → [0, 1], we say that (P,V) has z-statistical zero
knowledge (in the explicitly-programmable random oracle model) if there exists a
probabilistic polynomial-time algorithm S (the simulator) such that, for every (x,w) ∈
R and unbounded distinguisher D, the following two probabilities are z(x, λ)-close:

Pr

[
Dρ[µ](π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Sρ(x)

]
and Pr

[
Dρ(π) = 1

∣∣∣∣ ρ← U(λ)
π ← Pρ(x,w)

]
.

Above, ρ[µ] is the function such that, given an input x, equals µ(x) if µ is defined on x,
or ρ(x) otherwise.

3 Interactive oracle proofs

We first define interactive oracle protocols and then interactive oracle proof systems.

3.1 Interactive oracle protocols

A k-round interactive oracle protocol between two parties, call them Alice and Bob,
comprises k rounds of interaction. In the i-th round of interaction: Alice sends a message
mi to Bob, which he reads in full; then Bob replies with a message fi to Alice, which
she can query (via random access) in this and all later rounds. After the k rounds of
interaction, Alice either accepts or rejects.

More precisely, let k be in N and A,B be two interactive probabilistic algorithms.
A k-round interactive oracle protocol between A and B, denoted 〈B,A〉, works as
follows. Let rA, rB denote the randomness for A,B and, for notational convenience, set
f0 := ⊥ and state0 := ⊥. For i = 1, . . . , k, in the i-th round: (i) Alice sends a message
mi ∈ {0, 1}ui , where (mi, statei) := Af0,...,fi−1(statei−1; rA) and ui ∈ N; (ii) Bob
sends a message fi ∈ {0, 1}`i , where fi := B(m1, . . . ,mi; rB) and `i ∈ N. The output
of the protocol is mfin := Af0,...,fk(statek; rA), and belongs to {0, 1}.

The accepting probability of 〈B,A〉 is the probability that mfin = 1 for a random
choice of rA, rB; this probability is denoted Pr[〈B,A〉 = 1] (leaving rA, rB implicit).
The query complexity of 〈B,A〉 is the number of queries asked byA to any of the oracles
during the k rounds. The proof complexity of 〈B,A〉 is the number of bits communicated
by Bob to Alice (i.e.,

∑k
i=1 `i). The view of A in 〈B,A〉, denoted View〈B,A〉(A), is the

random variable (a1, . . . , aq, rA) where aj denotes the answer to the j-th query.
Public coins. An interactive oracle protocol is public-coin if Alice’s messages are
uniformly and independently random and Alice postpones any query to after the k-th

14

round (i.e., all queries are asked when running Af0,...,fk(statek; rA)). We can thus take
the randomness rA to be of the form (m1, . . . ,mk, r), where r is additional randomness
that A may use of to compute mfin after the last round.

3.2 Interactive oracle proof systems

An interactive oracle proof system for a relation R with round complexity k : {0, 1}∗ →
N and soundness s : {0, 1}∗ → [0, 1] is a tuple (P, V), where P, V are probabilistic
algorithms, that satisfies the following properties.

1. COMPLETENESS. For every (x,w) ∈ R, 〈P (x,w), V (x)〉 is a k(x)-round interactive
oracle protocol with accepting probability 1.

2. SOUNDNESS. For every x /∈ L (R) and P̃ , 〈P̃ , V (x)〉 is a k(x)-round interactive
oracle protocol with accepting probability at most s(x).

Message lengths. We assume the existence of polynomial-time functions that deter-
mine the message lengths. Namely, for any instance x and malicious prover P̃ , when
considering the interactive oracle protocol 〈P̃ , V (x)〉, the i-th messages mi (from V (x))
and fi (to V (x)) lie in {0, 1}ui(x) and {0, 1}`i(x) respectively.
Complexity measures. Beyond round complexity and soundness, we consider other
complexity measures. Given p, q : {0, 1}∗ → N, we say that (P, V) has proof length
p and query complexity q if the proof length and query complexity of 〈P̃ , V (x)〉 are
p(x) and q(x) respectively. (Note that q(x) ≤ p(x) and p(x) =

∑k(x)
i=1 `i(x).) Given

tprv, tver : {0, 1}∗ → N, we say that (P, V) has prover time complexity tprv and verifier
time complexity tver if P (x,w) runs in time tprv(x) and V (x) runs in time tver(x).
In sum, we say that (P, V) has complexity (k, s, p, q, tprv, tver) if (P, V) has round
complexity k, soundness s, proof length p, query complexity q, prover time complexity
tprv, and verifier time complexity tver.
Proof of knowledge. Given e : {0, 1}∗ → [0, 1], we say that (P, V) has proof of
knowledge e if there exists a probabilistic polynomial-time oracle algorithm E (the
extractor) such that, for every x and P̃ , Pr[(x, EP̃ (x)) ∈ R] ≥ Pr[〈P̃ , V (x)〉 =

1]− e(x).8 The notation EP̃ (x) means that E receives as input x and may interact with
P̃ via rewinding, as we now describe. At any time, E may send a partial prover-verifier
transcript to P̃ and then receive P̃ ’s next message (which is empty for invalid transcripts)
in the subsequent computation step; the code, randomness, and any auxiliary inputs of P̃
are not available to E.
Honest-verifier zero knowledge. Given z : {0, 1}∗ → [0, 1], we say that (P, V) has
z-statistical honest-verifier zero knowledge if there exists a probabilistic polynomial-
time algorithm S (the simulator) such that, for every (x,w) ∈ R, S(x) is z(x)-close to
View〈P (x,w),V (x)〉(V (x)).
Public coins. We say that (P, V) is public-coin if the underlying interactive oracle
protocol is public-coin.

