On Constructing One-Way Permutations
from Indistinguishability Obfuscation™

Gilad Asharov and Gil Segev

Hebrew University of Jerusalem, Jerusalem 91904, Israel.
{asharov,segev}@cs.huji.ac.il

Abstract. We prove that there is no black-box construction of a one-
way permutation family from a one-way function and an indistinguisha-
bility obfuscator for the class of all oracle-aided circuits, where the con-
struction is “domain invariant” (i.e., where each permutation may have
its own domain, but these domains are independent of the underlying
building blocks).

Following the framework of Asharov and Segev (FOCS ’15), by consider-
ing indistinguishability obfuscation for oracle-aided circuits we capture
the common techniques that have been used so far in constructions based
on indistinguishability obfuscation. These include, in particular, non-
black-box techniques such as the punctured programming approach of
Sahai and Waters (STOC ’14) and its variants, as well as sub-exponential
security assumptions. For example, we fully capture the construction of
a trapdoor permutation family from a one-way function and an indistin-
guishability obfuscator due to Bitansky, Paneth and Wichs (TCC ’16).
Their construction is not domain invariant and our result shows that
this, somewhat undesirable property, is unavoidable using the common
techniques.

In fact, we observe that constructions which are not domain invariant
circumvent all known negative results for constructing one-way permu-
tations based on one-way functions, starting with Rudich’s seminal work
(PhD thesis '88). We revisit this classic and fundamental problem, and
resolve this somewhat surprising gap by ruling out all such black-box
constructions — even those that are not domain invariant.

1 Introduction

One-way permutations are among the most fundamental primitives in cryptog-
raphy, enabling elegant constructions of a wide variety of central cryptographic
primitives. Although various primitives, such as universal one-way hash func-
tions and pseudorandom generators, can be constructed based on any one-way

* This work was supported by the European Union’s 7th Framework Program (FP7)
via a Marie Curie Career Integration Grant, by the Israel Science Foundation (Grant
No. 483/13), by the Israeli Centers of Research Excellence (I-CORE) Program (Cen-
ter No. 4/11), by the US-Israel Binational Science Foundation (Grant No. 2014632),
and by a Google Faculty Research Award.

2 G. Asharov, G. Segev

function [57,41], their constructions based on one-way permutations are much
simpler and significantly more efficient [15, 52].

Despite the key role of one-way permutations in the foundations of cryptog-
raphy, only very few candidates have been suggested over the years. Whereas
one-way functions can be based on an extremely wide variety of assumptions,
candidate one-way permutation families are significantly more scarce. Up until
recently, one-way permutation families were known to exist only based on the
hardness of problems related to discrete logarithms and factoring [56, 54]. More-
over, the seminal work by Rudich [58], within the framework of Impagliazzo and
Rudich [44], initiated a line of research showing that a one-way permutation
cannot be constructed in a black-box manner from a one-way function or from
various other cryptographic primitives [24, 45,51, 50].

Very recently, a one-way (trapdoor!) permutation family was constructed by
Bitansky, Paneth and Wichs [13] based on indistinguishability obfuscation [6,
32] and one-way functions. Their breakthrough result provides the first trapdoor
permutation family that is not based on the hardness of factoring, and motivates
the task of studying the extent to which indistinguishability obfuscation can
be used for constructing one-way permutations. Specifically, their work leaves
completely unresolved the following question, representing to a large extent the
“holy grail” of constructing one-way permutations:

Is there a construction of a one-way permutation over {0,1}"
based on indistinguishability obfuscation and one-way functions?

While exploring this intriguing question, one immediately identifies two some-
what undesirable properties in the construction of Bitansky, Paneth and Wichs:

— Even when not aiming for trapdoor invertibility, their approach seems limited
to providing a family of permutations instead of a single permutation®.

— Their construction provides permutations that are defined over domains
which both depend on the underlying building blocks and are extremely

sparse?.

From the theoretical perspective, one-way permutation families with these two
properties are typically still useful for most constructions that are based on one-
way permutations. However, such families lack the elegant structure that makes

constructions based on one-way permutations more simple and significantly more
efficient when compared to constructions based on one-way functions.

! Moreover, Bitansky et al. note that their permutations do not seem certifiable. That
is, they were not able to provide an efficient method for certifying that a key is
well-formed and describes a valid permutation. In contrast, a single permutation is
certifiable by its nature.

2 Each permutation in their construction is defined over a domain of elements of the
form (z, PRFk(x)), where PRF is a pseudorandom function, and each permutation is
associated with a different key K. This domain depends on the underlying building
block, i.e., the pseudorandom function (equivalently, one-way function).

On Constructing OWPs from Indistinguishability Obfuscation 3

1.1 Our Contributions

Motivated by the recent construction of Bitansky et al. [13], we study the limita-
tions of using indistinguishability obfuscation for constructing one-way permu-
tations. Following the framework of Asharov and Segev [3], we consider indistin-
guishability obfuscation for oracle-aided circuits, and thus capture the common
techniques that have been used so far in constructions based on indistinguisha-
bility obfuscation. These include, in particular, non-black-box techniques such as
the punctured programming approach of Sahai and Waters [59] and its variants,
as well as sub-exponential security assumptions. For example, we fully capture
the construction of a trapdoor permutation family from a one-way function and
an indistinguishability obfuscator due to Bitansky et al. [13]. We refer the reader
to Section 1.3 for an overview of our framework and of the type of constructions
that it captures.

Our work considers three progressively weaker one-way permutation primi-
tives: (1) a domain-invariant one-way permutation, (2) a domain-invariant one-
way permutation family, and (3) a one-way permutation family (which may or
may not be domain invariant). Roughly speaking, we say that a construction of
a one-way permutation (or a one-way permutation family) is domain invariant if
the domain of the permutation is independent of the underlying building blocks
(in the case of a permutation family we allow each permutation to have its own
domain, but these domains have to be independent of the underlying building
blocks).

Within our framework we prove the following two impossibility results, pro-
viding a tight characterization of the feasibility of constructing these three pro-
gressively weaker one-way permutation primitives based on one-way functions
and indistinguishability obfuscation using the common techniques (we summa-
rize this characterization in Figure 1).

tO+OWF # domain-invariant OWP family. Bitansky et al. [13] showed
that any sub-exponentially-secure indistinguishability obfuscator and one-way
function imply a one-way permutation family which is not domain invariant. We
show that using the common techniques (as discussed above) one cannot con-
struct the stronger primitive of a domain-invariant one-way permutation family
(even when assuming sub-exponential security). In particular, we show that the
above-described undesirable properties of their construction are unavoidable un-
less new non-black-box techniques are introduced.?

Theorem 1.1 There is no fully black-box construction of a domain-invariant
one-way permutation family from a one-way function f and an indistinguisha-
bility obfuscator for the class of all oracle-aided circuits C7.

3 In addition to the above-described undesirable properties, our impossibility result
holds even for constructions of one-way permutation families that have a “pseudo”
input-sampling procedure instead of an “exact” input-sampling procedure (as in
[13]), as well as to constructions that are not necessarily certifiable (again, as in
[13).

4 G. Asharov, G. Segev

OWF # OWP family. In fact, we observe that constructions which are not
domain invariant circumvent the known negative results for constructing one-way
permutations based on one-way functions, starting with Rudich’s seminal work
[58,45,51,53]. We revisit this classic and fundamental problem, and resolve this
surprising gap by ruling out all black-box constructions of one-way permutation
families from one-way functions — even those that are not domain invariant.

Theorem 1.2 There is no fully black-box construction of a one-way permuta-
tion family (even a non-domain-invariant one) from a one-way function.

[Rud8s,...] [BPW15]

Domain-invariant Domain-invariant .
_______ > s--=--------5 OWP family

OowP OWP family

Fig. 1. A dashed arrow from a primitive A to a primitive B indicates that A implies
B by definition.

Bitansky et al. [13] showed that any sub-exponentially-secure indistinguishability ob-
fuscator and one-way function imply a one-way permutation family (which is not do-
main invariant), and we show that one cannot construct the stronger primitive of a
domain-invariant one-way permutation family unless new non-black-box techniques are
introduced (even when assuming sub-exponential security).

The line of research starting with Rudich [58] showed that one cannot construct a
domain-invariant one-way permutation from a one-way function in a black-box man-
ner. We improve this result, showing that one cannot construct the weaker primitive of
a one-way permutation family (even one that is not domain invariant) from a one-way
function in a black-box manner (again, even when assuming sub-exponential security).

