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Abstract. Oblivious RAM (ORAM) garbles read/write operations by a
client (to access a remote storage server or a random-access memory) so
that an adversary observing the garbled access sequence cannot infer any
information about the original operations, other than their overall num-
ber. This paper considers the natural setting of Oblivious Parallel RAM
(OPRAM) recently introduced by Boyle, Chung, and Pass (TCC 2016A),
where m clients simultaneously access in parallel the storage server. The
clients are additionally connected via point-to-point links to coordinate
their accesses. However, this additional inter-client communication must
also remain oblivious.
The main contribution of this paper is twofold: We construct the first
OPRAM scheme that (nearly) matches the storage and server-client
communication complexities of the most efficient single-client ORAM
schemes. Our scheme is based on an extension of Path-ORAM by Ste-
fanov et al (CCS 2013). Moreover, we present a generic transformation
turning any (single-client) ORAM scheme into an OPRAM scheme.

1 Introduction

This paper considers the problem of hiding access patterns when reading from
and writing to an untrusted memory or storage server. This is a fundamental
problem in both in the context of software protection, as well as for secure
outsourcing to a third-party storage provider.

The basic cryptographic method to hide access patterns is Oblivious RAM
(ORAM) [8,9]. It compiles logical access sequences (from a client) into garbled
ones (to a storage space, or server) so that a curious observer seeing the latter
only (as well as the server contents) cannot infer anything other than the overall
number of logical accesses—we say that such garbled access sequences are oblivi-
ous. Since its proposal, ORAM and its applications have been extensively studied
(cf e.g. [7,9,19,16,13,11,14,12,26,6,4,3,20,28,1,27,17,30,25,24,15,5,17,18,21]). The
state-of-the-art constructions [16,26] have a Õ(log2N) computation (and com-
munication) overhead (per logical access),1 where N is the size of the storage,
i.e., the number of data bocks (of a certain bit size) it can store.

1 The ORAM scheme of [16] has only O(log2N/ log logN) overhead, while that of [26]
has O(log2N) overhead. However, the latter construction is simpler and achieves
better practical efficiency [26].
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Parallel oblivious accesses.Existing ORAM schemes only support a single
client, and in particular do not deal with parallel accesses from multiple clients.
However, enabling such parallelism is important, e.g., to achieve scalable cloud
storage services for multiple users, or to secure multi-processor architectures.
To overcome this barrier, a few systems-oriented works [24,15,30] suggested to
either use a trusted proxy shared by multiple clients to act as the “sole client”
of ORAM, or to adapt known ORAM schemes (such as [7,9,29]) to support a
limited, O(logN), number of parallel accesses.

Recently, Boyle, Chung, and Pass (BCP) [2] proposed the notion of Oblivious
Parallel RAM (OPRAM), which compiles synchronous parallel logical access se-
quences by m clients into, parallel, garbled sequences and inter-client messages,
which together still reveal no information other than the total number of logical
accesses. They also provided the first – and so far, the only – OPRAM scheme.
Their construction is simple and elegant, but, has a server-client communica-
tion overhead of ω(log3N)—a factor of Ω̃(logN) higher than state-of-the-art
ORAM schemes [16,26]. Their approach seems not to extend directly to use the
techniques behind existing communication-efficient ORAM schemes.

Hence, the natural question that arises is: “Can we design an OPRAM
scheme with the same per-client efficiency as the state-of-the-art ORAM schemes?”

Our contributions, in a nutshell.Our first contribution answers this ques-
tion affirmatively. In particular, we prove:

Theorem 1 (Informal): There is an OPRAM scheme with O(log2N)
(amortized) server-client communication overhead, and constant storage
overhead.

Going beyond, an even more fundamental question concerns the basic relation
between ORAM and OPRAM. We show that the two problems are related at a
far more generic level:

Theorem 2 (Informal): There is a generic transformation that turns
any ORAM scheme into an OPRAM scheme, with additional O(logN)
(amortized) server-client communication overhead with respect to the
original ORAM scheme.

While the above results are in the amortized case, we note that in the worst case,
the above complexity statements are true with O replaced by ω. Moreover, our
OPRAM schemes all require client-to-client communication. Their inter-client
communication is ω(logN) logm(logm+ logN)B bits. We note that this also is
an improvement by a factor O(logN) over BCP.

We stress that our approach is substantially different from that of BCP: One
key idea is the use of partitioning, i.e., the fact that each client is responsible
for a designated portion of the server storage. This eliminates much of the co-
ordination necessary in BCP. Next, we move to explaining the high-level ideas
behind our constructions in greater detail.
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1.1 Subtree-OPRAM

We provide an overview of our scheme Subtree-OPRAM. Our construction of an
m-client OPRAM scheme can be seen as consisting of two steps.

(1) First, we construct an ORAM scheme, called Subtree-ORAM, that enables
a single client to batch-process m logical accesses at a time in parallel.
Our Subtree-ORAM scheme is a generalization of Path-ORAM [26] to the
setting with large client memory and parallel processing. We believe that
this generalization is of independent interest.

(2) In a second step, we exploit the batch-processing structure of Subtree-
ORAM to adapt it to the multiple-client setting, and derive our Subtree-
OPRAM scheme by distributing its computation across multiple clients.

In the following, we explain all of this in more detail.

Review of Path-ORAM.Let us first give an overview of the tree-based ORAM
approach by Shi et al. [23]. In particular, we review Path-ORAM [26], as it will
serve as our starting point. (A more detailed review is given in Appendix B.)

To implement a storage space for N data blocks, basic (i.e., non-recursive)
Path-ORAM organizes the storage space (virtually) as a complete binary tree
with depth O(logN), where each node is a “bucket” that contains a fixed num-
ber Z = O(1) of encrypted blocks (some of which may be dummies). To hide
access patterns, each data block is assigned to a random path ` (from a leaf
` to the root, and we use ` to identify both the leaf and the associated path
interchangeably) and stored in some bucket on path `; after each access, the
assignment is “refreshed” to a new random path `′. The client keeps track of the
current path assigned to each block using a position map. The client also keeps
an additional (small) memory for overflowing blocks, called the stash. For each
logical access to a certain block with address a ∈ [N ], Path-ORAM takes the
two following steps:

(1) Fetching a path. Retrieve the path ` currently associated with block a in
the position map, and find block a on the path or in the local stash. Then,
assign the block a to a new random path `′ and update the position map
accordingly.

(2) Flushing along a path. Iterate over every block a′ in the fetched path `
and in the stash (this includes the block a we just retrieved and possibly
updated, and which was assigned to the new path `′), and re-insert each
block a′ into the lowest possible bucket on ` that is also on the path assigned
to a′ according to the position map. If no suitable place is found (as each
bucket can only contain at most Z blocks), the block is placed into the
stash. The contents of the path are re-encrypted when being written back
to the server (including dummy blocks).

The analysis of Path-ORAM [26] shows that the stash size is bounded by ω(logN)
with probability roughly poly(λ)2−ω(logN). To avoid keeping a large position
map, Path-ORAM recursively stores the position map at the server. The final
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scheme has a recursion depth of O(logN)—each logical access is translated to
O(logN) actual accesses, each consisting of retrieving a path. Overall, the com-
munication overhead is O(log2N). Also, the overall storage complexity at the
server can be kept to O(N) despite the recursion.

Subtree-ORAM. As our first contribution, we generalize Path-ORAM to pro-
cess m ≥ 1 logical accesses at a time. As the recursion step in Path-ORAM
is rather generic, we focus on the non-recursive scheme, ignoring the costs of
storing the position map.

The natural approach to achieve this is to retrieve a subtree of m paths, i.e.,
for every m logical accesses to blocks a1, . . . , am, we can do the following:

(1) Fetching subtree. Retrieve the subtree ST composed of the paths `1, . . . , `m
assigned to the m blocks and find the blocks of interest in the subtree or in
the stash, and possibly update their values.

(2) Path-by-path flushing. Execute the flushing procedure from Path-ORAM
on the m paths in ST sequentially as in Path-ORAM, with each ai assigned
to a new random path `′i.

