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Abstract. A central problem in differential privacy is to accurately
answer a large family Q of statistical queries over a data universe X.
A statistical query on a dataset D ∈ Xn asks “what fraction of the
elements of D satisfy a given predicate p on X?” Ignoring computa-
tional constraints, it is possible to accurately answer exponentially many
queries on an exponential size universe while satisfying differential pri-
vacy (Blum et al., STOC’08). Dwork et al. (STOC’09) and Boneh and
Zhandry (CRYPTO’14) showed that if both Q and X are of polynomial
size, then there is an efficient differentially private algorithm that ac-
curately answers all the queries. They also proved that if Q and X are
both exponentially large, then under a plausible assumption, no efficient
algorithm exists.

We show that, under the same assumption, if either the number of queries
or the data universe is of exponential size, then there is no differentially
private algorithm that answers all the queries. Specifically, we prove that
if one-way functions and indistinguishability obfuscation exist, then:

1. For every n, there is a family Q of Õ(n7) queries on a data universe X
of size 2d such that no poly(n, d) time differentially private algorithm
takes a dataset D ∈ Xn and outputs accurate answers to every query
in Q.

2. For every n, there is a family Q of 2d queries on a data universe
X of size Õ(n7) such that no poly(n, d) time differentially private
algorithm takes a dataset D ∈ Xn and outputs accurate answers to
every query in Q.

In both cases, the result is nearly quantitatively tight, since there is an
efficient differentially private algorithm that answers Ω̃(n2) queries on
an exponential size data universe, and one that answers exponentially
many queries on a data universe of size Ω̃(n2).

Our proofs build on the connection between hardness of differential
privacy and traitor-tracing schemes (Dwork et al., STOC’09; Ullman,
STOC’13). We prove our hardness result for a polynomial size query set
(resp., data universe) by showing that they follow from the existence of a
special type of traitor-tracing scheme with very short ciphertexts (resp.,
secret keys), but very weak security guarantees, and then constructing
such a scheme.

? The full version of this work appears on the IACR Crypto ePrint [26]



1 Introduction

The goal of privacy-preserving data analysis is to release rich statistical infor-
mation about a sensitive dataset while respecting the privacy of the individuals
represented in that dataset. The past decade has seen tremendous progress to-
wards understanding when and how these two competing goals can be reconciled,
including surprisingly powerful differentially private algorithms as well as com-
putational and information-theoretic limitations. In this work, we further this
agenda by showing a strong new computational bottleneck in differential privacy.

Consider a dataset D ∈ Xn where each of the n elements is one individual’s
data, and each individual’s data comes from some data universe X. We would
like to be able to answer sets of statistical queries on D, which are queries of the
form “What fraction of the individuals in D satisfy some property p?” However,
differential privacy [14] requires that we do so in such a way that no individual’s
data has significant influence on the answers.

If we are content answering a relatively small set of queries Q, then it suffices
to perturb the answer to each query with independent noise from an appropriate
distribution. This algorithm is simple, very efficient, differentially private, and
ensures good accuracy—say, within ±.01 of the true answer—as long as |Q| . n2

queries [13, 16, 5, 14].
Remarkably, the work of Blum, Ligett, and Roth [6] showed that it is possible

to output a summary that allows accurate answers to an exponential number of
queries—nearly 2n—while ensuring differential privacy. However, neither their
algorithm nor the subsequent improvements [15, 17, 30, 23, 22, 29, 35] are compu-
tationally efficient. Specifically, they all require time at least poly(n, |X|, |Q|) to
privately and accurately answer a family of statistical queries Q on a dataset
D ∈ Xn. Note that the size of the input is n log |X| bits, so a computationally ef-
ficient algorithm runs in time poly(n, log |X|).4 For example, in the common set-
ting where each individual’s data consists of d binary attributes, so X = {0, 1}d,
the size of the input is nd but |X| = 2d. As a result, all known private algo-
rithms for answering arbitrary sets of statistical queries are inefficient if either
the number of queries or the size of the data universe is superpolynomial.

This accuracy vs. computation tradeoff has been the subject of extensive
study. Dwork et al. [15] showed that the existence of cryptographic traitor-tracing
schemes [11] yields a family of statistical queries that cannot be answered ac-
curately and efficiently with differential privacy. Applying recent traitor-tracing
schemes [8], we conclude that, under plausible cryptographic assumptions (dis-
cussed below), if both the number of queries and the data universe can be super-
polynomial, then there is no efficient differentially private algorithm. [34] used
variants of traitor-tracing schemes to show that in the interactive setting, where
the queries are not fixed but are instead given as input to the algorithm, as-
suming one-way functions exist, there is no private and efficient algorithm that

4 It may require exponential time just to describe and evaluate an arbitrary counting
query, which would rule out efficiency for reasons that have nothing to do with
privacy. In this work, we restrict attention to queries that are efficiently computable
in time poly(n, log |X|), so they are not the bottleneck in the computation.
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accurately answers more than Õ(n2) statistical queries. All of the algorithms
mentioned above work in this interactive setting, but for many applications we
only need to answer a fixed family of statistical queries.

Despite the substantial progress, there is still a basic gap in our understand-
ing. The hardness results for Dwork et al. apply if both the number of queries
and the universe are large. But the known algorithms require exponential time
if either of these sets is large. Is this necessary? Are there algorithms that run
in time poly(n, log |X|, |Q|) or poly(n, |X|, log |Q|)?

Our main result shows that under the same plausible cryptographic assump-
tions, the answer is no—if either the data universe or the set of queries can
be superpolynomially large, then there is some family of statistical queries that
cannot be accurately and efficiently answered while ensuring differential privacy.

1.1 Our Results

Our first result shows that if the data universe can be of superpolynomial size
then there is some fixed family of polynomially many queries that cannot be
efficiently answered under differential privacy. This result shows that the effi-
cient algorithm for answering an arbitrary family of |Q| . n2 queries by adding
independent noise is optimal up to the specific constant in the exponent.

Theorem 1 (Hardness for small query sets). Assume the existence of in-
distinguishability obfuscation and one-way functions. Let λ ∈ N be a computation
parameter. For any polynomial n = n(λ), there is a sequence of pairs {(Xλ, Qλ)}
with |Xλ| = 2λ and |Qλ| = Õ(n7) such that there is no polynomial time differ-
entially private algorithm that takes a dataset D ∈ Xn

λ and outputs an accurate
answer to every query in Qλ up to an additive error of ±1/3.

Our second result shows that, even if the data universe is required to be
of polynomial size, there is a fixed set of superpolynomially many queries that
cannot be answered efficiently under differential privacy. When we say that an
algorithm efficiently answers a set of superpolynomially many queries, we mean
that it efficiently outputs a summary such that there is an efficient algorithm
for obtaining an accurate answer to any query in the set. For comparison, if
|X| . n2, then there is a simple poly(n, |X|) time differentially private algorithm
that accurately answers superpolynomially many queries. Our result shows that
this efficient algorithm is optimal up to the specific constant in the exponent.

Theorem 2 (Hardness for small query sets). Assume the existence of in-
distinguishability obfuscation and one-way functions. Let λ ∈ N be a computation
parameter. For any polynomial n = n(λ), there is a sequence of pairs {(Xλ, Qλ)}
with |Xλ| = Õ(n7) and |Qλ| = 2λ such that there is no polynomial time differ-
entially private algorithm that takes a dataset D ∈ Xn

λ and outputs an accurate
answer to every query in Qλ up to an additive error of ±1/3.

Before we proceed to describe our techniques, we make a few remarks about
these results. In both of these results, the constant 1/3 in our result is arbitrary,
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and can be replaced with any constant smaller than 1/2. We also remark that,
when we informally say that an algorithm is differentially private, we mean that
it satisfies (ε, δ)-differential privacy for some ε = O(1) and δ = o(1/n). These are
effectively the largest parameters for which differential privacy is a meaningful
notion of privacy. That our hardness results apply to these parameters only
makes our results stronger. Finally, we remark that it is possible to show that our
results also rule out the weaker notion of computational differential privacy [28].

On Indistinguishability Obfuscation. Indistinguishability obfuscation (iO) has
recently become a central cryptographic primitive. The first candidate construc-
tion, proposed just a couple years ago [19], was followed by a flurry of results
demonstrating the extreme power and wide applicability of iO (cf., [19, 31, 8,
24, 4]). However, the assumption that iO exists is currently poorly understood,
and the debate over the plausibility of iO is far from settled. While some specific
proposed iO schemes have been attacked [12, 27], other schemes seem to resist all
currently known attacks [1, 20]. We also do not know how to base iO on a solid,
simple, natural computational assumption (some attempts based on multilinear
maps have been made [21], but they were broken with respect to all current
multilinear map constructions).