8 Proof of knowledge e implies soundness s := e. The definition that we use is equivalent to
the one in [BG93, Section 6] except that: (a) we use extractors that run in strict, rather than
expected, probabilistic polynomial time; and (b) we extend the condition to hold for all x, rather
than for only those in L (R), so that proof of knowledge implies soundness.

15

4 State restoration attacks on interactive oracle proofs

We introduce state restoration attacks on interactive oracle proofs.
In an interactive oracle proof, a malicious prover P̃ works as follows: for each round

i, P̃ receives the i-th verifier message mi and then sends to the verifier a message fi
computed as a function of his own randomness and all the verifier messages received so
far, i.e., m1, . . . ,mi.

For the case of public-coin interactive oracle proof systems, we also consider a larger
class of malicious provers, called state-restoring provers. Informally, a state-restoring
prover receives in each round a verifier message as well as a complete verifier state, and
then sends to the verifier a message and a previously-seen complete verifier state, which
sets the verifier to that state; this forms a state restoration attack on the verifier.

More precisely, let (P, V) be a k-round public-coin interactive proof system (see
Section 3.2) and x an instance. A complete verifier state cvs of V (x) takes one of three
forms: (1) the symbol null, which denotes the “empty” complete verifier state; (2) a tuple
of the form (m1, f1, . . . ,mi), with i ∈ {1, . . . , k(x)}, where each mj is in {0, 1}uj(x)

and each fj is in {0, 1}`j(x); (3) a tuple of the form (m1, f1, . . . ,mk(x), fk(x), r) where
each mj and fj is as in the previous case and r is the additional randomness of the
verifier V (x).

The interaction between a state-restoring prover P̃ and the verifier V (x) is mediated
through a game:

1. The game initializes the list SeenStates to be (null).
2. Repeat the following until the game halts and outputs:

(a) The prover chooses a complete verifier state cvs in the list SeenStates.
(b) The game sets the verifier to cvs.
(c) If cvs = null: the verifier samples a message m1 in {0, 1}u1(x) and sends it to the

prover; the game appends cvs′ := (m1) to the list SeenStates.
(d) If cvs = (m1, f1, . . . ,mi−1) with i ∈ {2, . . . , k(x)}: the prover outputs a message

fi−1 in {0, 1}`i−1(x); the verifier samples a message mi in {0, 1}ui(x) and sends it
to the prover; the game appends cvs′ := cvs‖fi−1‖mi to the list SeenStates.

(e) If cvs = (m1, f1, . . . ,mk(x)): the prover outputs a message fk(x) in {0, 1}`k(x)(x);
the verifier samples additional randomness r; the game appends cvs′ := cvs‖fk(x)‖r
to the list SeenStates.

(f) If cvs = (m1, f1, . . . ,mk(x), fk(x), r): the verifier computes his decision b :=
V f0,...,fk(x)(x, statek(x); rV) where statek(x) := ∅ and rV := (m1, . . . ,mk, r);
then the game halts and outputs b.

Note that there are two distinct notions of a round. Verifier rounds are the rounds
played by the verifier within a single execution, as tracked by a complete verifier state cvs;
the number of such rounds lies in the set {0, . . . , k(x)+1} (the extra (k(x)+1)-th round
represents the verifier V sampling r after receiving the last prover message). Prover
rounds are all verifier rounds played by the prover across different verifier executions;
the number of such rounds is the number of states in SeenStates above. Accordingly,
for b ∈ N, we say a prover is b-round if it plays at most b prover rounds during any
interaction with any verifier.

Also note that the prover is not able to set the verifier to arbitrary states but only to
previously-seen ones (starting with the empty state null); naturally, setting the verifier

16

multiple times to the same state may yield distinct new states, because the verifier
samples his message afresh each time. After being set to a state cvs, the verifier does
one of three things: (i) if the number of verifier rounds in cvs is less than k(x) (see
Step 2c and Step 2d), the verifier samples a fresh next message; (ii) if the number of
verifier rounds in cvs is k(x) (see Step 2e), the verifier samples his additional randomness
r; (iii) if cvs contains a full protocol execution (see Step 2f), the verifier outputs the
decision corresponding to this execution. The second case means that the prover can set
the verifier even after the conclusion of the execution (after r is sampled and known to
the prover). The game halts only in the third case.

The above game between a state-restoring prover and a verifier yields corresponding
notions of soundness and proof of knowledge. Below, we denote by Pr[〈P̃ , V (x)〉sr = 1]

the probability that the state-restoring prover P̃ makes V accept x in this game.

Definition 1. Given ssr, esr : {0, 1}∗ → [0, 1], a public-coin interactive oracle proof
system (P, V) has

– STATE RESTORATION SOUNDNESS ssr if, for every x /∈ L (R) and b-round state-
restoring prover P̃ , Pr[〈P̃ , V (x)〉sr = 1] ≤ ssr(x, b).

– STATE RESTORATION PROOF OF KNOWLEDGE esr if there exists a probabilistic
polynomial-time algorithm Esr (the extractor) such that, for every x and b-round
state-restoring prover P̃ , Pr[(x, EP̃sr(x)) ∈ R] ≥ Pr[〈P̃ , V (x)〉sr = 1]− esr(x, b).