Unfortunately, there are two problems with this approach. First, if a1, . . . , am
are not all distinct, the accesses are not oblivious, as the same path would be
retrieved multiple times. To avoid this, the final Subtree-ORAM scheme perform
some pre-processing: For accesses to the same block, replace all but the first one
with ⊥ in the logical sequence to obtain a′1, . . . , a

′
m, and for each repetition

a′i = ⊥, assign random path to be retrieved from the server — this is called a
fake read.2

The second drawback is that repeating the flushing procedure of Path-ORAM
m times in Step 2 is inherently sequential. To use Subtree-ORAM within Subtree-
OPRAM below, we instead target a parallelizable flushing procedure. To this
end, we introduce the following new flushing procedure, which we refer to as
subtree flushing:

(2) Subtree flushing: Iterate over every block in ST and in the stash and place
each block into the lowest node in the entire subtree ST that is still on its
assigned path, and not yet full. The order in which blocks are processed can
be arbitrary, and the process can be parallelized (subject to maintaining the
size constraint of each node).

Security and correctness of Subtree-ORAM follow similar arguments as Path-
ORAM. Furthermore, we bound the stash size of Subtree-ORAM by generalizing
aspects of the analysis of Path-ORAM – we believe this to be of independent
interest.

2 Note that this random path may well collide with one of the other paths. Still, the
key point is that it is chosen independently of the actual blocks. The use of such fake
read has appeared in many previous works, such as, [24,2].
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Subtree-OPRAM. Our end goal is to design an interactive protocol that en-
ables m clients to access (and possibly alter) blocks a1, . . . , am in parallel, where
client Ci is requesting in particular block ai; both the access patterns to the
server, as well as inter-client communication, must be oblivious.

We can think of our Subtree-OPRAM protocol as having the m clients collec-
tively emulate the single Subtree-ORAM client. To this end, we use inter-client
oblivious communication protocols based on tools developed in [2] to let clients
interact with each other. Here, we focus our description on how to “distribute”
Step 1 and Step 2 of Subtree-ORAM for the special cases that the requested
blocks a1, . . . , am are distinct. (Handling colliding requests in an oblivious way
will require extra work.) For simplicity, we assume that all clients have access to
the position map and all messages are implicitly encrypted (with a key shared
by all clients). In particular, everything is re-encrypted before being written to
the server.

Assume for simplicity that m = 2l. We can think of the server storage in
Subtree-OPRAM in terms of a tree of buckets, as in Path-ORAM and Subtree-
ORAM. However, we remove the top l levels, effectively turning the tree into a
forest of m trees T1, . . . , Tm; client Ci manages all read/write from/to Ti, and
all blocks assigned to (a path in) Ti that do not fit in one of the buckets on the
server remain in a local stash managed locally by Ci. More precisely:

(1) In parallel, each Ci finds the path `i assigned to ai (using the position map)
and delegates the job of reading path `i to the client Cj responsible for the
tree Tj containing `i, to which it sends a request. Each Cj retrieves all paths
for which it has received a request (again in parallel), which form a subtree
STj of Tj ; it then finds the blocks of interest in STj and its local stash, and
sends them back to the respective clients who requested them.

(2) Each Ci assigns ai a new path `′i, and delegates the job of writing back
(Bi, `

′
i) to the client Cj responsible for the tree Tj containing `′i. To ensure

obliviousness, the clients achieve this by running collectively the oblivious
routing protocol of [2], which hides the destination of messages. Next, each
Ci runs the subtree-flushing procedure locally on the retrieved subtree STi
and its own stash, and finally writes the entire subtree STi back.

We will show that the m clients indeed collectively emulate the execution of the
single client of Subtree-ORAM. In particular, parallel flushing on the individual
subtrees emulates the effect of a global flushing over the union of these subtrees,
but keeping the top l levels of the tree locally at the clients; also, the union of the
stashes of all clients contains exactly the contents of the stash of the Subtree-
ORAM client, as well as the contents of the top of the tree. This gives a bound
on the overall sizes of the stashes.

In expectation, each client reads and writes one path per round, and thus the
amortized client-server communication overhead is O(logN), and the final recur-
sive Subtree-OPRAM has amortized overhead of O(log2N), with overwhelming
probability. In fact, we prove that the worst-case overhead is not much higher,
and is of the order of ω(log2N), e.g., O((log2N) · log logN), much smaller than
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BCP’s ω(log3N). We improve over BCP also in terms of inter-client communi-
cation complexity by a factor of logN .

1.2 The generic transformation

Subtree-OPRAM is tailored at achieving the same overhead as Path-ORAM, and
not surprisingly, the former heavily relies on the latter. Our second contribution
is a generic transformation that converts any ORAM scheme into an OPRAM
protocol. When applied to Path-ORAM, the resulting scheme is less efficient
than Subtree-OPRAM – still, the main benefit here is generality.

Our approach generalizes ideas from partition-based ORAM [25]. Specifically,
we split the server storage into m partitions each storing (roughly) N/m blocks,
and let the m clients run each a copy of the basic ORAM algorithm (call them
O1, . . . ,Om). Each client Ci thus manages the i-th partition independently using
Oi. Every block a is randomly assigned to one of the m partitions P ∈ [m],
and it is re-assigned to a new random partition after each access. The current
assignment of blocks to the m partitions is recorded in a partition map, which we
assume (for now) to be accessible by all clients. (In the end, it will be shared using
recursion techniques.) Then, when m clients request the m blocks a1, . . . , am in
parallel, the clients simply find the respective partitions P1, . . . , Pm containing
these blocks, and let the corresponding clients retrieve the desired blocks and
delete them from their partitions (if a block is accessed for multiple times, then
“fake reads” are performed to a random partition). The actual access pattern so
far is oblivious since all Pi’s are random, and the basic ORAM scheme ensures
that retrieving blocks from each partition is done obliviously.

However, writing these blocks back to new random partitions without reveal-
ing their destinations turns out to be non-trivial, even if we can deliver the blocks
obliviously to the clients responsible for the new partitions. Indeed, naively invok-
ing the corresponding ORAM copies to insert would reveal how many blocks are
assigned to each partition. To hide this information, in our protocol each client
inserts the same number κ of blocks to its partition, and keeps a queue of blocks
to be inserted. We use a stochastic analysis to show that for any R = ω(log λ),
it is sufficient to insert only κ = 2 blocks to each partition each time (and in par-
ticular, perform fake “insertions” if less than 2 blocks need to be inserted), and
at most R “overflowing” blocks ever remain in the queue (except with negligible
probability).

A challenge we have not addressed is how to use an ORAM for a partition
of size O(N/m) to store the blocks associated with it in an efficient way, i.e.,
without using the whole space of [N ] addresses. We will solve this by using an
appropriate ORAM-based oblivious dictionary data structure.

As the expected number of read and write operations each client performs is
3 (one read and two writes), the non-recursive version has the same (amortized)
computation and communication overhead as the underlying ORAM scheme. To
obtain the final OPRAM scheme, we apply recursive techniques to outsource the
partition map to the server.
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Notation. Throughout this paper, we let [n] denote the set {1, 2, ..., n}. We
denote by ∆(X,Y ) the statistical distance between distributions (or random
variables) X and Y , i.e ∆(X,Y ) =

∑
x |Pr[X = x]− Pr[Y = x]|. Also, we say

that a function µ is negligible if for every polynomial p there exists a sufficiently
large integer n0, such that µ(n) ≤ 1/p(n) for all n > n0.

2 Oblivious (Parallel) RAM

We start by reviewing the notion of Oblivious RAM and its parallel extensions.
We present definitions different from (yet essentially equivalent to) the ones
by Goldreich and Ostrovsky [8,9] and BCP [2], considering clients and servers,
instead of RAM compilers, which we consider to lead to more compact and
natural descriptions, and are more in line with the applied ORAM literature.

Basic ORAM setting.The basic ORAM setting considers two parties, a client
and a server: The server S(M,B′) has a large storage space consisting of M
cells, each of size B′ bits, whereas the client has a much smaller memory. The
client can access the storage space at the server using read and write commands,
denoted as Acc(read, a,⊥) and Acc(write, a, v), where a ∈ [M ] and v ∈ {0, 1}B′ .
(We assume that all cells on the server are initialized to some fixed string, i.e.,
0B
′
.) Both operations return the current value stored in cell a, in particular for

the latter operation this is the value before the cell is overwritten with v.