Nevertheless, our results are meaningful whether or not iO exists. If iO ex-
ists, our results show that certain tasks in differential privacy are intractable.
Interestingly, unlike many previous results relying on iO, these conclusions were
not previously known to follow from even the much stronger (and in fact, false)
assumption of virtual black-box obfuscation. If, on the other hand, iO does
not exist, then our results still demonstrate a barrier to progress in differential
privacy—such progress would need to prove that iO does not exist. Alternatively,
our results highlight a possible path toward proving that iO does not exist. We
note that other “incompatibility” results are known for iO; for example, iO and
certain types of hash functions cannot simultaneously exist [9, 3].

1.2 Techniques

(Weak) PLBE Schemes and the Hardness of Privacy We prove our
results by building on the connection between differentially private algorithms
for answering statistical queries and traitor-tracing schemes discovered by Dwork
et al. [15]. Traitor-tracing schemes were introduced by Chor, Fiat, and Naor [11]
for the purpose of identifying pirates who violate copyright restrictions.

Although previous results are described in the language of traitor-tracing,
our results are simpler to describe in the language of private linear broadcast
encryption (PLBE), which is a simpler primitive that implies traitor-tracing in
a very direct way (e.g. [7]). We will thus refer to PLBE rather than traitor-tracing
in all technical discussions going forward. A PLBE scheme allows a sender to
generate keys for n users so that 1) the sender can broadcast an encrypted
message that can be decrypted by any subset of users [1, i] for 0 ≤ i ≤ n,5 so

5 We use [1, i] to denote the discrete interval {1, 2, . . . , i}, and [1, 0] = ∅.
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that any user outside of [1, i] will decrypt 0, and 2) the index i describing the
set of users is hidden in the sense that any coalition of users that excludes user
i cannot distinguish messages sent to the set [1, i] from messages sent to the set
[1, i− 1].

Dwork et al. show that the existence of traitor-tracing schemes implies hard-
ness results for differential privacy. In the language of PLBE, the reduction is
as follows: Suppose a coalition of users takes their keys and builds a dataset
D ∈ Xn where each element of the dataset contains one of their user keys. The
family Q will contain a query qc for each possible ciphertext c. The query qc asks
“What fraction of the elements (user keys) in D would decrypt the ciphertext c
to the message 1?”

Suppose there were an efficient algorithm that accurately answers every query
qc in Q. Then the coalition could run it on the dataset D to produce a sum-
mary that can efficiently decrypt the ciphertexts. That means if c encrypts the
message 1 to all users [1, n], the summary outputs an answer close to 1, and if c
encrypts a message 1 to the empty set of users, the summary outputs an answer
close to 0. Thus, there exists a user i such that the summary is distinguishing
encryptions to the group [1, i] from encryptions to [1, i− 1]. Differential privacy
requires that the summary’s behavior is essentially the same even if run it on
the dataset D′ that excludes the secret key of user i. However, that means there
is an efficient algorithm that takes the keys of all users excluding i and distin-
guishes encryptions to the group [1, i] from encryptions to the group [1, i − 1],
which violates the second property of the PLBE scheme.

To instantiate this result, we need a PLBE. Observe that the data universe
contains one element for every possible user key, and the set of queries contains
one query for every ciphertext, and we want to minimize the size of these sets.
Boneh and Zhandry constructed a traitor-tracing scheme where both the keys
and the ciphertexts have length equal to the security parameter λ, which under
the Dwork et al. reduction yields hardness for a data universe and query set
each of size 2λ. The main contribution of this work is to show that we can
reduce either the number of possible ciphertexts or the number of possible keys
to poly(n) while the other remains of size 2λ.

But how is it possible to have a secure PLBE scheme with poly(n) ciphertexts
(resp., keys)? Even a semantically secure private key encryption scheme requires
superpolynomially many ciphertexts (resp., keys)! Here we rely on observations
from [34] showing that in order to show hardness for differential privacy, it suffices
to have a PLBE scheme with very weak functionality and security. First, in the
reduction, we only encrypt the message 1, so only the group [1, i] is actually
hidden. Second, in the reduction, the differentially private algorithm only has
access to the user’s keys, and there does not need to be a public encryption
key or access to an encryption oracle. Thus, the adversary does not have the
ability to generate encryptions to arbitrary groups [1, i]. Finally, the quantitative
version of the reduction only requires that the coalition has advantage o(1/n) in
distinguishing encryptions to different groups, rather than negligible. All three
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of these relaxations are necessary for making the number of ciphertexts (resp.,
keys) poly(n), and, as we show, are sufficient as well.

Weak PLBE Schemes from Obfuscation In order to provide intuition for
how we can achieve PLBE with a ciphertext or key space of size poly(n), we will
assume the existence of virtual black-box obfuscation (VBB). While our actual
results use iO, we emphasize that a PLBE scheme with the right properties to
establish our results was previously not even known to follow from VBB.

Polynomially many ciphertexts. Consider the following simple scheme: Let
the set of ciphertexts be [m] for an appropriate m = poly(n). Choose a pseudo-
random function f : [m] → {0, 1, . . . , n} and associate each ciphertext c ∈ [m]
with the group of users [1, f(c)]. Pseudorandomness is only used to keep the
description of f short, and for intuition it’s fine to think of f as truly random.
To encrypt to a set [1, i], choose a random ciphertext c ∈ f−1(i) and send it.
Each user i will get a secret key containing an obfuscation of the program Pi(c)
that computes j = f(c) and, if outputs 1 if j ≥ i and otherwise outputs 0.

Consider a coalition with keys for every user except some user i. Since there
are only poly(n) ciphertexts, we may as well assume that these users evaluate
each of their obfuscated programs on every ciphertext c, and VBB security of
the obfuscation ensures that they “cannot learn anything else” from their keys.
By evaluating their programs on every ciphertext, they can determine the value
of f(c) exactly on every ciphertext c such that f(c) < i− 1 or f(c) > i. Since f
is pseudorandom, for ciphertexts such that f(c) ∈ {i − 1, i}, they have at most
a negligible advantage in guessing whether f(c) = i or f(c) = i − 1, for any
ciphertext c. Thus, if the coalition guesses the value of f(c) on all ciphertexts
c ∈ f−1({i− 1, i}), a simple Chernoff bound shows that they will guess at most
1/2+O(

√
log(n)/T ) of them correctly, where T is the size of f−1({i− 1, i}). For

a PRF, the size of this set will be at least m/2n with overwhelming probability.
Thus, in order to ensure that his overall advantage is o(1/n), it suffices to choose
m = Õ(n3).

In this straw-man scheme, the length of the ciphertext will clearly beO(log(n)).
The user keys contain an obfuscation of a poly(λ+ log(n)) time program, so the
user keys are poly(λ+log(n)), so this scheme satisfies our efficiency requirements.

While the scheme is very simple to describe using VBB, replacing VBB with
iO introduces some additional technicalities, and requires a new notion of punc-
turable PRF (Definition 5.2). These technicalities are also the reason we use
m = Õ(n7) ciphertexts.

Polynomially many keys. Our scheme with polynomially many keys is roughly
“dual” to the scheme with polynomially many ciphertexts. Let the set of user
keys be [n]×[m] for an appropriate choice of m = poly(n). Each user i = 1, . . . , n
will receive a secret key (i, sk i) for a random s←R [m]. To encrypt a message to
a group [1, i] produce a VBB obfuscation O of the following program: The input
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is a pair (j, s) ∈ [n] × [m]. If s = sk j , then output 1 if j ∈ [1, i] and otherwise
output 0. Otherwise, output the value r(j, s) for a pseudorandom function r.
Again, pseudorandomness is only used to keep the description of the r short,
and for intuition it’s fine to think of r as an independent random value for each
input (j, s).

Suppose the coalition has the keys for every user except i and a ciphertext
encrypted to the group [1, i − b] for b ∈ {0, 1}. We want to claim that the
coalition has advantage at most o(1/n) in trying to determine b. Since there
are only polynomially many pairs (j, s), the coalition might as well evaluated
the obfuscated program on every one of the inputs, and VBB security of the
obfuscation ensures that they “cannot learn anything else” from their keys and
the ciphertext. Observe that by evaluating the ciphertext on all inputs (j, s),
they will actually evaluate the ciphertext on the input (i, sk i) belonging to user
i, but they do not actually know which input of the form (i, s) was the correct
one.

By (pseudo)randomness of r, the only values that contain any information
about the bit b are o = (O(i, s))s∈[m]. In the case that b = 0, meaning the
ciphertext was for group [1, i−1], o is distributed as a (pseudo)random vector in
{0, 1}m except that one random entry corresponding to the pair (i, sk i) is set to
1. Similarly, if b = 1, then o is distributed as a (pseudo)random vector in {0, 1}m
with one random entry set to 0. A simple argument based on Renyi-divergence
shows that these two distributions are O(1/

√
m)-close in statistical distance, so

the coalition’s advantage in determining b is at most O(1/
√
m). Thus, it suffices

to take m = Õ(n2) to obtain the level of security we need, corresponding to
nm = Õ(n3) keys.

