Standard Security Does Not Imply
Indistinguishability Under Selective Opening

Dennis Hofheinz, Vanishree Rao, and Daniel Wichs

! Karlsruhe Institute of Technology, Germany
2 PARC, a Xerox Company, USA
3 Princeton University, USA

Abstract. In a selective opening attack (SOA) on an encryption scheme,
the adversary is given a collection of ciphertexts and she selectively
chooses to see some subset of them “opened”, meaning that the mes-
sages and the encryption randomness are revealed to her. A scheme is
SOA secure if the data contained in the unopened ciphertexts remains
hidden. A fundamental question is whether every CPA secure scheme is
necessarily also SOA secure. The work of Bellare et al. (EUROCRYPT
'12) gives a partial negative answer by showing that some CPA secure
schemes do not satisfy a simulation-based definition of SOA security
called SIM-SOA. However, until now, it remained possible that every
CPA-secure scheme satisfies an indistinguishability-based definition of
SOA security called IND-SOA.

In this work, we resolve the above question in the negative and con-
struct a highly contrived encryption scheme which is CPA (and even
CCA) secure but is not IND-SOA secure. In fact, it is broken in a very
obvious sense by a selective opening attack as follows. A random value
is secret-shared via Shamir’s scheme so that any ¢ out of n shares reveal
no information about the shared value. The n shares are individually en-
crypted under a common public key and the n resulting ciphertexts are
given to the adversary who selectively chooses to see t of the ciphertexts
opened. Counter-intuitively, by the specific properties of our encryption
scheme, this suffices for the adversary to completely recover the shared
value. Our contrived scheme relies on strong assumptions: public-coin
differing inputs obfuscation and a certain type of correlation intractable
hash functions.

We also extend our negative result to the setting of SOA attacks with
key opening (IND-SOA-K) where the adversary is given a collection of
ciphertexts under different public keys and selectively chooses to see some
subset of the secret keys.

1 Introduction

When it comes to defining the security of encryption schemes, the standard
definitions of chosen-plaintext attack (CPA) and chosen-ciphertext attack (CCA)
security are generally thought of as the gold standard. Nevertheless, there are
scenarios in which these notions do not appear to provide sufficient guarantees.
One such scenario is that of selective opening attacks (SOA) [? 7].

Selective Opening Attacks. In a selective opening attack, the adversary gets
a collection of n ciphertexts (c; = Encyr(mi;7;))ie[n) encrypting messages m;
with randomness r; under a common public key pk. The adversary can adaptively
choose to see some subset Z C [n] of the ciphertexts “opened”, meaning that she
gets (m;,7;);ez. For example, this could model a scenario where these ciphertexts
are created by different senders and the adversary adaptively corrupts some
subset of them. Intuitively, a scheme is SOA secure if the data contained in
the unopened ciphertexts remains hidden. Formalizing this notion requires great
care, and several definitions have been proposed.

Simulation-Based SOA Security. Perhaps the strongest notion of SOA secu-
rity is a simulation-based definition, which we denote SIM-SOA. It was originally
proposed for commitments by Dwork et al. [? | and later adapted to encryption
by Bellare et al. [? |. This definition requires that for any n-tuple of messages
m = (mq,...,my,) the view of the adversary in the above SOA scenario is in-
distinguishable from a simulated view created as follows: the simulator selects
a message subset I, obtains (m;);cr, and is then supposed to output a view of
a selective opening attack with ciphertexts, random coins, and an adversary as
above. At when constructing the simulator in a black-box fashion out of a given
adversary, this means that the simulator must initially creates a collection of
simulated ciphertexts ¢ = (cy, .. ., ¢,) without knowing anything about the mes-
sages. The adversary then gets ¢ and specifies a subset Z C [n] of the ciphertexts
to be opened. At this point, the simulator learns the messages (m;);ez and has
to produce simulated openings (m;, r;);ez to give to the adversary.

On the positive side, this definition is easy to use in applications and clearly
captures the intuitive goal of SOA security, since the adversary’s view can be
simulated without using any knowledge of the unopened messages. Moreover,
we have constructions that achieve SIM-SOA security from a wide variety of

On the negative side, this definition might be overkill in many applications
and therefore also unnecessarily hard to achieve. The work of Bellare et al. [?
| shows that many natural encryption schemes are not SIM-SOA secure, in the
sense that there is no efficient simulator that would satisfy the given definition.
The lack of a simulator already constitutes an attack on SIM-SOA security in
the formal sense. However, these schemes are also not “obviously broken” by a
selective opening attack in the intuitive sense. In particular, it is not clear how
to, e.g., extract an unopened plaintext in a selective opening attack. At the very
least, it remains unclear what exactly can go wrong when using such schemes in
the context of the SOA scenario described above.

Indistinguishability-Based SOA Security. The work of Bellare et al. [?]
also proposes an indistinguishability-based security definition, which we denote
IND-SOA. The definition requires that we have an “efficiently re-samplable”
distribution on n-tuples of messages m = (myq,..., m,) such that for any set
T C [n] we can efficiently sample from the correct conditional distribution with
a fixed choice of (m;);cz. For any such distribution we consider the SOA scenario
where the adversary initially gets encryptions of the messages m = (my, ..., my)

chosen from the distribution, and selectively gets to see an opening of a sub-
set Z of the ciphertext. At the end of the game the adversary either gets the
initially encrypted message vector m or a freshly re-sampled message vector
m’ = (m},...,m}) conditioned on m/; = m; matching in the opened positions
1 € Z. The adversary should not be able to distinguish these two cases.

On the negative side, the definition of IND-SOA security is more complex and
its implications are harder to interpret. However, it can already provide sufficient
security guarantees in many interesting applications and might be significantly
easier to achieve than SIM-SOA security. Prior to this work, we did not know
whether it is the case that every CPA secure encryption scheme is also IND-
SOA secure. The work of Hofheinz and Rupp [?] shows that, if one considers a
definition that combines IND-SOA security with CCA security, denoted by IND-
SO-CCA, then there are schemes that are CCA secure but are not IND-SO-CCA
secure. However, this result crucially relies on the embedding of an attack in the
decryption oracle, and does not appear to extend to the standard IND-SOA.
In fact, the same work of [?] gave a partial positive result showing that CPA
security implies IND-SOA security for a large class of encryption schemes in a
generic group model, but it was unclear what the situation is in the standard
model.

More related work. The relations between different definitions of SOA secu-
rity have also been investigated by Bohl et al. [?]. It turns out that the notion
of IND-SOA security we consider is the weakest known notion of SOA security
among the ones studied (and that the “efficient resamplability” condition is es-
sential for this property). Hazay et al. [? | recently studied SOA for keys (where
the adversary receives secret keys of corresponding chosen subset of ciphertexts)
and showed that the indistinguishability-based security is strictly weaker than
the simulation-based counterpart. Furthermore, there exist several efficient con-
structions of IND-SOA secure encryption schemes that are mot known to be
SIM-SOA secure. Most prominently, every lossy encryption scheme is IND-SOA
secure [? |, which opens the door for efficient IND-SOA secure schemes from var-
ious computational assumptions [? ? 7]. In that sense, the notion of IND-SOA
we consider is very attractive from a practical point of view. In an orthogonal
direction, Fuchsbauer et al. [?], recently showed that standard security implies
IND-SOA for certain specific graph-induced distributions; it is interesting to
note that, while we used dependencies of messages to show our negative result,
[?] used the lack of dependencies to show a positive result.