An oblivious RAM (ORAM) scheme consists of an ORAM clientO (or simply,
an ORAM O), which is a stateful interactive PPT machine which on initial input
the security parameter λ, block size B, and storage size N , processes logical
commands Acc(opi, ai, vi), opi ∈ {read,write}, ai ∈ [N ], vi ∈ {0, 1}B ∪ {⊥}, by
interacting with a server S(M,B′) (for values M = M(N) and B′ = B′(B, λ)
explicitly defined by the scheme), via sequence of actual (read/write) accesses
Acc(opi,1, ai,1, vi,1), . . . ,Acc(opi,qi , ai,qi , vi,qi), and finally outputs a value vali
and updates its local state depending on the answers of these accesses.

An ORAM scheme hides the sequence of logical commands from an untrusted
(honest-but-curious) server, who observes the actual sequence of accesses. The
actual values written to the server can be hidden using semantically-secure en-
cryption. Indeed, all known ORAM solutions have server cells hold each the
encryption of a block, i.e., in general one has B′ = B+O(λ). For this reason, we
abstract away from the usage of encryption by dealing only with access-pattern
security and tacitly assuming that all cells are going to be stored encrypted in
the final scheme with a semantically secure encryption scheme, and that every
write access to the server will be in form of a fresh re-encryption of the value.
In this case, it makes sense to think of B′ = B, and an adversary who cannot
see the value written to/read from the server.

We defer a definition of security and correctness for single-client ORAM in
Appendix A, and here rather focus on generalizing above to the multi-client
setting.
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Multi-client setting.We now consider the setting of oblivious parallel ORAM
(or OPRAM for short) with m clients. An m-client OPRAM is a set3 of stateful
interactive PPT machines PO = {Oi}i∈[m] which all on initial input the secu-
rity parameter λ, the storage size parameter N , and the block size B, proceed
in rounds, interacting with the server S(M(N), B) (where M is a parameter of
the scheme4) and with each other through point-to-point connections. At each
round r the following steps happen: First, every client Oi receives as input a
logical operation Acc(opi,r, ai,r, vi,r) where opi,r ∈ {read,write}, ai,r ∈ [N ] and

vi,r ∈ {0, 1}B ∪{⊥}. Then, the clients engage in an interactive protocol where at
any time each client Oi can (1) Send messages to other clients, and (2) Perform
one or more accesses to the server S(M,B). Finally, every Oi outputs some value
vali,r.

Correctness and obliviousness.We assume without loss of generality than
the honest-but-curious adversary learns only the access and communication pat-
terns. To this end, let us fix a sequence of logical access operations that are issued
to the m clients in T successive rounds. First off, for all i ∈ [m], we denote by
yi =

(
Acc(opi,r, ai,r, vi,r)

)
r∈[T ]

the sequence of logical operations issued to Oi
in the T rounds, and let y = (y1, . . . ,ym) .

Now, for an execution of an OPRAM scheme PO for logical sequence of
accesses y as above, we let ACPi be the round-i communication pattern, i.e., the
transcript of the communication among clients and between each client and the
server in round i ∈ [T ], except that actual contents of the messages sent among
clients, as well as the values vi in server accesses by the clients, are removed. We
define

ACPPO(λ,N,B,y) = (ACP1, . . . ,ACPT ) .

Finally, we also denote the outputs client i as vali = (vali,1, . . . , vali,T ) and

OutPO(λ,N,B,y) = (val1, . . . ,valm) .

The outputs z = OutPO(λ,N,B,y) of PO are correct w.r.t. the parallel accesses
sequence y, if it satisfies that for each command Acc(opi,t, ai,t, vi,t) in y, the
corresponding output vali,t in z is either the most recently written value on
address ai, or ⊥ if ai has not yet been written. Moreover, we assume that if two
write operations occur in the same round for the same address, issued by clients
Oi and Oj , for i < j, then the value written by Oi is the one that takes effect.
Let Correct be the predicate that on input (y, z) returns whether z is correct
w.r.t. y.

Definition 1 (Correctness and Security). An OPRAM scheme PO achieves
correctness and obliviousness if or all N,B, T = poly(λ), there exists a negligible

3 For notational simplicity, we give definitions for the case where the number of clients
m is fixed and independent of the security parameter. However, one can easily extend
these definitions to the case where m = m(λ) with some (straightforward) notational
effort.

4 As in the single-client case above, we simply assume that server blocks and logical
blocks have the same size for simplicity, as we only consider the unencrypted case.
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function µ such that, for every λ, every two parallel sequences y and y′ of the
same length T (λ), the following are satisfied:

(i) Correctness. Pr [Correct (y,OutPO(λ,N,B,y)) = 1] ≥ 1− µ(λ).

(ii) Obliviousness. ∆ (ACPPO(λ,N,B,y),ACPPO(λ,N,B,y′)) ≤ µ(λ).

Usually, the values λ, N , B are understood fro the context, and we thus often
use ACP(y) = ACPPO(λ,N,B,y) for notational simplicity.

OPRAM complexity. The server-communication overhead and inter-client
communication overhead of an OPRAM scheme PO are respectively the number
of bits sent/received per client to/from the server, and to/from other clients, per
logical access command, divided by the block size B. Finally, the server storage
overhead of PO is the number of blocks stored at the server divided by N , and
client storage overhead is the number of blocks stored at each client after each
parallel access.

3 OPRAM with O(log2 N) Server Communication
Overhead

In this section, we present our first OPRAM scheme, called Subtree-OPRAM.

Theorem 1 (Subtree-OPRAM). For every m, there is a m-client OPRAM
scheme with the following properties: Let λ, N , and B denote the security pa-
rameter, the size of the logical space, and block size satisfying B ≥ 2 logN .

– Client storage overhead. Every client keeps a local stash consisting of
R = (ω(log λ) +O(logm)) logN blocks.

– Server storage overhead. O(1).

– Server communication overhead. The amortized overhead is O(log2N)
and the worst case overhead is ω(log λ logN)+O(log2N) with overwhelming
probability.

– Inter-client communication overhead. The amortized and worst-case
overheads are both ω(log λ) logm(logm + logN) with overwhelming proba-
bility.

In particular, when the security parameter λ is set to N , the server communica-
tion complexity is ω(log2N) in the worst case, and O(log2N) amortized.

To prove the theorem, as discussed in the introduction, we first present a
single-client ORAM scheme, Subtree-ORAM, that supports parallel accesses in
Section 3.1, and then adapt it to the multiple-client setting to obtain Subtree-
OPRAM in Section 3.3. We analyze these two schemes in Appendixes C and D.
Additional helper protocols needed by Subtree-OPRAM are given in Section 3.2.
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3.1 Subtree-ORAM

In this section, we describe the non-recursive version of Subtree-ORAM, where
the client keeps a large position map of size O(N logN); the same recursive
technique as in Path-ORAM can be applied to reduce the client memory size.

The Subtree-ORAM client, ST-O, keeps a logical space of N blocks of size B
using M(N) = O(N) blocks on the server. The server storage space is organized
(virtually) as a complete binary tree T of depth D = logN (we assume for
simplicity that N is a power of two), where each node is a bucket capable of
storing Z blocks. In particular, we associate leaves (and paths leading to them
from the root) with elements of [2D] = [N ]. Additionally, ST-O locally maintains
a position map pos.map and a stash stash of size respectively O(N logN) bits
and R(λ) ∈ ω(log λ) blocks.

In each iteration r, the Subtree-ORAM client ST-O processes a batch of m
logical access operations {Acc(opi, ai, vi)}i∈[m] as follows:

1. Pre-process. Remove repetitive block accesses by producing a new m-
component vector Q as follows: The i-th entry is set to Qi = (opi, ai) if
the following condition holds, otherwise Qi = ⊥.
– Either, there are (one or many) write requests to block ai, and the i-th

operation Acc(opi, ai, vi) is the one with the minimal index among them.
– Or, there are only read requests to block ai, and the i-th operation

Acc(opi, ai, vi) is the one with the minimal index among them.
2. Read paths in parallel. Determine a set S = {`1, . . . , `m} of m paths to

read, where each path is of one of the following two types:
– Real-read. For each Qi = (opi, ai) 6= ⊥, set `i = pos.map(ai) and

immediately refresh pos.map(ai) to `′i
$← [N ].

– Fake-read. For each entry Qi = ⊥, sample a random path `i
$← [N ].

