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Abstract. During the last 15 years there have been intensive research
efforts in constructing cryptographic algorithms resilient to the side-
channel leakage. The most fundamental part of every such construction
are the leakage-resilient encoding schemes. Usually the cryptographic se-
crets encoded by them are assumed to belong to some finite group (G,+).
The most common encoding scheme is the n-out-of-n additive secret
sharing: a secretX is encoded as (X1, . . . , Xn) such thatX1+· · ·Xn = X.
Intuitively, if an adversary receives only small partial independent in-
formation about each Xi then his information about X should be even
smaller, and should decrease (i.e. the noise should amplify) when n grows.
However, of course, the concrete parameters (the amount of leakage that
can be tolerated, and the number of shares needed to achieve a given
level of security) depend on the exact model that is used.
One of the most prominent models used in this area is the so-called
noisy-leakage model (Chari et al, CRYPTO’99, and Prouff and Rivain,
EUROCRYPT’13), which is believed to correspond well to the real-life
engineering experience, where the information that the adversary receives
is always “noisy”. In the Prouff and Rivain model the amount of infor-
mation that the noise provides is measured using a parameter δ that is
equal to 0 when the noise is “full”, and equal to 1 when there is no noise.
It is natural to ask how small δ needs to be to achieve the amplification
of noise (in the additive encoding scheme described above). Until now it
was known that such amplification can be achieved for δ < 1/16. In this
paper we show that:
– in the prime order groups G it suffices that δ < 1− 1/|G|,
– in general it suffices that δ < 1/2.

We also prove that these bounds are optimal. We then analyze the num-
ber n of shares needed to achieve security ε of the encoded value X
(where ε is also defined in terms of “noisy information” that the adver-
sary obtains about X). We give close lower and upper bounds on this
value (that differ only in factor polylogarithmic in |G|). We achieve our
results using techniques from the additive combinatorics, the harmonic
analysis, and the convex optimization.

? The first and the last author were partly supported by the WELCOME/2010-4/2
grant founded within the framework of the EU Innovative Economy Operational
Programme.



1 Introduction

Leakage-resilient cryptography [15,19,11,1,24,2,20,6,3,5,12,9,14] aims at construct-
ing cryptographic schemes that are secure against side-channel leakages of secret
information Leakage-resilient encoding schemes are important building blocks for
constructing such algorithms. They allow to encode a secret message X with a
randomized encoding function Enc(X) = (X1, . . . , Xn) such that leakage from
the codeword does not help the adversary to recover the secret message X.
The simplest encoding function Enc(.) uses an additive secret sharing scheme,
where the shares Xi are chosen uniformly at random from a group G such that
X := X1 + . . . + Xn. Of course, the leakage from Enc(X) cannot be arbitrary
as otherwise no security is possible. A common assumption that has been stud-
ied both in theoretical and practical works [4,24,12,22,8] is to assume that the
leakage from the encoding is a “noisy” function. It has been shown in the work
of Chari et al. [4] that the encoding scheme described above amplifies security
when the leakage is “sufficiently” noisy. While several recent works improve the
quantitative bounds on the amount of noise needed [22,10], the current best
bounds require the leakage to be very noisy – in particular far away from the
level of noise that is typically available in physical measurements [8]. The main
contribution of our work is to give an optimal characterization of the noisy leak-
age model. We develop optimal bounds for the amount of noise that is needed
to amplify security, and give matching upper bounds by showing that above this
threshold amplification is impossible. Our results are particular important for
the security analysis of masking schemes, which we further describe below.

Leakage resilient encodings for masking schemes. Leakage resilient encodings are
prominently used to build masking schemes [4,15]. Masking schemes are widely
used in practice to protect cryptographic implementations against side-channel
leakage – in particular against leakage from the power consumption [16]. The
basic idea of a masking scheme is simple: instead of computing directly on the
sensitive information (e.g., the secret key), a cryptographic algorithm protected
with the masking countermeasure computes on encoded values thereby conceal-
ing sensitive information, which makes it harder to extract relevant information
from the leakage. The simplest and most widely used masking scheme is the
Boolean masking scheme. The Boolean masking scheme introduced in the im-
portant work of Ishai et al. [15] uses the simple encoding function from above
when G = GF(2), but can easily be extended to work in larger groups. For
instance, to protect an implementation of the AES algorithm we typically use
G = GF(28) as the AES algorithm can be implemented in a particular efficient
way using operations in the Galois field. Another example is a protected imple-
mentation of discrete-log based crypto schemes that work in prime-order fields.

The noisy leakage model. While there are several variants of the “noisy leakage
model” [20,12,22] most works that consider the security of masking schemes use
the model of Chari et al. [4] and its generalization by Prouff and Rivain [22].
Informally, a noisy leakage function f : G→ Y is called δ-noisy if the statistical
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distance between the uniform distribution X over G and the conditional distri-
bution of X given f(X) is bounded by a parameter δ ∈ [0, 1 − 1/|G|]. Here, Y
is the domain of the leakage, which in general can be an infinite set. To better
understand the Prouff-Rivain noise model, let us consider the two extreme cases.
First, when δ is close to 0 then f is assumed to be very noisy, and hence the noisy
leakage reveals little about the underlying sensitive information. On the other
extreme, when δ is close to 1−1/|G| then there is almost no noise in the leakage
(i.e., the function f is “almost” deterministic). The Prouff-Rivain noise model
is believed to model well real-world physical side-channel leakages. Moreover, as
shown in [7,10] it is also a robust noise measure as it is equivalent to various
other ways of describing the noise present in a leakage function.

Masking schemes in the noisy leakage model. A masking function is said to be
secure in the noisy leakage model if for any X,Y ∈ G, we have that noisy leakage
from an encoding of (X1, . . . Xn)← Enc(X) is statistically close to noisy leakage
from (Y1, . . . , Yn)← Enc(Y ). As discussed above recent works have significantly
improved the Prouff-Rivain δ-bias for which security of the encoding function can
be shown. While initial works [22,7] require that δ = O(1/|G|), the recent work of
Dziembowski et al. [10] show that noise amplifies security already when δ < 1/16
(and, hence in particular independent of the size of the underlying group G). In
this work, we can show that for prime-order groups masking amplifies the noise
for δ ≤ 1 − 1/p. Notice that in case when p is super-polynomial in the security
parameter (as in discrete-log based cryptosystems), then we achieve security
under the optimal assumption of 1− negl(n). For general groups (in particular,
groups with small factorization) we show that amplification is possible when
δ < 1/2. We also show that both our bounds are optimal as for values above
the threshold amplification is not possible. We provide further details on our
contributions and techniques in the next two sections.

1.1 Our Contributions

We analyze the amplification of noisy leakage for the simple additive encoding
function Enc. The quality of the amplification is measured by the ε-security
of the encoding. We say that an encoding is ε-secure if the statistical distance
between the δ-noisy leakage of Enc(x) and Enc(x′) for two elements x, x′ ∈ G
is upper bounded by ε. We characterize how many shares n we need in order
to amplify the noise available in the leakage from the shares. To this end we
derive a value δmax which is the maximal value for δ until which we can still
amplify the noise for sufficiently large n. Of course, as we show the number of
share n needs to increase the closer we set δ to δmax. One interesting observation
arising from our analysis is that the value of δmax depends on the structure of
the underlying group G. We summarize our results regarding the upper bound
until which amplification is possible in the following informal theorem.

Theorem (Noise amplification, informal version of Theorem 1). Let G
be a group (either prime order, or arbitrary) and let the adversary obtain δ-noisy
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leakage from the shares of the encoding. Define the maximal noise parameter
δmax as

δmax =

{
1− 1

p , when G is of prime order
1
2 , when G is arbitrary.