1.2 Related Work

The recent line of research focusing on new constructions based on indistin-
guishability obfuscation has been extremely fruitful so far (e.g., [32,8-10,17,
19,26, 39, 31,21, 27, 33,42,46,59,1,2,11,13,12, 14,23, 22,61] and the references
therein). However, the extent to which indistinguishability obfuscation can be
used as a building block has been insufficiently explored. Our approach for prov-
ing meaningful impossibility results for constructions based on indistinguisha-
bility obfuscation is based on that of Asharov and Segev [3] (which, in turn,

On Constructing OWPs from Indistinguishability Obfuscation 5

was inspired by that of Brakerski, Katz, Segev and Yerukhimovich [18]). They
showed that the common techniques (including non-black-box ones) that are
used in constructions based on indistinguishability obfuscation can be captured
by considering the stronger notion of indistinguishability obfuscation for oracle-
aided circuits (see Section 1.3 for an elaborate discussion). Generalizing the
work of Simon [60] and Haitner et al. [40], they showed that using these com-
mon techniques one cannot construct a collision-resistant hash function fam-
ily from a general-purpose indistinguishability obfuscator (even when assuming
sub-exponential security). In addition, generalizing the work of Impagliazzo and
Rudich [44] and Brakerski et al. [18], they showed a similar result from construct-
ing a perfectly-complete key-agreement protocol from a private-key functional
encryption scheme (again, even when assuming sub-exponential security).

It is far beyond the scope of this paper to provide an overview of the lines of
research on black-box impossibility results in cryptography (see, for example, [44,
60, 36, 43,55, 34,35, 62, 7,28, 49,5, 25,29,48, 16, 20] and the references therein).
Impossibility results for constructing one-way permutations start with the semi-
nal work of Rudich [58]. This line of research has successfully shown that one-way
permutations cannot be based on a variety of fundamental cryptographic prim-
itives (e.g., [24,45,51,50]). However, these impossibility results capture only
constructions of a single permutation that is domain invariant, and do not seem
to capture more general constructions (such as the construction of Bitansky et
al. [13] producing a permutation family which is not domain invariant).

The notion of “domain invariance” that we consider in this work for black-
box constructions is somewhat related to that of “function obliviousness” that
was introduced by Dachman-Soled, Mahmoody and Malkin [30] for coin-flipping
protocols. They proved an impossibility result for constructing an optimally-fair
coin-flipping protocol based on any one-way function, as long as the outcome of
the protocol is completely independent of the specific one-way function that is
used.

1.3 Overview of Our Results

In this section we provide a high-level overview of our two results. First, we de-
scribe the framework that enables us to prove a meaningful impossibility result
for constructions that are based on indistinguishability obfuscation. Next, we de-
scribe Rudich’s attack for inverting any domain-invariant permutation relative to
a random oracle. Extending Rudich’s approach, we then discuss the main tech-
nical ideas underlying our results: We present an attack on any domain-invariant
permutation family relative to our, significantly more structured, oracle, and we
generalize Rudich’s attack to non-domain-invariant permutation families in the
random-oracle model.

Capturing non-black-box constructions via ¢O for oracle-aided circuits
The fact that constructions that are based on indistinguishability obfuscation
are almost always mnon-black-boxr makes it extremely challenging to prove any

6 G. Asharov, G. Segev

impossibility results. For example, a typical such construction would apply the
obfuscator to a function that uses the evaluation circuit of a pseudorandom
generator or a pseudorandom function, and this requires specific implementations
of its underlying building blocks.

However, as observed by Asharov and Segev [3], most of the non-black-box
techniques that are used on such constructions have essentially the same fla-
vor: The obfuscator is applied to functions that can be constructed in a fully
black-box manner from a low-level primitive, such as a one-way function. In
particular, the vast majority of constructions rely on the obfuscator itself in a
black-box manner. By considering the stronger primitive of an indistinguishabil-
ity obfuscator for oracle-aided circuits (see Definition 2.4), Asharov and Segev
showed that such non-black-box techniques in fact directly translate into black-
box ones. These include, in particular, non-black-box techniques such as the
punctured programming approach of Sahai and Waters [59] and its variants (as
well as sub-exponential security assumptions — which are already captured by
most frameworks for black-box impossibility results).

Example: The Sahai-Waters approach. Consider, for example, the con-
struction of a public-key encryption scheme from a one-way function and a
general-purpose indistinguishability obfuscator by Sahai and Waters [59]. Their
construction relies on the underlying one-way function in a non-black-box man-
ner. However, relative to an oracle that allows the existence of a one-way function
f and indistinguishability obfuscation ¢O for oracle-aided circuits, it is in fact a
fully black-box construction. Specifically, Sahai and Waters use the underlying
indistinguishability obfuscator for obfuscating a circuit that invokes a punc-
turable pseudorandom function and a pseudorandom generator as sub-routines.
Given that puncturable pseudorandom functions and pseudorandom generators
can be based on any one-way function in a fully black-box manner, from our
perspective such a circuit is a polynomial-size oracle-aided circuit Cf — which
can be obfuscated using iO (we refer to reader to [3, Sec. 4.6] for an in-depth
technical treatment).

This reasoning extends to various variants of the punctured programming
approach by Sahai and Waters [59], and in particular fully captures the con-
struction of a trapdoor permutation family from a one-way function and an in-
distinguishability obfuscator due to Bitansky, Paneth and Wichs [13]. As noted
in [3], this approach does not capture constructions that rely on the obfusca-
tor itself in a non-black-box manner (e.g., [11])*, or constructions that rely on
zero-knowledge techniques and require using NP reductions®.

4 With the exception of obfuscating a function that may invoke an indistinguishability
obfuscator in a black-box manner. This is captured by our approach — see [3, Sec.
3.1].

® Such techniques are captured by the work of Brakerski et al. [18], and we leave
it as an intriguing open problem to see whether the two approaches for capturing
non-black-box techniques can be unified.

On Constructing OWPs from Indistinguishability Obfuscation 7

The oracle. Our first result is obtained by presenting an oracle I relative to
which the following two properties hold: (1) there is no domain-invariant one-
way permutation family, and (2) there exist an exponentially-secure one-way
function f and an exponentially-secure indistinguishability obfuscator iO for the
class of all polynomial-size oracle-aided circuits Cf. Our oracle is quite intuitive
and consists of three functions: (1) a random function f that will serve as the
one-way function, (2) a random injective length-increasing function O that will
serve as the obfuscator (an obfuscation of an oracle-aided circuit C is a “handle”
O(C,r) for a uniformly-chosen string r), and (3) a function Eval that enables
evaluations of obfuscated circuits (Eval has access to both f and O): Given a
handle O(C,r) and an input z, it “finds” C' and returns C/(z). We refer the
reader to Section 3.2 for more details.

The vast majority of our effort is in showing that relative to I" there is
no domain-invariant one-way permutation family. Specifically, as for the second
part, our oracle I" is somewhat similar to the oracle introduced by [3], relative
to which they proved the existence of an exponentially-secure one-way function
and an exponentially-secure indistinguishability obfuscator (see Section 3.2 for
the differences between the oracles).

In the remainder of this section we first provide a high-level overview of
Rudich’s attack on any single domain-invariant permutation in the random-
oracle model. Inspired by this attack, we explain the main challenges in extending
Rudich’s attack to domain invariant constructions relative to our oracle, and to
non-domain invariant constructions in the random-oracle model. We again refer
the reader to Figure 1 which summarizes our characterization of the feasible
constructions.

Warm-up: Rudich’s attack in the random-oracle model Following [58,
45,51] we show that for any oracle-aided polynomial-time algorithm P, if P/
implements a permutation over the same domain D for all functions f (i.e., P
is domain invariant), then there exists an oracle-aided algorithm A that for any
function f inverts P/ with probability 1 by querying f for only a polynomial
number of times. The algorithm A is given some string y* € D and oracle access
to f, and is required to find the unique z* € D such that P/(z*) = y*. It first
initializes a set of queries/answers), which will contain the actual queries made
by A to the true oracle f. It repeats the following steps polynomially many
times:
1. Simulation: A finds an input 2’ € D and a set of oracle queries/answers
f’ that is consistent with @ (i.e., f'(w) = f(w) for every w € Q) such that
Pl (') = y*.
2. Evaluation: A evaluates P/(z') (i.e., evaluation with respect to the true
oracle f). If the output is y*, it terminates and outputs .
3. Update: A asks f for all queries in f’ that are not in @, and updates the
set Q.

The proof relies on the following observation: In each iteration, either (1)
A finds the pre-image x* such that P/(z*) = y* or (2) in the update phase,

8 G. Asharov, G. Segev

A queries f with at least one new query that is also made by P during the
computation of Pf(z*) = y*.

Intuitively, if neither of the above holds, then we can construct a “hybrid”
oracle f that behaves like f in the evaluation of P/(z*) = y* and behaves like
f’ in the evaluation of P/ ' (') = y*. This hybrid oracle can be constructed since
the two evaluations P/’ (2') and Pf(z*) have no further intersection queries
rather than the queries which are already in Q. According to this hybrid oracle
f it holds that P/(z') = Pf(z*) = y* but yet 2* #2/, and thus relative to
fthe value y* has two pre-images, in contradiction to the fact that P always
implements a permutation. Using this claim, since there are only polynomially
many f-queries in the evaluation of P/(z*) = y*, the algorithm .4 must output
x* after a polynomial number of iterations (more specifically, after at most g+ 1
iterations, where ¢ is the number of oracle gates in the circuit P).