Due to space limitations, our bounds on state restoration and our results on the
corresponding tree exploration games are in the full version [BCS16].

5 From IOPs to non-interactive random-oracle arguments

We describe a transformation T such that if (P, V) is a public-coin interactive oracle
proof system for a relation R then (P,V) := T (P, V) is a non-interactive random-oracle
argument system for R. The transformation T runs in polynomial time: given as input
code for P and V , it runs in time polynomial in the size of this code and then outputs
code for P and V.
Notation. For convenience, we split the random oracle ρ into two random oracles,
denoted ρ1 and ρ2, as follows: ρ1(x) := ρ(1‖x) and ρ2(x) := ρ(2‖x). At a high level,
we use ρ1 for the verifier’s randomness, and ρ2 for Merkle trees and other hashing
purposes. When counting queries, we count queries to both ρ1 and ρ2.

Construction of P. The algorithm P, given input (x,w) and oracle access to ρ:
1. Set k := k(x), q := q(x), f0 := ⊥, and σ0 := ρ2(x).
2. Start running P (x,w) and, for i = 1, . . . , k:

(a) Compute the verifier message mi := ρ1(x‖σi−1).
(b) Give mi to P (x,w) to obtain fi.
(c) Compute the Merkle-tree root rti := MERKLE.GetRootρ2(fi).
(d) Compute the “root hash” σi := ρ2(rti‖σi−1).

3. Set statek := ∅ and rV := (m1, . . . ,mk, r), where r := ρ1(x‖σk).
4. Run V f0,...,fk (x, statek; rV) and compute an authentication path for each query. Namely,

for j = 1, . . . , q: if the j-th query is to the xj-th bit of the yj-th oracle, then compute

17

apj := MERKLE.GetPathρ2(fyj , xj). (If MERKLE.GetRoot is probabilistic, then
give the same randomness to MERKLE.GetPath as well.)

5. Set π :=
(
(rt1, . . . , rtk), (ap1, . . . , apq), σk

)
. That is, π comprises the Merkle-tree

roots, an authentication path for each query, and the final root hash.
6. Output π.

Construction of V. The algorithm V, given input (x, π̃) and oracle access to ρ:
1. Set k := k(x), q := q(x), f0 := ⊥, and σ0 := ρ2(x).
2. Parse π̃ as a tuple

(
(r̃t1, . . . , r̃tk), (ãp1, . . . , ãpq), σ̃k

)
.

3. For i = 1, . . . , k:
(a) Compute mi := ρ1(x‖σi−1).
(b) Compute σi := ρ2(r̃ti‖σi−1).

4. Set statek := ∅ and rV := (m1, . . . ,mk, r), where r := ρ1(x‖σk).
5. Compute mfin := V f0,...,fk (x, statek; rV), answering the j-th query with the answer
aj in the path ãpj .

6. If σk 6= σ̃k, halt and output 0.
7. For j = 1, . . . , q: if the j-th query is to the xj-th bit of the yj-th oracle and

MERKLE.CheckPathρ2(rtyj , xj , aj , ãpj) 6= 1, halt and output 0.
8. Output mfin.

6 Analysis of the transformation T

The theorem below specifies guarantees of the transformation T , described in Section 5.

Theorem 3 (IOP→ NIROA). For every relation R, if (P, V) is a public-coin interac-
tive oracle proof system for R with

round complexity k(x)

restricted state restoration soundness s̄sr(x, b)

proof length p(x)

prover time tver(x)

verifier time tprv(x)

then (P,V) := T (P, V) is a non-interactive random-oracle argument system for R with

soundness s′(x,m, λ) := s̄sr(x,m) + 3(m2 + 1)2−λ

proof length p′(x, λ) :=
(
k(x) + q(x) · (dlog2 p(x)e+ 2) + 1

)
· λ 9

prover time t′prv(x, λ) := Oλ(k(x) + p(x)) + tprv(x) + tver(x)

verifier time t′ver(x, λ) := Oλ(k(x) + q(x)) + tver(x)

By construction, if 〈P (x,w), V (x)〉 has accepting probability δ, then the probability
that Vρ(x,Pρ(x,w)) accepts is δ. The complexities p′, t′prv, t

′
ver above also directly

follow from the construction. Therefore, we are left to discuss soundness. Due to space
limitations, the discussion of the soundness lower bound, as well as proof of knowledge
and zero knowledge, are left to the full version [BCS16].

Let x /∈ L (R) and let P̃ be an m-query prover for the non-interactive random-
oracle argument system (P,V). We construct a prover P̃ (depending on x and P̃) for the

18

interactive oracle proof system (P, V), and show that P̃ ’s ability to cheat in a (restricted)
state restoration attack is closely related to P̃’s ability to cheat.
Construction of P̃ . Given no inputs or oracles, the prover P̃ works as follows.
1. Let ρ1, ρ2 be tables mapping {0, 1}∗ to {0, 1}λ, and let α be a table mapping λ-bit

strings to verifier states. The tables are initially empty and are later populated with
suitable values, during the simulation of P̃. Intuitively, ρ1, ρ2 are used to simulate P̃’s
access to a random oracle, while α is used to keep track of which verifier states P̃ has
“seen in his mind”.

2. Draw σ0 ∈ {0, 1}λ at random, and define ρ2(x) := σ0 (i.e., the oracle ρ2 replies
the query x with the answer σ0). After receiving V ’s first message m1, also define
ρ1(x‖σ0) := m1 and α(σ0) := (m1).