Then, retrieve all paths in S from the server, forming a subtree TS of buckets
with (at most) Z decrypted blocks in them.

3. Post-process. Answer each logical access Acc(opi, ai, vi) as follows: Find
block ai in subtree TS or stash, and returns the value of the block. Next,
for each Qi 6= ⊥ if the corresponding logical access is a write operation
Acc(write, ai, vi 6= ⊥), update block ai to value vi.

4. Flush subtree and write-back. Let Treal be the subtree consisting of only
real-read paths in TS . Before (re-encrypting and) writing TS back to the
server, re-arrange the contents of Treal and stash to fit as many blocks from
stash into the subtree as follows:

Subtree-flushing. Move all blocks in Treal and stash to a temporary
set Λ. Traverse through all blocks in Λ in an arbitrary order: Insert
each block with address a from Λ, either into the lowest non-full
bucket in Treal that lies on the path pos.map(a) (if such bucket exists),
or into stash. If at any point, the stash contains more than R blocks,
output overflow and abort.

In Appendix C, we briefly discuss the analysis of Subtree-ORAM, noting the
bulk of it (proving that the overflow probability is small) is deferred to the full
version for lack of space.
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3.2 Oblivious inter-client communication protocols

Subtree-OPRAM, which we introduce in the next section, will use as compo-
nents a few oblivious inter-client communication sub-protocols which will allow
to emulate Subtree-ORAM in a distributed fashion. These are variants of simi-
lar protocols proposed in [2]. Their communication patterns are statically fixed,
independent of inputs (and thus are oblivious in a very strong sense), and the
communication and computation complexities of each protocol participant is
small, i.e., roughly polylog(m) where m is the number of participants. We only
describe the interfaces of these protocols; their implementations are based on
log(m)-depth sorting networks, and we refer the reader to [2] for further low-
level details.

Oblivious aggregation. Our first component protocol is used to aggregate
data held by multiple users, and is parameterized by an aggregation function agg
which can combine an arbitrary number of data items d1, d2, . . . (from a given
data set) into an element agg(d1, d2, . . .). The function agg is associative, i.e.,
agg(agg(d1, d2, . . . , dk), dk+1, . . . dk+r) and agg(d1, d2, . . . , dk, agg(dk+1, . . . dk+r))
both give us the same value as agg(d1, . . . , dk+r). Each party i ∈ [m] starts the
protocol with an input pair consisting of a pair (keyi, di). At the end of the exe-
cution, each party i obtains an output with one of two forms: (1) (rep, d∗), where
d∗ is the output of the aggregation function applied to {dj : keyj = keyi}, or
(2) (⊥,⊥). Moreover, for every key which appears among the {keyi}i∈[m], there
exists exactly one party i with keyi = key receiving an output of type (1). We
refer to each such party as the representative for keyi.

An aggregation protocol with fixed communication patterns, called OblivAgg,
is given in [2]. When the bit length of the data items and of the key values is
at most ` bits, the protocol from [2] proceeds in O(logm) rounds, and in each
round, every client sends O(1) messages of size O(logm+ `) bits.

Oblivious routing. Another protocol we will use is the Oblivious Routing
protocol OblivRoute from [2]. This m-party sub-protocol allows each party to
send a message to another party; since the communication patterns are fixed,
the recipients of the messages are hidden from an observer.

Protocol OblivRoute:

– Input of party i: (idi,mi) where mi is the message of client i and idi is
the index of the recipient of the messages.

– Output of party i: {(idj ,mj) | idj = i} the set of messages sent to party
i.

We note that the implementation of OblivRoute is tailored at the case where
each idi is drawn independently and uniformly at random from [m]. (And this
will be the case of our application below.) For a parameter K ≥ 0, their protocol
proceeds in O(logm) rounds, and in every round, a client sends a message of size
O(K · (`+ logm)) bits to another client, where ` is the size of the inputs. Then,
the probability that the protocol aborts is roughly O(m logm2−K), and thus one
can set K = ω(log λ) for this probability to be negligible in λ, or K = ω(logN)
in our ORAM applications where N becomes the security parameter.
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Oblivious election. We will need a variant of the above OblivAgg protocol
with stronger guarantees. In particular, we need a protocol OblivElect that allows
m parties with requests {(opi, ai)}i∈[m] to elect a unique representative party for
each unique address that appears among the m requests. This representative will
be the party with the smallest identity i ∈ [m] wanting to write to that address
(if it exists), or otherwise the one with the smallest identity wanting to read
from it. Formally, the protocol provides the following interface.

Protocol OblivElect:

– Input of party i: (opi, ai), where opi ∈ {read,write} and ai ∈ [N ].
– Output of party i: a value oi = {rep,⊥}, which is defined as fol-

lows. For each address a, define Sa = {i | ai = a} and Wa =
{i | ai = a ∧ opi = write}, and let i∗(a) = min(Wa) if Wa is non-empty,
or i∗(a) = min(Sa) otherwise. Then, we let oi = rep if and only if
i = i∗(ai), and oi = ⊥ otherwise.

OblivElect can be implemented by modifying OblivAgg. At the high level, OblivAgg
proceeds as follows (we refer to [2] for further details):

– Initially, every client i inputs a pair (keyi, di), and these inputs are re-shuffled
across clients and sorted according to the first component. That is, at the
end of the first phase, any two clients j < j′ are going to hold a triple
(i(j), keyi(j), di(j)) and (i(j′), keyi(j′), di(j′)), respectively, such that keyi(j) ≤
keyi(j′) and i(j) 6= i(j′). This is achieved via a sorting network, where each
client i initially holds (i, keyi, di), and then such triples are swapped between
pairs of clients (defined by the sorting network), according the key values.

– This guarantees that for every key which was initially input by m′ ≥ 1 clients,
at the end of the first phase there exist m′ consecutive clients j, j+1, . . . , j+
m′ − 1 (for some j) holding triples with keyi(j) = · · · = keyi(j+m′−1) =
key. Then, client j is going to aggregate di(j), . . . , di(j+m′−1), and the final
representative for key is client i(j). The aggregate information is sent back
to the representatives by using once again a sorting network, sorting with
respect to the i(j)’s.

We can easily modify OblivAgg to achieve OblivElect as follows. We run OblivAgg
with client i inputting keyi = ai and di = (opi, i). However, the sorting network
is not going to sort solely according to the key value, but also according to the
associated d entry. In particular, we say that (a, op, i) < (a′, op′, i′) iff (1) a < a′,
or (2) a = a′, op = write and op′ = read, or (3) a = a′, op = op′, and i < i′.
The sorting now will ensure that the left-most client j holding a value for some
key = a will be such that i(j) is our intended representative.

The complexity of OblivElect is the same as that of OblivAgg, setting ` =
O(logm+ logN). Thus we have O(logm) rounds, where each client sends O(1)
messages of size O(logm+ logN) bits.

Oblivious multicasting.The oblivious multicast protocol OblivMCast is a m-
party subprotocol that allows a subset of the parties, called the senders, to
multicast values to others, called the receivers. More precisely:
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Protocol OblivMCast:

– Input of party i: Input is either (ai, vi 6= ⊥) (where ai ∈ [N ]) indicating
that party i is a sender with value vi indexed by address ai, or (ai,⊥)
indicating that it is a receiver fetching the value indexed by ai. For every
possible a, there is at most one party with ai = a and vi 6= ⊥.

– Output of party i: If party i is a sender, its output is vi. If party i is a
receiver, its output is vj , the value sent by party j with index aj = ai.

The protocol is in essence the reversal of our OblivElect protocol above. It can be
built using similar techniques, achieving round complexity O(logm), and every
client sends in each round O(1) messages of size O(B+logN+logm) bits, where
B is the bit size of the values vi.

3.3 Subtree-OPRAM

Non-Recursive Subtree-OPRAM. We first describe the non-recursive ver-
sion of Subtree-OPRAM, where multiple clients share access to a global position
map, which can be eliminated using recursive techniques as we explain fur-
ther below. (Due to the constraints of coordinating access to the same items in
OPRAM, our recursive techniques are somewhat more involved than in the basic
ORAM case.)