Secret Sharing: A Concrete SOA Scenario. At this point, an intuitive
definition of SOA security might appear elusive, with strong definitions like
SIM-SOA that could be overkill and weaker definitions like IND-SOA that are
hard to interpret. Instead of trying to pin down a general notion of SOA security,
we will focus on defining a concrete and easy to understand security goal, which
any reasonable definition of SOA security should satisfy. We call this goal secret-
sharing selective-opening attack (SecShare-SOA) security, and define it via the
following game.

The challenger chooses a random polynomial F of degree < ¢ and sets m; =
F(i) for i € [n]. We can think of this as a Shamir secret sharing of a random
value F'(0) where any ¢ of the n shares preserve privacy. The adversary is given
encryptions of the shares (c; = Encpr(m4;7:))ic)n) and can selectively choose to
get openings (m;,r;);cz for a subset Z of the ciphertexts where |Z| = t. The
adversary should not be able to predict F(0).

It is easy to show that SecShare-SOA security is implied by IND-SOA (and

therefore also SIM-SOA) security. At first thought, it may seem that SecShare-
SOA security should also follow from standard CPA security. However, upon
some reflection, it becomes clear that natural reductions fail. In particular, there
is no easy way to embed the challenge ciphertext ¢* into a correctly distributed
vector (c;)ie[n; While maintaining the ability to provide openings for a large
subset of the ciphertexts.
Our Results. In this work, we construct a contrived encryption scheme which
is CPA (and even CCA) secure, but is not SecShare-SOA secure (and therefore
also not IND-SOA secure). In particular, we have an attack against the SecShare-
SOA security of the scheme where the attacker always recovers the shared secret
with probability 1. This is the first example of a CPA secure scheme which is
obviously broken in the SOA setting. As a corollary, this shows that not every
CPA secure scheme is IND-SOA secure.

We also extend our results to selective opening attacks on receiver keys (IND-
SOA-K), also known as selective opening under receiver corruption. In this set-
ting, the adversary is given a collection of ciphertexts under different public keys
and he can selectively chose to see some subset of the secret keys. We give an
analogous example of a scheme which is CCA secure but is not IND-SOA-K
secure.

Our results rely on strong assumptions: public-coin differing inputs obfusca-
tion [?] and a certain type of correlation-intractable hash functions [? |.

1.1 Our Techniques

We construct a scheme which is CCA secure but for which there is an attack
on the SecShare-SOA security. For concreteness, we will show an attack on the
SecShare-SOA game using a secret sharing scheme with parameters ¢t = k (degree
of polynomial) and n = 3k (number of shares) where k is the security parameter.

An SOA Helper Oracle. As our starting point, we consider the construction
of Hofheinz and Rupp [?] which gives a CCA secure scheme that is not IND-
SO-CCA secure. Their construction starts with any CCA secure scheme and, as
an implicit first step, defines a (stateful and interactive) “SOA helper oracle”
that has knowledge of the secret key sk of the scheme. The way that the oracle
is defined ensures that the scheme remains CCA secure but is not SecShare-SOA
secure relative to this oracle. They then show how to embed this oracle into the
decryption procedure of the scheme to get a scheme which is not IND-SO-CCA
secure.

The SOA helper oracle gets as input ciphertexts (c;);e[sr) and it randomly
chooses a subset Z C [3k] of size |Z| = k of them to open. It then receives the

openings (m;,r;);ez and decrypts the remaining ciphertexts using knowledge
of sk. It checks that there is a (unique) degree < k polynomial F' such that
F(i) = m,; for > 2k of the indices i € [3k] and that this polynomial also satisfies
F (i) = m, for all of the indices ¢ € Z. If so, it outputs F'(0) and else L.

It is easy to see that this oracle breaks SecShare-SOA security. The harder
part is showing that the scheme remains CPA/CCA secure relative to the oracle.
In particular, we want to show that this oracle will not help the adversary decrypt
some challenge ciphertext ¢*. We do so by defining an “innocuous SOA helper
oracle” that functions the same way as the real SOA helper oracle but it never
decrypts c*. Instead, it just pretends that the decryption of ¢* is L. The only time
that innocuous SOA helper and the real SOA helper give a different answer is
when the ciphertexts (c;);c[sr) encrypt messages (m;) such that there is a unique
degree < k polynomial F' with F'(i) = m; for exactly 2k+1 of the indices i € [3k],
and this polynomial satisfies F/(i) = m; for all ¢ € Z. Only in this case, there
is a possibility that the SOA helper correctly outputs F while the innocuous
SOA helper outputs 1 when the decryption of ¢* is replaced by 1. However,
since the set Z C [3k] of size |Z| = k is chosen randomly and independently of
(¢;), the probability that it is fully contained in the set of 2k 4+ 1 indices for
which F(i) = m; is negligible. Therefore, the SOA helper and the innocuous
SOA helper give the same answer with all but negligible probability, meaning
that the former cannot break CCA security.

Obfuscating the SOA Helper. Our main idea is that, instead of embedding
the SOA helper in the secret-key decryption procedure, we obfuscate the SOA
helper and include the obfuscated code in the public key of the scheme. (We note
that a similar technique of “obfuscating a helper oracle that aids an attacker”
has been used in the key-dependent message setting [? ? |.) There are two main
difficulties that we must take care of.

The first difficulty is that the SOA helper is stateful/interactive whereas we
can only obfuscate a stateless program. We squash the interactive helper into
a non-interactive one by choosing the set of indices Z C [3k],|Z| = k via a
hash function h applied to the ciphertexts (c;)iesx)- One can think of this as
an analogue of the Fiat-Shamir heuristic which is used to squash a 3 move X-
protocol into a non-interactive argument. (We stress, however, that we do not
rely on random oracles, as in the Fiat-Shamir heuristic. Instead, we use a suitable
standard-model hash function.) The squashed SOA helper now expects to get
the ciphertexts (c;);c[sr) and the opening (m;,;)ier where T = h((c;)ie3r]) in
one shot. Previously, we used the fact that the set Z is random to argue that
the SOA helper and the innocuous SOA helper are indistinguishable. We now
instead rely on correlation intractability [? | of the hash function h to argue that
it is hard to find an input on which the two oracles would give a different answer
(even given the entire code and secrets of the oracles).

The second difficulty is how to use reasonable notions of obfuscation to argue
that the obfuscated SOA helper, which contains the decryption key inside it, does
not break CPA /CCA security. We rely on public-coin differing inputs obfuscation
(PdiO) [?]. This security notion says that, given two programs represented as

circuits C, C’, together with all the random coins used to sample them, if it is
hard to find an input « such that C(x) # C’(x) then the obfuscations of C' and C’
are indistinguishable. We can rely on public-coin differing-inputs obfuscation and
the correlation intractability of h to replace the obfuscated SOA oracle with an
obfuscated “innocuous SOA oracle” that never decrypts the challenge ciphertext
c*. However, even the latter oracle still has the secret key sk hard-coded and
therefore it is not clear if an obfuscated version of the innocuous oracle remains
innocuous. To solve this problem, we will need the underlying CCA encryption
scheme to be “puncturable” meaning that we can create a punctured secret key
sk[c*] which correctly decrypts all ciphertexts other than ¢* but preserves the
semantic security of ¢*. Such encryption schemes were constructed in the work
of [?] from indistinguishability obfuscation. With this approach we can argue
that security of the challenge ciphertext c¢* is preserved.