As before, moving from VBB to iO introduces additional technicalities, lead-
ing to Õ(n7) keys. We remark that for both the short-ciphertext and short-key
schemes, obtaining the optimal Õ(n2) ciphertexts or keys seems to require both
coming up with a more efficient VBB scheme and avoiding the loss in efficiency
from moving to iO, or using another approach entirely.

1.3 Related Work

Theorem 1 should be contrasted with the line of work showing that differentially
private algorithms can efficiently answer many more than n2 simple queries.
These results include algorithms for highly structured queries like point queries,
threshold queries, and conjunctions (see e.g. [33, 2] and the references therein).

Ullman and Vadhan [36] (building on Dwork et al. [15]) show that, assuming
one-way functions, no differentially private and computationally efficient algo-
rithm that outputs a synthetic dataset can accurately answer even the very
simple family of 2-way marginals. This result is incomparable to ours, since it
applies to a very small and simple family of statistical queries, but necessarily
only applies to algorithms that output synthetic data.

There is also a line of work using fingerprinting codes to prove information-
theoretic lower bounds on differentially private mechanisms [10, 32, 18]. Namely,
that if the data universe is of size exp(n2), then there is no differentially private
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algorithm, even a computationally unbounded one, that can answer more than n2

statistical queries. Fingerprinting codes are essentially the information-theoretic
analogue of traitor-tracing schemes, and thus these results are technically related,
although the models are incomparable.

1.4 Paper Outline

In Section 2 we will give the necessary background on differential privacy. In
Section 3 we will give our definition of weak PLBE schemes, and in Section 4
we will connect them to differential privacy. In Section 5 we will define some
cryptographic tools that we use to construct PLBE schemes. In Section 6 we
will construct the short-ciphertext scheme we use to prove Theorem 1 and in
Section 7 we will construct the short-key scheme we use to prove Theorem 2.

2 Differential Privacy Preliminaries

2.1 Differentially Private Algorithms

A dataset D ∈ Xn is an ordered set of n rows, where each row corresponds
to an individual, and each row is an element of some the data universe X. We
write D = (D1, . . . , Dn) where Di is the i-th row of D. We will refer to n as
the size of the dataset. We say that two datasets D,D′ ∈ X∗ are adjacent if
D′ can be obtained from D by the addition, removal, or substitution of a single
row, and we denote this relation by D ∼ D′. In particular, if we remove the
i-th row of D then we obtain a new dataset D−i ∼ D. Informally, an algorithm
A is differentially private if it is randomized and for any two adjacent datasets
D ∼ D′, the distributions of A(D) and A(D′) are similar.

Definition 3 (Differential Privacy [14]). Let A : Xn → S be a randomized
algorithm. We say that A is (ε, δ)-differentially private if for every two adjacent
datasets D ∼ D′ and every subset T ⊆ S, P [A(D) ∈ T ] ≤ eε · P [A(D′) ∈ T ] + δ.

In this definition, ε, δ may be a function of n.

2.2 Algorithms for Answering Statistical Queries

In this work we study algorithms that answer statistical queries (which are also
sometimes called counting queries, predicate queries, or linear queries in the
literature). For a data universe X, a statistical query on X is defined by a
predicate q : X → {0, 1}. Abusing notation, we define the evaluation of a query
q on a dataset D = (D1, . . . , Dn) ∈ Xn to be 1

n

∑n
i=1 q(Di).

A single statistical query does not provide much useful information about the
dataset. However, a sufficiently large and rich set of statistical queries is sufficient
to implement many natural machine learning and data mining algorithms [25],
thus we are interesting in differentially private algorithms to answer such sets.
To this end, let Q = {q : X → {0, 1}} be a set of statistical queries on a data
universe X.
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Informally, we say that a mechanism is accurate for a set Q of statistical
queries if it answers every query in the family to within error ±α for some
suitable choice of α > 0. Note that 0 ≤ q(D) ≤ 1, so this definition of accuracy
is meaningful when α < 1/2.

Before we define accuracy, we note that the mechanism may represent its
answer in any form. That is, the mechanism outputs may output a summary
S ∈ S that somehow represents the answers to every query in Q. We then
require that there is an evaluator Eval : S ×Q → [0, 1] that takes the summary
and a query and outputs an approximate answer to that query. That is, we think
of Eval(S, q) as the mechanism’s answer to the query q. We will abuse notation
and simply write q(S) to mean Eval(S, q).6

Definition 4 (Accuracy). For a family Q of statistical queries on X, a dataset
D ∈ Xn and a summary s ∈ S, we say that s is α-accurate for Q on D if for
every q ∈ Q, |q(D)− q(s)| ≤ α. For a family of statistical queries Q on X, we
say that an algorithm A : Xn → S is (α, β)-accurate for Q given a dataset of
size n if for every D ∈ Xn, P [A(D) is α-accurate for Q on X] ≥ 1− β.

In this work we are typically interested in mechanisms that satisfy the very
weak notion of (1/3, o(1/n))-accuracy, where the constant 1/3 could be replaced
with any constant < 1/2. Most differentially private mechanisms satisfy quan-
titatively much stronger accuracy guarantees. Since we are proving hardness
results, this choice of parameters makes our results stronger.

2.3 Computational Efficiency

Since we are interested in asymptotic efficiency, we introduce a computation
parameter λ ∈ N. We then consider a sequence of pairs {(Xλ, Qλ)}λ∈N where
Qλ is a set of statistical queries on Xλ. We consider databases of size n where
n = n(λ) is a polynomial. We then consider algorithms A that take as input a
dataset Xn

λ and output a summary in Sλ where {Sλ}λ∈N is a sequence of output
ranges. There is an associated evaluator Eval that takes a query q ∈ Qλ and a
summary s ∈ Sλ and outputs a real-valued answer. The definitions of differential
privacy and accuracy extend straightforwardly to such sequences.

We say that such an algorithm is computationally efficient if the running
time of the algorithm and the associated evaluator run in time polynomial in
the computation parameter λ. We remark that in principle, it could require at
many as |X| bits even to specify a statistical query, in which case we cannot
hope to answer the query efficiently, even ignoring privacy constraints. In this

6 If we do not restrict the running time of the algorithm, then it is without loss
of generality for the algorithm to simply output a list of real-valued answers to
each queries by computing Eval(S, q) for every q ∈ Q. However, this transformation
makes the running time of the algorithm at least |Q|. The additional generality
of this framework allows the algorithm to run in time sublinear in |Q|. Using this
framework is crucial, since some of our results concern settings where the number of
queries is exponential in the size of the dataset.
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work we restrict attention exclusively to statistical queries that are specified by
a circuit of size poly(log |X|), and thus can be evaluated in time poly(log |X|),
and so are not the bottleneck in computation. To remind the reader of this fact,
we will often say that Q is a family of efficiently computable statistical queries.

3 Weakly Secure Private Linear Broadcast Schemes

We now describe a very relaxed notion of private linear broadcast schemes whose
existence will imply the hardness of differentially private data release.

3.1 Syntax and Correctness

For a function n : N→ N and a sequence {Kλ, Cλ}λ∈N, a (n, {Kλ, Cλ})-private
linear broadcast scheme is a tuple of efficient algorithms Π = (Setup,Enc,Dec)
with the following syntax.

– Setup takes as input a security parameter λ, runs in time poly(λ), and out-
puts n = n(λ) secret user keys sk1, . . . , skn ∈ Kλ and a secret master key
mk . We will write k = (sk1, . . . , skn,mk) to denote the set of keys.

– Enc takes as input a master key mk and an index i ∈ {0, 1, . . . , n}, and
outputs a ciphertext c ∈ Cλ. If c ←R Enc(j,mk) then we say that c is
encrypted to index j.

– Dec takes as input a ciphertext c and a user key sk i and outputs a single bit
b ∈ {0, 1}. We assume for simplicity that Dec is deterministic.

Correctness of the scheme asserts that if k are generated by Setup, then for
any pair i, j, Dec(sk i,Enc(mk , j)) = I{i ≤ j}. For simplicity, we require that this
property holds with probability 1 over the coins of Setup and Enc, although it
would not affect our results substantively if we required only correctness with
high probability.

Definition 5 (Perfect Correctness). An (n, {Kλ, Cλ})-private linear broad-
cast scheme is perfectly correct if for every λ ∈ N, and every i, j ∈ {0, 1, . . . , n}

P
k=Setup(λ), c=Enc(mk ,j)

[Dec(sk i, c) = I{i ≤ j}] = 1.

3.2 Weak Index-Hiding Security

Intuitively, the security property we want is that any computationally efficient
adversary who is missing one of the user keys sk i∗ cannot distinguish cipher-
texts encrypted with index i∗ from index i∗ − 1, even if that adversary holds
all n − 1 other keys sk−i∗ . In other words, an efficient adversary cannot infer
anything about the encrypted index beyond what is implied by the correctness
of decryption and the set of keys he holds.