Attacking domain-invariant permutation families relative to our ora-
cle. We extend the attack described above in two different aspects. First, we
rule out constructions of domain-invariant permutation families and not just a
single permutation. Second, we extend the attack to work relative to our oracle,
which is a significantly more structured oracle than a random oracle and there-
fore raises new technical challenges. Indeed, by the discussion in Section 1.3,
relative to our oracle there exists a mon-domain-invariant construction of one-
way permutation family [13]. This mere fact represents the subtleties we have to
deal with in our setting. In the following overview we focus our attention on the
challenges that arise due to the structure of our oracle, as these are the most
important and technically challenging ones.

Recall that our oracle I' consists of three oracles: A length-preserving func-
tion f, an injective length-increasing function O, and an “evaluation” oracle
Eval that depends on both f and O. We now sketch the challenges that these
oracles introduce. The first challenge is that the evaluation oracle Eval is not
just a “simple” function. This oracle performs (by definition) exponential time
computations (e.g., an exponential number of queries to f and O) which may
give immense power to the construction P. Specifically, unlike in Rudich’s case,
here it is no longer true that the computation P! (x*) performs a polynomial
number of oracle queries (although P itself is of polynomial size). The second
challenge is that since the oracle Eval depends on both f and O, each query
to Eval determines many other queries to f and O implicitly, which we need to
make sure that they are considered in the attack. Specifically, given the struc-
tured dependencies between f, O and Eval, in some cases it may not be possible
to construct a hybrid oracle even if there are no more intersection queries (in
Rudich’s case a hybrid oracle always exists).

Finally, the third challenge is the fact that O is injective, which causes the
following problem (somewhat similar to [51]). In our case, we are forced to as-
sume that P! is a permutation only when O is an injective length-increasing
function and not just any arbitrary function as in Rudich’s case (as otherwise
our obfuscator may not preserve functionality). Therefore, when constructing

On Constructing OWPs from Indistinguishability Obfuscation 9

the hybrid oracle O, we must ensure that it is also injective in order to reach a
contradiction. However, the hybrid oracle O might be non-injective when there
is some overlap between the images of the true oracle O and the sampled oracle
O’ on elements that are not in Q.

We revise the attack and its analysis to deal with the above obstacles. As in
Rudich’s attack, the algorithm A considers the collection of all oracles that are
consistent with Q. However, for dealing with the third challenge, it then chooses
one of these oracles uniformly at random and does not pick just an arbitrarily
one as in Rudich’s attack. We then show that with all but an exponentially-
small probability, there is no overlap between the range of the sampled oracle
O’ and the true oracle @, and therefore the hybrid oracle O can almost always
be constructed in an injective manner. Then, dealing with the first challenge,
we show that Eval does not give P a significant capability as one may imagine.
Intuitively, this is due to the fact that O is length increasing, and therefore its
range is very sparse. As a result, it is hard to sample a valid image of O without
first querying it, and almost any Eval query can be simulated by the construction
P itself. Finally, due to the dependencies between the oracles, for dealing with
the second challenge, the algorithm A will have to sample additional, carefully-
chosen, queries that do not necessarily appear in the evaluations P! (z*) = y*
or PI" (z') = y*, but are related to the set of queries that appears in these
evaluations. This results in a rather involved proof, where we carefully define
this set of queries, and extend the analysis accordingly.

As expected, our proof does not extend to constructions that are not domain
invariant. For example, in such constructions for two distinct (injective) functions
I' and I, the domain of the permutations P’ and pr may be completely
distinct, and this forces additional restrictions on the number of oracles I" that
are “valid” (i.e., can be used to construct the hybrid oracle I' as above). As
a result, while in the original proof of Rudich all of the oracles I"” that the
adversary may pick are valid, and while in our case all but some exponentially-
small amount of oracles I are valid, here the number of valid oracles may be
significantly smaller and therefore the attack may succeed with only a negligibly
small probability.

Attacking non-domain-invariant permutation families in the random-
oracle model. At a first sight, it seems that a natural approach towards ruling
out non-domain-invariant families relative to a random oracle, is to reduce them
to the case of a single permutation. That is, the adversary receives some index «
of some permutation in the family, together with the challenge element y* € D/
which it needs to invert (note that now the respective domain D/ may depend
on both f and «). A natural approach is to apply Rudich’s attack to the single
permutation Pf(a,-).

However, this approach seems somewhat insufficient due to the following
reasons. First, since the construction is not domain invariant, the set of valid
indices depends on the underlying primitive, and the set of valid indices for the
true oracle f may be completely different than the set of valid indices for the

10 G. Asharov, G. Segev

oracle f’ that will be sampled by A in each iteration (e.g., & might even not be
a valid index with respect to the sampled f’).

Second, when A inverts y* relative to f’, it may be that the pre-image xz’
that it finds is not even in the domain D/ of the permutation P7(a,-) that it
needs to invert. That is, it may be that even when the index « is valid relatively
to both f and f’, the domain of the permutation indexed by « relative to f is
completely different than the domain relative to f’. One can try restricting A to
sampling 2’ from the domain Df, but conditioning on P/ (a,2’) = y* it is not
clear that such an 2’ even exists (and, even if it exists, A would typically need
an exponential number of queries to f for finding it — since A has no “simple”
representation of the sets D/ and DI).

Finally, even when z’ is the pre-image of y* relative to f’ and z* is the pre-
image of y* relative to f, we have no guarantee that neither =’ or * are even in
the domain of the permutation indexed by o when considering the hybrid oracle
f. Therefore, the fact that P/ («a,z*) = pf’ (o, ') and z* # 2’ may not indicate
any contradiction.

In Section 4 we show how to overcome these obstacles. Intuitively, when sam-
pling some function f’ and the element &', the algorithm .4 samples in addition
two “certificates” that ensure that « is a valid index relative to f’, and that z’
is in the respective domain. These certificates include the randomness used by
the index sampling and input sampling procedures of the permutation family, as
well as all oracle queries and answers that are involved in the execution of these
two procedures. We later use these certificates when defining the hybrid func-
tion f, and thus ensure that « is a valid index relative to f and that z’ is in the
respective domain. Similarly, relative to the true oracle f, there exist some other
certificates (which are unknown to A), that ensure that « and z* are valid, and
are considered as well when defining the hybrid f Only then we can conclude the
existence of a hybrid oracle f relative to which there exist an index « and two
distinct inputs #* and 2’ in the domain of « such that Pf(a,2*) = Pf(a,2'). L

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce
the cryptographic primitives under consideration in this paper, oracle-aided one-
way permutation families and indistinguishability obfuscation for oracle-aided
circuits, as well as some standard notation. In Section 3 we present our nega-
tive result for constructing domain-invariant one-way permutation families from
indistinguishability obfuscation and one-way functions. Then, in Section 4 we
present our negative result for constructing one-way permutation families from
one-way functions.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x <— X the process of sampling a value

On Constructing OWPs from Indistinguishability Obfuscation 11

z from the distribution X. Similarly, for a set X we denote by x <— X the process
of sampling a value z from the uniform distribution over X. For an integer n € N
we denote by [n] the set {1,...,n}. A function negl : N — R™ is negligible if for
every constant ¢ > 0 there exists an integer N, such that negl(n) < n=¢ for all
n > N.. Throughout the paper, we denote by n the security parameter.

2.1 Oracle-Aided One-Way Permutation Families

We consider the standard notion of a one-way permutation family (see, for ex-
ample, [38]) when naturally generalized to the setting of oracle-aided algorithms
(as required within the context of black-box reductions [44, 55]). We start by for-
malizing the notion of an oracle-aided permutation family, and then introduce
the standard one-wayness requirement.

Definition 2.1 Let (Gen,Samp, P) be a triplet of oracle-aided polynomial-time
algorithms. We say that (Gen, Samp, P) is an oracle-aided permutation family rel-
ative to an oracle I' if the following properties are satisfied:

— Index sampling: Gen’'(-) is a probabilistic algorithm that takes as input the
security parameter 1™ and produces a distribution over indices a. For every
n € N we denote by IL the support of the distribution Genp(ln), and we let

m Y, o I

— Input sampling: SampF(-) is a probabilistic algorithm that takes as input
an index o € I', and produces a uniform distribution over a set denoted
DI

— Permutation evaluation: For any index o € ', PT'(«,-) is a determin-
istic algorithm that computes a permutation over the set Dg.

Definition 2.2 An oracle-aided permutation family (Gen,Samp, P) is one way
relative to an oracle I' if for any probabilistic polynomial-time algorithm A there
exists a negligible function negl(-) such that

Pr[A"(a, P (a,z)) = 2] < negl(n)

for all sufficiently large n € N, where the probability is taken over the choice of
o Genp(ln), T Sampp(a), and over the internal randomness of A.

2.2 Indistinguishability Obfuscation for Oracle-Aided Cir-
cuits

We consider the standard notion of indistinguishability obfuscation [6, 32] when
naturally generalized to oracle-aided circuits (i.e., circuits that may contain ora-
cle gates in addition to standard gates). We first define the notion of functional
equivalence relative to a specific function (provided as an oracle), and then we
define the notion of an indistinguishability obfuscation for a class of oracle-aided
circuits. In what follows, when considering a class C = {C, }nen of oracle-aided
circuits, we assume that each C,, consists of circuits of size at most n.