Discussion on our Assumptions. We recall that two of the main assumptions
behind our results are public-coin differing inputs obfuscation and correlation-
intractable hash functions.

The notion of public-coin differing inputs obfuscation (PdiO) is stronger than
indistinguishability obfuscation (i0) but weaker than differing-inputs obfusca-
tion (diO)[? |. There is some evidence that diO is unachievable in its full gener-
ality [? 7], but no such evidence exists for PdiO. Indeed, at present we do not
have much more evidence for the existence of iO than we do for PdiO. We note
that if PdiO exists, then by the “best-possible” nature of iO, any iO obfuscator
(with sufficient padding) is already also a PdiO obfuscator as well. All that said,
we view it as an intriguing open problem to base our results on iO rather than
PdiO.

The correlation intractability assumption that we need is in a parameter
regime with no known counter-examples and has been conjectured to be achiev-
able. As evidence, a recent work [?] constructs such correlation-intractable hash
functions under obfuscation-based assumptions. However, the description of the
hash functions is not public-coin samplable, whereas we need a hash function
that is. We simply conjecture that standard hash function constructions such as
SHA-3 achieve this property. We note that the notion of correlation intractabil-
ity that we need is also a special case of entropy-preserving hashing [? ?] which
is sufficient to guarantee the soundness of the Fiat-Shamir heuristic for all proof
(but not argument) systems and has been conjectured to exist.

On this note, an interesting direction for future work is to re-establish the
results based on weaker assumptions.

2 Preliminaries

General Notation. For n € N we define [n] := {1,...,n}. Throughout the
paper, k € N denotes the security parameter. For any function g¢(-), we let
g(k) = negl(k) denote that g(-) is a negligible function. For any two distributions
Dy, Dy parameterized by k, we denote that they are computationally (resp.,

statistically) indistinguishable by Dy . D; (resp., Dy =5 D1); we denote that
they are identical by Dy = D;.

Interpolation, Error Decoding. Let I be the finite field. For pairwise differ-
ent X; € F we let ipol((Xj, Yi)icx+1)) denote the unique degree < k polynomial
F € F[X] with F(X;) = Y; for all i € [k + 1]. We note that ipol can be effi-
ciently computed, e.g., via Lagrange interpolation. Also, let decc (X5, Yi)icn])
denote the the unique degree < k polynomial F' € F[X] such that F(X;) = Y;
for > n — (n — k)/2 of the indices ¢ € [n], or L if no such polynomial exists.
Evaluating decc amounts to performing error correction for the Reed-Solomon
code with distance d = (n — k) when there are < d/2 errors, which can be done
efficiently. Let Ség denote the set of all ¢-sized subsets of S.

PKE schemes. A public-key encryption (PKE) scheme PKE with message
space M (parameterized by the security parameter k) consists of three PPT
algorithms Gen, Enc, Dec. Key generation Gen(1*) outputs a public key pk and
a secret key sk. Encryption Enc(pk,m) takes pk and a message m € M, and
outputs a ciphertext c¢. Decryption Dec(sk,c) takes sk and a ciphertext ¢, and
outputs a message m. For correctness, we want Dec(sk,c) = m for all m € M,
all (pk, sk) < Gen(1*), and all ¢ +— Enc(pk, m).

CCA Security. We recall the standard definition of IND-CCA security from
the literature.

Definition 1 (IND-CCA security.). We say that a scheme PKE is IND-CCA
secure if for all PPT attackers A the advantage

A0 =

ind-cca 1
Pr [EXPPEE,A(k) = 1} - 2‘

1s negligible in the security parameter k, where the experiment ExpE‘ﬂ'Echa is defined

in and Dec« (sk,-) is an oracle that outputs Dec(sk,c) for every input
c#c* and L for input c*.

IND-SOA Security. We now recall the definition of indistinguishability-based
SOA security from [?]. By default, we will consider the weakest variant where
the adversary specifies an efficiently re-samplable distribution.

Definition 2 (Efficiently re-samplable). Let n = n(k) > 0, and let D be a
joint distribution over M™. We say that D is efficiently re-samplable if there is a
PPT algorithm msampp such that for any T C [n] and any partial vector m’ :=
(m})ier € M7 msampp(mY) samples from D | mly, i.e., from the distribution
m < D, conditioned on m; = m), for alli € I. Note that in particular, msampp()
samples from D.

Definition 3 (IND-SOA Security). For a PKE scheme PKE = (Gen, Enc,
Dec), a polynomially bounded function n = n(k) > 0, and a stateful PPT ad-
versary A, consider the experiment in [Figure 1. We only allow A that always

Experiment Expip",c(",ff’j
b+ {0,1}
Experiment Expi,?ﬂ'Ec’cj (pk, sk) «+ Gen(1%)

b+ {0,1} msampp(-) < A(pk)
(pk, sk) « Gen(1%) my := (Mi)ie[n) < Msampp ()
(mo, m1) + AP=<R) (pE) R := (Ri)icpn) ¢ (Renc)”
¢* < Enc(pk, my) ¢ := (Ci)iem) := (Enc(pk, mi; R:))icn)
out g + AP=eer () (%) T + A(pk,c)
return 1 if out4 = b, and 0 otherwise m; < msampp (mz)

outa < A((Ri)iez, mp)

return 1 if outa = b, and 0 otherwise

Fig.1: IND-CCA and IND-SOA experiments.

output re-sampling algorithms as in[Definition 4 We call PKE IND-SOA secure
if for all polynomials n and all PPT A, we have

: - 1
AV (k) = ‘Pr [Expg‘gggf;(k) = 1} - 2’ = negl(k).

Public-Coin Differing-Inputs Obfuscation. In this paper, we require a
strengthening [? 7] of the notion of indistinguishability obfuscation [? ?].
We shall first define the notion of a public-coin differing-inputs sampler.

Definition 4 (Public-Coin Differing-Inputs Sampler). A (circuit) sam-
pling algorithm csamp s an algorithm that takes as input random coins r €
{0,1Y5) for a suitable polynomial £ = €(k), and outputs the description of two
circuits Cy and Cy. We call csamp a public-coin differing-inputs sampler for the
parameterized collection of circuits C = {Cy} if the output of csamp is distributed
over C X Ci, and for every PPT adversary A, we have

1?}“[00(30) # C1(x) : (Co, Cy) + csamp(1%;7), 2 « A(1%,7)] = negl(k).

Observe that the sampler and the attacker both receive the same random
coins as input. Therefore, csamp cannot keep any “secret” from A. We now
define the notion of a public-coin differing-inputs obfuscator.

Definition 5 (Public-Coin Differing-Inputs Obfuscator). A uniform PPT
algorithm PdiO is a public-coin differing-inputs obfuscator for the parameterized
collection of circuits C = {Cy} if the following requirements hold:

Correctness: Yk, VC € Cy,, YV, it is Pr[C’(z) = C(z) : C' +- PdiO(1¥,C)] = 1.