3. Begin simulating P̃ρ and, for i = 1, . . . ,m:
(a) Let θi be the i-th query made by P̃ρ.
(b) If θi is a query to a location of ρ1 that is defined, respond with ρ1(θi). Otherwise (if

θi to an undefined location of ρ1), draw a string in {0, 1}λ at random and respond
with it. Then go to the next iteration of Step 3.

(c) If θi is a query to a location of ρ2 that is defined, respond with ρ2(θi); then go to the
next iteration of Step 3. Otherwise (if θi is to an undefined location of ρ2), draw a
string σ′ ∈ {0, 1}λ at random and respond with it; then continue as follows.

(d) Let rt be the first λ bits of θi, and σ be the second λ bits. (If the length of θi is not 2λ
bits, go to the next iteration of Step 3.) If α(σ) is defined, let cvs := α(σ) and let j
be the number of verifier rounds in the state cvs. If α(σ) is not defined, go to the next
iteration of Step 3.

(e) Find the query θi? whose result is rt. If this query is not unique, or there is no
such query, then answer the verifier V with some dummy message (e.g., an all zero
message of the correct length) and skip to Step 3g. Otherwise, note the index i? and
continue.

(f) Compute f := VEρ2(P̃, `j(x), i?, i); if VE aborts, set f := 0`j(x). Recall that `j(x)
is the length of the prover message in the j-th verifier round, and VE is Valiant’s
extractor (see Section A.1). Also note that VE does not query ρ2 on any value outside
the table, because we have already simulated the first i queries of P̃ (see Remark 6).

(g) Send the message f to the verifier and tell the game to set the verifier to the state
cvs. (Whether cvs lies in the set SeenStates is a matter of analysis further below.) If
the game is not over, the verifier replies with a new message m′. (If j = k(x) + 1,
for the purposes of the proof, we interpret m′ as the additional randomness r.) The
game adds cvs′ := cvs‖f‖m′ to SeenStates. The prover defines ρ1(x‖σ′) := m′ and
α(σ′) := cvs′.

Analysis of P̃ . We now analyze P̃ . We first prove a simple lemma, and then discuss
P̃ ’s ability to cheat.

Lemma 1. Let A be an m-query algorithm. Define:
1. E1 to be the event that Aρ2 outputs x ∈ {0, 1}n, rt1, . . . , rtk(x) ∈ {0, 1}λ, and
σk(x) ∈ {0, 1}λ that satisfy the recurrence σ0 = ρ2(x) and σi = ρ2(rti‖σi−1) for
all i ∈ {1, . . . , k(x)};

2. E2 to be the event that Aρ2 queries ρ2 at x, rt1‖σ0, . . . , rtk(x)‖σk(x)−1 (in order)
and, if any rti is the result of a query, this query first occurs before rti‖σi−1.

19

Then
Pr [(¬E1) ∨ E2 | ρ2 ← U(λ)] ≥ 1− (m2 + 1)2−λ .

Proof. Let rt0 be x and σ−1 be the empty string. Suppose, by contradiction, that E1

occurs and E2 does not. Then there exists i ∈ {0, . . . , k(x)} for which at least one of
the following holds: (i) Aρ2 does not query rti‖σi−1; (ii) Aρ2 queries rti+1‖σi before it
queries rti‖σi−1; (iii) rti is the result of a query but this query first occurs after rti‖σi−1.
Consider the largest index i for which one of the above holds.

In case (i), the behavior of Aρ2 is independent of ρ2(rti‖σ̃i−1). If i = k(x), then the
output σk(x) of Aρ2 equals ρ2(rtk(x)‖σk(x)−1) with probability 2−λ. If i < k(x), then
there is a sequence of queries rti+1‖σ̃i, . . . , rtk(x)‖σ̃k(x)−1 for which σ̃i = ρ2(rti‖σ̃i−1)
for i = 1, . . . , k(x)− 1 and ρ2(rtk(x)‖σ̃k(x)−1) = σk(x). If this sequence is not unique,
then Aρ2 has found a collision. Otherwise, the unique sequence has σ̃i = σi for each i,
which occurs with probability at most 2−λ.

In cases (ii) and (iii),Aρ2 has found a collision, since σi = ρ2(rti‖σi−1). The fraction
of oracles ρ2 for which Aρ2 finds a collision is at most m22−λ. Overall, the probability
that E2 does not occur and E1 does is, by the union bound, at most (m2 + 1)2−λ.

We now state and prove the lemma about the soundness s′ as stated in Theorem 3.

Lemma 2. Define ε := Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
. Then there exists b ∈ N with

b ≤ m such that P̃ is a b-round state-restoring prover that makes V accept with
probability at least ε− 3(m2 + 1)2−λ.

Proof. We first note that P̃ described plays no more than m rounds, because P̃ sends a
message to the verifier V only in response to P̃ making a query. Next, we define some
useful notions, and use them to prove three claims which together imply the lemma.