12 G. Asharov, G. Segev

Definition 2.3 Let Cy and C1 be two oracle-aided circuits, and let f be a func-
tion. We say that Cy and C7 are functionally equivalent relative to f, denoted
C’(J; = C{, if for any input x it holds that Cg (z) = C{(x)

Definition 2.4 A probabilistic polynomial-time algorithm iO is an indisting-
uishability obfuscator relative to an oracle I' for a class C = {Cp}nen of oracle-
aided circuits if the following conditions are satisfied:

— Functionality. For all n € N and for all C € C, it holds that
Pr [CF =0 . O« i@F(ln,C)} =1

— Indistinguishability. For any probabilistic polynomial-time distinguisher
D = (D1, Dy) there exists a negligible function negl(-) such that

0 def
AdVII‘,iO,D,C(n) =

: 1
Pr [Exp'poyiovD_’C(n) = 1} — 2‘ < negl(n)

for all sufficiently large n € N, where the random variable EXPiz(“),io,D,c(”) is
defined via the following experiment:

1. b+ {0,1}.

2. (Cy, C1,state) < DI (1™) where Cy,Cy € C,, and CF = CF.

3. C «iol'(1",¢y).

4. b < DI (state, C).

5. If b = b then output 1, and otherwise output 0.

3 Impossibility for Constructions Based on 10O
and One-Way Functions

In this section we present our negative result for domain-invariant constructions
of a one-way permutation family from from a one-way function and an indistin-
guishability obfuscator. In section 3.1 we formally define the class of construc-
tions to which our negative result applies. Then, in section 3.2 we present the
structure of our proof, which is provided in Sections 3.3-3.4.

3.1 The Class of Constructions

We consider fully black-box constructions of a one-way permutation family from
a one-way function f and an indistinguishability obfuscator for all oracle-aided
circuits C7. Following [3], we model these primitives as two independent building
blocks due to the following reasons. First, although indistinguishability obfus-
cation is known to imply one-way functions under reasonable assumptions [46],
this enables us to prove an unconditional result. Second, and more importantly,
this enables us to capture the common techniques that have been used so far in
constructions based on indistinguishability obfuscation. As discussed in Section

On Constructing OWPs from Indistinguishability Obfuscation 13

1.3, these include, in particular, non-black-box techniques such as the punctured
programming approach of Sahai and Waters [59] and its variants.

We now formally define the class of constructions considered in this section,
tailoring our definitions to the specific primitives under consideration. We remind
the reader that two oracle-aided circuits, Cyp and C1, are functionally equivalent
relative to a function f, denoted C(J; = C’{ , if for any input z it holds that
Cg (x) = C{ (x) (see Definition 2.3). The following definition is based on those
of [3] (which, in turn, are motivated by [47, 37, 55]).

Definition 3.1 A fully black-box construction of a one-way permutation fam-
ily from a one-way function and an indistinguishability obfuscator for the class
C = {Ch}nen of all polynomial-size oracle-aided circuits, consists of a triplet of
oracle-aided probabilistic polynomial-time algorithms (Gen,Samp, P), an oracle-
aided algorithm M that runs in time Ta(-), and functions epr1(-) and enr2(-),
such that the following conditions hold:

— Correctness: For any functions f iO such that iO(C;r)’ = Cf for all
C € C and r € {0,1}", the triplet (Gen,Samp, P) is a permutation family
relative to the oracle (f,10) (as in Definition 2.1).

— Black-box proof of security: For any function f, for any function iO
such that iO(C;r) = CF for all C € C and r € {0,1}", for any oracle-aided
algorithm A that runs in time T 4 = Ta(n), and for any function e 4 = € 4(n),
if

Pr [A79(a, P19 (a,2)) = 2] > €a(n)

for infinitely many values of n € N, where the probability is taken over
the choice of a +— Gen’'©(1"), z «+ Samp”®(a), and over the internal
randomness of A, then either

Pr [MAHO (f (2) € 7 (f(2)] = enmr (Ta(n) - e4' (n)) - eara(n)

for infinitely many values of n € N, where the probability is taken over the
choice of x <+ {0,1}" and over the internal randomness of M, or

; 1 _
‘Pr {Exp(?’,io),iO,MA,C(n) = 1} - 2‘ > et (Ta(n) - 1 (n)) - ear,2(n)

for infinitely many values of n € N (see Definition 2.4 for the description of
the experiment EXpI(Of7io),i0,MA7c(n)).

The “security loss” functions. Black-box constructions are typically for-
mulated with a reduction algorithm M that runs in polynomial time and of-
fers a polynomial security loss. In our setting, as we are interested in capturing
constructions that may be based on super-polynomial security assumptions, we
allow the algorithm M to run in arbitrary time Tps(n) and to have an arbitrary
security loss.

14 G. Asharov, G. Segev

In general, the security loss of a reduction is a function of the adversary’s
running time T 4(n), of its success probability € 4(n), and of the security param-
eter n € N. Following Luby [47] and Goldreich [37], we simplify the presentation
by considering Levin’s unified security measure T'4(n) - e}l(n). Specifically, our
definition captures the security loss of a reduction by considering an “adversary-
dependent” security loss ens1(Tia(n) - €' (n)), and an “adversary-independent”
security loss enr2(n). By considering arbitrary security loss functions, we are
indeed able to capture constructions that rely on super-polynomial security as-
sumptions. For example, in the recent construction of Bitansky et al. [13] (and
in various other recent constructions based on indistinguishability obfuscation),
the adversary-dependent loss is polynomial whereas the adversary-independent
loss is sub-exponential®.

Domain-invariant constructions. We now define the notion of domain in-
variance which allows us to refine the above class of constructions. Recall that
for an oracle-aided permutation family (Gen,Samp, P) and for any oracle I", we
denote by Z!" the support of the distribution Gen” (1™) for every n € N, and we

let 77 2 UnenZE (ice., I is the set of all permutation indices). In addition, for

any permutation index a € Z!" we denote by DL the domain of the permutation
PF(Ot,)

Definition 3.2 An oracle-aided one-way permutation family (Gen,Samp, P) is
domain invariant relative to a set & of oracles if there exist sequences {Z,}nen
and {Dy }aez such that for every oracle I' € & the following conditions hold:

1. IV = 7,, for every n € N (i.e., a permutation index « is either valid with
respect to all oracles in & or invalid with respect to all oracles in &).

2. D' = D, for every a € J, nIn (i-e., the domain of PT'(a,-) is the same
forallI'e &).

neN

3.2 Proof Overview and the Oracle I'

Our result in this section is obtained by presenting a distribution over oracles
I" relative to which the following two properties hold: (1) there is no domain-
invariant one-way permutation family (Gen,Samp,P), and (2) there exist an
exponentially-secure one-way function f and an exponentially-secure indistin-
guishability obfuscator ¢{O for the class of all polynomial-size oracle-aided cir-
cuits C7. Equipped with the notation and terminology introduced in Section
3.1, we prove the following theorem:

Theorem 3.3 Let (Gen,Samp, P, M, T, en.1,€m,2) be a fully black-box dom-
ain-invariant construction of a one-way permutation family from a one-way
function f and an indistinguishability obfuscator for the class of all polynomial-
size oracle-aided circuits CT. Then, at least one of the following propertied holds:

5 This is also the situation, for example, when using “complexity leveraging” for argu-
ing that any selectively-secure identity-based encryption scheme is in fact adaptively
secure.

On Constructing OWPs from Indistinguishability Obfuscation 15

1. Tar(n) > 2™ for some constant ¢ > 0 (i.e., the reduction runs in exponential
time).

2. em1(n®) - em2(n) < 2-"/4 for some constant ¢ > 1 (i.e., the security loss is
exponential).

In particular, the theorem implies that if the running time Th/(-) of the
reduction is sub-exponential and the adversary-dependent security loss enr1(-)
is polynomial as in the vast majority of constructions (and, in particular, as in
the construction of Bitansky et al. [13]), then the adversary-independent security
loss €pr,2(+) must be exponential (thus ruling out even constructions that rely on
sub-exponential security assumptions — as discussed in Section 3.1).

In what follows we describe the oracle I' (more accurately, the distribution
over such oracles), and then explain the structure of our proof.

The oracle I'. The oracle I is a triplet (f, O, Evalf’o) that is sampled from

a distribution & defined as follows:

— The function f = {fn}nen. For every n € N, the function f, is a uni-
formly chosen function f, : {0,1}" — {0,1}".

Looking ahead, we will prove that f is a one-way function relative to I.

— The functions O = {O,},cn and Evall"® = {Evalfl’o}neN. For every
n € N the function O, is an injective function O, : {0,1}*" = {0,1}'" cho-
sen uniformly at random. The function Evalﬁ’(9 on input (6’, x) € {0,1}107 x
{0,1}" finds the unique pair (C,7) € {0,1}" x {0,1}" such that O,,(C,r) =
6’, where C is an oracle-aided circuit and r is a string (uniqueness is guar-
anteed since O,, is injective). If such a pair exists, it evaluates and outputs
C/(z), and otherwise it outputs L.

Looking ahead, we will use O and Eval for realizing an indistinguishability
obfuscator 1O relative to I" for the class of all polynomial-size oracle-aided
circuits C7.