Security: for every public-coin differing-inputs sampler csamp for the collection
C, every PPT (distinguishing) algorithm D, we have

pdio o
AdVPdiO,D =

| Pr[D(1%,7,C") = 1: (Cy, C1) + csamp(1¥;7),C" « PdiO(1*, C)]—
Pr[D(1%,7,C") = 1: (Cy, C1) + csamp(1¥;7), C’ + PdiO(1%, C1)]|
= negl(k)

Correlation-intractable hash functions. We begin by reviewing the defini-
tion of correlation-intractable hash function from [?].

Definition 6 (Hash Function Ensembles). A family of functions H = {hs :
Dy — Ri}ren sefo,13e with domain Dy, range Ry, and seed length ((k) is said
to be an efficient hash function ensemble, if there exists a PPT algorithm that
given x € Dy, and s, outputs hs(x).

In the sequel, we shall simply denote this computation by h4(z). Furthermore,
we shall often call s the description or the seed of the function hg.

Definition 7 (Binary Relations). A class of efficient binary relations con-
sists of REL = {Rel, C (DkvRk)}keN,re{o,l}W’m where membership in Rel,. is
testable in polynomial time given r.

The relation REL is said to be evasive if for any r € {0, 1}5/(@,1‘ € Dy we
have:

Pr [(z,y) € Rel,] = negl(k).
y< Ry

Definition 8 (Correlation Intractability). Assume an efficient hash func-
tion ensemble H = {hs : Dy — Ri}pensefoyem - Furthermore, let REL =
{Rel, C (Dk7Rk‘)}k€N,re{0,1}£'(’“> be a class of efficient binary relations. We say
that H is correlation intractable with respect to REL if for every PPT A,

7hs € Rel, : +— A s = negl(k
(0.1 e (0.1} [(z,hs(z)) € Rel, @ @ (s,7)] = negl(k)

The work of [?] showed that no hash function ensemble is correlation-
intracta- ble with respect to all evasive binary relations REL. However, for any
fixed domains/ranges Dy, Ry, it is plausible that there is a correlation-intractable
hash function H for all evasive relations over Dy, Ry as long as the seed length
£(k) of the hash function is made sufficiently large relative to Dy, Rj. This would
be sufficient for our needs. For concreteness, we define a specific class of relations
REL for which we need correlation intractability.

Definition 9 (Special Class of Evasive Binary Relations). Let PKE =
(Gen, Enc,Dec) be a PKE scheme with plaintext space F (a field), ciphertext
space C (parametrized by the security parameter k), and which uses ¢'(k) bits
of randomness in key-generation. We define a special class of binary relations

RELPKE _ {Rel, C (Cgk,S][Cgk])}keNme{(],l}"(k)’ as follows.

— To determine if ((¢;)iesk),Z) € Rel.: Let (pk,sk) = Gen(1%;r), m; =
Dec(sk,c;), F' = deccy((i,mi)iczr) and Q = {i € [3k] : F(i) = m;}. The
tuple is in the relation if F # 1, |Q| =2k + 1 and T C Q.

Intuitively, the above says that a tuple ((c;)icjsr),Z) € Rel, if the decrypted
messages (1;);e[3r] agree with the evaluations of a degree < k polynomial F' in
exactly 2k 4+ 1 positions and the set Z only contains these positions. It is easy to
see that this is an evasive relation as shown below (following [? , Lemma 3.3]).

Lemma 1. The relation RELTXE is evasive. In particular, for anyr € {0, 1}4,(’“)
any (¢;)icisn € C3* we have Prﬂ_sl[cak] [((ci)iesh], Z) € Rel,] = negl(k).

Proof. Let (pk, sk) = Gen(1%;r), m; = Dec(sk,c;), F = deccy,((i,m;);e3x)) and
Q={i€3k]: F(i) =m;}. If F = 1 or |Q| # 2k + 1 then the probability in the
lemma is 0. Otherwise

, _ _
I(_I?S.Egk] [((Cz)ie[Sk],I) € Relr] - I(—ir,[f’k] [I < Q] - (Bkk)

£
T+
Al
SN—

IN
7N
[N 3
~__
ES

for all k£ > 2, which proves the lemma.

Special Correlation-intractable Hash Functions. Let RELTKE be a special
class of binary relations for PKE scheme PKE, like in [Definition 9] We define spe-
cial correlation-intractable hash functions H = {h, : C3F — S/LSk]}keN,se{OJ}ﬂ(k)
as a function ensemble that is correlation intractable with respect to the relation
RELVKE. We reiterate that this is a special case of correlation intractability with
respect to all evasive relations, which is conjectured to be possible as long as the
seed length ¢(k) of the hash function is made sufficiently large relative to the
domain/range. In our case, we allow ¢(k) to be an arbitrarily large polynomial.

2.1 Puncturable encryption schemes

We will rely on the notion of puncturable encryption from [? |. Let PKE =
(Gen, Enc, Dec, Puncture) be a tuple of PPT algorithms. PKE is said to be a
puncturable encryption scheme, if the following holds.

Syntax. (Gen, Enc,Dec) is a PKE scheme with message space M = { My }ren
and ciphertext space C = {Cj} which are efficiently sampleable.

Correctness For all m € M it holds that Pr[Dec(sk,c) = m : (pk,sk) «
Gen(1%), ¢ < Enc(pk,m)] = 1.

Puncturability. V (pk, sk) in the support of Gen(1¥), V ¢y, ¢1 € C, V sk[{co, c1}]
in the support of Puncture(sk,{co,c1}), and V ¢ ¢ {cg,c1}, it holds that:
Dec(sk[{co,c1}],¢) = Dec(sk, c).

Security. For every PPT adversary A,

punc-ind-cca o
Advpie 4 (k)=

; 1
P [z () = 1] - 5 = negih

punc-ind-cca

where the experiment Exppyg 4 (k) is defined in Figure

Ciphertext sparseness. V (pk, sk) we have
Pr [Dec(sk, c) # L] = negl(k),
where the probability is over ¢ <— Cpy.

Note that the puncturing algorithm Puncture takes as input a set of two
ciphertexts, so that the distribution of Puncture(sk, {cg, c1}) is identical to that
of Puncture(sk, {c1,co}).

3 Secret-sharing Selective Opening Attack
(SecShare-SOA)

We now define a special case of IND-SOA security that we call SecShare-SOA.
It corresponds to the case where the encrypted values are shares in a t-out-of-n
secret sharing scheme.

Secret-sharing Message Distribution. Let F be a field of cardinality p. We
consider a distribution D which chooses a polynomial in F' € F[X] of degree at
most ¢ and sets the messages to be m; = F(i) for i € [n]. We let t and n be two
polynomials in the security parameter, such that ¢ < n < p. More formally,

Dpn = {(F(1),...,F(n))| F € F[X] uniformly chosen degree-< ¢ polynomial}

Note that there exists an efficient re-sampling algorithm msamp for the above
distribution. In particular, for any Z, msamp can randomly extend its input
(F(i))iez to t+ 1 evaluation points as necessary and then use polynomial inter-
polation to retrieve F' and thus all F(i).

Note that, conditioned on any choice of F(i) for i € Z where |Z| < t, the
value F'(0) is uniformly random.