DEFINITION 4. We say ρ ∈ U(λ) is good if
1. The verifier accepts relative to ρ, i.e., Vρ(x, π) = 1 where π ← P̃ρ.
2. Parsing π as

(
(r̃t1, . . . , r̃tk(x)), (ãp1, . . . , ãpq), σ̃k(x)

)
and setting σ0 := x, for each

i ∈ {1, . . . , k(x)}, where σi := ρ2(r̃ti‖σi−1), there exist indices 1 ≤ j1 < · · · <
jk ≤ m such that:
(a) P̃ρ’s ji-th query is to ρ2 at r̃ti‖σi−1;
(b) if rti is the result of a query, this query first occurs before ji;
(c) if P̃ρ queries ρ1 at x‖σi, then this query occurs after query ji;
(d) if there exists l such that Root(ãpl) = r̃ti, there is a unique (up to dupli-

cate queries) ai ∈ {0, . . . , ji} such that ρ2(θai) = r̃ti and, for every imax ∈
{ai, . . . , ji}, v := VEρ2(A, `i, ai, imax) is such that, for all l with Root(ãpl) =
r̃ti, Value(ãpl) equals the Position(ãpl)-th value in v; we say v is extracted at i
if this holds.

3. σ̃k(x) = σk(x).

DEFINITION 5. We say that P̃ chooses ρ ∈ U(λ) if for every query θ made by P̃ρ to its
oracle, P̃ supplies it with ρ(θ) (ignoring whether this response comes from P̃ itself or
the messages sent by V ; this choice is fixed for a given ρ).

20

CLAIM 6. (P̃ , V) chooses ρ ∈ U(λ) uniformly at random.

Whenever the simulation of P̃ makes a query, P̃ responds consistently, either with a
uniformly randomly drawn string of its own, or the uniform randomness provided by V .
This is equivalent in distribution to drawing ρ uniformly at random at the beginning of
the protocol. �

CLAIM 7. For any choice of randomness such that P̃ chooses a good ρ, P̃ makes V (x)
accept with a state restoration attack.

We begin by defining a property of the map α.

DEFINITION 8. For i = 0, . . . , k, we say that α is correct at i if, immediately before
P̃’s ji+1-th query is simulated (for i = k, at the end of the simulation), it holds that
α(σi) = (ρ1(x‖σ0), f1, . . . , ρ1(x‖σi)) , where for each l ∈ {1, . . . , i}, fl is extracted
at l (see Condition 2d above), and α(σi) ∈ SeenStates.

We show by induction that α is correct at i for every i ∈ {0, . . . , k}. First, α is correct
at 0 since α(σ0) = (ρ1(x‖σ0)) by construction. Suppose that α is correct at i− 1. When
P̃ρ queries r̃ti‖σi−1 (i.e., query θji), P̃ restores α(σi−1) ∈ SeenStates. By Condition 2d,
fi is extracted at i. In Step 3g, ρ1(x‖σi) is set to the message (or, similarly, internal
randomness) sent by V in this round, which is possible by Condition 2c. The newly stored
state is then α(σi) = (ρ1(x‖σ0), f1, . . . , ρ1(x‖σi−1), fi, ρ1(x‖σi)) ∈ SeenStates. This
state is stored before query ji+1 by Condition 2a, and so α is correct at i.

Hence P̃ sends a state α(σk) = (ρ1(x‖σ1), f1, . . . , ρ1(x‖σk)) ∈ SeenStates. Since
V’s simulation of V accepts with this state, so does the real V when interacting with P̃.
�

CLAIM 9. The probability that ρ ∈ U(λ) is good is at least ε− 3(m2 + 1)2−λ.

By assumption, the density of oracles satisfying Condition 1 is ε. Lemma 1 implies that
the density of oracles satisfying Condition 1 but not satisfying Condition 2a, Condi-
tion 2b, and Condition 3 is at most (m2 + 1)2−λ.10 The density of oracles failing to
satisfy Condition 2c is at most m22−λ, since this implies a ‘collision’ (in the sense of
Lemma 3) between ρ1 and ρ2. Finally, the density of oracles satisfying Condition 1,
Condition 2a, and Condition 2b, but not Condition 2d is at most (m2 + 1)2−λ, by
Lemma 3 and Condition 2b (where Condition 2b allows us to restrict the possible values
for ai to 0 ≤ ai < ji).

By the union bound, the density of good oracles ρ is at least ε− 3(m2 + 1)2−λ. �

Combining the claims, we deduce that P̃ makes V accept with probability at least
ε− 3(m2 + 1)2−λ with a state restoration attack. Finally, note that this state restoration
attack is restricted because P̃ never requests to set V to the empty verifier state null.

10 More precisely, we apply Lemma 1 to an algorithm P̃ that does not itself output x but this does
not affect the lemma’s validity because we can substitute into the definition of the event E1 the
fixed instance x.

21

A Extractability and privacy of Merkle trees

We describe the specific extractability and privacy properties of Merkle trees that we rely
on in this work.

A.1 Extractability

We rely on a certain extractability property of Merkle trees: there is an efficient procedure
for extracting the committed list in a Merkle-tree scheme. We call the procedure Valiant’s
extractor, and denote it by VE, because it is described in [Val08]. Our presentation of
the extractor and its guarantee differs from [Val08] because our use of it in this work
requires “distilling” a more general property; see Lemma 3 below.

The extractor. For any oracle algorithm A, integers `, i?, imax > 0 with i? ∈
{1, . . . , imax}, and ρ sampled from U(λ), the procedure VE, given input (A, `, i?, imax)
and with oracle access to ρ, works as follows.
1. Run Aρ until it has asked imax unique queries to ρ (and abort if Aρ asks fewer than
imax). Along the way, record the queries θ1, . . . , θimax and answers ρ(θ1), . . . , ρ(θimax),
in order and omitting duplicates.