The structure of our proof. Our proof consists of two parts: (1) showing
that relative to I' there is no domain-invariant one-way permutation family,
and (2) showing that relative to I' the function f is an exponentially-secure
one-way function and that the pair (O, Eval) can be used for implementing an
exponentially-secure indistinguishability obfuscator for oracle-aided circuits C.

The vast majority of our effort in this proof is in showing that relative to I’
there is no domain-invariant one-way permutation family. Specifically, as for the
second part, our oracle I' is somewhat similar to the oracle introduced by [3],
relative to which they proved the existence of an exponentially-secure one-way
function and an exponentially-secure indistinguishability obfuscator. The main
difference between the oracles is that the function O in their case is a permuta-
tion, whereas in our case it is an injective length-increasing function. Since our
aim here is to rule out constructions of one-way permutations, then clearly we
cannot allow O to be a permutation. This requires us to revisit the proof of [3]
and generalize it to the case where O is injective and length increasing.

16 G. Asharov, G. Segev

In what follows, we say that an algorithm A that has oracle access to I' is a
g-query algorithm if it makes at most g queries to I, and each of its queries to
Eval consists of a circuit of size at most q.

Part 1: Inverting any domain-invariant construction. Building upon
and generalizing the work of Rudich [58], we show that relative to the oracle
I' there are no domain-invariant one-way permutations families. As discussed
in Section 1.3, Rudich presented an attacker that inverts any single domain-
invariant permutation that has oracle access to a random function. Here we
need to deal with constructions that have oracle access to a significantly more
structured functionality”, and that are permutation families. Nevertheless, in-
spired by the main ideas underlying Rudich’s attacker we prove the following
theorem in Section 3.3:

Theorem 3.4 (simplified) Let (Gen,Samp, P) be an oracle-aided domain-inv-
ariant permutation family. Then, there exist a polynomial q(-) and a q-query
algorithm A such that

Pr[A"(a, P (a,z)) =2] > 1271

for any n € N, where the probability is taken over the choice of I' + &, a <
Gen’ (1), z + Samp’ (), and over the internal randomness of A. Moreover, the
algorithm A can be implemented in polynomial time given access to a PSPACE-
complete oracle.

Part 2: The existence of a one-way function and an indistinguishabil-
ity obfuscator. As discussed above, by refining the proof of [3] we prove that
f is an exponentially-secure one-way function relative to I', and we construct
an exponentially-secure indistinguishability obfuscator ¢:O. Our obfuscator is de-
fined as follows: For obfuscating an oracle-aided circuit C' € {0,1}" (i.e., we
denote by n = n(C) the bit length of C’s representation), the obfuscator :O
samples r < {0,1}" uniformly at random, computes C = O,(C,r), and outputs
the circuit Eval(a ,+). That is, the obfuscated circuit consists of a single Eval gate
with hardwired input C. We prove the following theorem in the full version of
this paper [4]:

Theorem 3.5 (simplified) For any oracle-aided 2™/*-query algorithm A it hold
that

Pr[A”(f(z)) € f(f(2))] <272

and

; 1
Pr |:EXpI19,iO,A,C(n) = 1} =1— 2‘ < 2—11/4

" For example, there are dependencies between O, Eval and f which allow Eval to
query O for a exponential number of times.

On Constructing OWPs from Indistinguishability Obfuscation 17

for all sufficiently large n € N, where the probability is taken over the choice of
I' + & and internal randomness of A for both cases, in addition to the choice of
x <+ {0,1}" in the former case and to the internal randomness of the challenger
in the latter case.

3.3 Attacking Domain-Invariant Permutation Families Rel-
ative to I

We show that relative to the oracle I' there are no domain-invariant one-way
permutations families. As discussed in Section 1.3, Rudich presented an attacker
that inverts any single domain-invariant permutation that has oracle access to
a random function. Here we need to deal with constructions that have oracle
access to a significantly more structured functionality. We prove the following
theorem:

Theorem 3.6 Let (Gen,Samp, P) be an oracle-aided permutation family that is
domain invariant relative to the support of the distribution &. Then, there exist
a polynomial q(-) and a g-query algorithm A such that

Pr[A" (o, P (a,2*)) = 2*] >1—271°

for any n € N, where the probability is taken over the choice of I' + &,
o + Gen” (1), z* < Samp’ (a), and over the internal randomness of A. More-

over, the algorithm A can be implemented in polynomial time given access to a
PSPACE-complete oracle.

We first provide additional notation definitions that we require for the proof
of the above theorem, and then we provide its formal proof.

The event spoof. The event spoof will help up show that the oracle Eval
does not provide the construction with any significant capabilities. We formally
define this event and then state an important claim that will help up to prove
our theorem.

Definition 3.7 For any oracle-aided algorithm M, consider the following event
spoof,, that may occur during an evecution of MT (1™): The algorithm makes
a query Evaln(a,a) with |5| = 10n whose output is not L, yet C was not an
output of a previous Oy, -query.

In the full version of this paper [4] we prove the following claim:

Claim 3.8 For any n € N, for any f and O_,, = {On}menmznm and for
any q-query algorithm M, the probability that spoof, occurs in an execution of
M (1™) satisfies

Pr [spoof, | < q-275" .

n

18 G. Asharov, G. Segev

Notation. Denote by T the support of the distribution & from which our or-
acle I' = (f, O, Eval’ ’O) is sampled. Note that the oracle Eval is fully determined
given f and O, and therefore it is enough to consider the choice of the latter only.
For every n € N we let Z,, denote the support of Genp(ln)7 which is the same for
every I' € T due to the domain invariant assumption, and we let Z = (J,, oy Zn-
In addition, we let D = {D, }qez be the set of domains (which is again the same
forany I' € T).

We let Partial(I") denote the set of oracle queries that our adversary A will
sample in each iteration. We let) denote the set of actual queries that made
by A to the true oracle I'. We write, e.g., [0,,(C,r) = C] € @ to denote that Q
contains an O,-query with input (C,r) and output C. Likewise, [f,(z) = y] €
Partial(I"") denotes that there is some f,, query in Partial(I') with input 2 and
output y. We also use the symbol x to indicate an arbitrary value, for instance
[Eval(C,a) = x| € @ denotes that A made an Eval call to I" on the pair (C, a),
but we are not interested in the value that was returned by the oracle.

The set of queries/answers that the adversary samples. Our adver-
sary A will sample in each iteration some oracle queries/answers Partial(I”) =
(f', O’ Eval’) that are consistent with the actual queries @ it made so far. How-
ever, since the oracles (f, O, Eval) have some dependencies, we want that these
dependencies will appear explicitly in the set of queries/answers that the adver-
sary samples (looking ahead, by doing so, we will be able to construct a hybrid
oracle f) Formally, we define:

Definition 3.9 (Consistent oracle queries/answers) Let Partial(I") = (f,
O’ Eval) be a set of queries/answers. We say it is consistent if for every m € N
it holds that:

1. For every query [Evalm(6'7*) = *] € Eval', there exists a query [Om(*) =
Cleo.

2. For every query [Evalm(éﬂ) =] € Eval' with |@| = 10m and |a| = m,
let [Om(C’7 r) = é} € O that is guaranteed to exist by the previous require-

ment. Then, the oracle f' contains also queries/answers sufficient for the
evaluation of C7 (a), and the value of this evaluation is indeed (3.

Augmented oracle queries. For the analysis, we consider the queries that
are associated with the execution of P¥'(a, 2*) = y*, for some a € Z. In fact, the
set that we consider may contain some additional queries that do not necessarily
appear in the execution of PI'(a, z*), but are still associated with this execution.
Let RealQ(I1, I', v, z*) denote the set of actual queries to I" in the evaluation of
P (a, 2*). We define:

Definition 3.10 (Augmented oracle queries) The set of extended queries,
denoted AugQ(I1, I, x*), consists of the following queries:

1. All the queries in RealQ(IT, I, o, z*).

On Constructing OWPs from Indistinguishability Obfuscation 19

2. For every query [Eval,,(C,a) =] € RealQ(II, I, o, z*) with |C| = 10m,
la| =m andb # L, let C,r € {0,1}"™ be the unique pair such that O,,(C,r) =
C. Then, the set AugQ(II, I', x*) contains all the f-queries/answers sufficient
to for the evaluation of Cf(a).

Note that these additional queries correspond to the consistent queries/answers
that the adversary samples in the attack, as in Definition 3.9. We do not explicitly
require the first requirement of Definition 3.9 here. This is because our analysis
focuses on the case where there is no Eval query on an obfuscated circuit C' that
is not an output of a previous O-query.

Looking ahead, all the circuits that will be evaluated by the oracle Eval are
of some polynomial size in the security parameter,and therefore each evaluation
adds some polynomial number of oracle queries to f. Therefore, the overall size
of AugQ(II, I',z*) is some polynomial. Let £ = ¢(n) > n be an upper bound of
|AugQ(P, I', z)| for all possible I' € T and all z € D,.

Equipped with the above notation and definitions, we are now ready to prove
Theorem 3.6.