More precisely, consider the following two-phase experiment. First the ad-
versary is given every key except for sk i∗ , and outputs a decryption program S.
Then, a challenge ciphertext is encrypted to either i∗ or to i∗ − 1. We say that
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the private linear broadcast scheme is secure if for every polynomial time adver-
sary, with high probability over the setup and the decryption program chosen
by the adversary, the decryption program has small advantage in distinguishing
the two possible indices.

Definition 6 (Weak Index Hiding). A private linear broadcast scheme Π
satisfies weak index-hiding security if for every sufficiently large λ ∈ N, every
i∗ ∈ [n(λ)], and every adversary A with running time poly(λ),

P
k=Setup(λ)
S=A(sk−i∗ )

[
P [S(Enc(mk , i∗)) = 1]− P [S(Enc(mk , i∗ − 1)) = 1] >

1

2en

]
≤ 1

2en

(1)
In the above, the inner probabilities are taken over the coins of Enc and S.

Note that in the above definition we have fixed the success probability of the
adversary for simplicity. Moreover, we have fixed these probabilities to relatively
large ones. Requiring only a polynomially small advantage is crucial to achieving
the key and ciphertext lengths we need to obtain our results, while still being
sufficient to establish the hardness of differential privacy.

The Index-Hiding and Two-Index-Hiding Games While Definition 6 is
the most natural, in this section we consider some related ways of defining secu-
rity that will be easier to work with when we construct and analyze our schemes.
Consider the following IndexHiding game.

The challenger generates keys k = (sk1, . . . , skn,mk)←R Setup(λ).
The adversary A is given keys sk−i∗ and outputs a decryption program S.
The challenger chooses a bit b←R {0, 1}
The challenger generates an encryption to index i∗ − b, c←R Enc(mk , i∗ − b)
The adversary makes a guess b′ = S(c)

Fig. 1. IndexHiding[i∗]

Let IndexHiding[i∗,k, S] be the game IndexHiding[i∗] where we fix the
choices of k and S. Also, define

Adv[i∗,k, S] = P
IndexHiding[i∗,k,S]

[b′ = b]− 1

2
.

so that

P
IndexHiding[i∗]

[b′ = b]− 1

2
= E

k=Setup(λ)
S=A(sk−i∗ )

[Adv[i∗,k, S]]

Then the following is equivalent to (1) in Definition 6 as

P
k=Setup(λ), S=A(sk−i∗ )

[
Adv[i∗,k, S] >

1

4en

]
≤ 1

2en
(2)
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In order to prove that our schemes satisfy weak index-hiding security, we
will go through an intermediate notion that we call two-index-hiding security.
To see why this is useful, In our constructions it will be fairly easy to prove that
Adv[i∗] is small, but because Adv[i∗,k, S] can be positive or negative, that alone
is not enough to establish (2). Thus, in order to establish (2) we will analyze the
following variant of the index-hiding game.

The challenger generates keys k = (sk1, . . . , skn,mk)←R Setup.
The adversary A is given keys sk−i∗ and outputs a decryption program S.
Choose b0 ←R {0, 1} and b1 ←R {0, 1} independently.
Let c0 ←R Enc(i∗ − b0;mk) and c1 ←R Enc(i∗ − b1;mk).
Let b′ = S(c0, c1).

Fig. 2. TwoIndexHiding[i∗]

Analogous to what we did with IndexHiding, we can define the quantity
TwoIndexHiding[i∗,k, S] to be the game TwoIndexHiding[i∗] where we fix
the choices of k and S, and define

TwoAdv[i∗] = P
TwoIndexHiding[i∗]

[b′ = b0 ⊕ b1]− 1

2

TwoAdv[i∗,k, S] = P
TwoIndexHiding[i∗,k,S]

[b′ = b0 ⊕ b1]− 1

2

so that

P
TwoIndexHiding[i∗]

[b′ = b0 ⊕ b1]− 1

2
= E

k=Setup(λ),S=A(sk−i∗ )
[TwoAdv[i∗,k, S]]

The crucial feature is that if we can bound the expectation of TwoAdv then
we get a bound on the expectation of Adv2. Since Adv2 is always positive, we
can apply Markov’s inequality to establish (2). Formally, we have the following
claim.

Claim. Suppose that for every efficient adversary A, λ ∈ N, and index i∗ ∈
[n(λ)], TwoAdv[i∗] ≤ ε.Then for every efficient adversary A, λ ∈ N, and index
i∗ ∈ [n(λ)],

E
k=Setup(λ),
S←A(sk−i∗ )

[
Adv[i∗,k, S]2

]
≤ ε

2
. (3)

Proof. Given any adversary A in the IndexHiding game, consider the following
adversary A2 in the TwoIndexHiding game, which, when given a set of keys,
runs A with the same keys to get program SA, then creates and outputs the
program SA2

, which on input c0, c1, runs S on c0 to get output b′0, runs S on c1
to get output b′1, then outputs b′ = b′0 ⊕ b′1. Then, for this A2,

12



TwoAdv[i∗] = E
k=Setup(λ),

SA2
←A2(sk−i∗ )

[TwoAdv[i∗,k, SA2
]]

= E
k=Setup(λ),

SA2
←A2(sk−i∗ )

 Pr
bi←R{0,1},

ci←Enc(i∗−bi)

[b′ = b0 ⊕ b1 : b′ = SA2
(c0, c1)]− 1

2


= E

k=Setup(λ),
SA←A(sk−i∗ )

 Pr
bi←R{0,1},

ci←Enc(i∗−bi)

[b′0 ⊕ b′1 = b0 ⊕ b1 : b′i = SA(ci)]−
1

2


= E

k=Setup(λ),
SA←A(sk−i∗ )

[
2 ·Adv[i∗,k, SA]2

]
So if every efficient adversary A′, λ ∈ N, and index i∗ ∈ [n(λ)] satis-

fies TwoAdv[i∗] ≤ ε,then this condition also holds for A2’s TwoAdv[i∗] =
E

k=Setup(λ),
SA←A(sk−i∗ )

[
2 ·Adv[i∗,k, SA]2

]
, which implies E

k=Setup(λ),
SA←A(sk−i∗ )

[
Adv[i∗,k, SA]2

]
≤ ε

2 .

Using this claim we can prove the following lemma.

Lemma 7. Let Π be a private linear broadcast scheme such that for every effi-
cient adversary A, λ ∈ N, and index i∗ ∈ [n(λ)], TwoAdv[i∗] ≤ 1

200n3 .Then Π
satisfies weak index-hiding security.

Proof. By applying Claim 3.2 to the assumption of the lemma, we have that for
every efficient adversary A,

E
k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,k, S]2

]
≤ 1

400n3

Now we have

E
k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,k, S]2

]
≤ 1

400n3

=⇒ P
k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,k, S]2 >

1

(4en)2

]
≤ (4en)2

400n3
≤ 1

2en

=⇒ P
k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,k, S] >

1

4en

]
≤ 1

2en

To complete the proof, observe that this final condition is equivalent to the
definition of weak index-hiding security (Definition 6).

In light of this lemma, we will focus on proving that the schemes we construct
in the following sections satisfying the condition TwoAdv[i∗] ≤ 1

200n3 ,which will
be easier than directly establishing Definition 6.
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4 Hardness of Differential Privacy from PLBE

In this section we prove that a private linear broadcast scheme satisfying perfect
correctness and index-hiding security yields a family of statistical queries that
cannot be answered accurately by an efficient differentially private algorithm.
The proof is a fairly straightforward adaptation of the proofs in Dwork et al. [15]
and Ullman [34] that various sorts of traitor-tracing schemes imply hardness
results for differential privacy. We include the result for completeness, and to
verify that our very weak definition of private linear broadcast is sufficient to
prove hardness of differential privacy.

Theorem 8. Suppose there is an (n, {Kλ, Cλ})-private linear broadcast scheme
that satisfies perfect correctness (Definition 5) and weak index-hiding security
(Definition 6). Then there is a sequence of of pairs {Xλ, Qλ}λ∈N where Qλ is a
set of statistical queries on Xλ, |Qλ| = |Cλ|, and |Xλ| = |Kλ| such that there is
no algorithm A that is simultaneously,

1. (1, 1/2n)-differentially private,

2. (1/3, 1/2n)-accurate for Qλ on datasets D ∈ Xn(λ)
λ , and

3. computationally efficient.

Theorem 1 and 2 in the introduction follow by combining Theorem 8 above with
the constructions of private linear broadcast schemes in Section 6. The proof of
Theorem 8 closely follows the proofs in Dwork et al. [15] and Ullman [34]. We
give the proof both for completeness and to verify that our definition of private
linear broadcast suffices to establish the hardness of differential privacy.