2. Parse each query θi as θ0i ‖θ1i where θ0i are the first λ bits of θi and θ1i the second λ
bits. For brevity, we write z ∈ θi if z = θ0i or z = θ1i . (If a query has length not equal
to 2λ, then z /∈ θi for all z.)

3. If there exist indices i, j such that i 6= j and ρ(θi) = ρ(θj), abort.
4. If there exist indices i, j such that i ≤ j and ρ(θj) ∈ θi, abort.
5. Construct a directed graph G with nodes V = {θ1, . . . , θimax} and edges E =
{(θi, θj) : ρ(θj) ∈ θi}. Note that G is acyclic, every node has out-degree ≤ 2, and
θ1, . . . , θimax is a (reverse) topological ordering.

6. Output v, the string obtained by traversing in order the first ` leaf nodes of the
depth-dlog2 `e binary tree rooted at θi? and recording the first bit of each node. If any
such node does not exist, set this entry to 0.

A sample execution of the extractor is depicted in Figure 1.

Remark 6. The queries to ρ asked by VEρ(A, `, i?, imax) equals the first imax queries to
ρ asked by Aρ (provided that A does not ask fewer than imax queries). Later on we use
this fact.

The extractor’s guarantee. We interpret A’s output as containing a (possibly empty)
list of tuples of the form (rt, i, v, ap), where rt is a root, i an index, v a value, and ap an
authentication path.11 We define the following events:

(i) E1 is the event that, for each tuple (rt, i, v, ap) output byAρ, MERKLE.CheckPath(rt, i, v, ap) =
1;

(ii) E2 is the event that, for each rt ∈ {0, 1}λ, there exists `rt ∈ N such that if Aρ

outputs a tuple of the form (rt, ·, ·, ap) then ap is an authentication path having
the correct length for a `rt-leaf Merkle tree;

11 Note that A’s output may contain additional information not of the above form; if so, we simply
ignore it for now.

22

𝜃ଵ = 𝑣ଶ ∥ 𝑟ଶ
𝜃ଶ = 𝜌(𝜃ଵ) ∥ 𝑥
𝜃ଷ = 𝑣ଵ ∥ 𝑟ଵ
𝜃ସ = 𝜌(𝜃ଷ) ∥ 𝜌(𝜃ଵ)
𝜃ହ = 𝑦
𝜃଺ = 𝜌(𝜃ଶ) ∥ 𝜌(𝜃ସ)

𝜃ଵ

𝜃ଷ

𝜃ସ

𝜃ଶ

𝜃ହ

𝜃଺

VE

𝜌

 𝐴

 𝑣ଵ
 𝑣ଶ

queries &
 answers

construct
graph

Fig. 1: A diagram of an execution of Valiant’s
extractor VE, with input parameters ` = 2, i? =
4, and imax = 6.

 𝜌 𝑎ଵ ∥ 𝑎ଶ

 𝑣ଵ 𝑣ଶ 𝑣ଷ 𝑣ସ

 𝜌 𝑏ଵ ∥ 𝑏ଶ

 𝜌 𝑣ଵ ∥ 𝑟ଵ 𝜌 𝑣ଶ ∥ 𝑟ଶ

 𝜌 𝑏ଷ ∥ 𝑏ସ

 𝜌 𝑣ଷ ∥ 𝑟ଷ 𝜌 𝑣ସ ∥ 𝑟ସ

 𝑟ଵ 𝑟ଶ 𝑟ଷ 𝑟ସ

root

leaves

values

randomness

Fig. 2: A diagram of the data structure of a Merkle
tree with privacy. An authentication path for v2
is shaded; the corresponding truncated authenti-
cation path is the same minus r2 and v2.

(iii) E3 is the event that, for every rt ∈ {0, 1}λ such that Aρ outputs some tuple of
the form (rt, ·, ·, ·), there is a unique jrt ∈ {0, . . . ,NumQueries(A, ρ)} such
that ρ(θjrt) = rt and, for every imax ∈ {jrt, . . . ,NumQueries(A, ρ)}, v :=
VEρ(A, `rt, jrt, imax) is such that v’s i-th entry equals vi for any tuple of the
form (rt, i, v, ap) output by Aρ.

The extractability property that we rely on is the following.

Lemma 3. Let Aρ be a m-query algorithm. Then

Pr [(¬(E1 ∧ E2)) ∨ E3 | ρ← U(λ)] ≥ 1− (m2 + 1)2−λ .

Proof. Observe the following.
– By the union bound, the probability that there exist indices i, j such that (i 6= j) ∧

(ρ(θi) = ρ(θj)) or (i ≤ j) ∧ (ρ(θj) ∈ θi) is at most m22−λ. If this occurs, we say
that Aρ has found a collision.

– The probability that, for a tuple (rt, i, v, ap) output byAρ such that MERKLE.CheckPath(rt, i, v, ap) =
1, the authentication path ap contains a node with no corresponding query is at most
2−λ, since this would mean that Aρ has ‘guessed’ the answer to the query. In other
words, no matter what strategy A uses to generate the result, if it does not query the
oracle on this input then it can perform no better than chance.

Now suppose that E1 ∧ E2 occurs with probability δ. Then, with probability at least
δ − (m2 + 1)2−λ: (a) for each root rt output by Aρ there is a unique query θi?

such that ρ(θi?) = rt; (b) for each root rt output by Aρ, if an authentication path
ap claims to have root rt then ap appears in the tree rooted at θi? in G; and (c) the
condition in the VE’s Step 3 or Step 4 does not hold. In such a case we may take
jrt := i?, and then VEρ(A, `rt, jrt, imax) outputs a list v with the desired property. Hence,
Pr[E1 ∧ E2 ∧ E3] ≥ δ − (m2 + 1)2−λ. The predicate is also satisfied if ¬(E1 ∧ E2)
occurs, which is the case with probability 1− δ and is disjoint from E1 ∧E2 ∧E3. The
lemma follows.