(1)

Then for any δ < δmax and any ε > 0 we have that the encoding Enc is ε-secure
for

n = poly
(
log |G|, log(ε−1), (δmax − δ)−1

)
(2)

(where poly is some polynomial).

Let us explain the interplay of the parameters used in the above theorem. The
number of shares grows polynomially with two parameters: (a) the logarithm of
ε−1, i.e., the target security we aim for, and (b) the gap θ = δmax−δ between the
maximal possible noise value and the actual chosen noise level δ. The dependency
on (a) is as expected: if we aim for better security meaning a smaller value of ε
we require a larger security parameter n. The reason for the dependency stated
in (b) is more technical, and essentially comes from a bias convergence in the
harmonic analysis (when G has prime order), or in the XOR Lemma (when G
has non-prime order), see Section 3 for details.3

Dependence on the group order. As already noted, our Theorem 1 distinguishes
between two cases. In the first case the group G is of prime order. Interestingly,
in this case it turns out that arbitrarily small noise (i.e. δ close to 1) can be
amplified. Informally, this is thanks to the fact that prime-order groups have no
non-trivial sub-groups. On the other hand, if a group has a non-prime order, i.e.,
it contains non-trivial subgroups, then we require a higher noise (more precisely:
δ < 1/2). On a practical level this means that in some sense the prime order
groups “provide a better leakage resilience” than the general groups. This may
be useful for discrete-log based cryptosystems that typically work in such groups.

Lower bounds on the necessary noisy level via homomorphic attacks. We show
that the maximal noise parameter δmax, as defined in Equation (1), is optimal in

the following sense. We show in Proposition 1 that δ has to be less than 1− |H||G| ,
where H is the largest proper subgroup of G. An intuitive explanation for why
the group structure is relevant here, is the existence of “homomorphic attacks”,
when given X1, . . . , Xn being shares of X and their evaluations φ(X1), . . . , φ(Xn)
under a homomorphism φ : G→ H, we can compute φ(X) = φ(X1)+. . .+φ(Xn).

The implications of Proposition 1 are two-fold. Firstly, as long as the general
groups are considered (and hence no assumptions on the order can be made),
then we prove that one needs to assume that the δ is less than 1/2. This is
because, since the largest proper subgroup H of G can be of size |G|/2, thus

3 We show also that the dependency on θ is necessary as otherwise we can provide
attacks against the encoding.
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1− |H|/|G| can be as small as 1/2. Secondly, is G has prime order then |H| = 1
and therefore 1−|H|/|G| = 1− 1/p. Hence in this case the lower bound matches
the upper bound from Theorem 1.

It is natural to ask if our results can be more fine-grained, and fully char-
acterize the noise requirements in terms of |H|/|G|. We conjecture that in fact
the upper bound 1− |H|/|G| can also be always achieved (not only in the cases
when |H| = |G|/2 and H = |1|). We leave proving it as an open problem. We
summarize the upper bounds and the relation to the number of shares in Table 1
below.

Group Necessary noise The gap Necessary number of shares

|G| is even δ < δmax = 1
2

θ = 1
2
− δ

n = poly
(
log(ε−1), θ−1

)
G = Zp δ < δmax = 1− 1

p
θ = 1− 1

p
− δ

Table 1: Matching bounds for the necessary noise amount and the necessary
number of shares

Applications of our techniques outside of masking schemes. We show that our
techniques also have applications outside of the domain of leakage resilient cryp-
tography. In particular, using our results we can extend the following product
theorem, due to Maurer et al. [17].

Lemma 1 (Product Theorem [17]). Let G be a group, d(·) denote the dis-
tance from uniform and X1, X2 be arbitrary independent random variables on
G. Then we have

d(X1 +X2) 6 2 · d(X1) · d(X2)

We give a different proof and calculate optimal constants for any group.

Theorem (Product Theorem with optimal constants, informal version
of Theorem 2). Let G be a group, d(·) denote the distance from uniform and
X1, X2 be arbitrary independent random variables on G. Then we have

d(X1 +X2) 6 c(G) · d(X1) · d(X2)

where c(G) ≤ 2 is a constant depending on the structure of the underlying group
G.

For the exact value of c(G) we refer the reader to Appendix A.6.

Comparing our results to previous works. Our work improves the previous state-
of-the-art in the following aspects:
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(a) For general groups the best upper bound was given in [10], where it was
shown that δ < 1/16. We improve this bound to δ < 1/2, which is optimal
for groups with even order. Moreover, for groups of prime-order p we give
a novel bound of 1 − 1

p . Notice that for primes that are super-polynomial
in the security parameter we achieve security for δ arbitrary close to 1. We
notice that in contrast to earlier works our proof techniques also have the
advantage of being more modular.

(b) We provide matching lower bounds showing that the noise threshold as well
as the growth rate of the number of shares are optimal, which was not known
before.

(c) Our proof techniques may be of independent interest and have not been used
previously for analyzing the security of noisy leakages. In particular, our
analysis uses techniques from convex optimization, additive combinatorics
and harmonic analysis.

In Table 2 below we compare our results with related works.

Proof techniques Sufficient noise Minimal Noise Sufficient n Minimal n

[22]
direct information
theoretic analysis

O
(
|G|−1

)
not discussed

poly
(
log(|G|), log(ε−1), (δmax − δ)−1

)[7]
reduction to random
probing

O
(
|G|−1

)
not discussed

[10]
reduction to random
walks, amplifying in-
distinguishability

1
16

here

optimal reduction to
random walks, har-
monic analysis, ad-
ditive combinatorics,
convex optimization

1
2

for any G
1− 1

p
for Zp

1
2

if |G| even
1− 1

p
for Zp poly

(
log(|G|), log(ε−1), (δmax − δ)−1

)
poly

(
log(ε−1), (δmax − δ)−1

)

Table 2: The initial amount of noise needed for the security of Enc.

Comparison with the binomial noise model and the XOR Lemma. We stress
that the noise model of Prouff and Rivain [22] we consider is significantly more
general than the binomial noise model considered by Faust et al. in [12] (even in
the binary case) and considers many other types of noisy functions. In particular,
our noisy function f maps elements from the group G to a possibly infinite set
Y .

If we restrict in Theorem 1 the noise model to the special case of binomial
noise (i.e., the leakage function f is the binomial noise function), then we obtain
comparable parameters with e.g., in [12] (cf. Lemma 4 in [12]).4

4 The main restriction when comparing our result with a direct application of the
XOR Lemma, is that we require the probability p of flipping the shares to be > 1/4
(in contrast to [12] where p > 0 is sufficient). The later restriction stems from the
fact that leakages in the binomial noise model with parameter p are transformed in
our noise model to a requirement of delta = 1 − 2p noisy-function. We emphasize
that for the general type of ”noisy leakage” we consider, our bounds are optimal as
shown by our lower bounds.
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1.2 A high-level proof outline

We now give an overview of our proof techniques (the details appear in Section 3).
We prove our result in five steps illustrated on Figure 1. We first show that it
is enough to consider uniform secrets X. The proof appears in Section 3.1.1.
The cryptographic interpretation of this claim is that it suffices to consider only
random-plaintext attacks, instead of chosen-plaintext attacks.

Then, in Section 3.1.2, we consider the distance between a uniform secret
X given δ-noisy leakages f1(X1), . . . , fn(Xn) from its encoding and a uniformly
and independently chosen X ′. We show that bounding this distance is equiva-
lent to bounding the distance of a random sum of the form Z =

∑n
i=1 Zi with

independent summands Zi, conditioned on noisy information {fi(Zi)}ni=1, from
the uniform distribution U . Here we use the fact that X is uniform (guaran-
teed by Step 1). The fact that leakage functions are δ-noisy guarantees that Zi
is δ-close to uniform given fi(Zi), for i = 1, . . . , n. Intuitively it is clear that
if independent random variables on a group are close to the uniform distribu-
tion, then their sum is even closer to uniform (cf. XOR-lemmas [13], see also
Appendix A.8). The main issue here is that our summands are conditional dis-
tributions, which means that Zi is close to U only in average conditioned on
concrete values of the leakage fi(Zi) = yi.