Let m be the number of clients; assume for simplicity that it is a power of
2, i.e., log(m) is an integer. The Subtree-OPRAM protocol ST-PO = {Oi}i∈[m],

on common input (λ,N,B,m), organizes the server storage as a forest of m
complete binary trees T1, . . . , Tm, each of depth logN − log(m), where every
node in each tree is a bucket of Z = O(1) blocks of B bits. In other words,
the union of Ti is the complete tree T in Subtree-ORAM, but with the top
log(m) levels removed. Again, we identify paths with leaves in the tree, and
we say that a path ` “belongs to” Ti, if the leaf ` is in Ti. Each client Oi is
responsible for managing the portion of the storage space corresponding to Ti,
meaning that it reads/writes all paths belonging to Ti, and maintains a local
stash stashi for storing all “overflowing” blocks whose assigned path belongs to
Ti. The Subtree-ORAM analysis will carry over, and imply that the size of each
local stash is bounded by any function R(λ,m) ∈ ω(log λ) + O(logm), where
the extra O(logm) is to store blocks that in the original Subtree-ORAM scheme
would have belonged to the upper log(m) levels. The clients also share a global
size-N position map pos.map. (Recall that we are looking at the non-recursive
version here.)

Recall that the m clients share a secret key for a semantically secure encryp-
tion scheme. In each iteration, each client i processes a logical access request
Acc(opi, addri, vi). The m clients then proceed in parallel to process jointly the
m logical requests from this iteration:
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1. Select block representatives. The m clients run sub-protocol OblivElect,
where client i uses input (opi, ai) and receives either output rep or ⊥; in the
former case client i knows it is the representative for accessing block ai.

5

2. Forward read-path requests. Each client i determines the path `i it wants
to fetch, and there are two possibilities:
– Real read. If it is a representative, set path `i = pos.map(ai) and a′i =

ai, and immediately refresh pos.map(ai) to `′i
$← [N ];

– Fake read. If it is not a representative for ai choose a random path

`i
$← [N ] and set a′i = ⊥.

If path `i belongs to tree Tj , client i sends an encrypted message (i, a′i, `i)
to client j.

3. Read paths. Each client j ∈ [m] retrieves collects a set Sj of all paths
contained in the messages {(i, a′i, `i)} received in the previous step, and then
proceeds as follows:
1) Retrieve all paths in Sj , which form a subtree denoted TSj .
2) For each i ∈ [m] such that a request (i,⊥, `i) was received, send the

encryption of a dummy block ⊥ to client i
3) For each i ∈ [m] such that a request (i, a′i 6=⊥, `i) was received, find block

a′i in TSj or in stash, delete it, and send the encryption of the value vi of
the block to client i.

4. Answer client requests and update. At the end of the previous step, each
client holds a value vi which is 6= ⊥ if and only if i is the representative for ai.
Next, the m clients run sub-protocol OblivMCast to allow each representative
to multicast the value it holds to other clients requesting the same block:
Concretely, each client i uses input (ai, vi) (recall a non-representative has
vi = ⊥) and receives output v′i, which is guaranteed to be the value of block
ai it requests. Each client i answers its logical request with v′i.
Next, each representative i that has a write operation Acc(write, ai, vi) locally
updates the value of block ai to vi = vi.

5. Re-route blocks with newly assigned paths. Each representative i send
its block (ai, vi) to the appropriate client for insertion according to the newly
assigned path `′i (Step 1) as follows: Let ji be the tree that path `′i belongs
to; the m clients run sub-protocol OblivRoute where each representative i
uses input (ji, (`

′
i, ai, vi)), and other clients use input (ji,⊥) for a randomly

drawn ji
$← [m]. 6

As the output of OblivRoute, each client j receives a set of blocks {(`′i, ai, vi)}
whose path `′i belong to Tj ; it stores each (ai, vi) in its local stash stashj .

6. Flush subtree and write-back. For each client j, let Trealj be the subtree
consisting of only real-read paths in TSj . Before writing subtree TSj back
to the server (re-encrypting all of its contents), client j runs the Subtree
Flushing Procedure on Trealj and stashj (recall that if at any point, stashj
contains more than R blocks, the procedure output overflow).

5 Note that the representatives are chosen consistently with how repetition is removed
in Subtree-ORAM.

6 Note that the destination addresses of OblivRoute here are all uniformly chosen, and
thus we can use the implementation from [2].
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Recursive version.We can apply recursion to eliminate the use of the shared
global position map in the above scheme. Observe that in each iteration, each
client read/write the position map at most once in Step 2. In other words, the
m clients, in order to answer a batch of m accesses, one per client, to a logical
space of size N×B bits, clients need to first make a batch of at most m accesses,
one per client, to the position map of size N × logN bits. Since B ≥ α logN for
some constant α > 1 (for simplicity, N is a power of two), by recursively storing
the shared position map to the server in O(logN) trees, the clients no longer
need to share any position map. At the end of recursion, the size of the position
map decreases to O(1) and can be stored in the local memory of say, the first
client. Other clients can access and update this position map using oblivious
sub-protocols OblivAgg and OblivMCast.

This high-level strategy goes through almost identically as in Path-ORAM,
except from the following caveat. Recall that in Step 2 of Subtree-OPRAM, if a
client i is a representative, then it reads entry `i = pos.map(ai) of the position
map and updates it to a new random address `′i, and otherwise, it does not
access the position map. Since B ≥ α logN , the entire position map fits into a
logical space of N/α blocks, where the block with address ã contains α position
map entries, pos.map(αã+1)|| · · · ||pos.map(α(ã+1)). This means, when applying
recursion and storing the position map at the server, client i needs to make the
following logical access:

Acc(õpi, ãi, ṽi) =

{
Acc(write, bai/αc, `′i) if i is a representative

Acc(read, 0,⊥) otherwise

We assume without loss of generality above that clients who are not represen-
tatives simply make a read access to the block with address 0. By construction,
different representatives i and j access different entries in the position map
ai 6= aj . However, it is possible that two representatives i and j need to access
the same logical address ã = ãi = ãj , in order to update different entries of posi-
tion map located in the same block ã—call this a write-collision; since each block
contains at most α position map entries, there are at most α write collisions for
the same logical address. Recall that in Subtree-OPRAM, when multiple clients
write to the same logical address, only the write operation with the smallest
index is executed. Hence, naively applying recursion on Subtree-OPRAM means
when write-collision occurs, only one position map entry would be updated.

This problem can be addressed by slightly modifying the interface of Subtree-
OPRAM, so that, under the constraint that there are at most α writes to dif-
ferent parts of the same block, all writes are executed. In recursion, the mod-
ified scheme is invoked, to ensure that position maps are updated correctly,
whereas at the top level, the original Subtree-OPRAM is used. To accommodate
α write collisions, the only change appears in Step 1: In Subtree-OPRAM, the
sub-protocol OblivElect is used, which ensures that for each address a, only the
minimal indexed write is executed. We now modify this step to run the sub-
protocol OblivAgg (with appropriate key, data and aggregate function specified
shortly), so that, a unique representative is elected for each a, who receives all
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the write requests to that a, and executing all of them (note that while the write
request are for the same block, they will concern different portions of the block
corresponding to distinct position map entries, and thus “executing all of them”
has a well-defined meaning):

1. Select block representatives, modified. The m clients run sub-protocol
OblivAgg, where client i uses input (keyi = ai, di = vi), and aggregate func-
tion agg(d1, d2, · · · ) = d1||d2, · · · = V . OblivAgg ensures that for each address
ai, a unique client j accessing that address ai receives output (rep, Vi), and
all other clients receive output (⊥,⊥). In the former case, client j knows it
is the representative for accessing block ai, and Vi determines the new value
of the block vi.

The rest of the protocol proceeds identically as before. Since there are at most
α write collision for each address, the length of the output of agg is bounded by
` = αB. Thus the protocol proceeds in O(logm) rounds, where in each round
every client sends O(1) messages of size O(logN + logm+B) bits.

4 Generic OPRAM Scheme

In this section, we generalize the ideas from Subtree-OPRAM to obtain a generic
transformation transforming an arbitrary single-client ORAM to an OPRAM
scheme, incurring only in a O(logN) factor of efficiency loss. Overall, we are
going to prove the following general theorem.