Proof of Theorem 3.6. Let IT = (Gen,Samp, P) be an oracle-aided permuta-
tion family that is domain invariant relative to the support of the distribution
G&. Consider the following oracle-aided algorithm A:

The algorithm .A.

— Input: An index o € T and a value y* € D,,.
— Oracle access: The oracle I'.
— The algorithm:

1. Initialize an empty list Q of oracle queries/answers to I' (looking ahead,
the list Q will always be consistent with the true oracle I').

2. Avoiding spoof,,, for small m. Lett = log(16¢). The adversary A
queries the oracle fn, on all inputs |x| = m for all m < t. It queries
On(C,7) for all |C| = |r| = m < t; and queries Eval,(C,a) on all
m < t with |C| = m/10 and |a| = m. Denote this set of queries by Q*.

3. Run the following for ¢ + 1 iterations:

(a) Simulation phase: A finds a value 2’ € D,, and a set Partial(I")
of consistent oracle queries/answers that is consistent with the list
of queries/answers Q, such that PP (o 2/ = y* as follows: ®

i. A samples an oracle I'" = (f',O',Eval’) uniformly at random
from the set of all oracles that are consistent with Q. That is, [’
and O are sampled uniformly at random conditioned on Q, and
then Eval’ is defined accordingly.

1. A inverts y* relative to I''. Specifically, A enumerates over D,
and find the unique input @' € Dy for which PT (o, z') = y*.

8 Note that the set of queries/answers Partial(I"") may be inconsistent with the true
oracle I" on all queries Partial(I") \ Q.

20 G. Asharov, G. Segev

iti. A sets Partial(I'") to be all the queries in Q, and all the queries
included in the evaluation of PT (a,2').
(b) Evaluation phase: The adversary evaluates PT (v, 2'). If the output
of the evaluation is y*, it halts and outputs x'.
(¢) Update phase: Otherwise, A makes all the queries in Partial(I")\ Q@
to the true oracle I', and continues to the next iteration.
4. In case the adversary has not halted yet, it outputs L.

Analysis. We show that in each iteration the adversary either finds z* or learns
some query associated with the evaluation P!'(a, z*). We now define these two
“bad” events and show that they occur with small probability. We then proceed
to the analysis conditioned that these two bad events do not occur.

The event spoof. For any m € N, define spoof,, to be the event where
[Eva|m(é,a) ”] J_} € AugQ(IT, T, %)

but R
[om(*, X) = 0] ¢ AugQ(IT, I, z*) U Q* .

Let spoof = \/, spoof,,. By construction, Q* contains all possible O,,-
queries for every m < t, and therefore spoof,,, cannot occur for m < ¢. Moreover,
by Claim 3.8, we have that

Pr[spoof,] < Pr[\/,,spoof,, | < Z Pr | spoof,, |
m=t

o0
< Z /- 2—8m <92.4. 2—810g 164 < 2—31
m=log 16£

Let spoof/, be the event where the adversary A queries the real oracle I’
some query [Evalm(a,*)], receives a value differ than L, but C was not an
output of I" on some previous query of A to O,,. Let spoof 4 = \/, spoof,,.
Similarly to the above, the probability of spoof 4 is bounded by 273!, Finally,
we let spoof = spoof 1 V spoof 4, and this probability is bounded by 273°.

The event fail. The second bad event that we consider is the event fail.
This event occurs whenever A samples an oracle I that has some contradiction
with the oracle I', and therefore the hybrid oracle I" cannot be constructed.

Let T(Q) be the set of all oracles I'” that are consistent with @ (namely, each
query in @ is answered the same for all IV € T(Q), with the same answer as
I'). In each iteration, the adversary A samples the oracle I'"” which is consistent
with the true oracle queries Q). Let T-admissible denote the set of “valid” oracles
that A may sample; the set T-admissible contains all oracles I = (f’,0’, Eval)
such that:

On Constructing OWPs from Indistinguishability Obfuscation 21

— I is consistent with Q.

— I avoids the outputs of O. For every m € N, the true oracle O,, and the
sampled oracle O/, should have disjoint outputs (except for the queries in
Q). Formally, let Q2 = {z € {0,1}°" | [On(z) = %] € Q}. Then, we
require that for every z,y ¢ Q9 it holds that O,,(z) # O’ (y).

— I avoids invalid Eval-queries. That is, for every [Evalm(a,a) = 1] €
AugQ(II, T, m:), with \é’\| = 10m, for every C,r € {0,1}" it holds that
O, (C,r)y#£C.

Notice that the first two conditions relate to the set of queries), whereas the
third condition relates to the set AugQ(IT, I, z*). Moreover, note that the sec-
ond condition defines 2™ — |Q| outputs of O/, that are invalid, and the third
condition defines at most ¢ invalid outputs. Therefore, there are overall at most
22™ outputs of O, that are invalid.

Note that between iterations, the set @) varies. We define by Invalid—lmffl) the
set of all invalid outputs for O/, in the ith iteration. In all iterations, the set
Invalid-Im{? is bounded by 22™.

m
Let fallgfl) denote the event where A samples an invalid oracle O], in some
iteration . Let fail® = V/, faill), and let fail = \/, fail”). For every m, we have
that:

r {fang? } ~pr [Elx € {0,1}%" s.t. O!, (z) € Invalid-Im®)

m

(lnva|id-|m;§)
< 22m . 275771
— 210m _ 22m — :

As a result, we get that the probability that sampling O fails for some length
m > t is bounded by

pr| il | < 22—5m<2 275"

We therefore conclude that the probability that in some of the ¢ + 1 iterations,
the adversary A samples some oracle I ¢ T-admissible is bounded by

41
Pr(fail | <) Pr { fail®) } <(U+1)-2.275 =204 1) (274) <2710
i=1
where recall that ¢ = log(16¢). We are now ready for the main claim of the
analysis.

Claim 3.11 Assume that fail and spoof do not occur. Then, in every iteration
at least one of the following occurs:
1. A finds the pre-image x* such that PT (o, 2*) = y*.
2. During the update phase A queries I' with at least one of the queries in
AugQ(II, T, x*).

22 G. Asharov, G. Segev

Proof. Assume that neither one of the above conditions hold. Then, we show
that there exists an oracle I" € T that behaves like the true oracle I' on
Pl (a,2*) = PI'(a,2*) = y*, and on the other hand, it behaves like I in the

evaluation of PT (o, z') = PPtaI(I") (o, 2/) = y*. According to this oracle I, the
following hold:

1. Since IT is a domain-invariant construction, and since Ie T, there exists
some randomness r € {0,1}* such that Gen” (17;7) = .

2. Since II is a domain-invariant construction, it holds that Im(Sampf(a)) =
Im(Samp” () = Im(Samp™22'I") (1)) = D,,. As a result, there exists some
randomness 7 € {0, 1}* such that Samp’ («; ') = 2" and Samp’ (a; 7*) = z*.

3. As mentioned above, Pf(a,o:’) = y* and Pf(oz,x*) =y~

Since the first condition in the statement does not hold, we conclude that z" # z*
but still P’ (o, ') = P!'(a, 2*), in contradiction to the assumption that P! (a,-)
defines a permutation.

We now show that the oracle I = (f, o, E\EI) as above can be constructed. Recall
that we assume that the both conditions of the statement of the claim do not
hold, and therefore in particular it holds that AugQ(I1, I, x*) N Partial(I"") C Q.

The oracle f . Note that for every m < ¢, the set of queries Q* contains
all the functions { f, }m<: and thus agrees completely with f (i.e., also with f).
We therefore set fm = fim. B

For every m > t, we define the function f,, as follows. For every x such that
[fm(z) = 9] € AugQ(II, I, z*), we set fn(x) = y'. For every [f(z) = y] €
Partial(I""), we set fy,(x) = y. Since AugQ(II, I, z*) N Partial(I”) C Q, we have
that there is no contradiction, i.e, there are no input x and outputs ¥,%’ such
that y #¢ and [fin(z) = '] € f and [fim(z) = y] € AugQ(II, I',z*). For any
other value z ¢ Partial(I") N AugQ(II, T, z*), we set fo,(x) = 0™.

Before we continue to define the oracle (5, we first define some set of output
values that O will have to avoid. For every m > ¢, we define the set avoid-O,, as

. def
avoid-0,, =

{(3 € {0,117 | 3 [Eval,n(C,%) = 4] € AugQ(IT, I, z*) U PartiaI(F’)} .

The oracle ©. The oracle is already defined for every m < t. For ev-
ery m > t, we define the function O,, as follows. For every [O,,(z) = y] €
AugQ(II, I, z*), we set O, (z) = y. Likewise, for every [0, (x) = y] € Partial(I"),
we set O, (z) = y. Since AugQ(II, I, z*) N Partial(I") C @, we have that there
is no contradiction, that is, there is no pre-image that has two possible outputs.
Moreover, since fail does not occur, it holds that I € T-admissible, the two

On Constructing OWPs from Indistinguishability Obfuscation 23

functions O, and (the partially defined function) O], do not evaluate to the
same output, and so the partially defined function 5m is injective. We continue
to define O,, on the additional values, such that O,, is injective and avoids the
set avoid-O,,.