Next in Section 3.1.3 we get rid of the conditional part {f1(Z1), . . . , fn(Zn)}.
This step is accomplished by considering concrete leakage values f1(Zi) = yi for
i = 1, . . . , n and noticing that for most of them the distance from uniform is
not much bigger than δ, which we conclude by the Chernoff Bound. This step
results into an error term, which is exponential in nθ2 where θ = δmax − δ is
the gap-parameter defined above. Informally speaking, the gap θ is what allows
to further reduce the problem to study only the distance of sums of the form
Z = Z1 + . . .+ Zn from the uniform distribution.

Later, in Section 3.1.4, we characterize the distributions Zi for which the
distance between Z = Z1 + . . . + Zn and U is maximal. It turns out that they
have a simple shape: they are a combination of a mass-point and a distribution
uniform over a set of size (1− δ)|G|−1. A description of how these “worst-case”
distributions look like, enables us to come up with concrete estimates for the
statistical distance in the next step.

Finally, in Section 3.1.5 we prove concrete facts about the convergence speed
of cumulative sums of random variables that are sufficiently close to the uniform
distribution. Depending on the technique used and the assumption on the group
structure imposed, we obtain different bounds in Theorem 1.

We note that for the case when we make no assumptions on the structure of
G, steps from Sections 3.1.4 and 3.1.5 (but not from Sections 3.1.1—3.1.3) could
be replaced by a product theorem due to Maurer et al. [18]. Our technique allow
us to extend this theorem, taking the group structure into account. In the last
step we split the proof depending on the technique and the assumption about
G. The quantitative comparison of different bounds we get is given in Table 3.
Note that the number n of shares is asymptotically larger when the additive
combinatorics is used (second row of Table 3) than when the harmonic analysis
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noise in shares,
arbitrary secret

noise in shares,
uniform secret

random walk convergence,
given extra information

random walk convergence,
no extra information

random walk convergence,
worst-case summands identified

computing simple convolutions
arbitrary group

estimating exponential sums
prime-order group

counting multiciplities in sumsets
prime-order group

Theorem 1, point(i)

Theorem 1, point(iii)

Theorem 1, point(ii)

proof: Section 3.1.1
techniques: uniform secrets lowerbound noise (Lemma 2)

proof: Section 3.1.2
techniques: definitions,properties of uniform distributions

proof: Section 3.1.3
techniques: independence of summands, Chernoff Bounds

proof: Section 3.1.4 (Corollary 2)
techniques: extreme points (convex optimization)

proof: Section 3.1.5
techniques: Pollard’s theorem
(additive combinatorics)proof: Section 3.1.5

techniques: XOR lemma,
exponential sums

proof: Section 3.1.5
techniques: indistinguishability amplification

Fig. 1: An overview of the proof of Theorem 1 and applied techniques.

is used (the third row). Nevertheless we think it is instructive the present both
results since the proof techniques are different, and both can be of independent
interest.

Domain Proof technique Number n of shares Assumption

G arbitrary amplifying indistinguishability O
(
log(|G|/ε)/θ2

)
δ 6 1

2
− θ

G = Zp additive combinatorics O
(

log(|G|/ε) · 212 log(1/θ)/θ2
)
δ 6 1− 1

p
− θ

G = Zp harmonic analysis O
(
θ−4 log(|G|/ε) log(1/θ)

)
δ 6 1− 1

p
− θ

Table 3: The amount of shares needed to mask the secret state below the advan-
tage ε, depending on the assumed group structure and proof technique. In the
last column, θ is an arbitrarily small positive number.

1.3 Our techniques

In this section we summarize our main techniques used in the proof of Theorem 1.

Convex analysis. We use the convex analysis in Section 3.1.4 to deal with the
problem of determining how fast the sum of independent components Z1 + . . .+
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Zn on a group G converges towards the uniform distribution. Our assumption
on the noise guarantees that Zi are at most δ-close to the uniform distribution
with some parameter δ. Since we can think of distributions over G as vectors in
R|G|, we observe that the mapping

(Z1, . . . , Zn) −→ SD (Z1 + . . .+ Zn;U)

is a convex mapping, with respect to the distribution of any Zi when the re-
maining components are fixed. Since the restrictions on the distance of Zi’s from
uniform are also convex, we conclude that the maximum is achieved for one of
the extreme points from the set of feasible Zi. As a consequence we observe that
they have a surprisingly simple shape (see Lemma 5). That simple structure will
play an important role in the very last step of the proof. Also, it allows us to
derive a general product theorem for groups, with an explicit expression with
tight constants.

Additive combinatorics. In Section 3.1.5, when studying the convergence of ran-
dom sums over a general group G, we can find a proper subgroup A / G which
is by definition an additive set, that is

A+A = A.

Such a set may constitute a trap for our random walk Z1 + . . .+ Zn. If Zi ∈ A
for all i, then Z1 + . . . + Zn ∈ A. When G = Zp such a trap does not exist,
so intuitively the sum takes all the elements with similar probability when n is
large (because even one non-zero point generates the group when added multiple
times). This is where we use some basic facts from additive combinatorics. The
first result of this sort is the Cauchy-Davenport theorem which states that the
sumset A + B, where A,B are arbitrary subsets of Zp must be substantially
bigger than A and B alone. More precisely

|A+B| > |A|+ |B| − 1.

This result does not help us much because it gives no estimate on repetitions in
the sumset A+B, that is how many of the expressions a+ b where a ∈ A, b ∈ B
hit the same place. To get more information about the distribution of repetitions
in the sumset we use a more refined result due to Pollard. Combining it with
the explicit form of Zi (developed in the previous steps) we obtain a non-trivial
upper bound on SD(Z1 +Z2;U) in terms of SD(Z1;U),SD(Z2;U), which is then
extended to the sum of n elements.

Harmonic analysis. Also, in Section 3.1.5, having reduced our problem to the
convergence of a random walk with independent increments, we can use tech-
niques from Fourier analysis. Recall that a character is a complex-valued function
φ which is additive on G, that is φ(x + y) = φ(x) · φ(y). The expectations of
characters on independent sums are especially easy to evaluate, because

E [φ (Z1 + . . .+ Zn)] =

n∏
i=1

E [φ(Zi)] .
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For Zp expectations are easier to calculate, because any character φ is of the
simple form φ(x) = exp(2πki/p) for some k. Since we know the shape of the
worst Zi, we can obtain a concrete estimate for a nontrivial character φ, namely,

|E [φ (Zi)]| < c� 1.

Intuitively, this comes from the fact that Zi “contains” a large uniform compo-
nent which doesn’t allow the mass to concentrate at one point. Using a bound
on geometric sums over unity roots, we conclude that E [φ (Z1 + . . .+ Zn)] < c.
Finally we apply the XOR lemma which states that characters are “represen-
tative” distinguishers: if two distributions have close expectations under every
character, they indeed are statistically close. In our case we apply this claim to
Z = Z1+ . . .+Zn and U and the result follows since we have shown that E[φ(Z)]
is small and trivially we have E[φ(U)] = 0 (for non-trivial φ).

2 Preliminaries

If X and Y are random variables over the same set X then the statistical dis-
tance between X and Y is denoted as SD(X;Y ), and defined as SD(X;Y ) =
1
2

∑
x∈X |Pr[X = x]−Pr[Y = x]|. If Z is a random variable then by SD(X;Y |Z)

we mean SD((X,Z); (Y,Z)), i.e., the statistical distance of the two joint distribu-

tions. If two distributions X and Y are equivalent, then we write X
d
=Y . Below

we formally define the encoding and decoding of a secret X ∈ G.