Definition 10 (SecShare-SOA Security). Let IF be a field of size determined
by the security parameter and let PKE = (Gen, Enc, Dec) be a PKE scheme, with
message space M = TF. For any polynomials parameters t = t(k),n = n(k)
such that t < n < |F|, consider the experiment z'n with a stateful PPT
adversary A. We say that PKE secret-sharing selective opening attack secure if

secsh-soa secsh-soa].
AdvERE 3 (k) := ‘Pr [EXPPKEh,A (k) = 1] - “F‘

1s negligible for all PPT A.

3.1 IND-SOA implies SecShare-SOA

Theorem 1. If a PKE scheme PKE is IND-SOA secure, then it is SecShare-
SOA secure.

: unc-ind-cca
Experiment Exp;e}i?joa Experlment EXPEKE,A
’ b+ {0,1}
k, sk) < Gen(1*
(ph: o)) m* — A(1%)

m:= (mi)ie[n] < Dr.tn

R = (Ri)icin) + (Rend)"”

¢ = (¢i)icn) = (Enc(pk, mi; Ri))icin]
T <+ A(pk,c), where,Z € [n] and |Z| =t
outa < A((mi, Ri)iez)

(pk, sk) « Gen(1%)

co + Enc(pk, m™)

C1 < Cpk

sk[{co, c1}] < Puncture(sk, {co,c1})
outa < A(pk,cv, c1—b, sk[{co,c1}])

return 1 if out4 = F(0), and 0 otherwise

return 1 if outa = b, and 0 otherwise

Fig.2: SecShare-SOA and Punc-IND-CCA experiments.

Proof. Let PKE be a PKE scheme with message space M = F which is a field.
Suppose there exists an adversary A that breaks the SecShare-SOA security of
PKE with probability ¢ = Advﬁf,ﬁsEh’j”(k). Then we construct an adversary B
that, given access to A, breaks the IND-SOA security of PKE. We describe the
adversary below.

Adwversary B. By using A, B interacts with its challenger in the IND-SOA game
as follows. Upon receiving a public key pk, B presents the secret-sharing message
distribution D to its challenger. To recall,

Drn = {(F(1),...,F(n))| F € F[X] uniformly chosen degree-< ¢ polynomial }

for some ¢ < n. Upon receiving a tuple of ciphertexts ¢ := (¢;)ie[n), B forwards
(pk,c) to A. Upon receiving Z from A, B forwards it to the challenger. Re-
call that Z € [n] and |Z| = ¢t. Upon receiving a message vector m and the
openings (R;)icz of (¢i)iez to (m;)iez, B proceeds as follows. It computes
F = ipol((i,m;);e[n]). Thereafter, it forwards the messages and openings just
for i € Z; namely, (m;, R;)iez. Let out be the value output by A. B compares
whether out 4 = F(0). If so, then it outputs 0, else it outputs 1.

Analysis. We shall now analyze the success probability of B in the IND-SOA
game. Intuitively, B succeeds in the IND-SOA game whenever the A succeeds
in the SSSOA game except when the resampling results in the same message
vector as the original plaintext message. More formally, we have:

Pr [Exppies (k) = 1b = 0] = Pr [Bxpid 3 (k) = 1]

Pr (Bl (k) = 1 (um)

Thus,

ind-soa 1 1 secsh-soa 1 1

‘Pr {EXPPEE,B(]{) = 1} - 2‘ = ‘2 (Pl" [EXPPKEh,A (k) = 1} + (1 - IB‘)) — 2’
; 1 €
Pr B0 = 1] - | =

1
2
which is non-negligible by assumption.

4 CCA Secure, SOA Insecure Encryption

In this section, we describe a PKE scheme that is IND-CCA secure, but not
IND-SOA secure.

4.1 The scheme

Let PKE' = (Gen’,Enc’, Dec’, Puncture’) be a puncturable encryption scheme
with message space F for some field of size |F| > 3k and |F| = O(k) and

with ciphertext space C. Let H = {h, : C3* — S][SSk]}keNyse{()’l}l(k) be a spe-
cial correlation-intractable hash function ensemble with respect to RE LPKE" and

with seed length £(k). Let PdiO be a public-coin differing-inputs obfuscator.
We construct a scheme PKE = (Gen, Enc, Dec) as follows.

- Gen(1%) : Run (pk’, sk’) < Gen’(1¥). Sample s < {0,1}**) as a seed of the
hash function hs € H. Then construct the program SOA-Helper in [Figure 3
Set secret key sk = sk’ and public key pk = (pk', s, PdiO(SOA-Helper)).

- Enc(pk,m) : Parse pk = (pk’, s, PdiO(SOA-Helper)). Output Enc’(pk’, m).

- Dec(sk,c) : Output Dec'(sk’, c).

SOA-Helper

Constants: sk’, seed s.
Input: Z = ((Cé)ie[3k]7 (mu Ri)iEI)-

1. If there are indices i # j with ¢; = ¢}, then return L.

2. Set Z := hs((c})iesk))- If there is an ¢ € Z with Enc’(pk’, mq; Ri) #
c}, then return L.

3. Decrypt m; = Dec’(sk’,c}) for i € [3k] \ Z.

4. Let F' = decci((i,mi)ie[sr))- f FF = L or F(i) # m; for some
1 € T then return L else return F.

Fig.3: Program SOA-Helper

4.2 PKE is not SecShare-SOA secure
We now formally show that PKE allows for a simple SecShare-SOA attack.
Theorem 2. The PKE scheme PKE from[Section 4.1 is not SecShare-SOA se-

cure.

Proof. We construct a PPT algorithm A that breaks the SecShare-SOA security
of PKE with non-negligible probability.

Adversary A: Upon receiving a public key pk = (pk', s, PdiO(SOA-Helper)) and
a tuple of ciphertexts ¢ := (¢;);c(3x], A computes Z = h,((c;)ic[3x))- This Z is the
subset that A submits to its SecShare-SOA experiment. By the security of PKE’,
we may assume that ¢} # c;- for all 7 # j, except with some negligible probability
v(k) (otherwise, an adversary on PKE’ could simply encrypt a challenge message
and hope for a collision).

Upon receiving openings (m;, R;);cz, A runs the program PdiO(SOA-Helper)
on input ((c;)ie[sr]> (M4, Ri)iez). By construction of the program, the output is
a polynomial F' with m; = F(i) for all ¢ € [3k]. Thus, the adversary can finally
compute F'(0) and give it to the challenger.

Analysis: The analysis is pretty straight-forward, as, by design, the output of
the program is exactly what the adversary needs to break the SecShare-SOA
security. Thus, we have that,

AVERE () = 1 — g — v(k).

which is non-negligible by assumption about v(k).

4.3 PKE is still IND-CCA secure
We show that PKE inherits PKE"’s IND-CCA security.

Theorem 3. Suppose that PKE' is puncturably IND-CCA secure, H is a spe-
cial correlation-intractable hash function ensemble with respect to RELPXE | and
PdiO be a secure public-coin differing-inputs obfuscator. Then, the PKE scheme

PKE from [Section 4.1] is IND-CCA secure.

Proof. Recall that our scheme has polynomial-size message space. We consider a
variation to the IND-CCA game where the challenger himself chooses the pair of
challenge messages. We call this modified game the $-IND-CCA game (defined
formally in . The IND-CCA game and the $-IND-CCA game are
polynomially equivalent (as proved in for polynomially-sized message
spaces. Thus, it suffices to show here that our PKE scheme is $-IND-CCA secure.