Proof. Let Π = (Setup,Enc,Dec) be the promised (n, {Kλ, Cλ}) private linear
broadcast scheme. For every λ ∈ N, we can define a distribution on datasets D ∈
X
n(λ)
λ as follows. Run Setup(λ) to obtain n = n(λ) secret user keys sk1, . . . , skn ∈

Kλ and a master secret key mk . Let the dataset be D = (sk1, . . . , skn) ∈ Xn
λ

where we define the data universe Xλ = Kλ. Abusing notation, we’ll write
(D,mk)←R Setup(λ).

Now we define the family of queries Qλ on Xλ as follows. For every ciphertext
c ∈ Cλ, we define the predicate qc ∈ Qλ to take as input a user key sk i ∈ Kλ and
output Dec(sk i, c). That is, Qλ = {qc(sk) = Dec(sk , c) | c ∈ Cλ} . Recall that,
by the definition of a statistical query, for a dataset D = (sk1, . . . , skn), we have

qc(D) = (1/n)

n∑
i=1

Dec(sk i, c).

Suppose there is an algorithm A that is computationally efficient and is
(1/3, 1/2n)-accurate for Qλ given a dataset D ∈ Xn

λ . We will show that A
cannot satisfy (1, 1/2n)-differential privacy. By accuracy, for every λ ∈ N and
every fixed dataset D ∈ Xn

λ , with probability at least 1− 1/2n, A(D) outputs a
summary S ∈ Sλ that is 1/3-accurate for Qλ on D. That is, for every D ∈ Xn

λ ,
with probability at least 1− 1/2n,

∀qc ∈ Qλ |qc(D)− qc(S)| ≤ 1/3. (4)

14



Suppose that S is indeed 1/3-accurate. By perfect correctness of the private
linear broadcast scheme (Definition 5), and the definition of Q, we have that
since (D,mk) = Setup(λ),

(c = Enc(mk , 0)) =⇒ (qc(D) = 0) (c = Enc(mk , n)) =⇒ (qc(D) = 1). (5)

Combining Equations (4) and (5), we have that if (D,mk) = Setup(λ), S ←R

A(D), and S is 1/3-accurate, then we have both P
c←REnc(mk ,0)

[qc(S) ≤ 1/3] = 1

and P
c←REnc(mk ,n)

[qc(S) ≤ 1/3] = 0 Thus, for every (D,mk) and S that is 1/3-

accurate, there exists an index i ∈ {1, . . . , n} such that∣∣∣∣ P
c←REnc(mk ,i)

[qc(S) ≤ 1/3]− P
c←REnc(mk ,i−1)

[qc(S) ≤ 1/3]

∣∣∣∣ > 1

n
(6)

By averaging, using the fact that S is 1/3-accurate with probability at least
1− 1/2n, there must exist an index i∗ ∈ {1, . . . , n} such that

P
(D,mk)=Setup(λ)
S←RA(D)

[∣∣∣∣ P
c=Enc(mk ,i∗)

[
qc(S) ≤ 1

3

]
− P
c=Enc(mk ,i∗−1)

[
qc(S) ≤ 1

3

]∣∣∣∣ > 1

n

]
≥ 1

n

(7)
Assume, for the sake of contradiction that A is (1, 1/2n)-differentially pri-

vate. For a given i,mk , let Si,mk ⊆ Sλ be the set of summaries S such that (6)
holds. Then, by (7), we have P

(D,mk)←RSetup(λ)
[A(D) ∈ Si∗,mk ] ≥ 1

n . By differen-

tial privacy of A, we have

P
(D,mk)←RSetup

[A(D−i∗) ∈ Si∗,mk ] ≥ 1

e

(
1

n
− 1

2n

)
=

1

2en

Thus, by our definition of Si∗,mk , and by averaging over (D,mk) ←R Setup(λ),
we have

P
(D,mk)=Setup
S=A(D−i∗ )

[∣∣∣∣ P
c=Enc(mk ,i∗)

[
qc(S) ≤ 1

3

]
− P
c=Enc(mk ,i∗−1)

[
qc(S) ≤ 1

3

]∣∣∣∣ > 1

n

]
≥ 1

2en

(8)
But this violates the weak index hiding property of the private linear broadcast
scheme. Specifically, if we consider an adversary for the private linear broadcast
scheme that runs A on the keys sk−i∗ to obtain a summary S, then decrypts a
ciphertext c by computing qc(S) and rounding the answer to {0, 1}, then by (8)
this adversary violates weak index-hiding security (Definition 6).

Thus we have obtained a contradiction showing that A is not (1, 1/2n)-
differentially private. This completes the proof.

5 Cryptographic Primitives

We will make use of several cryptographic tools and information-theoretic prim-
itives. Due to space, we will omit a formal definition of standard concepts
like almost-pairwise-independent hash functions, pseudorandom generators, and
pseudorandom functions and defer these to the full version.
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5.1 Puncturable Pseudorandom Functions

A pseudorandom function family Fλ = {PRF : [m]→ [n]} is puncturable if there
is a deterministic procedure Puncture that takes as input PRF ∈ Fλ and x∗ ∈ [m]

and outputs a new function PRF{x
∗} : [m]→ [n] such that PRF{x

∗}(x) = PRF(x)

if x 6= x∗ and PRF{x
∗}(x) = ⊥ if x = x∗.

The definition of security for a punctured pseudorandom function states that
for any x∗, given the punctured function PRF{x

∗}, the missing value PRF(x∗)
is computationally unpredictable. Specifically, we define the game Puncture to
capture the desired security property.

The challenger chooses PRF←R Fλ
The challenger chooses uniform random bit b ∈ {0, 1}, and samples

y0 ←R PRF(x∗), y1 ←R [n].

The challenger punctures PRF at x∗, obtaining PRF{x
∗}.

The adversary is given (yb,PRF
{x∗}) and outputs a bit b′.

Fig. 3. Puncture[x∗]

Definition 9 (Puncturing Secure PRF). A pseudorandom function family
Fλ = {PRF : [m]→ [n]} is ε-puncturing secure if for every x∗ ∈ [m],

P
Puncture[x∗]

[b′ = b] ≤ 1

2
+ ε.

5.2 Twice Puncturable PRFs

A twice puncturable PRF is a pair of algorithms (PRFSetup,Puncture).

– PRFSetup is a randomized algorithm that takes a security parameter λ and
outputs a function PRF : [m] → [n] where m = m(λ) and n = n(λ) are
parameters of the construction. Technically, the function is parameterized by
a seed of length λ, however for notational simplicity we will ignore the seed
and simply use PRF to denote this function. Formally PRF←R PRFSetup(λ).

– Puncture is a deterministic algorithm that takes a PRF and a pair of inputs
x0, x1 ∈ [m] and outputs a new function PRF{x0,x1} : [m]→ [n] such that

PRF{x0,x1} =

{
PRF(x) if x /∈ {x0, x1}
⊥ if x ∈ {x0, x1}

Formally, PRF{x0,x1} = Puncture(PRF, x0, x1).
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In what follows we will always assume that m and n are polynomial in the
security parameter and that m = ω(n log(n)).

In addition to requiring that this family of functions satisfies the standard
notion of cryptographic pseudorandomness, we will now define a new security
property for twice puncturable PRFs, called input matching indistinguishability.
For any two distinct outputs y0, y1 ∈ [n], y0 6= y1, consider the following game.

The challenger chooses PRF such that ∀y ∈ [n], PRF−1(y) 6= ∅.
The challenger chooses independent random bits b0, b1 ∈ {0, 1}, and samples

x0 ←R PRF−1(yb0), x1 ←R PRF−1(yb1).

The challenger punctures PRF at x0, x1, obtaining PRF{x0,x1}.
The adversary is given (x0, x1,PRF

{x0,x1}) and outputs a bit b′.

Fig. 4. InputMatching[y0, y1]

Notice that in this game, we have assured that every y ∈ [n] has a preimage
under PRF. We need this condition to make the next step of sampling random
preimages well defined. Technically, it would suffice to have a preimage only for
yb0 and yb1 , but for simplicity we will assume that every possible output has a
preimage. When f : [m] → [n] is a random function, the probability that some
output has no preimage is at most n · exp(−Ω(m/n)) which is negligible when
m = ω(n log(n)). Since m,n are assumed to be a polynomial in the security
parameter, we can efficiently check if every output has a preimage, thus if PRF
is pseudorandom it must also be the case that every output has a preimage
with high probability. Since we can efficiently check whether or not every output
has a preimage under PRF, and this event occurs with all but negligible proba-
bility, we can efficiently sample the pseudorandom function in the first step of
InputMatching[y0, y1].

Definition 10 (Input-Matching Secure PRF). A function family
{PRF : [m]→ [n]} is ε-input-matching secure if the function family is a secure
pseudorandom function and additionally for every y0, y1 ∈ [n] with y0 6= y1,

P
InputMatching[y0,y1]

[b′ = b0 ⊕ b1] ≤ 1

2
+ ε.

In the full version of this work we show that input-matching secure twice
puncturable pseudorandom functions with suitable parameters exist.