Definition 1 (Encoding and Decoding). Let (G,+) be a fixed group and
n > 1 be a fixed natural number. For any X ∈ G, we define the encoding function
Enc by

EncnG(X) = (X1, . . . , Xn−1, X − (X1 + . . .+Xn−1))

where X1, . . . , Xn−1 are independent and uniform over G, and the decoding func-
tion Dec by

DecnG(X1, . . . , Xn) = X1 + . . .+Xn.

We will typically omit n and G and simply write (Enc,Dec) when clear from the
context.

Noisy leakages. The noise in the observed version Y of a real distribution X,
denoted by β(X|Y ), is measured by comparing how close is the product distri-
bution PX · PY to the joint distribution P(X,Y ). More formally, we have the
following definition, which comes from [22] (see also [7]), where it was argued
that it models physical noise in a realistic way.

Definition 2 (Noisy observations and noisy functions). A random vari-
able Y ∈ X is called a δ-noisy observation of X if

β(X|Y )
def
= SD(X ′;X|Y ) 6 δ

where X ′ is an independent copy of X. A function f is called δ-noisy if f(U) is
a δ-noisy version of U , where U is uniform over U .
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Notice that [22] defined the noisy function as the
∑
y Pr[Y = y] ·SD(X ′; (X|Y =

y)). This is equivalent to the above when X and X ′ are independent and Y is
the leakage from X. Note that this definition may seem a bit counterintuitive as
more noise means a bias value closer to 0, while a value closer to 1 means that
less noise is present in the leakage observations.

3 Our Main Result

We are now ready to present our main result that was already informally de-
scribed in Section 1.1.

Theorem 1. Let X be a random variable on a group G and let Enc(X) =
(X1, . . . , Xn) be its encoding. Suppose that fi for i = 1, . . . , n are all δ-noisy
functions, i.e. β(Xi|fi(Xi)) 6 δ. Then we have the following bounds

(i) For arbitrary G, if δ 6 1
2 − θ, then β(X|fi(X1), . . . , fi(Xn)) 6 ε provided

that

n > 8θ−2 log(5|G|ε−1)

(ii) If G = Zp and δ 6 1 − 1
p − θ then β(X|fi(X1), . . . , fi(Xn)) 6 ε, provided

that

n > log(3|G|ε−1) · 212 log(1/θ)/12θ

(iii) If G = Zp and δ 6 1 − 1
p − θ then β(X|fi(X1), . . . , fi(Xn)) 6 ε, provided

that

n > 2θ−4 log(|G|ε−1)

3.1 Proof of Theorem 1

The proof of Theorem 1 was already outlined in Section 1.2. In the next sections
we describe it in more detail. The final proof appears in Section 3.1.5.

3.1.1 Reducing to uniform secrets. Below we show that it sufficient to
consider only uniform secrets X.

Lemma 2. Suppose that X is uniform over G with the encoding Enc(X) =
(X1, . . . , Xn). Let X ′ be an arbitrary distribution over G with the encoding
Enc(X ′) = (X ′1, . . . , X

′
n). Then for arbitrary functions f1, . . . , fn we have

β(X ′|f1(X ′1), . . . , fn(X ′n)) 6 3|G| · β(X|f1(X1), . . . , fn(Xn)) (3)

The proof appears in Appendix A.3. Note that we lose a factor of |G| in this
transformation. However this does not actually affect the bound we want to
prove, because we show that the main part β(X|f1(X1), . . . , fn(Xn)) converges
to 0 exponentially fast with n.
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3.1.2 Reducing to random walks conditioned on noisy information.
We now show that the noise in a uniform secret X given δ-noisy leakages
f1(X1), . . . , fn(Xn) is equal to the distance of a random sum of the form Z =∑n
i=1 Zi with independent summands Zi, conditioned on noisy information {fi(Zi)}ni=1,

from the uniform distribution U .

Lemma 3. For X uniform on a set X and any functions fi the following equal-
ity holds

β(X|(fi(Xi))
n
i=1) = SD

(
n∑
i=1

Zi; U

∣∣∣∣∣ (fi(Zi))ni=1

)
(4)

where U and Zi for i = 1, . . . , n are uniform and independent over X .

The proof appears in Appendix A.4. Justifying the title, we note that we can
think of the sum

∑n
i=1 Zi as a random walk which starts at 0, with increments

Zi.

3.1.3 Reducing to unconditional random walks. The following lemma
is an easy consequence of the Chernoff Bound.

Lemma 4. Let (Zi, Yi)i for i = 1, . . . , n be independent random variables such
that ∆(Zi;U |Yi) 6 δ. Then, for any γ > 0, δ′ = δ + 2γ and n′ = γn

SD

(
n∑
i=1

Zi;U

∣∣∣∣∣ (Yi)i
)

6 max
(Z′i)i: SD(Z′i;U)6δ′

SD

 n′∑
i=1

Z ′i;U

+ e−2nγ
2

(5)

where the maximum is taken over all independent random variables Z ′i.

The proof appears in Appendix A.5. The immediate corollary below shows that
we can get rid of the conditinal part in the right-hand side of Equation (4) in
Lemma 3.

Corollary 1. For n′ = θ
4 · n we have

β(X|(fi(Xi))
n
i=1) 6 max

(Z′i)i: SD(Z′i;U)6δ+ θ
2

SD

 n′∑
i=1

Z ′i;U

+ e−
1
8nθ

2

where the maximum is taken over all independent random variables Z ′i.

Note that by combining Step 1, Step 2 and Step 3 with Lemma 1 we can already
conclude part (i) of Theorem 1 (see Section 3.1.5).
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3.1.4 Worst-case summands. We prove the following geometrical fact:

Lemma 5 (Shape of extreme points of distributions close to uniform).
Let X be a finite set and U be uniform over X . Any distribution X ∈ X such that
SD(X;U) 6 δ can be written as a convex combination of “extreme” distributions
X ′ of the following form: with probability p = δ+ |X |−1 the distribution X ′ takes
a value a and with probability q = 1 − p the distribution X ′ is uniform over a
set A, where a 6∈ A, of size |A| = (1 − δ)|X | − 15. Equivalently, each of these
distributions X ′ is of the following form:

µX′ = µU + δµb − δµB (6)

for some B such that |B| = δ|G| and b 6∈ B.

Note that we always have (1−δ)|X |−1 > 0, as the range of the noise parameter
is 0 6 δ 6 1− 1

X , when we consider secrets over X .

Corollary 2. Let Zi, for i = 1, . . . , n be independent random variables such
that SD(Zi;U) 6 δ for every i. Then SD (

∑
i Zi;U) is maximized for Zi as in

Lemma 5

Proof (of Corollary 2). Note that the distribution of
∑
i Zi is a convolution of

individual distributions PZi , and therefore it is multilinear in PZi . It follows
that SD (

∑
i Zi;U) = 1

2

∥∥P∑
i Zi
−PU

∥∥
1

is convex in PZi and the claim follows
by the extreme point principle.

Using Lemma 5 we derive the following generalization of Lemma 1

Theorem 2. Let Z1, Z2 be independent random variables on a group G. Then
we have

SD(Z1 + Z2;U) 6 cmax(G) · SD(Z1;U) · SD(Z2;U) (7)

Where the constant is given by

cmax(G) =
1

2
max

A,B:|A|=δ1|G|,|B|=δ2|G|
‖µB + µA − µA ∗ µB − µ0‖`1(G) (8)

where µ0 is the point mass at 0, δi = SD(Zi;U), and µA, µB are uniform over
the sets A and B. Moreover, the sharp constant is achieved for the following
random variables: Zi is constant with probability δi + 1

|G| and with probability

1− δi − 1
|G| is uniform on some set of size (1− δi)|G| − 1.