The oracle Eval. We define the oracle Eval using the oracles f and O
exactly as the true oracle Eval is defined using the true oracles f and O. We now
show that Eval is consistent with AugQ(II, I'yz*) and Partial(I"’). That is, that
every query [Eval,,(x,*)] € AugQ(II, I',z*) U Partial(I) has the same answer
with Eval, and therefore Pl (a,2*) = Pf(oz,cc*) and PT (za, ') = Pf(a, x'). We
have:

1. Assume that there exists [Eval(C,a) = 8] € Eval’ for some 8 # L. Since the
oracle Partial(I") = (f’,0’,Eval’) is consistent (recall Definition 3.9), then
there exists a query [O,(C,r) = 6’] € Partial(I”) and f’ contains all the
necessary queries/answers for the evaluation of C'f l (a), and it also holds that
cf’ (a) = B. However, since any (f’, O')-queries in Partial(I") has the exact
same answer with (f, ©), it holds that Cf(a) = B and O(C,r) = C, and so,
from the definition of Eval it holds that Eval(C,a) = 3 as well.

2. Assume that there exists [Eval(C,a) = 8] € AugQ(II, T, z*) for some § #
L. Since the event spoof does not occur, there exists a query [O(C,r) =
6'} € AugQII, I'yz*) as well, and AugQ(II,I',z*) contains also all the f-
queries necessary for the evaluation C/ (a). Since these queries appear in
AugQ(II, I', x*), it holds that f and O agree on the same queries, and there-

fore Eval(a, a) = B, as well.

3. For every query [Eval(C,a) = L] € Partial(I") U AugQ(II, I, *) we show
that Ef\;gl(é' ,a) = L as well. Specifically, it suffices to show that there do not
exist C' and r for which 6(0, r) = C. Assume towards a contradiction that
there exist such C' and r, then there is inconsistency only if 6(0, r) = C but
[Eval(C,a) = L] € Partial(I"") U AugQ(II, I', z*). However, this cannot occur
since the oracles O and O’ do not contradict, and O avoids all Eval-queries
in both Partial(I") and AugQ(II, ', z*), since it avoids the set avoid-O.

This completes the proof of claim 3.11.]
From the previous claim we conclude that:

r r ANy ok | Fa A s F]

Flir@ [A" (o, P" (o, 2%)) = 2" | fail A spoof | =1.
a+Gen! (1)
z*+Samp’ ()

Since Pr[fail] + Pr [spoof | < 2719 it holds that:

P r r * o >1_ —10.
L [A(a,P (a,2")) ==]_1 2
atGenl (17)

z*+Samp’ ()

24 G. Asharov, G. Segev

Finally, we observe that A makes at most a polynomial number of oracle queries
to I', and all other computations that are done by A can be done using a
polynomial number of queries to a PSPACE-complete oracle (as in the work of
Impagliazzo and Rudich [44]): In each iteration, sampling x’ and Partial({"”) can
be done in polynomial space, requires access only to @ which is of polynomial
size, and does not require access to I. []

3.4 Proof of Theorem 3.3

Equipped with the proofs of Theorems 3.4 and 3.5, we are now ready to prove
Theorem 3.3.

Proof of Theorem 3.3. Let (Gen,Samp, P, M, T, enr,1, €ar,2) be a fully black-
box construction of a domain-invariant one-way permutation family from a one-
way function f and an indistinguishability obfuscator iO for the class C of
all oracle-aided polynomial-size circuits C¥ (recall Definition 3.2). Theorem 3.4
guarantees the existence of an oracle-aided algorithm A that runs in polynomial
time T 4(n) such that

Pr [APSPAEL (o, PT(a, 2)) = x| > ea(n)

for any n € N, where e4(n) = 1 — 2719 and the probability is taken over
the choice of I' + &, a «+ Gen' (17), & < Samp’ (@), and over the internal
randomness of A. Definition 3.1 then states that there are two possible cases to
consider: A can be used either for inverting the one-way permutation f or for
breaking the indistinguishability obfuscator :O.

In the first case we obtain from Definition 3.1 that

Pr M4 (f (@) € FTHf@)] = enra (Taln) - 5! () - eara(n)

for infinitely many values of n € N, where the probability is taken over the choice
of x - {0,1}" and over the internal randomness of M. The algorithm M may
invoke A on various security parameters (i.e., in general M is not restricted to
invoking A only on security parameter n), and we denote by £(n) the maximal
security parameter on which M invokes A (when M itself is invoked on security
parameter n). Thus, viewing M A as a single oracle-aided algorithm that has
access to a PSPACE-complete oracle and to I', its running time Ty, (n) satisfies
Tyra(n) < Tp(n)-Ta(l(n)) (this follows since M may invoke A at most Ths(n)

times, and the running time of A on each such invocation is at most T4 (£(n))).

. . . def PSPACE
In particular, viewing M’ = M#A

oracle access to I, implies that M’ is a g-query algorithm where ¢(n) = Thra(n).
Theorem 3.5 then implies that either 27/ < g(n) or 1 (Ta(n) - €4'(n)) -
enr2(n) < 272 In the first sub-case, noting that £(n) < Ths(n), we obtain that

as a single oracle-aided algorithm that has
9

2"/% < g(n) = Tapa(n) < Tar(n) - Ta(€(n)) < Tar(n) - Ta(Tar(n)).

9 Recall that an algorithm that has oracle access to I is a g-query algorithm if it makes
at most q queries to I", and each of its queries to Eval consists of a circuit of size at
most q.

On Constructing OWPs from Indistinguishability Obfuscation 25

The running time T4 (n) of the adversary A (when given access to a PSPACE-

complete oracle) is some fixed polynomial in n, and therefore Ths(n) > 27

for some constant ¢ > 0. In the second sub-case, we have that ey 1 (Ta(n)) -

en2(n) <272 and since T4(n) is some fixed polynomial in n (and e4(n) is a

constant) we obtain that eps1(n) - epr2(n) < 27"/2 for some constant ¢ > 1.
In the second case we obtain from Definition 3.1 that

; 1 _
Pr [Expi® 1y arsonce o () = 1] 2\ > eart (Ta(n) - €3 () - eara(n)

for infinitely many values of n € N, where I" +— &. As in the first case, viewing

M % ATE a5 a single oracle-aided algorithm that has oracle access to I,
implies that M’ is a ¢-query algorithm where g(n) = Tjsa(n). Theorem 3.5 then
implies that either 2"/ < g(n) or epr;1 (Ta(n) - 1 (n)) -enm2(n) <2774 Asin
the first case, this implies that either Ths(n) > 2¢" for some constant ¢ > 0, or
em1(n®) -epa(n) < 2-"/4 for some constant ¢ > 1.]

4 Impossibility for Constructions Based on One-
Way Functions

As discussed in Section 1.3, the known impossibility results for constructing
one-way permutations based on one-way functions [58,45,51] fall short in two
aspects. First, these results rule out constructions of a single one-way permuta-
tion, and do not rule out constructions of a one-way permutation family. Second,
these results rule out constructions that are domain invariant (recall Definition
3.2), and do not rule out constructions that are not domain invariant (such as
the construction of Bitansky et al. [13]).

In this section we resolve this surprising gap by ruling out all fully black-box
constructions of one-way permutation families from one-way functions — even
constructions that are not domain invariant. In what follows we first formally
define this class of reductions, and then state and prove our result.

Definition 4.1 A fully black-box construction of a one-way permutation fam-
iy from a one-way function consists of a triplet of oracle-aided probabilistic
polynomial-time algorithms (Gen,Samp, P), an oracle-aided algorithm M that
runs in time Ta(-), and functions epr1(-) and enra(-), such that the following
conditions hold:

— Correctness: For any function f the triplet (Gen, Samp, P) is a permutation
family relative to f (as in Definition 2.1).

— Black-box proof of security: For any function f, for any oracle-aided
algorithm A that runs in time T 4 = T.a(n), and for any function e 4 = e 4(n),

if

Pr [Af(a, P/(a,z)) = z] > ea(n)

26 G. Asharov, G. Segev

for infinitely many values of n € N, where the probability is taken over the
choice of a < Gen’ (17), z + Samp’ (@), and over the internal randomness

of A, then
Pr [MPA(f (@) € f7H(f(2)] = emna (Ta(n) - €41 (n)) - eara(n)

for infinitely many values of n € N, where the probability is taken over the
choice of x <+ {0,1}" and over the internal randomness of M.