Theorem 2 (Generic-OPRAM). There exists a generic transformation that
turns any ORAM scheme O into an m-client OPRAM scheme Generic-OPRAM
such that, for any R = ω(log λ), the following are satisfied, as long as the block
length satisfied B ≥ 2 logm, and moreover N/m ≥ R:

– Server communication overhead. The amortized communication over-
head is O(logN · α(N/m)) and the worst-case communication overhead is
O((logN+ω(log λ)) ·α(N/m)), where α(N ′) is the communication overhead
of ORAM scheme O with logical address space [N ′].

– Inter-client communication overhead. The amortized and worst-case
overheads are both ω(log λ) logm(logm + logN) with overwhelming proba-
bility.

– Server and client storage. The sever stores O(m · M(N/m)) blocks,
where M(N ′) is the number of blocks stored by O for logical address space
N ′. Moreover, the client’s local storage overhead is R+ polylog(N).

Our presentation will avoid taking the detour of introducing a single-client
ORAM scheme allowing for parallel processing of batches of m access operations,
as we have done above with Subtree-OPRAM. A direct description of Generic-
OPRAM is conceptually simpler. Before we turn to discussing Generic-OPRAM,
however, we discuss a basic building block behind our protocol.
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4.1 Oblivious dictionaries

In our construction below, every client will be responsible for a partition holding
roughly N/m blocks. One of the challenges is to store these blocks obliviously
using space which is roughly equivalent to that of storing N/m blocks. Ideally,
we want to implement this using an ORAM with logical address space for N/m
blocks, as this would result in constant storage overhead when the ORAM has
also constant overhead. In particular, the elements assigned to a certain parti-
tion have addresses spread around the whole of [N ], and we have to map them
efficiently to be stored into some block in [N/m] in a way which is (a) storage
efficient for the client, and (b) only requires accessing a small (i.e., constant)
number of blocks to fetch or insert a new block. We going to solve this via an
oblivious data structure implementing a dictionary interface and able to store
roughly N/m blocks into a not-much-larger amount of memory.

The data structure. We want an oblivious implementation OD of a dictio-
nary data structure holding at most n pairs (a, v), where v corresponds to a data
block in our ORAM scheme, and a ∈ [N ]. (For our purposes, think of n ≈ N/m.)
At any point in time, OD stores at most one pair (a, v) for every a. It allows us
to perform two operations:

– OD(I, a, v) inserts an item (a, v), where a ∈ [N ], if the data structure con-
tains less than n elements. Otherwise, if n elements are stored, it does not
add an element, and returns an error symbol ⊥.

– OD(R&D, a) retrieves and deletes an item (a, v) stored in the data structure
(if it exists), returning v, and otherwise returns an error ⊥ if the element is
not contained.

Moreover, OD enables two additional “dummy” operations OD(R&D,⊥) and
OD(I,⊥,⊥) which are meant to have no effect on the data structure. Infor-
mally, for security, we demant that the access patterns resulting from any two
equally long sequences of operations of type OD(I, ∗, ∗) and OD(R&D, ∗) are
(statistically) indistinguishable.7

The implementation.We can easily obtain the above OD data structure using
for instance any Cuckoo-hashing based dictionary data structure with constant
worst-case access complexity.8

Theorem 3 (Efficient Cuckoo-Hashing Based Dictionary [10]). There
exists an implementation of a dictionary data structure holding at most n blocks
with the following properties: (1) It stores n′ = O(n) blocks in the memory. (2)
Every insert, delete, and lookup operation, requires c = O(1) accesses to blocks
in memory. (3) The client stores polylog(n) blocks in local memory. (4) The

7 In fact, for our purposes, we could leak which operations are of which type, but it
will be easy enough to achieve this even stronger notion.

8 We think of a data structure as being in a simliar model as our ORAM scheme,
namely consisting of a client interface, using a small amount of local memory, and
the actual data being stored externally on the server.
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failure probability is negligible (in n) for any poly(n)-long sequence of lookups,
insertions, and deletions which guarantees that at most n elements are ever stored
in the data structure.

From any ORAM scheme O with address space n′, it is easy to implement
the oblivious data-structure OD: The client simply implements the dictionary
data structure from Theorem 3 on top of the ORAM’s logical address space,
and uses additional polylog(n) local memory for managing this data structure.
Dummy accesses can be performed by simply issuing c arbitrary read requests
to the ORAM storage. We omit a formal analysis of this construction, which is
immediate.

4.2 The generic OPRAM protocol

We finally show how to obtain our main generic construction of an oblivious
parallel RAM: The server storage consists of m partitions, and the i-th client
manages the i-th partition. In particular, client i runs the oblivious dictionary
scheme OD presented above (we refer to its interface as ODi) on the i-th parti-
tion. Here, we assume that the clients have access to the partition map, mapping
each address a ∈ [N ] to some partition partition[a]. (We will discuss in the anal-
ysis how to eliminate this sharing using recursion.) Besides, Generic-OPRAM
further takes care of the communication among clients using the algorithms
OblivElect, OblivMCast, OblivRoute from Section 3.2.

We postpone a complexity, correctness, and security analysis to Appendix E,
as well as a discussion of the recursion version.

Data Structures.The non-recursive version of Generic-OPRAM keeps a par-
tition map with N entries that maps block addresses a to their currently assigned
partition partition[a], and that can be accessed by all clients obviously (i.e., ac-
cess to the partition map are secret). Every client additionally keeps a stash SSi

which contains at most R items to be inserted into ODi. For our analysis to
work out, we need R = ω(log λ). Also let κ ≥ 2 be a constant.

Generic OPRAM protocol. In each iteration, given the logical access re-
quests (Acc(opi, addri, vi))i∈[m] input to the client, the m clients go through the
following steps (all messages are tacitly encrypted with fresh random coins):

1. Select block representatives. Run OblivElect between clients with inputs
(ai, opi)i∈[m]. In the end, each client i knows whether it has been selected as
the representative to get the block value ai, or not.

2. Query blocks. Clients do one of two things:

– Real requests. Each representative client i gets the partition index pi =
partition[ai], and sends a request ai to client pi. Moreover, it reassigns

partition[ai]
$← [m].

– Fake requests. Every non-representative client i generates a random

qi
$← [m] and sends a request ⊥ to client qi.
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3. Retrieve the blocks. Each client p ∈ [m] processes the received requests
according to some random ordering: For each request ai 6= ⊥ received from
client i, client p executes ODp(R&D, ai) and denote the retrieved block value
vi. If vi = ⊥, then there must be some entry (ai, v

′
i) in the SSp. Then, client

p deletes this entry, and sets vi = v′i. Finally, it sends vi back to i. For every
⊥ request received from some client i, client p executes the fake read access
ODp(R&D,⊥), and returns vi = ⊥ to i.

4. Representatives inform. At the end of the previous step, each client holds
a value vi which is 6= ⊥ if and only if i is the representative for ai. Next, the m
clients run sub-protocol OblivMCast to allow each representative to multicast
the value it holds to other clients requesting the same block: Concretely,
each client i uses input (ai, vi) (recall a non-representative has vi = ⊥) and
receives output v′i, which is guaranteed to be the value of block ai it requests.
Each client i answers its logical request with v′i.

5. Send updated values. For each representative i such that Acc(opi, ai, vi) is
a write command, let idi = partition[ai] and msgi = (ai, vi). Otherwise, if it
is not a write command (but still, i a representative), it sets msgi = (ai, vi)

instead. Non-representative clients set msgi = ⊥ and idi
$← [m]. Then, the

clients run OblivRoute with respective inputs (idi,msgi).
6. Write back. Each client p ∈ [m] adds all pairs (a, v) received through

OblivRoute to SSp. Then, client p picks the first κ elements from SSp, and
for each such element (a, v), executes ODi(I, ai, v). If κ′ < κ elements are
in SSi, then the last κ − κ′ insertions are dummy insertions ODi(I,⊥,⊥).
Anytime when stash SSi needs to store more than R blocks or the partition
holds more then 2N/m+R blocks, output ”overflow” and halt.
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A Correctness and Obliviousness of ORAM

For an access sequence y we let APi = APi(y) be the access pattern of its i-
th operation – i.e., the sequence of pairs (opi,1, ai,1), . . . , (opi,qi , ai,qi) describing
the client’s server accesses (without the actual values) when processing the i-th
operation – and denote by vali the answer of this operation. Then, we let

OutO(λ,N,B,y) = (val1, val2, ..., valT ) , APO(λ,N,B,y) = (AP1, ...,APT ) .