Lemma 5 is a corollary from Theorem 2, whose proof appears in Appendix A.6.
Note that Lemma 1 follows from Theorem 2, since cmax(G) 6 2 trivially, since

‖µB + µA − µA ∗ µB − µ0‖1 6 ‖µB‖1 + ‖µB‖1 + ‖µA ∗ µB‖1 + ‖µ0‖1 = 4

by the triangle inequality and the fact that the total mass of a probability
measure is 1.
5 If δ|X | is not an integer, then instead of a uniform distribution we consider the

distribution flat over a set A such that |A| = d(1 − δ)|X | − 1e, which assigns the

mass of 1
(1−δ)|X|−1

to all but one points, and the mass of d(1−δ)|X|−1e−((1−δ)|X|−1)
(1−δ)|X|−1

to the ramining point.
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3.1.5 Concrete bounds. In view of Corollary 1 it remains to give an upper
bound on the distance between sums of independent random variables which are
not too far from uniform and the uniform distribution, i.e., on:

SD

(
n∑
i=1

Zi;U

)
.

To this end, we split our analysis depending on the structure of G and chosen
technique.

Case: G is arbitrary. From Corollary 1 and Lemma 1 applied (n − 1) times it
follows that

β(X|(fi(Xi))
n
i=1) 6

1

2
(2δ + θ)

θ
4n + e−

1
8nθ

2

.

From the assumption δ < 1
2 − θ and the elementary inequality 1 − u 6 e−u we

obtain (2δ + θ)
θ
4n 6 e−

1
4 θ

2n, which gives us

β(X|(fi(Xi))
n
i=1) <

3

2
· e− 1

8nθ
2

for uniform X. Taking into account Step 1, we finally obtain

β(X|(fi(Xi))
n
i=1) < 5|G| · e− 1

8nθ
2

.

for any X, which is equivalent to part (i) of Theorem 1.

Case: G = Zp, for p prime (by additive combinatorics). When G = Zp, we
improve Lemma 1 in the following way, using Corollary 2 and some tools from
additive combinatorics (see Appendix A.7 for a proof).

Lemma 6. Let Z1, Z2 be independent random variables on Zp such that SD(Zi;U) 6
δi. Then

SD(Z1 + Z2, UG) 6 h(δ1, δ2) (9)

where

h(δ1, δ2) =

{
2δ1δ2, φ(δ1, δ2) 6 0

2δ1δ2 − 1
4φ(δ1, δ2)2 + 1

4p2 , φ(δ1, δ2) > 0
(10)

and φ(δ1, δ2)
def
= δ1 + δ2 + min(max(δ1, δ2), 1− |δ1 − δ2|)− 1.

We will use only the following consequence of Lemma 6.

Corollary 3. Let Z1, Z2 be independent random variables on Zp such that SD(Zi;U) 6
δi 6 δ. Suppose that δ > 1

3 . Then we have

SD(Z1 + Z2;UG) 6 2δ2 − (3δ − 1)
2

4
+

1

4p2
(11)
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Using recursively Corollary 3 and applying Corollary 1 we obtain the following
bound for uniform X

β (X|(fi(Xi))
n
i=1) 6 2−n/(2

16/θ·12θ) + e−
1
8nθ

2

which, by Step 1, implies part (ii) of Theorem 1. For a detailed derivation, see
Lemma 8 in Appendix A.7.

Case G = Zp, for a prime number p (by harmonic analysis). We start by obtain-
ing the following auxiliary estimate on trigonometric sums, valid for any A ⊂ Zp
such that |A| = θp and k ∈ {1, 2, . . . , p− 1}:∣∣∣∣∣∑

x∈A
exp

(
2kπix

p

)∣∣∣∣∣ 6 sinπθ

p sin π
p

The proof uses a geometrical argument and some trigonometric identities and is
given inside the proof of Lemma 10 in Appendix A.8. Based on Corollary 2 and
the XOR lemma (see Lemma 9 in Appendix A.8), we prove that

β (X|(fi(Xi))
n
i=1) 6 3|G| 32 · e− 1

8 θ
3

+ e−
1
8nθ

2

for uniform X, which by Step 1 implies part (iii) of Theorem 1; the details are
given in Lemma 10 in Appendix A.8.

4 Lower bounds

Proposition 1 (The noise threshold (1) is optimal). For any group G,
there exist a δ-noisy function f where

δ = 1− |H|
|G|

,

H being the biggest proper subgroup of G, such that for every n we have

β (X|f(X1), . . . , f(Xn)) > δ

.

The proof appears in Appendix A.1

Proposition 2 (The growth rate in (2) is optimal). For G = Z2, X being
uniform on G, and any θ < 1

2 there exists a
(
1
2 − θ

)
-noisy leakage function f

such that for every n satisfying

n < log
(
(2ε)−1

)
/ log

(
(1− 2θ)−1

)
(12)

we have
β (f(X)|f(X1), . . . , f(Xn)) > ε.

14



In turn, for G = Zp where p is prime, X being uniform on G, and any θ <

1− 1
p there exists a

(
1− 1

p − θ
)

-noisy leakage function f such that for every n

satisfying

n < log(2ε−1)/ log(1− θ) (13)

we have
β (f(X)|f(X1), . . . , f(Xn)) > ε.

The proof appears in Appendix A.2. Note that for θ < 1
4 we have log((1 −

2θ)−1) < 1
4θ
−1, and then Equation (12) can be replaced by

n < 4θ−1 log
(
(2ε)−1

)
Similarly, for θ < 1

2 we have log((1− θ)−1) < 1
2θ
−1, and then Equation (13) can

be replaced by

n < 2 log(2ε−1) · θ−1 (14)
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A Proofs

A.1 Proof of Proposition 1

Proof. Let X be uniform over the set G and let φ be the canonical quotient
homomorphism, that is φ(g) = g + H. For n shares X1, . . . , Xn of X we have

that Xi|φ(Xi) and X are
(

1− |H||G|
)

-far, because Xi|φ(Xi) = yi is uniform over a

set of |G|/|H| elements, for every choice of yi. Similarly, X =
∑
iXi is

(
1− |H||G|

)
-

far from uniform given φ(Xi) for all i, because φ(X) =
∑
i=1 φ(Xi) =

∑
i yi. To

see this, note that for independent uniform U we have

SD (X,φ(X1), . . . , φ(Xn);U, φ(X1), . . . , φ(Xn)) > SD

(
X,
∑
i

φ(Xi);U,
∑
i

φ(Xi)

)
= SD (X,φ(X);U, φ(X))

= SD (X;U |φ(X))

where the first line follows from the fact that applying a function to two random
variables only decreases the statistical distance, and the second line uses the

homomorphic property of φ. The last expression is at least
(

1− |H||G|
)

as already

observed for uniform X.

A.2 Proof of Proposition 2

Proof. Fix G = Z2 and consider a uniform secret X, its shares X1, . . . , Xn, and
leakage functions fi = f for i = 1, . . . , n where f(x) flips the bit x with prob-
ability θ < 1

2 . It is easy to see that these functions are
(
1
2 − θ

)
-noisy, that is

SD (Xi;U | f(Xi)) = 1
2 − θ where U is an independent uniform random vari-

able. Note that for uniform X (and any functions fi) we have the equality of
distributions

(f1(X1), . . . , fn(Xn), X)
d
= (f1(Z1), . . . , fn(Zn), Z1 + . . .+ Zn) .

where {Zi}ni=1 are independent and uniform on G (see Section 3.1.2). As a con-
sequence we get

SD (X;U | f(X1), . . . , f(Xn)) = SD (Z1 + . . .+ Zn;U | f1(Z1), . . . , fn(Zn))
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One can check that every X ′i has bias δ = 1
2−θ (it outputs a bit with probability

1
2 ± δ) conditioned on f(X ′i) = y for every y ∈ {0, 1}. Since the xor-sum Y1 +
Y2 + . . .+Yn of δ-biased independent bits Y1, Y2, . . . , Yn has bias exactly 2n−1δn,
we conclude that SD (X ′1 + . . .+X ′n;U | f1(X ′1), . . . , fn(X ′n)) = 2n−1δn. To go
below ε, we need (1− 2θ)n < 2ε or

n > ln
(
(2ε)−1

)
/ ln

(
(1− 2θ)−1

)
.