Theorem 11. Assuming the existence of one-way functions, if m,n are poly-
nomials such that m = ω(n log(n)), then there exists a pseudorandom function
family Fλ = {PRF : [m(λ)]→ [n(λ)]} that is twice puncturable and is Õ(

√
n/m)-

input-matching secure.
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5.3 Indistinguishability Obfuscation

We use the following formulation of Garg et al. [19] for indistinguishability ob-
fuscation:

Definition 12 (Indistinguishability Obfuscation). A indistinguishability
obfuscator O for a circuit class {Cλ} is a probabilistic polynomial-time uniform
algorithm satisfying the following conditions:

1. O(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we
compute C ′ = O(λ,C), then C ′(x) = C(x) for all inputs x.

2. For any λ and any two circuits C0, C1 with the same functionality, the cir-
cuits O(λ,C0) and O(λ,C1) are indistinguishable. More precisely, for all
pairs of probabilistic polynomial-time adversaries (Samp, D), if

Pr
(C0,C1,σ)←Samp(λ)

[(∀x), C0(x) = C1(x)] > 1− negl(λ)

then

|Pr[D(σ,O(λ,C0)) = 1]− Pr[D(σ,O(λ,C1)) = 1]| < negl(λ)

The circuit classes we are interested in are polynomial-size circuits - that
is, when Cλ is the collection of all circuits of size at most λ. When clear from
context, we will often drop λ as an input to O and as a subscript for C.

6 A PLBE Scheme with Very Short Ciphertexts

In this section we construct a private linear broadcast scheme for n users where
the key length is polynomial in the security parameter λ and the ciphertext
length is only O(log(n)). This scheme will be used to establish our hardness
result for differential privacy when the data universe can be exponentially large
but the family of queries has only polynomial size. The construction of a weak
private linear broadcast scheme with user keys of length O(log(n)) is in Section 7.

6.1 Construction

Let n = poly(λ) denote the number of users for the scheme. Let m = Õ(n7) be
a parameter. Our construction will rely on the following primitives:

– A pseudorandom generator PRG : {0, 1}λ/2 → {0, 1}λ.
– A puncturable PRF family Fλ,sk =

{
PRFsk : [n]→ {0, 1}λ

}
.

– A twice-puncturable PRF family Fλ,Enc = {PRFEnc : [m]→ [n]}.
– An iO scheme Obfuscate.

Theorem 13. Assuming the existence of one-way functions and indistinguisha-
bility obfuscation. For every polynomial n, the scheme Πshort−ctext is an (n, d, `)-
private linear broadcast scheme for d = poly(λ) and 2` = Õ(n7) and satisfies:
TwoAdv[i∗] ≤ 1

200n3 .

Combining this theorem with Lemma 7 and Theorem 8 establishes Theorem 1
in the introduction.
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Setup(λ) :
Choose PRFsk ←R Fλ,sk
Choose PRFEnc ←R Fλ,Enc such that for every i ∈ [n], PRF−1

Enc(i) 6= ∅
For i = 1, . . . , n, let si = PRFsk (i).
Let O←R Obfuscate(PPRFsk ,PRFEnc).
Let each user’s secret key be sk i = (i, si,O)
Let the master key be mk = PRFEnc.

Enc(j,mk = PRFEnc) :
Let c be chosen uniformly from PRF−1

Enc(j).
Output c.

Dec(sk i = (i, si,O), c):
Output O(c, i, si).

PPRFsk ,PRFEnc(c, i, s) :
If PRG(s) 6= PRG(PRFsk (i)), halt and output ⊥.
Output I{i ≤ PRFEnc(c)}.

Fig. 5. Our scheme Πshort−ctext.

Parameters

First we verify that Πshort−ctext is an (n, d, `)-private linear broadcast scheme
for the desired parameters. Observe that the length of the secret keys is log(n)+
λ+ |O|. By the efficiency of the pseudorandom functions and the specification of
P, the running time of P is poly(λ+log(n)). Thus, by the efficiency of Obfuscate,
|O| = poly(λ+ log(n)). Therefore the total key length is poly(λ+ log(n)). Since
n is assumed to be a polynomial in λ, we have that the secret keys have length
d = poly(λ) as desired. By construction, the ciphertext is an element of [m].
Thus, since m = Õ(n7) the ciphertexts length ` satisfies 2` = Õ(n7) as desired.

6.2 Proof of Weak Index-Hiding Security

In light of Lemma 7, in order to prove that the scheme satisfies weak index-
hiding security, it suffices to show that for every sufficiently large λ ∈ N, and
every i∗ ∈ [n(λ)], P

TwoIndexHiding[i∗]
[b′ = b0 ⊕ b1]− 1

2 = o(1/n3).We will demon-

strate this using a series of hybrids to reduce security of the scheme in the
TwoIndexHiding game to input-matching security of the pseudorandom func-
tion family PRFλ,Enc.

Before we proceed with the argument, we remark a bit on how we will present
the hybrids. Note that the view of the adversary consists of the keys sk−i∗ .
Each of these keys is of the form (i, si,O) where O is an obfuscation of the
same program P. Thus, for brevity, we will discuss only how we modify the
construction of the program P and it will be understood that each user’s key
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will consist of an obfuscation of this modified program. We will also rely crucially
on the fact that, because the challenge ciphertexts depend only on the master
key mk , we can generate the challenge ciphertexts c0 and c1 can be generated
before the users’ secret keys sk1, . . . , skn. Thus, we will be justified when we
modify P in a manner that depends on the challenge ciphertexts and include an
obfuscation of this program in the users’ secret keys. We also remark that we
highlight the changes in the hybrids in green.

Breaking the decryption program for challenge index We use a series
of hybrids to ensure that the obfuscated program reveals no information about
the secret si∗ for the specified user i∗. First, we modify the program by hard-
coding the secret si∗ into the program. The obfuscated versions of P and P1 are

P1

PRF
{i∗}
sk

,PRFEnc,i
∗,x∗

(c, i, s) :

If i = i∗ and PRG(s) 6= x∗, halt and output ⊥.

If i 6= i∗ and PRG(s) 6= PRG(PRF
{i∗}
sk (i)), halt and output ⊥.

Output I{i ≤ PRFEnc(c)}.

Fig. 6. Modified program P1. i∗ and x∗ = PRG(PRFsk (i∗)) are hardcoded values.

indistinguishable because the input-output behavior of the programs are iden-
tical, thus the indistinguishability obfuscation guarantees that the obfuscations
of these programs are computationally indistinguishable.

Next we modify the setup procedure to give a uniformly random value for si∗ .
The new setup procedure is indistinguishable from the original setup procedure
by the pseudorandomness of si∗ = PRFsk (i∗). Finally, we modify the decryption
program to use a truly random value x∗ instead of x∗ = PRG(PRFsk (i∗)). The
new decryption program is indistinguishable from the original by pseudoran-
domness of PRG and PRFsk .

After making these modifications, with probability at least 1 − 2−λ/2, the
random value x∗ is not in the image of PRG. Thus, with probability at least
1 − 2−λ/2, the condition PRG(sk) = x∗ will be unsatisfiable. Therefore, we can
simply remove this test without changing the program on any inputs. Thus, the
obfuscation of P1 will be indistinguishable from the obfuscation of the following
program P2.

Breaking the decryption program for the challenge ciphertexts First
we modify the program so that the behavior on the challenge ciphertexts is
hardcoded and PRFEnc is punctured on the challenge ciphertexts. The new de-
cryption program is as follows. Note that the final line of the program is never
reached when the input satisfies c = c0 or c = c1, so puncturing PRFEnc at
these points does not affect the output of the program on any input. Thus, P3

is indistinguishable from P2 by the security of indistinguishability obfuscation.
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P2

PRF
{i∗}
sk

,PRFEnc,i
∗(c, i, s) :

If i = i∗ , halt and output ⊥.

If i 6= i∗ and PRG(s) 6= PRG(PRF
{i∗}
sk (i)), halt and output ⊥.

Output I{i ≤ PRFEnc(c)}.

Fig. 7. Modified program P2.

P3

PRF
{i∗}
sk

,PRF
{c0,c1}
Enc

,i∗,c0,b0,c1,b1
(c, i, s) :

If i = i∗ , halt and output ⊥.

If i 6= i∗ and PRG(s) 6= PRG(PRF
{i∗}
sk (i)), halt and output ⊥.

If c = c0, output I{i ≤ i∗ − b0}
If c = c1, output I{i ≤ i∗ − b1}

Output I{i ≤ PRF
{c0,c1}
Enc (c)}.

Fig. 8. Modified program P3. c0, b0, c1, b1 are hardcoded values.

Next, since, b0, b1 ∈ {0, 1}, and the decryption program halts immediately
if i = i∗, the values of b0, b1 do not affect the output of the program. Thus, we
can simply drop them from the description of the program without changing the
program on any input. So, by security of the indistinguishability obfuscation, P3

is indistinguishable from the following program P4.