Assume for contradiction that there exists an adversary A that breaks the $-
IND-CCA security of PKE with some non-negligible advantage €. We shall arrive
at a contradiction through a sequence of hybrid arguments defined below. Let
us denote the event that a hybrid Hyb, outputs 1 by Hyb, — 1. The first hybrid
corresponds to the original $-IND-CCA security game.

— Hyb, : In the first hybrid the following game is played.
o Sample b + {0, 1}.
Sample mg, m; < M
Sample s < {0, 1}¢(F),
Run (pk', sk’) + Gen'(1%). Let sk = sk’.
¢* « Enc(pk, mp)
Construct the program SOA-Helper in and obfuscate it to get
PdiO(SOA-Helper).
o Let pk = (pk’, s,PdiO(SOA-Helper)).
e Give pk,mg, m1,c* to the adversary, and offer the adversary access to a
decryption oracle Dec.« (sk,-).
e Finally, let b’ be the output of A. Output 1 if &' = b and 0 otherwise.

We note here that Expﬁ]i"é{jca(k) = Hyb,.

— Hyb; : This hybrid is the same as Hyb, with the exception of the follow-
ing modifications. Just before generating the program SOA-Helper, sample
¢, < C. Compute sk[{c*,c,}] « Puncture(sk, {c*,c,}). We then make the
following modifications in Step 3 of the program obfuscated, and denote the
resulting program by SOA-Helper,:

3. Decrypt m; = Dec'(sk[{c*,c,},c}) for i € [3k] \ T and for ¢} & {c*, ¢, }.
Use my, and L as the plaintext values when ¢; = ¢* and ¢} = ¢,, resp.

Furthermore, we now use the punctured key sk[{c*,c,}] to answer A’s de-
cryption queries, and we output L on inputs c*, ¢,.

Claim. Hyb; =~ Hyb,.

Proof. We observe that the input/output functionality of the program has not
changed with overwhelming probability (over the choice of ¢,.), thanks to the
puncturability and ciphertext sparseness properties of PKE'. Furthermore, there
is also no change in the functionality of the decryption oracle. Thus, by relying
on the indistinguishability obfuscation security (which follows from public-coin
differing inputs security) of PdiO , we have Hyb; ~. Hyb,.

— Hyb, : This hybrid is the same as Hyb; with the exception of the following
modifications in Step 3 of the program obfuscated. Denote the resulting
program by Program SOA-Helper,.

3. Decrypt m; = Dec'(sk[{c*, c,},c) for i € [3k] \ Z and for ¢, & {c*, ¢, }.
Use L and L as the plaintext values when ¢, = ¢* and ¢, = ¢, respec-
tively.

Claim. Hyb, = Hyb,.

Proof. We employ the public-coins differing-inputs obfuscation security of PdiO
and the special correlation intractability of H to prove this claim. More specifi-
cally, consider an algorithm csamp(1¥) that generates two circuits SOA-Helper,
and SOA-Helpers,.

We first show that csamp is a public-coin differing-inputs sampler, by employ-
ing the special correlation intractability of 7. Recall the special class of binary
relations RELPKE — {Rel; bren reqo,13e 0 from Deﬁnition@

Let Z = ((¢})icisk)> (ms, Rr)icz) be an input to the two programs. We will
now argue that the only time that SOA-Helper,(Z) # SOA-Helper,(Z) is if
((c})icisr)»Z) € Rel, where 7 is the randomness of the key-generation procedure
used to create (pk’, sk') and T = hy((c})ie(sk))-

In order to do so, let m; = Decg(c;) for i € [3k] \ Z. Now if m} # m;
for some i € Z then both programs output L since the check in line 2 will
fail (by correctness of decryption). Let Fy = decci((i,m]);c[3x)) and let Fp =
deccr((4,mf)iciar)) where my = mj unless ¢; = ¢* and i ¢ 7 in which case
m} = L. These are the two polynomials that are used in line 3 of the execution
of SOA-Helper,(Z),SOA-Helper,(Z) respectively. Let Q = {i : F1(i) = m}}. If
Fy = F5 then both programs have the same output. The only case where this
does not happen is if F; # L1, |Q| = 2k + 1 and F, = L. Moreover, even in
this case both programs output L unless it is the case that Z C Q. Therefore,
the only case where the two programs might produce differing outputs is if
Fy # 1,|Q| =2k +1 and Z C Q. This means that ((c;)ic[s),Z) € Rel, where
Z = hs((ci)iefsn)-

By the special correlation intractability property of H such inputs Z such
that SOA-Helper,(Z) # SOA-Helpery(Z) are computationally hard to find, even
given all of the random coins used to generate the two programs, including the
hash-seed s and the randomness 7 used to generate (pk’, sk’). In other words
this shows that algorithm csamp that generates two circuits SOA-Helper; and
SOA-Helper, defines a public-coin differing-inputs family. We can therefore rely
on the public-coin differing-input security of PdiO to see that Hyb, and Hyb, are
indistinguishable.

— Hyb; : This hybrid is the same as Hyb, with the following exception. Instead
of giving ¢* to the adversary, give ¢, to the adversary as a challenge.

Claim. Hybs ~c Hyb,.

Proof. Assume that for an adversary A, Pr[Hyby, — 1] and Pr[Hybs; — 1] differ
by a non-negligible amount €. Then we shall construct an adversary B that
breaks the puncturability of PKE" with probability . B behaves the same as the
challenger in Hyb, and interacts with A except for the following modifications.
It first samples b, mg, m1, and gives my to its challenger. Upon receiving two
ciphertexts c;, ¢, _;, proceed by giving ¢; to A as the challenge ciphertext. Finally,
output the output of the experiment.
Observe that if b = 0, then we are in Hyb,. Else, we are in Hyb,;. Thus,

punc-ind-cca
Advpee g (k) =€

— Hyb, : This hybrid is the same as Hyb, with the exception of the following
modifications in Step 3 of the program obfuscated. Denote the resulting
program by Program SOA-Helper,.

3. Decrypt m; = Dec'(sk[{c*,c,},c) for i € [3k] \ Z and for ¢, & {c*,c,}.
Use my, and L as the plaintext values when ¢} = ¢* and ¢ = ¢,, respec-
tively.

Claim. Hyb, ~. Hybs.

Proof. The modification introduced in Hyb, is similar to the modification intro-
duced in Hyb, earlier. Hence, the proof here follows on the same lines as the

proof of Claim

— Hyb; : This hybrid is the same as Hyb, with the following exception. In
the obfuscated program, instead of hardcoding the punctured secret key, we
shall hardcode again the original secret key.

Claim. Hybs ~. Hyb,.

Proof. Note that the input/output functionalities of the programs have not
changed as we moved from Hyb, to Hybs. By applying the indistinguishabil-
ity obfuscation security of PdiO, we have that Hyb; ~. Hyb,.

Finally, note that in Hybg, the adversary’s view does not depend on the chal-
lenge bit b anymore: neither the obfuscated circuit SOA-Helper nor the challenge
ciphertext ¢, depend on b. We get that Hyby; outputs 1 with probability exactly
1/2. The theorem follows.