Finally, consider the case G = Zp. We proceed as in the previous case, achieving

SD (X;U | f(X1), . . . , f(Xn)) = SD (Z1 + . . .+ Zn;U | f1(Z1), . . . , fn(Zn))

for arbitrary functions. We take the functions fi so that the distribution of Zi
given f(Zi) = yi for every i has the following form:

µZi|f(Zi)=yi = µG + δµa − δµA

where a is a point and A is a set such that a 6∈ A, |A| = δ|G|. As it fol-
lows from the proof of Lemma 10 in Appendix A.8, we can choose A so that
|Eφ(Vi)| > 1− θ for some character φ, where Vi is the distribution of Zi condi-
tioned on f(Zi). This means that the Fourier transform V̂i of Vi is at least 1− θ
in the supremum norm, that is ‖V̂i‖∞ > 1 − θ. Since the Fourier transform is
multiplicative under convolution (summing independent variables) we see that
we can prepare functions fi so that ‖V̂ ‖∞ > (1− θ)n, where V = V1 + . . .+ Vn.
The Parseval identity gives us ‖V̂ ‖2 = ‖µZ − µU‖2. Since ‖Ẑ‖∞ 6 ‖V̂ ‖2 and
‖µV − µU‖2 6 ‖µV − µU‖1 we finally obtain

(1− θ)n 6 ‖µV − µU‖1 = SD(Z1 + . . .+ Zn;U | f(Z1) = y1, . . . , f(Zn) = yn)

The claim follows now by averaging over different values of y1, . . . , yn, exactly
as in the previous case.

A.3 Proof of Lemma 2.

We prove the following version, from which we conclude Lemma 2.

Suppose that X is uniform and Xi be the encoding of X. Let g be a
probabilistic function, (Gi)i be the encoding of G = g(X) and let fi be
noisy leakage functions. Then we have

β(X|(fi(Gi))i) 6 3|G| · β(X|(fi(Xi))i) (15)

Proof. Let V be uniform and (Vi)i be the encoding of V and let X ′, V ′ be
independent copies of X,V . Note that X, (fi(Gi))i is identically distributed as
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X, (fi(Vi))i|V = g(X). Therefore

Pr[X = x|(fi(Gi))i = (yi)i] = Pr[X = x|(fi(Vi))i = (yi)i, V = g(X)]

=
Pr[X = x, (fi(Vi))i = (yi)i, V = g(x)]

Pr[(fi(Vi))i = (yi)i, V = g(X)]

=
Pr[X = x] Pr[(fi(Vi))i = (yi)i, V = g(x)]∑

x′
Pr[X = x′] Pr[(fi(Vi))i = (yi)i, V = g(x′)]

=
Pr[V = g(x)|(fi(Vi))i = (yi)i]∑

x′
Pr[V = g(x′)|(fi(Vi))i = (yi)i]

(16)

Let ε(x) = Pr[V = x|(fi(Vi))i = (yi)i]− 1
|G| . Suppose first, that g is deterministic.

We have

Pr[X = x|(fi(Gi))i = (yi)i]−
1

|G|
=

1
|G| + ε(g(x))

1 +
∑
x′
ε(g(x′))

− 1

|G|

=

|G|ε(g(x))−
∑
x′
ε(x′)

|G|(1 +
∑
x′
ε(g(x′)))

(17)

and

∑
x

∣∣∣∣Pr[X = x|(fi(Gi))i = (yi)i]−
1

|G|

∣∣∣∣ =

1
|G|
∑
x

∣∣∣∣ε(g(x))− 1
|G|
∑
x′
ε(g(x′))

∣∣∣∣
1
|G| + 1

|G|
∑
x′
ε(g(x′))

(18)

Note that
∣∣∣ε(g(x))− 1

|G|
∑
x′ ε(g(x′))

∣∣∣ 6∑x′ |ε(x′)| and 1
|G|
∑
x′ ε(g(x′)) 6

∑
x′ ε(x

′).

If
∑
x′ ε(x

′) 6 1
3
2 |G|

then we obtain

∑
x

∣∣∣∣Pr[X = x|(fi(Gi))i = (yi)i]−
1

|G|

∣∣∣∣ 6
∑
x′
|ε(x′)|

1
|G| −

1
3
2 |G|

= 3|G|
∑
x′

ε(x′) (19)

otherwise ∑
x

∣∣∣∣Pr[X = x|(fi(Gi))i = (yi)i]−
1

|G|

∣∣∣∣ 6 2 6 3|G|
∑
x′

ε(x′) (20)

This way, we have shown

∆ (X;X ′|(fi(Gi))i = (yi)i) 6 3|G|∆ (V ;V ′|(fi(Vi))i = (yi)i) (21)

and by taking the average the result follows. If g is randomized, the proof is the
same but ε(g(x)) is replaced by Egε(g(x)) (note that we have β(X|(fi(Gi))i) 6
β(g(X)|(fi(Gi))i).
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A.4 Proof of Lemma 3.

We start with the following observation: suppose that Xi for i = 1, . . . , n are
shares of the uniform secret X. Let X ′i for i = 1, . . . , n be all uniform and
independent. Then we have the following equality of distributions

(X, (X1, . . . , Xn))
d
=

(
n∑
i=1

X ′i, (X ′1, . . . , X
′
n)

)
(22)

Therefore,

(X, (fi(Xi))
n
i=1)

d
=

(
n∑
i=1

X ′i, (fi(X
′
i))

n
i=1

)
. (23)

As a consequence we obtain the following equality

β(X|(fi(Xi))
n
i=1) = ∆

(
n∑
i=1

X ′i; U

∣∣∣∣∣ (fi(X ′i))ni=1

)
(24)

Thus, our problem reduces to investigate the random walk on G defined as∑n
i=1X

′
i|fi(X ′i). We need to show that it (under some restrictions) eventually

approaches the uniform distribution as n increases, and estimate the convergence
speed.

A.5 Proof of Lemma 4

Proof. We can assume that δ+ 2γ < 1. We start with the following observation:

Claim. Suppose that δ1, . . . , δn are independent random variables with expected
value at most δ < 1. Then with probability 1− exp(−2nγ2), at least n′ = γn of
them is smaller than δ + 2γ.

Proof (Proof of Claim). With probability 1 − exp(−2nγ2) we have 1
n

∑
i δi <

δ + γ. Let n′ be the number of i’s for which δi < δ + 2γ. Since we have
∑
i δi >

(n − n′)(δ + 2γ), with probability 1 − exp(−2nγ2) it holds that n(δ + θ) >
(n− n′)(δ + 2γ) or n′ > γ

δ+2γ · n > γn.