A.2 Privacy

We rely not only on the fact that the root rt of a Merkle tree is hiding, but also on the
fact that an authentication path ap reveals no information about values other than the

23

decommitted one. The latter property can be ensured via a slight tweak of the standard
construction of Merkle trees: when committing to a list v = (vi)

n
i=1, the i-th leaf is not

vi but, instead, is a hiding commitment to vi. In our case, we will store the value ρ(vi‖ri)
in the i-th leaf, where ri ∈ {0, 1}2λ is drawn uniformly at random; see Figure 2. (An
authentication path for vi then additionally includes ri, and path verification is modified
accordingly.) In what follows, we regard ρ(vi‖ri) as a leaf, rather than vi; moreover,
a truncated authentication path ap′i is identical to api except that it does not contain
ri or vi, and the truncated Merkle tree for v is T ′v := (ap′i)1≤i≤n. Note that the same
randomness r ∈ {0, 1}2λn is used by MERKLE.GetRoot and MERKLE.GetPath (to be
“in sync”).

We summarize the privacy property of Merkle trees as above via the following
definition and lemma.

Definition 2. A Merkle-tree scheme has z(n, λ)-statistical privacy if there exists a
probabilistic polynomial-time simulator S such that, for every list v = (vi)

n
i=1 and

unbounded distinguisher D, the following two probabilities are z(n, λ)-close:

Pr
r

 I ⊆ {1, . . . , n}
Dρ(rt, (api)i∈I) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

rt← MERKLE.GetRootρ(v; r)
I ← Dρ

∀ i ∈ I , api ← MERKLE.GetPathρ(v, i; r)


and

Pr

 I ⊆ {1, . . . , n}
Dρ(rt, (api)i∈I) = 1

∣∣∣∣∣∣
ρ← U(λ)
I ← Dρ

(rt, (api)i∈I)← Sρ(n, (i, vi)i∈I)

 .

We make no assumption on the power of the distinguisher D in the definition above.
In particular, D may query the random oracle ρ at every input, and use the information
to attempt to learn vi for some i /∈ I . For example, for some ρ, it is the case that
Prr[v = 1 | ρ(v‖r) = x] � Prr[v = 0 | ρ(v‖r) = x] for x = ρ(v2‖r2), in which
case D can determine v2 from ap1 with good accuracy. The next (easy to prove) lemma
shows that the probability that D gains a significant statistical advantage in this way (or
otherwise) is negligible in λ.

Lemma 4. There exists a Merkle-tree scheme having z(n, λ)-statistical privacy with
z(n, λ) := n2−λ/4+2.

24

References

ALM+92. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and hardness of approximation problems. 1992.

ALM+98. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. JACM, 1998.

AS98. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characteri-
zation of NP. JACM, 1998.

Bab85. László Babai. Trading group theory for randomness. In STOC ’85, 1985.
Bab90. Laszlo Babai. E-mail and the Unexpected Power of Interaction. Technical report,

University of Chicago, Chicago, IL, USA, 1990.
BBP04. Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-

oracle-model scheme for a hybrid-encryption problem. In EUROCRYPT ’04, 2004.
BC86. Gilles Brassard and Claude Crépeau. Non-transitive transfer of confidence: A perfect

zero-knowledge interactive protocol for SAT and beyond. In FOCS ’86, 1986.
BCC88. Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of

knowledge. Journal of Computer and System Sciences, 1988.
BCG+16. Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas

Spooner. Short interactive oracle proofs with constant query complexity, via composi-
tion and sumcheck, 2016. Crypto ePrint 2016/324.

BCGV16. Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasilinear-
size zero knowledge from linear-algebraic PCPs. In TCC ’16-A, 2016.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In TCC ’13, 2013.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs,
2016. Crypto ePrint 2016/116.

BD16. Allison Bishop and Yevgeniy Dodis. Interactive coding for interactive proofs. In
TCC ’16-A, 2016.

BDG+13. Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai,
Adriana López-Alt, and Daniel Wichs. Why ”Fiat-Shamir for proofs” lacks a proof.
In TCC ’13, 2013.

BFL90. László Babai, Lance Fortnow, and Carsten Lund. Nondeterministic exponential time
has two-prover interactive protocols. In SFCS ’90, 1990.

BFLS91. László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In STOC ’91, 1991.

BG93. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In CRYPTO
’92, 1993.

BG08. Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM J.
Comp., 2008.

BGGL01. Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-
sound zero-knowledge and its applications. In FOCS ’01, 2001.

BGH+04. Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs and applications to coding. In STOC ’04,
2004.

BGKW88. Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: how to remove intractability assumptions. In STOC ’88, 1988.

BHZ87. Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 1987.

BKK+13. Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth.
Constant rate PCPs for Circuit-SAT with sublinear query complexity. In FOCS ’13,
2013.

25

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS ’93, 1993.

BS08. Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comp., 2008.

BW15. David Bernhard and Bogdan Warinschi. On limitations of the Fiat–Shamir transfor-
mation. ePrint 2015/712, 2015.

CGH04. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. JACM, 2004.