The above definition clearly captures constructions that are not domain in-
variant. First, it allows the support of the distribution Gen’ (1™) to depend on
f. Second, for each permutation index « that is produced by Gen’ (1™), it allows
the domain of the permutation P/ (a;,-) to depend on f. For this general class of
reductions we prove the following theorem:

Theorem 4.2 Let (Gen,Samp,P, M, T, e, €m2) be a fully black-box con-
struction of a one-way permutation family from a one-way function. Then, at
least one of the following propertied holds:

1. Tar(n) > 2™ for some constant ¢ > 0 (i.e., the reduction runs in exponential
time).

2. epra(n®) - epra(n) < 27" for some constants ¢ > 1 and B > 0 (i.e., the
security loss is exponential).*

Towards proving Theorem 4.2 we generalize the attack presented in Section
1.3 from inverting any single oracle-aided domain-invariant permutation to in-
verting any oracle-aided one-way permutation family — even such families that
are not domain invariant. In the full version of this paper [4], we prove the
following theorem:

Theorem 4.3 Let (Gen,Samp, P) be a triplet of oracle-aided probabilistic poly-
nomial-time algorithms that is a permutation family relative to any oracle f.
Then, there exists an oracle-aided algorithm A that makes a polynomial number
of oracle queries such that for any function f it holds that

Pr [Af(a, P/ (a,z)) = z] =1

for anyn € N, where the probability is taken over the choice of o < Genf(ln) and
T Sampf(a), and over the internal randomness of A. Moreover, the algorithm
A can be implemented in polynomial time given access to a PSPACE-complete
oracle.

10 Tn particular, if the adversary-dependent security loss ear1 (+) is polynomial, then the
adversary-independent security loss enr,2(-) is exponential.

On Constructing OWPs from Indistinguishability Obfuscation 27

References

10.

11.

12.

13.

14.

15.

16.

. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-

tive security in functional encryption. In: Advances in Cryptology — CRYPTO ’15.
pp. 657-677 (2015)

Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: Advances in Cryptology — CRYPTO ’15. pp. 308-326 (2015)
Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. To appear in Proceedings of the 56th Annual IEEE
Symposium on Foundations of Computer Science (available at https://eprint.
iacr.org/2015/341.pdf) (2015)

Asharov, G., Segev, G.: On constructing one-way permutations from indistin-
guishability obfuscation. Cryptology ePrint Archive, Report 2015/752 (available
at http://eprint.iacr.org/2015/752.pdf) (2015)

Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In: Advances in Cryptology — ASTACRYPT ’13. pp. 296-315 (2013)

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S.; Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. Journal of the ACM
59(2), 6 (2012)

Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal - An O(n?)-query
attack on any key exchange from a random oracle. In: Advances in Cryptology —
CRYPTO ’09. pp. 374-390 (2009)

Bellare, M., Stepanovs, 1., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Advances in Cryp-
tology — ASTACRYPT ’14. pp. 102-121 (2014)

Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Tauman Kalai, Y., Paneth,
O., Rosen, A.: The impossibility of obfuscation with auxiliary input or a universal
simulator. In: Advances in Cryptology — CRYPTO ’14. pp. 71-89 (2014)
Bitansky, N., Canetti, R., Tauman Kalai, Y., Paneth, O.: On virtual grey box
obfuscation for general circuits. In: Advances in Cryptology — CRYPTO ’14. pp.
108-125 (2014)

Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Proceedings of the 12th Theory of Cryp-
tography Conference. pp. 401-427 (2015)

Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
nash equilibrium. To appear in Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science (available at https://eprint.iacr.org/2014/
1029.pdf) (2015)

Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos. To
appear in Proceedings of the 13th Theory of Cryptography Conference (2016)
Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. To appear in Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science (available at https://eprint.iacr.org/2014/
163.pdf) (2015)

Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing 13(4), 850-864 (1984)
Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions on NP-
hardness. In: Proceedings of the 12th Theory of Cryptography Conference. pp. 1-6
(2015)

28

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

G. Asharov, G. Segev

Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Advances in Cryptology - CRYPTO
"14. pp. 480499 (2014)

Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of zero-
knowledge proofs in cryptographic constructions. In: Proceedings of the 8th Theory
of Cryptography Conference. pp. 559-578 (2011)

Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Proceedings of the 11th Theory of Cryptography
Conference. pp. 1-25 (2014)

Brzuska, C., Farshim, P., Mittelbach, A.: Random-oracle uninstantiability from in-
distinguishability obfuscation. In: Proceedings of the 12th Theory of Cryptography
Conference. pp. 428-455 (2015)

Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Proceedings of the 12th Theory
of Cryptography Conference. pp. 557-585 (2015)

Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Proceedings of the 12th Theory of Cryptography
Conference. pp. 468-497 (2015)

Canetti, R., Tauman Kalai, Y., Paneth, O.: On obfuscation with random ora-
cles. In: Proceedings of the 12th Theory of Cryptography Conference. pp. 456-467
(2015)

Chang, Y., Hsiao, C., Lu, C.: The impossibility of basing one-way permutations
on central cryptographic primitives. Journal of Cryptology 19(1), 97-114 (2006)
Chung, K., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity in
proofs of security. In: Proceedings of the 4th Innovations in Theoretical Computer
Science Conference. pp. 389-400 (2013)

Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from in-
distinguishability obfuscation. Cryptology ePrint Archive, Report 2014/991 (2014)
Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Proceedings of the 12th Theory of
Cryptography Conference. pp. 586—613 (2015)

Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box
complexity of optimally-fair coin tossing. In: Proceedings of the 8th Theory of
Cryptography Conference. pp. 450467 (2011)

Dachman-Soled, D., Mahmoody, M., Malkin, T.: Can optimally-fair coin tossing be
based on one-way functions? In: Proceedings of the 11th Theory of Cryptography
Conference. pp. 217-239 (2014)

Dachman-Soled, D., Mahmoody, M., Malkin, T.: Can optimally-fair coin tossing be
based on one-way functions? In: Proceedings of the 11th Theory of Cryptography
Conference. pp. 217-239 (2014)

Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Proceedings of the 11th Theory of Cryptography
Conference. pp. 74-94 (2014)

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence. pp. 40-49 (2013)

Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Proceedings of the 12th Theory of Cryptography Con-
ference. pp. 614-637 (2015)

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

On Constructing OWPs from Indistinguishability Obfuscation 29

Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM Journal on Computing 35(1), 217-246 (2005)
Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Proceedings of the 4th Theory of Cryptog-
raphy Conference. pp. 434-455 (2007)

Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: Proceedings of the 42nd Annual IEEE Sym-
posium on Foundations of Computer Science. pp. 126-135 (2001)

Goldreich, O.: On security preserving reductions — revised terminology. Cryptology
ePrint Archive, Report 2000/001 (2000)

Goldreich, O.: Foundations of Cryptography — Volume 1: Basic Techniques. Cam-
bridge University Press (2001)

Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Advances in Cryptology
— EUROCRYPT ’14. pp. 578-602 (2014)

Haitner, 1., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols — Tight lower bounds on the round and communication complexities
of statistically hiding commitments. STAM Journal on Computing 44(1), 193-242
(2015)

Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. STAM Journal on Computing 28(4), 1364-1396 (1999)
Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: Advances in Cryptology — EURO-
CRYPT ’14. pp. 201-220 (2014)

Hsiao, C., Reyzin, L.: Finding collisions on a public road, or do secure hash func-
tions need secret coins? In: Advances in Cryptology — CRYPTO ’04. pp. 92-105
(2004)

Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing. pp. 44-61 (1989)

Kahn, J., Saks, M., Smyth, C.D.: The dual BKR inequality and Rudich’s conjec-
ture. Combinatorics, Probability & Computing 20(2), 257-266 (2011)
Komargodski, 1., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: Proceedings of the 55th Annual IEEE
Symposium on Foundations of Computer Science. pp. 374-383 (2014)

Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press (1996)

Mahmoody, M., Maji, H.K., Prabhakaran, M.: On the power of public-key encryp-
tion in secure computation. In: Proceedings of the 11th Theory of Cryptography
Conference. pp. 240-264 (2014)

Mahmoody, M., Pass, R.: The curious case of non-interactive commitments — On
the power of black-box vs. non-black-box use of primitives. In: Advances in Cryp-
tology — CRYPTO ’12. pp. 701-718 (2012)

Matsuda, T.: On the impossibility of basing public-coin one-way permutations
on trapdoor permutations. In: Proceedings of the 11th Theory of Cryptography
Conference. pp. 265-290 (2014)

Matsuda, T., Matsuura, K.: On black-box separations among injective one-way
functions. In: Proceedings of the 8th Theory of Cryptography Conference. pp.
597-614 (2011)

30

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

G. Asharov, G. Segev

Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing. pp. 33—43 (1989)

Pass, R., Tseng, W.D., Venkitasubramaniam, M.: Towards non-black-box lower
bounds in cryptography. In: Proceedings of the 8th Theory of Cryptography Con-
ference. pp. 579-596 (2011)

Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization. Technical report 212, Massachusetts Institute of Technology, Laboratory
for Computer Science (1979)

Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between crypto-
graphic primitives. In: Proceedings of the 1st Theory of Cryptography Conference.
pp. 1-20 (2004)

Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communication of the ACM 21(2), 120-126 (1978)
Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing.
pp. 387-394 (1990)

Rudich, S.: Limits on the Provable Consequences of One-way Functions. Ph.D.
thesis, EECS Department, University of California, Berkeley (1988)

Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory
of Computing. pp. 475-484 (2014)

Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In: Advances in Cryptology — EUROCRYPT ’98.
pp. 334-345 (1998)

Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Advances in Cryptology — CRYPTO ’15. pp. 678697 (2015)
Wee, H.: One-way permutations, interactive hashing and statistically hiding com-
mitments. In: Proceedings of the 4th Theory of Cryptography Conference. pp.
419-433 (2007)