By applying the claim we see that with probability 1− exp(−2nθ2) over (yi)←
(Yi)i, there always exists a set I ⊂ {1, . . . , n} such that |I| > n′ (possibly
depending on (yi)i) such that SD (Zi;U |Yi = yi) 6 δ + 2θ for i ∈ I ′. Since

the distributions (Zi, Yi)i are independent for different i’s and since U + Z
d
=U

for any independent random variable Z, from the elementary properties of the
statistical distance we obtain

SD

(
n∑
i=1

Zi; U

∣∣∣∣∣ (Yi)i = (yi)i

)
= SD

∑
i∈I

Zi +
∑
i6∈I

Zi; U +
∑
i 6∈I

Zi

∣∣∣∣∣∣ (Yi)i = (yi)i


= SD

(∑
i∈I

Zi; U

∣∣∣∣∣ (Yi)i = (yi)i

)
. (25)
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The lemma now easily follows, as for every I as above we have

SD

(∑
i∈I

Zi; U

∣∣∣∣∣ (Yi)i = (yi)i

)
6 max

(Z′i)i: SD(Z′i;U)6δ′
∆

 n′∑
i=1

Z ′i;U

 . (26)

A.6 Proof of Theorem 2

Proof. Let µi be a distribution of Zi for i = 1, 2 and let µU denotes the uniform
measure. Let ∆(µi, µU ) = δi. Note that we can decompose µi = µU+δiµ

+
i −δiµ

−
i .

Therefore

µ1 ∗ µ2 =
(
µU + δ1µ

+
1 − δ1µ

−
1

)
∗
(
µU + δ2µ

+
2 − δ2µ

−
2

)
= µU + δ1δ2

(
µ+
1 ∗ µ

+
2 + µ−1 ∗ µ

−
2 − µ

+
1 ∗ µ

−
2 − µ

−
1 ∗ µ

+
2

)
(27)

where we have made use of the fact that µU ∗ ν = µU for any distribution ν.
Now we have

SD(µ1 ∗ µ2;µU ) =
1

2

∥∥µ+
1 ∗ µ

+
2 + µ−1 ∗ µ

−
2 − µ

+
1 ∗ µ

−
2 − µ

−
1 ∗ µ

+
2

∥∥
`1(G)

(28)

This is clearly at most 2. To identify the worst case choice of µi that maximizes
this quantity, observe that we have to bound the last expression with respect to
the constraints ∥∥µ−i ∥∥`∞(G)

6
1

δi|G|
i = 1, 2 (29)

which come from the fact that µi, as decomposed, has to be positive. There
is no restriction on µ+

i . Note now that the form µ+
1 ∗ µ

+
2 + µ−1 ∗ µ

−
2 − µ+

1 ∗
µ−2 − µ

−
1 ∗ µ

+
2 is bilinear with respect to measures µ+

i , µ
−
i and the real-valued

function µ → ‖µ‖`1(G) defined on signed measures is convex. It follows that∥∥µ+
1 ∗ µ

+
2 + µ−1 ∗ µ

−
2 − µ

+
1 ∗ µ

−
2 − µ

−
1 ∗ µ

+
2

∥∥
`1(G)

attains its maximal value for mea-

sures that are extreme points of their domain. Looking at the restrictions in (29)
we see that this is the case where µ+

i are a point mass and µ−i are uniform over
the subset of cardinality δi|G|6. Thus we can assume that µ+

1 = µa, µ+
2 = µb

are point mass at a, b and µ−1 = µA, µ−2 = µB are uniform over A,B where
|A| = δ1|G| and |B| = δ2|G|. This way our quantity simplifies to

‖µa ∗ µb − µa ∗ µB − µb ∗ µA + µA ∗ µB‖`1(G) = ‖µa+b − µB+a − µb+A + µA ∗ µB‖`1(G)

= ‖µ0 − µB−b − µA−a + µA−a ∗ µB−b‖`1(G)

(30)

where we have used the fact that the norm `1(G) is shift invariant and that a
point mass act as shifts under the convolution.

6 Otherwise we could decompose either the positive part µ+ into a combination of two
distributions (when µ+ is supported on more than one point) or the negative part
µ− (when the constraint Equation (29) is not binding at some point in the support).
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From this we easily derive the following result

Lemma 7 (Mixing time for a sum of random variables on a group).
Let {Zi}i=1,...,n be independent random variables on an abelian group G, such
that ∆(Zi;U) = δi where δi 6 1

2 − θ and θ > 0. Then for n > log(1/ε)/(2θ) it
holds that

SD

(
n∑
i=1

Zi;U

)
6 ε (31)

A.7 Proof of Lemma 6

We will show that the constant given by (8) could be much better estimated
when G = Zp. The trivial estimate is 2, however this is possible only if A+B is
disjoint with A and B. Here we remind the following result due to Cauchy and
Davenport

Theorem (Cauchy-Davenport Theorem). For any A,B ⊂ Zp, where p is
prime, we have |A+B| > min(|A|+ |B| − 1, p).

In view of this result, a better estimate is impossible if only δ1+δ2+max(δ1, δ2) >
1+1/p. From this we know that the estimate (7) is not sharp for δ1+δ2 > 2

3 + 2
3p .

Therefore we expect to improve the estimate for sufficiently big values of δ1 + δ2
whereas for the smaller we can still use the general result. To this end, we will
need a result stronger than the Cauchy-Davenport Theorem

Theorem (Pollard’s Theorem [21]). For any A,B ⊂ Zp, where p is prime,
we have ∑

x∈Zp

rA,B(x)1{rA,B(x)>t}(x) 6 |A||B| − t(|A|+ |B| − t) (32)

where rA,B(x) counts in how many different ways can we represent x as a sum
a+ b with a ∈ A, b ∈ B.

Intuitively, Pollard’s theorem says that the distribution of rA,B(x) cannot be too
”heavy tailed”.

Proof (of Lemma 6). In fact, we will show that µA ∗ µB always puts some large
mass on every sufficiently big set C, essentially on A or B. Observe first that

µA ∗ µB(x) =
rA,B(x)

|A||B|
(33)

where rA,B(x) counts for how many different ways can we represent x as a sum
a+ b with a ∈ A, b ∈ B. By trivial estimates rA,B(x) 6 min(|A|, |B|) we see that

µA ∗ µB(x) 6 min(µA(x), µB(x)), x ∈ A ∪B (34)
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Using this we can estimate the expression in (8) as follows

1

2
‖µA + µB − µA ∗ µB − µ0‖`1(G) = max

S⊂G
(µA(S) + µB(S)− µA ∗ µB(S)− µ0(S))

6 max
S⊂G

(µA(S) + µB(S)− µA ∗ µB(S))

= (µA(A ∪B) + µB(A ∪B)− µA ∗ µB(A ∪B))

= 2− 1

|A||B|
∑

x∈A∪B
rA,B(x) (35)

From Pollard’s theorem, for every set C we obtain∑
x

rA,B(x)1C(x) >
∑
x

rA,B(x)1rA,B(x)6t(x)− t(|G| − |C|) (36)

> t(|A|+ |B| − t)− t(p− |C|) = t(|A|+ |B|+ |C| − p− t)
(37)

the maximum is for tmax = |A|+|B|+|C|−p
2 provided that |A|+ |B|+ |C| − p > 0.

We check that the required inequality |A| + |B| − p 6 tmax 6 min(|A|, |B|) is
true if only the set C satisfies

|A|+ |B| − p 6 |C| 6 p− ||B| − |A||. (38)

Note that if tmax 6∈ Z then the conditions above are still sufficient provided
that we replace tmax with dtmaxe or btmaxc. Considering the function f(t) =
t(|A|+ |B|+ |C| − p− t) by the mean-value theorem we see that

|f(dtmaxe)− f(btmaxc)| 6 max
ξ∈[btmaxc,dtmaxe]

f ′(ξ)

= max
ξ∈[btmaxc,dtmaxe]

(−2ξ + |A|+ |B|+ |C| − p)

6 −2

(
tmax +

1

2

)
+ |A|+ |B|+ |C| − p = 1. (39)

Therefore, we obtain

∑
x

rA,B(x)1C(x) >

⌊
(|A|+ |B|+ |C| − p)2

4

⌋
(40)

Setting C ⊂ A∪B such that |C| = min (max(|A|, |B|), p− ||A| − |B||) we see that
the condition |C| > |A|+ |B|−p is satisfied. Provided that |A|+ |B|+ |C|−p > 0
we obtain

2− 1

|A||B|
∑

x∈A∪B
rA,B(x) 6 2− (δ1 + δ2 + min(max(δ1, δ2), 1− |δ1 − δ2|)− 1)2 + p−2

4δ1δ2

(41)
and the result follows by (8).
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From this result we obtain the following result, from which we conclude the part
(ii) of Theorem 1 by replacing θ by θ

4 and combining with Corollary 1 in the
same way as in the the derivation of part (ii).