We say that the sequence of outputs z = OutO(λ,N,B,y) of O is correct w.r.t.
the sequence of logical accesses y, if for each logical command Acc(opi, ai, vi) in
y, the corresponding output vali in z is either the most recently written value
on address ai, or ⊥ if ai has not yet been written to. Let Correct be the predicate
that on input (y, z) returns whether z is correct w.r.t. y.

Definition 2 (ORAM Correctness and Security). An ORAM O achieves
correctness and obliviousness if for all N,T,B = poly(λ), there exists a negligible
function µ, such that, for every λ, every two sequences y and y′ of T (λ) access
operations, the following are satisfied:

1. Correctness: Pr [Correct (y,OutO(λ,N,B,y)) = 1] ≥ 1− µ(λ).
2. Obliviousness: ∆ (APO(λ,N,B,y),APO(λ,N,B,y′)) ≤ µ(λ).

We note that the above definition considers statistical obliviousness. This
is generally achieved by tree-based ORAM schemes, but it can be relaxed to
computational obliviousness, where the statistical distance is replaced by the
best distinguishing advantage of a PPT distinguisher.

B Review of Path-ORAM

In this section, we review the Path-ORAM scheme in detail, as it is used as a
starting point for Subtree-ORAM and Subtree-OPRAM.

Overview. Path-ORAM is a tree-based ORAM that works for the single client
setting. To implement a logical storage space for N data blocks, Path-ORAM
organizes the storage space (virtually) as a complete binary tree with depth
D = dlogNe. Each node of the tree is a bucket capable of storing Z blocks of
size B (bits). Here Z is a constant, thus the server storage overhead is O(1). To
hide the logical access patterns, each data block a is assigned to a random path
` from root to leaf in the tree and stored at some node of the path; in order to
hide the repetitive accesses to the same block, the assignment is updated to a
new independent random path after each access.
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In [26], Path-ORAM is constructed in two steps; first, a non-recursive version
is proposed and analyzed, in which the client keeps a local position map with
N logN bits; then the position map is recursively outsourced to the server,
reducing the client storage to only polylog(N) bits. Below we describe the non-
recursive version first, and then show how to apply the recursive transformation.

Non-Recursive version.The client maintains a position map that maps each
block a to a path pos.map(a). Since each path can be specified using D (the
depth of the tree) bits, the size of the position map is ND = NdlogNe bits.
Additionally, the client keeps a small local storage stash used for storing blocks
that do not fit in the assigned path (due to limited space at each tree node). The
capacity of the stash is bounded by R = R(λ) for any function R(λ) = ω(log λ),
except with negligible probability in λ.

Given the i-th logical access Acc(opi, ai, vi), Path-ORAM proceeds in two
phases:

– Phase 1: Processing the query. Path-ORAM retrieves the path `i =
pos.map(ai) assigned to block ai, and finds the block ai on the path or in the
stash. After returning the block value and potentially updating the block,

Path-ORAM re-assigns block a to a new independent random path `′
$← [N ]

and updates pos.map(ai) = `′i. It then moves the block to the stash.

– Phase 2: Flushing and write-back. Before re-encrypting and writing
the path back to the server, in order to avoid the stash from ”overflowing”,
Path-ORAM re-arranges path `i, to fit as many blocks from the stash into
the path. More specifically, for each block aj in the stash and on the path,
Path-ORAM places it at the lowest non-full node pj that intersects with its
assigned path `j = pos.map(aj). If no such node is found, the block remains
in the stash. If at any point, the stash contains more than R blocks, Path-
ORAM outputs ”overflow” and aborts.

Recursive version. In the above non-recursive version, the client keeps a large
N logN -bit position map. To reduce the client storage, Path-ORAM recursively
outsources the position map to the server by adding extra O(logN) trees. More
specifically, if the cell size B ≥ αdlogNe for some integer α > 1, the position
map can be stored in dNα e cells. This means, to answer an access to a logical
storage space of size N , the non-recursive version only needs to make a query to
another logical storage space (i.e. the position map) of size dNα e. Therefore, if the
client further outsources the position map to the server, its local storage would
be reduced to d Nα2 e. This idea can be applied recursively until the client storage
becomes polylog(N). In the final scheme, at the server, besides tree T0 that stores
data blocks, there are additional trees rT1, rT2, ..., rTl for position map queries,
where l = dlogαNe. Tree rTi has size Õ(dNαi eB) bits, and maintains the position

map corresponding to tree rTi−1 which contains d N
αi−1 e cells. The position map

corresponding to tree rTl is stored in local storage. Now, to access a block a, the
client needs to query pos.map(a) in T0 by looking up the position in tree rT1. In
order to query the position map corresponding to tree rT1, similarly, the client
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looks up in rT2, so on and so forth. Finally the position map value of tree rTl is
stored in local storage.

Complexity. The storage overhead is O(1) both in the non-recursive version
and the recursive version. In the non-recursive version, for each logical access,
Path-ORAM reads and writes a path with logN nodes, each of which contains Z
cells, therefore the communication overhead is O(logN) per access. The compu-
tation overhead is O(log2N), since the flushing procedure takes time O(log2N)
per access. After the recursive transformation is applied, to answer each logical
access, the client needs to query l = dlogαNe number of trees, and hence the
communication/computation overhead blow by a factor of logN .

C Analysis of Subtree-ORAM

In the full version, we show that the overflow probability of Subtree-ORAM is
negligible given any sequence of logical access requests. In particular, we prove
the following proposition, which generalizes the analysis of Path-ORAM.

Proposition 1. Fix the stash size to any R(λ) ∈ ω(log λ). For every polynomial
m, N , T , B, there exists a negligible function µ, such that, for every λ, and
sequence y of T batches of m access requests, the probability that Subtree-ORAM
outputs overflow is at most µ(λ).

From Proposition 1, it is easy to show that Subtree-ORAM satisfies correct-
ness and obliviousness.

– Correctness: Since the stash overflows with negligible probability, and
Subtree-ORAM maintains the block-path invariance (as in Path-ORAM) –
at any moment, each block can be found either on the path currently assigned
to it or in the stash; by construction, Subtree-ORAM answers logical accesses
correctly according to the correctness condition of ORAM.

– Obliviousness: Conditioned on no overflowing: 1) In each iteration, Subtree-
ORAM always reads m independent and random paths from the server. 2)
After each iteration, every requested block is assigned to a new random
path, which is hidden from the adversary (as in Path-ORAM). Thus the
construction is oblivious.

D Analysis of Subtree-OPRAM

In this section, we give a high-level overview of why Subtree-OPRAM is correct
and satisfies obliviousness. Also we discuss below the complexity of the protocol.

We discuss correctness and obliviousness for the non-recursive version only.
The same properties are then also easily shown to be true for the recursive
version. The first key observation is that the m clients of Subtree-OPRAM can
be seen as collectively emulating the operations of the single client of Subtree-
ORAM. Compare an execution of Subtree-OPRAM with a sequence y of T
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batches of m parallel logical accesses with the execution of Subtree-ORAM with
the same sequence.9 Then, we observe the following:

1. The ORAM tree T of Subtree-ORAM is stored in parts in Subtree-OPRAM:
All but the top logm levels is stored as the m-tree forest T1, · · · , Tm at the
server, while the top logm levels are stored in a distributed way by the
individual clients in their respective stashes — namely, if a block is stored
at client j, its assigned path belongs to Tj . Therefore, the union of {stashi}
contains the same blocks as the stash of Subtree-ORAM, as well as all blocks
in the top of the tree T of Subtree-ORAM.

2. Subtree-OPRAM answers a batch ofm requests (in each iteration) as Subtree-
ORAM does: The m clients of Subtree-OPRAM choose a representative for
each requested block (in Step 1) with the exactly same rule Subtree-ORAM
uses to remove repetitive accesses, and to only keep one access per block.
Later (in Step 4), Subtree-OPRAM first answers requests using the most
recently written value from previous iterations and then executes the write
operations; in particular, due to the way representatives are chosen, the write
operation with the minimal index always takes effect.

3. Subtree-OPRAM maintains the block-path invariant as Subtree-ORAM. This
is because each time a block is assigned to a new path `′, it is sent (using
the OblivRoute sub-protocol) to client j managing the tree Tj the path `′

belongs to. Therefore, at any moment, a block is either on its assigned path
or in the local stash of the client responsible for the tree its assigned path
belongs to.