P4

PRF
{i∗}
sk

,PRF
{c0,c1}
Enc

,i∗,c0,c1
(c, i, s) :

If i = i∗ , halt and output ⊥.

If i 6= i∗ and PRG(s) 6= PRG(PRF
{i∗}
sk (i)), halt and output ⊥.

If c = c0, output I{i ≤ i∗}
If c = c1, output I{i ≤ i∗}

Output I{i ≤ PRF
{c0,c1}
Enc (c)}.

Fig. 9. Modified program P4. c0, c1 are hardcoded values.

Reducing to Input-Matching Security Finally, we claim that if the ad-
versary is able to win at TwoIndexHiding then he can also win the game
InputMatching[i∗ − 1, i∗], which violates input-matching security of Fλ,Enc.

Recall that the challenge in the game InputMatching[i∗ − 1, i∗] consists of

a tuple (c0, c1,PRF
{c0,c1}) where PRFEnc is sampled subject to 1) PRFEnc(c0) =

i∗−b0 for a random b0 ∈ {0, 1}, 2) PRFEnc(c1) = i∗−b1 for a random b1 ∈ {0, 1},
and 3) PRF−1Enc(i) 6= ∅ for every i ∈ [n]. Given this input, we can precisely simulate
the view of the adversary in TwoIndexHiding[i∗]. To do so, we can choose
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PRFsk and give the keys sk−i∗ and obfuscations of P4

PRF
{i∗}
sk ,PRF

{c0,c1}
Enc ,i∗,c0,c1

to the

adversary. Then we can user c0, c1 as the challenge ciphertexts and obtain a bit
b′ from the adversary. By input-matching security, we have that P [b′ = b0 ⊕ b1]−
1
2 = o(1/n3).Since, as we argued above, the view of the adversary in this game
is indistinguishable from the view of the adversary in TwoIndexHiding[i∗],
we conclude that P

TwoIndexHiding[i∗]
[b′ = b0 ⊕ b1]− 1

2 = o(1/n3),as desired. This

completes the proof.

7 A Private Linear Broadcast Scheme with Very Short
Keys

In this section we construct a different private linear broadcast scheme for n users
where the parameters are essentially reversed—the length of the secret user keys
is O(log(n)) and the length of the ciphertexts is poly(λ). This scheme will be
used to establish our hardness result for differential privacy when the number of
queries is exponentially large but the data universe has only polynomial size.

7.1 Construction

Let n = poly(λ) denote the number of users for the scheme. Let m = Õ(n6) be
a parameter. Our construction will rely on the following primitives:

– A puncturable PRF family Fλ,sk = {PRFsk : [n]→ [m]}.
– A puncturable PRF family Fλ,Enc = {PRFEnc : [n]× [m]→ {0, 1}}.
– An iO scheme Obfuscate.

Theorem 14. Assuming the existence of one-way functions and indistinguisha-
bility obfuscation, for every polynomial n, the scheme Πshort−key is an (n, d, `)-

private linear broadcast scheme for 2d = Õ(n7) and ` = poly(λ), and is weakly
index-hiding secure.

Combining this theorem with Lemma 7 and Theorem 8 establishes Theorem 2
in the introduction.

Parameters

First we verify that Πshort−key is an (n, d, `)-private linear broadcast scheme for
the desired parameters. Observe that the length of the secret keys is d such
that 2d = nm. By construction, since m = Õ(n6), 2d = Õ(n7). The length
of the ciphertext is |O|, which is poly(|P|) by the efficiency of the obfuscation
scheme. By the efficiency of the pseudorandom function family and the pairwise
independent hash family, the running time of P is at most poly(λ+log(n)). Since
n is assumed to be a polynomial in λ, the ciphertexts have length poly(λ).
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Setup(λ) :
Choose a pseudorandom function PRFsk ←R Fλ,sk .
For i = 1, . . . , n, let si = PRFsk (i), and let each user’s secret key be sk i =

(i, si) ∈ [n]× [m].
Let the master key be mk = PRFsk .

Enc(j,mk = PRFsk ) :
Choose a pseudorandom function PRFEnc ←R Fλ,Enc.
Let O = Obfuscate(Pj,PRFsk ,PRFEnc)
Output c = O.

Dec(sk i = (i, si), c = O):
Output O(i, sk i).

Pj,PRFsk ,PRFEnc(i, s):
If s 6= PRFsk (i), output PRFEnc(i, s).
Else, output I{i ≤ j}.

Fig. 10. Our scheme Πshort−key

7.2 Proof of Weak Index-Hiding Security

Just as in Section 6, we will rely on Lemma 7 so that we only need to show that
for every λ ∈ N, and every i∗ ∈ [n(λ)],

P
TwoIndexHiding[i∗]

[b′ = b0 ⊕ b1]− 1

2
= o(1/n3).

We will demonstrate this using a series of hybrids to reduce security of the
scheme in the TwoIndexHiding game to the security of the pseudorandom
function families.

In our argument, recall that the adversary’s view consists of the keys sk−i∗

and the challenge ciphertexts c0, c1. In our proof, we will not modify how the
keys are generated, so we will present the hybrids only by how the challenge
ciphertexts are generated. Also, for simplicity, we will focus only on how c0 is
generated as a function of i∗, b0 and mk . The ciphertext c1 will be generated in
exactly the same way but as a function of i∗, b1 and mk . We also remark that
we highlight the changes in the hybrids in green.

Hiding the missing user key First we modify the encryption procedure to
one where PRFsk is punctured on i∗ and the value s∗ = PRFsk (i∗) is hardcoded
into the program.

We claim that, by the security of the iO scheme, the distribution of c0, c1
under Enc1 is computationally indistinguishable from the distribution of c0, c1
under Enc. The reason is that the obfuscation P and P1 compute the same
function. Consider two cases, depending on whether i = i∗ or i 6= i∗. If i 6= i∗,

23



Enc1(i∗, b0,mk = PRFsk ) :
Choose a pseudorandom function PRFEnc ←R Fλ,Enc.
Let s∗ = PRFsk (i∗), PRF

{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P1

i∗,b0,s∗,PRF
{i∗}
sk

,PRFEnc

)
.

Output c0 = O.

P1

i∗,b0,s∗,PRF
{i∗}
sk

,PRFEnc
(i, s):

If i = i∗

If s 6= s∗, output PRFEnc(i
∗, s)

If s = s∗, output 1− b0
Else If i 6= i∗

If s 6= PRF
{i∗}
sk (i), halt and output PRFEnc(i, s).

Output I{i ≤ i∗ − 1}.

Fig. 11. Hybrid (Enc1,P1).

since b0 ∈ {0, 1}, and i 6= i∗, replacing I{i ≤ i∗− b0} with I{i ≤ i∗− 1} does not

change the output. Moreover, since we only reach the branch involving PRF
{i∗}
sk

when i 6= i∗, the puncturing does not affect the output of the program. If i = i∗,
then the program either outputs PRFEnc(i

∗, s) as it did before when s 6= s∗ or it
outputs 1−b0: equivalent to I{i ≤ i∗−b0}. Thus, by iO, the obfuscated programs
are indistinguishable.

Next, we argue that, since PRF
{i∗}
sk is sampled from a puncturable pseudoran-

dom function family, and the adversary’s view consists of s−i∗ = {PRFsk (i)}i 6=i∗
but not PRFsk (i∗), the value of PRFsk (i∗) is computationally indistinguishable
to the adversary from a random value. Thus, we can move to another hybrid
(Enc2,P2) where the value s∗ is replaced with a uniformly random value s̃.

Hiding the challenge index Now we want to remove any explicit use of b0 from
P2. The natural way to try to do this is to remove the line where the program
outputs 1 − b0 when the input is (i∗, s̃), and instead have the program output
PRFEnc(i

∗, s̃). However, this would involve changing the program’s output on
one input, and indistinguishability obfuscation does not guarantee any security
in this case. We get around this problem in two steps. First, we note that the
value of PRFEnc on the point (i∗, s̃) is never needed in P2, so we can move to
a new procedure P3 where we puncture at that point without changing the
program functionality. Indistinguishability obfuscation guarantees that P2 and
P3 are computationally indistinguishable.

Next, we define another hybrid P4 where change how we sample PRFEnc

and sample it so that PRFEnc(i
∗, s̃) = 1 − b0. Observe that the hybrid only

depends on PRF
{(i∗,s̃)}
Enc . We claim the distributions of PRF

{(i∗,s̃)}
Enc when PRFEnc

is sampled correctly versus sampled conditioned on PRFEnc(i
∗, s̃) = 1 − b0 are
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Enc2(i∗, b0,mk = PRFsk ) :
Choose a pseudorandom function PRFEnc ←R Fλ,Enc.
PRF

{i∗}
sk = Puncture(PRFsk , i

∗), Let s̃←R [m].

Let O = Obfuscate

(
P2

i∗,b0,s̃,PRF
{i∗}
sk

,PRFEnc

)
.

Output c0 = O.