Lemma 8 (Mixing time for a sum of random variables on Zp). Let
{Zi}i=1,...,n be independent random variables on G = Zp, such that SD(Zi;U) 6
δi where δi 6 1 − p−1 − θ and θ > 0. Then for n > 3 · 24/θ log(1/ε)/θ it holds
that

SD

(
n∑
i=1

Zi;U

)
6 ε (42)

Proof. First, using Corollary 3, we show that every sufficiently long sum has
distance at most 1

3 . Once we have that, it is enough to split the entire sum
into sufficiently many blocks and then apply Theorem 2. Consider n0 = 2m. By
applying Lemma 6 several times we see that

SD

(
n0∑
i=1

Zi; U

)
6 Bm (43)

where Bi are numbers defined by the following recursion

B0 = 1− p−1 − θ, Bi = h(Bi−1, Bi−1) for i > 1 (44)

We will prove that 1−p−1 is the repelling point : if we start from any B0 satisfying
1
3 6 B0 < 1 − p−1 then Bi decreases below 1

3 . Let Ci = 1 − Bi. If Bi−1 > 1
3 ,

then by Corollary 3 we get

Ci =1−Bi = 1− h(Bi−1, Bi−1)

= 2B2
i−1 −

(3Bi−1 − 1)2

4
− 1

4p2

= Ci−1 +
C2
i−1
4
− 1

4p2

= Ci−1

(
1 +

Ci−1
4

(
1− 1

C2
i−1p

2

))
(45)

From this we conclude that if 1
3 6 Bi−1 < 1 − p−1 then Ci−1 > p−1 and hence

Ci > Ci−1 or equivalently Bi < Bi−1. Moreover, if Ci−1 > p−1 + θ, we get

Ci > Ci−1

(
1 + θ · 2 + pθ

4 + 4pθ

)
> Ci−1

(
1 +

θ

4

)
(46)

Since Ci 6 1 and C0 > p−1+θ > θ, for some j 6 4
θ log

(
1
θ

)
we must have Bj <

1
3 .

Thus for m = d 4θ log
(
1
θ

)
e we have

SD

(
2m∑
i=1

Zi;U

)
6

1

3
(47)
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Consider ` = log(1/ε) blocks of random variables {(Z2mj+1, . . . , (Z2mj+2m)}j for
j = 0, . . . , N − 1. For every such a 2m-element block from the last observation
it follows that

SD

(
2m∑
i=1

Z2mj+i; U

)
6

1

3
(48)

Applying ` times Lemma 2 yields the estimate

SD

(
`2m∑
i=1

Zi;U

)
6

(
2

3

)`
(49)

which finishes the proof.

A.8 Harmonic Analysis

We need the following lemma, being a generalization of Vazirani’s XOR lemma.

Lemma 9 (XOR lemma for abelian groups, [23]). Let Z be a distribu-
tion over a finite abelian group G, such that |Eφ(Z)| 6 ε for every non-trivial
character φ on G. Then X is ε

√
|G|-close to uniform.

Lemma 10 (Mixing times of random sums over Zp). Let {Zi}i=1,...,n be
independent random variables on G = Zp, such that SD(Zi;U) 6 1 − p−1 − θ
and θ > 0. Then for n > 8 · log(|G|/ε)/θ3 it holds that

SD

(
n∑
i=1

Zi;U

)
6 ε (50)

Proof. We apply some facts from harmonic analysis. Let Zi be the worst-case

distributions that maximize SD(
n∑
i=1

Xi, U) under the constraints SD(Zi, U) 6

1− p−1 − θ. By Equation (6) that

µZi =

(
1− |A|

p

)
· µ0 +

|A|
p
· 1

|A|
µA, |A| = pθ (51)

Consider a non-trivial character φ(x) = exp(2kπi/p) on Zp. Since A 6= ∅ we have
θ > 1

p . We will show an upper bound on Eφ(Xi). First, observe that

|Eφ(Xi)| =

∣∣∣∣∣1− |A|p +
|A|
p
· 1

|A|
∑
x∈A

exp

(
2kπix

p

)∣∣∣∣∣ (52)

is maximized exactly when kA =
{
− |A|−12 , . . . , 0, . . . , |A|−12

}
. Indeed, we have
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Claim. For any subset A of Zp and any non-trivial character φ over Zp we have
the following estimate

|Eφ(Xi)| =

∣∣∣∣∣1− |A|p +
|A|
p
· 1

|A|
∑
x∈A

exp(2kπix/p)

∣∣∣∣∣ 6 1− θ +
sinπθ

p sin π
p

Proof. Note that every non-trivial character is of the form φ(x) = exp(2kπix/p)
where k ∈ {1, 2, . . . , p−1}. Next, we can assume that k = 1, by replacing A with
A′ = k ·A, which doesn’t change the set size. Now, by the triangle inequality we
have ∣∣∣∣∣1− |A|p +

1

p

∑
x∈A

φ(x)

∣∣∣∣∣ 6 1− |A|
p

+
|A|
p
·

∣∣∣∣∣ 1

|A|
∑
x∈A

φ(x)

∣∣∣∣∣
It remains to estimate |mA| where

mA =
1

|A|
∑
x∈A

φ(x)

is the mass center of the set φ(A) = {φ(x) : x ∈ A}. Note that φ(A) may be
any arbitrary |A|-element subset of the set of all p-th roots of unity (because φ
is a bijection), see Figure 2 for an illustration. Our task is therefore to maximize

<

=

0

w1

w2

w9 w10

w11

2π
p

mA

Fig. 2: The mass center of the set φ(A) should be as close to the circle as possible.

the length of mA which happens when A is the set of subsequent unity roots. In
particular

|Eφ(Xi)| 6
∣∣∣∣1− |A|p

∣∣∣∣+
1

p

∣∣∣∣∣∣∣
∑

|x|6 |A|−1
2

exp(2πix)

∣∣∣∣∣∣∣ = 1− θ +

∣∣∣∣∣ sinπθ

p sin π
p

∣∣∣∣∣ , (53)

where the last equality follows by known trigonometric identities. Since θ < 1
we can omit the absolute value here, and this finishes the proof.
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We will prove the following inequality

Claim. For any θ < 1 and any c 6 4
3 −

π2

18 , we have 1− θ + sinπθ
p sin π

p
6 1− cθ3

Proof. We want to prove that f(θ) = cθ3 − θ + sinπθ
p sin π

p
6 0. We have f(0) = 0

and ∂f(θ)
∂θ = −1 + 3cθ2 + π cosπθ

p sin π
p

Since for t ∈
[
0, π2

]
it holds that cos t 6 1− 4t2

π2

and sin t > t− t3

6 , we obtain

∂f(θ)

∂θ
6 −1 + 3cθ2 +

1− 4θ2

1− π2

6p2

=

π2

6p2 − θ
2
(

4− 3c+ 3cπ2

6p2

)
1− π2

6p2

(54)

and since θ > 1
p , the result follows.

From the last claim it follows that we can put c = 1
2 and thus

|Eφ(X)| =

∣∣∣∣∣Eφ
(

n∑
i=1

Xi

)∣∣∣∣∣
=

n∏
i=1

|Eφ(Xi)|

6
(
1− θ3/2

)n
. (55)

Now the result follows by Lemma 9.
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