5 Extension to Selective Opening of Keys (SOA-K)

We now show how to extend our main result to selective opening of keys (SOA-
K), where the adversary gets ciphertexts under many different public keys and
can selectively request to see some of the secret keys. This corresponds to a
setting where there are multiple receivers and the adversary can corrupt some
subset of them and get their keys (rather than the previous setting where there
were multiple senders and the adversary could corrupt some subset of them and
get their encryption randomness).

For this notion, we will consider PKE schemes where the public/secret key
pairs are generated dependent on some common public parameters. More specif-
ically, in addition to the triple of algorithms (Gen, Enc, Dec), we introduce an
algorithm PGen that takes the security parameter and outputs some public pa-
rameters params < PGen(1*). All the other algorithms take params as an ad-
ditional input. We show how to construct such PKE schemes which are CCA
secure but are IND-SOA-K insecure. We leave it as an open problem to construct
such examples in the setting without public parameters.

SOA-K has been considered before [? ? |; while [? | only treated the the
simulation-based definition, [?] treated the indistinguishability-based definition
that we will also consider in this work.

Definition 11 (IND-SOA-K Security). For a PKE scheme PKE = (PGen,
Gen, Enc, Dec), a polynomially bounded function n = n(k) > 0, and a stateful
PPT adversary A, consider the experiment in [Figure 4 We only allow A that
always output re-sampling algorithms as in[Definition 3. We call PKE IND-SOA-
K (for “indistinguishable under selective-opening key attacks”) secure if for all
PPT A, we have

- - 1
AdviSEoa K (k) = ‘Pr [Expg‘gggf;-k(k) - 1} - 2‘ = negl(k).

Secret Sharing SOA-K Security. We now define the dual of SecShare-SOA-
K security for key corruption. The only difference from the SecShare-SOA-K
security security is that each secret share is encrypted with an independently
sampled public key (instead of one public key being used to encrypt all shares),
and corruption would reveal the corresponding secret keys (instead of the random
coins used to generate the ciphertexts). Details follow.

Definition 12 (SecShare-SOA-K Security). Let F be a field of size deter-
mined by the security parameter and let PKE = (PGen, Gen, Enc, Dec) be a« PKE
scheme, with message space M = ([n] x F). For any parameters t,n that are
polynomial in the security parameter, consider the experiment in[Figure J) with a
stateful PPT adversary A. We say that PKE receiver-corruption secret-sharing
selective opening attack secure if

1
AdvES 50K (1) = ‘Pr [Expiad ™ (0) = 1] - o

1s negligible for all PPT A.

Theorem 4. If a PKE scheme PKE is IND-SOA-K secure, then it is SecShare-
SOA-K secure.

The proof of follows with the same argument as
In this section, we describe a PKE scheme PKE™ that is IND-CCA secure,
but not IND-SOA-K secure.

5.1 A CCA Secure, SecShare-SOA-K Insecure Encryption

Let PKE' = (Gen’, Enc’, Dec’) be any encryption scheme that is IND-CPA secure
but is not SecShare-SOA secure (with sender-randomness corruption), and whose
message space is a field F and randomness space is Rgne - In particular, this can
be the scheme that we constructed in Section[d] Let PKE = (Gen, Enc, Dec) be an
IND-CCA secure encryption scheme with message space F X Rener. We construct
a PKE scheme PKE® = (PGen™, Gen™, Enc”, Dec™) as follows.

- PGen*(1¥) : Sample (pk', sk) < Gen’(1¥) and set public parameters params =
pk'.

Experiment Exphg:°r*
.

b+ {0,1}

params < PGen(1%)

((pk;, ski))7—y + Gen™(1*, params)

msampp (-) « A(params, pk) for pk := (pkq,...,pk,)
mg := (M4);c[n] < Msampp ()

¢ := (¢i)ig[n) for ¢; := Enc(params, pk;,m;)

T+ Alc)

m; < msampp(mz)

outa A((ski)iez, mp)

return 1 if out4 = b, and 0 otherwise

Experiment Expicy 5%

params + PGen(1)
((pk;, ski))7—y < Gen™(1*, params)
m = (mi)ie[n] < Dr,t,n
c:= (Ci)iem
for ¢; := Enc(params, pk;, m;)
T + A(params, pk, c)
for pk := (pky,...,pk,)
outa A((ms, ski)iez)
return 1 if out4 = F(0), and 0 else

Fig.4: The IND-SOA-K and SecShare-SOA-K experiments.

- Gen* (1%, params) : Run (pk, sk) + Gen(1*). Output (pk, sk) as the public-
key secret-key pair.

- Enc*(params, pk,m) : Parse params = pk’. Sample r < Rg,o and compute
¢’ < Enc(pk’,m;r). Compute ¢ < Enc(pk, (m,r)). Output the ciphertext
ct = (c,c).

- Dec*(params, sk, c*) : Parse params = pk’ and ¢* = (¢, ¢). Compute (m,r) =
Dec(sk, c). Verify if ¢/ < Enc’(pk’,m;r). If so, then output m, else output
L.

PKE" is not SecShare-SOA-K secure. We now formally show that PKE*
allows for a simple SecShare-SOA-K attack. The idea is straight-forward. An
SecShare-SOA-K adversary, upon learning secret keys can decrypt the cipher-
texts and learn the random coins used to compute the PKE’ part of ciphertexts.
This amounts to an SecShare-SOA attack on PKE’, which is SecShare-SOA in-
secure.

Theorem 5. If PKE’ is not SecShare-SOA secure then PKE* is not SecShare-
SOA-K secure. In particular, if there is a polynomial-time attack with advantage

€ against the SecShare-SOA security of PKE' then there is also a polynomial
time attack with the same advantage € against the SecShare-SOA-K security of
PKE™.

Proof. Assume that there exists a PPT adversary A with non-negligible advan-
tage € against SecShare-SOA security of PKE’. We construct a PPT algorithm
B that breaks the SecShare-SOA-K security of PKE* also with probability e.
Adversary B: Upon receiving params = pk’, B gives pk’ to A. Upon receiving
a tuple of public keys pk := (pkq,...,pk,) and a tuple of ciphertexts c¢* :=
(¢})ie[n), where ¢ = (¢}, c;), give (c},...,¢c;,) to A. When A responds with a
subset Z € [n], give Z to the challenger. Then, upon receiving (m;, sk;)iez,
compute (m;,r;) = Dec(sk;,c;) for every i € Z. Then, give (m;,7;);ez to A.
Since this emulates the SecShare-SOA attack on PKE’ to A, A’s output is such
that it breaks SecShare-SOA security of PKE' with probability . In turn, by
outputting A’s output, B also breaks SecShare-SOA-K security of PKE* with
probability €.

PKE* is IND-CCA secure. We now show that PKE* inherits PKE’s IND-CCA
security.

Theorem 6. Suppose that PKE is an IND-CCA-secure encryption scheme, PKE'
is an IND-CPA secure encryption scheme. Then, PKE* is IND-CCA secure.

Proof. Assume for contradiction that there exists an adversary A that breaks
the IND-CCA security of PKE* with some advantage €. We shall show that ¢ is
negligible through a hybrid argument as follows. Let us denote the event that a
hybrid Hyb, outputs 1 by Hyb, = 1. The first hybrid corresponds to the original
IND-CCA security game.

— Hyb, : In the first hybrid the following game is played.