P2

i∗,b0,s̃,PRF
{i∗}
sk

,PRFEnc
(i, s):

If i = i∗

If s 6= s̃, output PRFEnc(i
∗, s)

If s = s̃, output 1− b0
Else If i 6= i∗

If s 6= PRF
{i∗}
sk (i), halt and output PRFEnc(i, s).

Output I{i ≤ i∗ − 1}.

Fig. 12. Hybrid (Enc2,P2).

Enc3(i∗, b0,mk = PRFsk ) :
Let s̃←R [m].

Choose a pseudorandom function PRFEnc ←R Fλ,Enc
PRF

{(i∗,s̃)}
Enc = PuncturePRFEnc, (i

∗, s̃).

PRF
{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P3

i∗,b0,s̃,PRF
{i∗}
sk

,PRF
{(i∗,s̃)}
Enc

)
.

Output c0 = O.

P3

i∗,b0,s̃,PRF
{i∗}
sk

,PRF
{(i∗,s̃)}
Enc

(i, s):

If i = i∗

If s 6= s̃, output PRF
{(i∗,s̃)}
Enc (i∗, s)

If s = s̃, output 1− b0
Else If i 6= i∗

If s 6= PRF
{i∗}
sk (i), halt and output PRF

{(i∗,s̃)}
Enc (i, s).

Output I{i ≤ i∗ − 1}.

Fig. 13. Hybrid (Enc3,P3).

computationally indistinguishable. This follows readily from punctured PRF se-
curity. Suppose to the contrary that the two distributions were distinguishable
with non-negligible advantage δ by adversary A. Then consider a punctured

PRF adversary B that is given PRF
{(i∗,s̃)}
Enc , b where b is chosen at random, or

b = PRFEnc(i
∗, s̃). B distinguishes the two cases as follows. If b 6= 1− b0, then B

outputs a random bit and stops. Otherwise, it runs A on PRF
{(i∗,s̃)}
Enc , and outputs
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whatever A outputs. If b is truly random and independent of PRFEnc, then condi-
tioned on b = 1− b0, PRFEnc is sampled randomly. However, if b = PRFEnc(i

∗, s̃),
then conditioned on b = 1−b0, PRFEnc is sampled such that PRFEnc(i

∗, s̃) = 1−b0.
These are exactly the two cases that A distinguishes. Hence, conditioned on
b = 1− b0, B guesses correctly with probability 1

2 + δ. Moreover, by PRF secu-
rity, b = 1−b0 with probability ≥ 1

2−ε for some negligible quantity ε, and in the
case b 6= 1 − b0, B guess correctly with probability 1

2 . Hence, overall B guesses

correctly with probability ≥ 1
2 ( 1

2 + ε) + ( 1
2 + δ)( 1

2 − ε) = 1
2 + δ

2 − εδ. Hence, B

has non-negligible advantage δ
2 − εδ. Thus, changing how PRFEnc is sampled is

computationally undetectable, and P is otherwise unchanged. Therefore P3 and
P4 are computationally indistinguishable.

Enc4(i∗, b0,mk = PRFsk ) :
Let s̃←R [m].
Choose a pseudorandom function PRFEnc ←R Fλ,Enc conditioned on

PRFEnc(i
∗, s̃) = 1− b0.

PRF
{(i∗,s̃)}
Enc = PuncturePRFEnc, (i

∗, s̃).

PRF
{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P4

i∗,b0,s̃,PRF
{i∗}
sk

,PRF
{(i∗,s̃)}
Enc

)
.

Output c0 = O.

P4

i∗,b0,s̃,PRF
{i∗}
sk

,PRF
{(i∗,s̃)}
Enc

(i, s):

If i = i∗

If s 6= s̃, output PRF
{(i∗,s̃)}
Enc (i∗, s)

If s = s̃, output 1− b0
Else If i 6= i∗

If s 6= PRF
{i∗}
sk (i), halt and output PRF

{(i∗,s̃)}
Enc (i, s).

Output I{i ≤ i∗ − 1}.

Fig. 14. Hybrid (Enc4,P4).

Next, since PRFEnc(i
∗, s̃) = 1− b0, we can move to another hybrid P5 where

we delete the line “If s = s̃, output 1 − b0” without changing the functional-
ity. Thus, by indistinguishability obfuscation, P4 and P5 are computationally
indistinguishable.

Now notice that P5 is independent of b0. However, Enc5 still depends on
b0. We now move to the final hybrid P6 where we remove the condition that
PRFEnc(i

∗, s̃) = 1− b0, which will completely remove the dependence on b0.
To prove that Enc6 is indistinguishable from Enc5, notice that they are inde-

pendent of s̃, except through the sampling of PRFEnc. Using this, and the follow-
ing lemma, we argue that we can remove the condition that PRFEnc(i

∗, s̃) = 1−b0.
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Enc5(i∗, b0,mk = PRFsk ) :
Let s̃←R [m].
Choose a pseudorandom function PRFEnc ←R Fλ,Enc such that PRFEnc(i

∗, s̃) =
1− b0

PRF
{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P5

i∗,PRF{i
∗}

sk
,PRFEnc

)
.

Output c0 = O.

P5

i∗,PRF{i
∗}

sk
,PRFEnc

(i, s):

If i = i∗

Output PRFEnc(i
∗, s)

Else If i 6= i∗

If s 6= PRF
{i∗}
sk (i), halt and output PRFEnc(i, s).

Output I{i ≤ i∗ − 1}.

Fig. 15. Hybrid (Enc5,P5).

Enc6(i∗,mk = PRFsk ) :
Choose a pseudorandom function PRFEnc ←R Fλ,Enc
PRF

{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P6

i∗,PRF{i
∗}

sk
,PRFEnc

)
.

Output c0 = O.

P6

i∗,PRF{i
∗}

sk
,PRFEnc

(i, s):

If i = i∗

Output PRFEnc(i
∗, s)

Else If i 6= i∗

If s 6= PRF
{i∗}
sk (i), halt and output PRFEnc(i, s).

Output I{i ≤ i∗ − 1}.

Fig. 16. Hybrid (Enc6,P6).

Lemma 15. Let H = {h : [T ]→ [K]} be a δ-almost pairwise independent hash
family. Let y ∈ [K] and M ⊆ [T ] of size m be arbitrary. Define the following two
distributions.

– D1: Choose h←R H.

– D2: Choose a random x ∈M , and then choose h←R (H | h(x) = y).

Then D1 and D2 are ( 1
2

√
K/m+ 7K2δ)-close in statistical distance.
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We defer the proof to the full version. The natural way to try to show that
(Enc6,P6) is o(1/n3) statistically close to (Enc5,P5) is to apply this lemma to
the hash family H = Fλ,Enc. Recall that a pseudorandom function family is also
negl(λ)-pairwise independent. Here, the parameters would be [T ] = [n] × [m],
M = {(i∗, s) | s ∈ [m]} and b = 1− b0, and the random choice x ∈M is the pair
(i∗, s̃).

However, recall that the adversary not only sees c0 = Enc5(i∗, b0,mk), but
also sees c1 = Enc5(i∗, b1,mk), and these share the same s̃. Hence, we cannot
directly invoke Lemma 15 on the PRFEnc,0 sampled in c0, since s̃ is also used to
sample PRFEnc,1 when sampling c1, and is therefore not guaranteed to be random
given c1.

Instead, we actually consider the function familyH = F2
λ,Enc, where we define

h(i, s) = (PRFEnc,0,PRFEnc,1)(i, s) = (PRFEnc,0(i, s),PRFEnc,1(i, s)).

In Enc5, h is drawn at random conditioned on h(i∗, s̃) = (1− b0, 1− b1), whereas
in Enc6, it is drawn at random.
H is still a pseudorandom function family, so it must be negl(λ)-almost pair-

wise independent with δ negligible. In particular, δ = o(1/m). Hence, the con-
ditions of Lemma 15 are satisfied with K = 4. Since the description of P5,P6 is

the tuple (i∗, s̃,PRF
{i∗}
sk ,PRFEnc,0,PRFEnc,1), and by Lemma 15 the distribution

on these tuples differs by at most O(
√

1/m) in statistical distance, we also have

that the distribution on obfuscations of P5,P6 differs by at most O(
√

1/m).

Finally, we can choose a value of m = Õ(n6) so that O(
√

1/m) = o(1/n3).
Observe that when we generate user keys sk−i∗ and the challenge cipher-

texts according to (Enc6,P6), the distribution of the adversary’s view is com-
pletely independent of the random values b0, b1. Thus no adversary can output
b′ = b0⊕b1 with probability greater than 1/2. Since the distribution of these chal-
lenge ciphertexts is o(1/n3)-computationally indistinguishable from the original
distribution on challenge ciphertexts, we have that for every efficient adversary,

P
TwoIndexHiding[i∗]

[b′ = b0 ⊕ b1]− 1

2
= o(1/n3),

as desired. This completes the proof.
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