COPV13. Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, and Ivan Visconti. Simultaneous
resettability from one-way functions. In FOCS ’13, 2013.

CPSV16. Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti. A trans-
form for NIZK almost as efficient and general as the Fiat-Shamir transform without
programmable random oracles. In TCC ’16-A, 2016.

Dam89. Ivan Damgård. A design principle for hash functions. In CRYPTO ’89, 1989.
DNRS03. Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic func-

tions. JACM, 2003.
Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with

online extractors. In CRYPTO ’05, 2005.
FRS88. Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover

interactive protocols. 1988.
FS86. Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification

and signature problems. In CRYPTO ’86, 1986.
GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span

programs and succinct NIZKs without PCPs. In EUROCRYPT ’13, 2013.
GH98. Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with

bounded communication. Information Processing Letters, 1998.
GIMS10. Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive

locking, zero-knowledge PCPs, and unconditional cryptography. In CRYPTO’10,
2010.

GK03. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In FOCS ’03, 2003.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for Muggles. In STOC ’08, 2008.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comp., 1989.

GOSV14. Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti. Black-box
non-black-box zero knowledge. In STOC ’14, 2014.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
ASIACRYPT ’10, 2010.

GS86. Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In STOC ’86, 1986.

GVW02. Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Computational Complexity, 2002.

HS00. Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Compu-
tational Complexity, 2000.

HT98. Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge
protocols. In CRYPTO ’98, 1998.

IKM09. Tsuyoshi Ito, Hirotada Kobayashi, and Keiji Matsumoto. Oracularization and two-
prover one-round interactive proofs against nonlocal strategies. In CCC ’09, 2009.

IKO07. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short
PCPs. In CCC ’07, 2007.

26

IMS12. Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge
PCPs. In TCC ’12, 2012.

IMSX15. Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On zero-
knowledge PCPs: Limitations, simplifications, and applications, 2015. Avail-
able at http://www.cs.virginia.edu/˜mohammad/files/papers/
ZKPCPs-Full.pdf.

Ito10. Tsuyoshi Ito. Polynomial-space approximation of no-signaling provers. In ICALP ’10,
2010.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC ’92,
1992.

KR08. Yael Kalai and Ran Raz. Interactive PCP. In ICALP ’08, 2008.
KR09. Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In

CRYPTO ’09, 2009.
KRR13. Yael Kalai, Ran Raz, and Ron Rothblum. Delegation for bounded space. In STOC ’13,

2013.
KRR14. Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:

the power of no-signaling proofs. In STOC ’14, 2014.
KRR16. Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to

the security of Fiat-Shamir for proofs. ePrint 2016/303, 2016.
LFKN92. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic

methods for interactive proof systems. JACM, 1992.
Lin15. Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS

and non-programmable random oracle. In TCC ’15, 2015.
Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive

zero-knowledge arguments. In TCC ’12, 2012.
Mer89a. Ralph C. Merkle. A certified digital signature. In CRYPTO ’89, 1989.
Mer89b. Ralph C. Merkle. One way hash functions and DES. In CRYPTO ’89, 1989.
Mic00. Silvio Micali. Computationally sound proofs. SIAM J. Comp., 2000.
MV16. Arno Mittelbach and Daniele Venturi. Fiat-shamir for highly sound protocols is

instantiable. ePrint 2016/313, 2016.
Pas03. Rafael Pass. On deniability in the common reference string and random oracle model.

In CRYPTO ’03, 2003.
PGHR13. Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly

practical verifiable computation. In Oakland ’13, 2013.
PS96. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In

EUROCRYPT ’96, 1996.
PSSV07. Aduri Pavan, Alan L. Selman, Samik Sengupta, and Vinodchandranm N. V.

Polylogarithmic-round interactive proofs for coNP collapse the exponential hierarchy.
Theoretical Computer Science, 2007.

PTW09. Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikström. On the composition of
public-coin zero-knowledge protocols. In CRYPTO ’09, 2009.

RRR16. Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive
proofs for delegating computation. In STOC ’16, 2016.

SBV+13. Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and
Michael Walfish. Resolving the conflict between generality and plausibility in verified
computation. In EuroSys ’13, 2013.

SBW11. Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and
unconditional verification of remote computations. In HotOS ’11, 2011.

Sha92. Adi Shamir. IP = PSPACE. JACM, 1992.

27

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

SMBW12. Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making
argument systems for outsourced computation practical (sometimes). In NDSS ’12,
2012.

SVP+12. Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg,
and Michael Walfish. Taking proof-based verified computation a few steps closer to
practicality. In Security ’12, 2012.

Val08. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In TCC ’08, 2008.

Wee09. Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In ASI-
ACRYPT ’09, 2009.

28

	Abstract
	1 Introduction
	1.1 Models of proof systems
	1.2 Compiling proof systems into argument systems
	1.3 Results
	Interactive oracle proofs
	From interactive oracle proofs to non-interactive random-oracle arguments
	State restoration attacks on interactive oracle proofs

	1.4 Techniques

	2 Preliminaries
	2.1 Basic notations
	2.2 Merkle trees
	2.3 Non-interactive random-oracle arguments

	3 Interactive oracle proofs
	3.1 Interactive oracle protocols
	3.2 Interactive oracle proof systems

	4 State restoration attacks on interactive oracle proofs
	5 From IOPs to non-interactive random-oracle arguments
	6 Analysis of the transformation T
	A Extractability and privacy of Merkle trees
	A.1 Extractability
	A.2 Privacy

	References