. Sample b < {0,1}.

Sample (pk’, sk’) + Gen’(1%) and set params = pk’.

Sample (pk, sk) < Gen(1%).

Give (params, pk) to A and answer its decryption queries using sk.
Upon receiving mg, m1, proceed as follows.

Sample 7 <+ Rene and compute & < Enc’(pk’, my; 7).

Compute ¢ < Enc(pk, (my,r)).

Give (&, ¢) to A and continue to answer A’s decryption queries using sk.
Finally, let b’ be the output of A. Output 1 if ¥’ = b and 0 otherwise.

© 00N DU

— Hyb; : This hybrid is the same as Hyb,, except that all of A’s decryption
queries ¢* = (¢, ¢) with ¢ = ¢ are automatically rejected.

We note that this change is purely conceptual: any such query would have
been rejected already in Hyb, (by the decryption check for ¢/ = Enc(pk’, m; 1),
where (m,r) < Dec(sk,c)).

— Hyb, : This hybrid is the same as Hyb; except for the following modification.
In constructing ¢, instead of using (my,r) as the plaintext, we use (mg,7)
for an indendently sampled random bit b, and a freshly uniformly sampled
random string 7.

7. Sample b ¢ {0,1} and 7 ¢+~ Regae. Compute é < Enc(pk, (m;, 7).

Claim. Hyby = Hyb;.

Proof. We shall establish this claim by relying on the CCA security of PKE. As-
sume for contradiction that | Pr[Hyb, = 1] — Pr[Hyb, = 1]| = ¢ is non-negligible.
Then we construct an adversary B that breaks CCA security of PKE with ad-
vantage €.

Adversary B. B simultaneously interacts with its CCA challenger for PKE and A
as follows. Upon receiving pk from the challenger, sample (pk’, sk’) + Gen’(1%),
set params = pk’, and give params, pk to A. Answer A’s decryption queries by
using its own decryption oracle as follows. Upon given a query ¢* = (¢, ¢) by A,
decrypt c using its own oracle to get (m,r); verify whether ¢’ «— Enc’(pk’, m;).
If so, then give m to A and give L otherwise. Next, upon receiving (mg, m1) from
A, sample 7 < Rene and compute & < Enc’(pk’, my; 7). Also sample b+ {0,1}
and 7 < Rene. Give (my,7), (mj,7) to the challenger. Upon receiving ¢, give
¢* = (@, ¢) to the A. Continue to answer decryption queries in the same manner,
except that all of A’s decryption queries with ¢ = ¢ are automatically rejected.
(Note that B cannot decrypt the corresponding c¢ on its own; however, by our
change from Hyb,, this is not necessary.)

Analysis. Observe that A perfectly simulates Hyb, or Hyb,, depending on ¢.

— Hyb; : This hybrid is the same as Hyb, except for the following modification.
In constructing ¢, instead of encrypting m; as the plaintext, we encrypt m;.

6. Sample r < Rgpe and compute & Enc’(pk’,%; r).
Claim. Hybs ~c Hyb,.

Proof. We shall establish this claim by relying on the CPA security of PKE’. As-
sume for contradiction that | Pr[Hyb; = 1] — Pr[Hyb, = 1]| = ¢ is non-negligible.
Then we construct an adversary B that breaks CPA security of PKE’ with ad-
vantage €.

Adversary B. B simultaneously interacts with its CPA challenger for PKE’ and
A as follows. B behaves the same way as the Hyb, challenger, except for the
following modification. Instead of generating pk’ and & by himself, he uses pk’
from the challenger and generates & as follows. Upon A giving (mq,m1), send
(mpy, mj) to the challenger and use the response as ¢ in the interaction with A.
Finally, output the output of A.

Analysis. Firstly, we argue that the above description of B is sound: note that
the random coins used in computing ¢’ is not used in any part of B’s interaction
with A. Next, we observe that when & encrypts 0 then the view of A is identical
to that in Hyb,; when ¢ encrypts 1 then the view of A is identical to that in
Hyb,. Thus, Adv?i’éﬁ%(lﬂ) = ¢, a contradiction.

We note here that in Hyb;, A’s view is independent of the challenge bit b,
and thus the theorem follows.

6 Conclusions.

In this paper, we show that there are schemes which are CPA and even CCA
secure, but which are clearly insecure in the selective opening scenario. Several
open questions remain. Most importantly, it would be interesting to get such
examples under weaker assumptions. As a first step, one could hope for an ex-
ample that only relies on indistinguihsability obfuscation rather than public-coin
differing-inputs obfuscation and correlation-intractable hash functions. Ideally,
one would get rid of obfuscation altogether. Alternatively, it would be inter-
esting if such examples can lead to surprising positive results or perhaps can
imply (some variant of) obfuscation. Another open question is to construct a
counterexample for SOA-K security without relying on a scheme with common
public parameters.

A IND-CCA Game with Random Challenge Messages

We shall now define a variation of the IND-CCA game. The modification at a
high level is that, in the new game, the challenger himself samples the challenge
message pair uniformly at random.

Definition 13 ($-IND-CCA Secure PKE). Let PKE = (Gen, Enc, Dec) be a
tuple of PPT algorithms. PKE is said to be a $-IND-CCA-secure encryption, if
it for every PPT adversary A,

AdvEE £ (k) =

- 1
P [Bobio 9 = 1] - 3|
1s negligible.

Theorem 7. Let PKE = (Gen, Enc, Dec) is a PKE scheme with polynomial-size

message ciphertext. If PKE is $-IND-CCA secure as per|Definition 15, then PKE
18 IND-CCA secure.

Proof. Let the message space of PKE be M, with |[M| = ¢(k), for a polynomial
£. Assume for contradiction that there exists an adversary A that breaks the
IND-CCA security of PKE with advantage . Then we shall show an adversary
B that breaks the $-IND-CCA security of PKE with advantage /¢(k)?. With
the help of A, B interacts with its $-IND-CCA challenger as follows.

Adversary B: Upon receiving pk, (mg, my), ¢*, give pk to A. Let (m{, m}) be the
pair of message given in response by A. Check if (mg,m}) = (mo, m1). If not,
sample b’ + {0,1} and respond to the challenger with b'. Otherwise, give ¢* to
A. Output whatever A outputs.

Analysis: Let Esamechal denote the event that (mg, m)) = (mg, m1). Note that,

since mg, m are chosen uniformly at random, we have that Pr[Esamechal] = 8(11)2 .

Furthermore,

-ind-cca 1
Pr ExpgKéB (k) = 1|_‘ESameCha|:| =3

On the other hand,

ind-cca 1
Pr [EXP%KEd,B (k) = 1|ESameChal} =) +e
Putting them together, we have that, Thus,
. 1 1 1 1
Ad $-ind-cca k) = - 1=
wrew=|(3e) mr 2 (- mr

3
C(k)?

leading to a contradiction.

Experiment Expﬁ‘k"éjca

b+ {0,1}
(pk, sk) « Gen(1F)

(mo, m " (pk)

mo, my + M

c* < Enc(pk,my)

out 4+ AP (k) (pk (mg, my),c*)

return 1 if out 4 = b, and 0 otherwise

Fig.5: $-IND-CCA experiment.

	Standard Security Does Not Imply Indistinguishability Under Selective Opening