4. Subtree-OPRAM emulates the flushing procedure of Subtree-ORAM: Recall
that Subtree-ORAM flushes along the subtree Treal of paths assigned to
all requested blocks. Removing the top logm levels of Treal gives a set of
m subtrees Treal1 , · · · , Trealm . Note that Treali is exactly the subtree that
client i in Subtree-OPRAM performs flushing on (in Step 6). Indeed, by
the design of the subtree flushing procedure, blocks that land in different
subtrees Treali 6= Trealj can be operated on independently. Moreover, blocks
that would land in the top logm levels of Treal or stash in Subtree-ORAM
are naturally divided into the m local stashes according to which tree Tj
their assigned path belongs to.

Correctness and stash analysis. By the above, if we fix any sequence y
of parallel accesses, and consider the executions of (non-recursive) Subtree-
OPRAM and (non-recursive) Subtree-ORAM with the same input sequence y,
since Subtree-ORAM answers every request correctly as long as it does not over-
flow, so does Subtree-OPRAM.

To argue that Subtree-OPRAM only overflows with negligible probability,
recall that by Proposition 1, when the stash size of Subtree-ORAM is set to

9 We are being somewhat informal here – one would have to define precisely what
it means to “compare” in terms of executing both protocols with the same random
choices. As it is somewhat tedious, we keep this on a more informal high level, hoping
to convey the main ideas.
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any R′(λ) ∈ ω(log(λ)), the probability of overflowing is negligible. We can thus
bound the size of each local stash stashi in Subtree-OPRAM, using the bound
on the stash size of Subtree-ORAM. As noted above, after each iteration, the
local stash stashi of client i stores two types of blocks:

1. Blocks in the stash of Subtree-ORAM with an assigned path belonging to
Ti, and

2. Blocks in the top logm levels of the ORAM tree T of Subtree-ORAM, again
with an assigned path belonging to Ti.

By Proposition 1, the number of blocks of the first type is bounded by ω(log λ)
with overwhelming probability. Moreover, it is easy to see that the number of
blocks of the second type is bounded by O(logm). Therefore, the size of stashi is
bounded by any R(λ,m) ∈ ω(log λ) + O(logm) with overwhelming probability.
This is summarized by the following lemma.

Lemma 1. Fix the stash size to any R(λ,m) ∈ ω(log λ) +O(logm). For every
polynomial m, N , T , B, there is a negligible function µ, such that, for every
λ, and sequence y of T (λ) accesses, the probability that any client of the non-
recursive Subtree-OPRAM outputs overflow is at most µ(λ).

Complexity. The storage overhead of Subtree-OPRAM is the same as that of
Path-ORAM, which is O(1). The only contents stored at each client are the
stashes, one per recursion level. Since each stash is of size R(λ,m)B, and the
recursion depth is bounded by O(logN), the total client storage overhead is
O(logN)R(λ,m) ∈ ω(logN log λ) +O(logN logm).

Next, we analyze the communication and computation overheads (per client
per access) of the recursive Subtree-OPRAM. In each iteration, to process m
logical accesses (one per client), them clients first recursively look up the position
maps for O(logN) times using the non-recursive Subtree-OPRAM, and then
process their requests using again the non-recursive Subtree-OPRAM. Fix any
client i, we analyze its communication and computation complexities as follows:

– Server communication overhead: In each invocation of non-recursive
Subtree-OPRAM, client i reads/writes a subtree of paths delegated to it by
other clients. Since these paths are all chosen at random, in expectation client
i read/write only 1 path in each invocation. Furthermore, across all O(logN)
invocations of non-recursive Subtree-OPRAM, the probability that client i
is delegated to read/write ω(log λ) +O(logN) paths is negligible. (Consider
tossing O(logN)×m balls (read/write path requests) randomly into m bins
(clients); the probability that any bin has more than O(logN) + ω(log λ)
balls is negligible in λ.) Since each path contains O(logN) blocks, the server
communication overhead is bounded by ω(log λ logN) + O(log2N) in the
worst case, with overwhelming probability.

– Inter-client communication overhead: In each invocation of the non-
recursive Subtree-OPRAM protocol, client i communicates with other clients
in two ways: 1) using the oblivious sub-protocols (Step 1, 4 and 5) and 2)
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sending the requests for reading certain block and path (i, a′i, `i) (Step 2) and
sending back the retrieved block (Step 3). The maximum communicating
complexity of the oblivious sub-protocols is O(K logm(logm+ logN +B))
bits, where K is in ω(log λ). Therefore, across O(logN) invocations of non-
recursive Subtree-OPRAM, the first type of inter-client communication in-
volves sending/receiving at most O(logNK logm(logm+ logN + B)) bits.
On the other hand, by a similar argument as above, across O(logN) re-
cursive invocations, with overwhelming probability, each client receives at
most O(logN) + ω(log λ) requests of form (i, a′i, `i), and hence the second
type of communication involves sending/receiving (ω(log λ) + O(logN)) ×
O(logm+logN +B) bits with overwhelming probability. Thus, in total, the
inter-client communication is ω(log λ) logm logN(logm + logN + B) bits.
Since B ≥ α logN for an α > 1, the inter-client communication overhead is
ω(log λ) logm(logm+ logN).

Finally, we observe that when considering the communication overhead averaged
over a sufficiently large number T of parallel accesses, the server communication
overhead is bounded by O(log2N) with overwhelming probability. The inter-
client communication complexity stays the same.

Obliviousness. The obliviousness of recursive Subtree-OPRAM follows from
that of the non-recursive version. Conditioned on that the stash does not over-
flow, the latter follows from three observations: i) In each iteration, the paths
{`i} read/write from/to the server (in Step 3 and 6) are all independent and
random, ii) the communication between different clients is either through one of
the oblivious sub-protocols (in Step 1, 4, and 5), which has fixed communication
pattern, or depends on the random paths {`i} (in Step 2 and 3), and iii) the
new assignment of paths {`′i} to blocks accessed are hidden using OblivRoute (in
Step 5). Combining these observations, we conclude that the access and commu-
nication patterns of Subtree-OPRAM is oblivious of the logical access pattern.

E Analysis of Generic-OPRAM

Recursive version.The above protocol assumes that every client has (private)
access to the partition map to be accessed and updated throughout the execution
of the protocol. This is of course not realistic. But similar to the case of the
position map in Subtree-OPRAM, we can use O(logN)-deep recursion. For this
to work, we need block size to be at least, say, B = 2 logm, since each entry in
the partition map can be represented by logm bits.

Complexity analysis.We now analyze the complexity of the Generic-OPRAM.
We assume that ODi is implemented from some ORAM scheme Oi which has
communication overhead α(N ′) when using address space N ′, and that the
same scheme stores M(N ′) blocks on the server for the same address space.
We make some assumptions in the following that appear reasonable, namely
that α(O(N ′)) = O(α(N ′)) and M(O(N ′)) = O(M(N ′)) (this is true be-
cause these functions are polynomial). Moreover, we can also assume also that
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M(N ′/c) ≤ M(N ′)/c for any constant c. (Note that the scheme is meaningful
without these assumptions, but the resulting complexity statement would be
somewhat more cumbersome.)

– Server and client Storage. Let us start with the non-recursive case.
Note that each partition needs enough blocks to implement a dynamic data
structure to store 2N/m + R blocks. This will require an ORAM for N ′ =
O(N/m+R) blocks, which thus requires O(M(N/m+R)) blocks. Thus, the
overall server storage complexity is of O(m·M(N/m+R)) blocks. IfM(N ′) =
O(N ′), in particular this implies that the overall storage complexity is O(N+
mR), and thus linear if m ·R ∈ O(N).
For the recursive case, note that the storage space is going to at least halve
after each recursion level by our assumption on M . So if we assume that
N/m > R, we see that the storage complexity remains O(m ·M(N/m+R)).
Every client needs to store R blocks, and moreover, it needs polylog(N)
memory for implementing OD and the underlying ORAM scheme O, which
we assume to have polylog(N) client storage overhead.

– Server communication. In contrast to Subtree-OPRAM above, a generic
construction does not necessarily allow us to parallelize accesses to the data
structure. The number of ODi(R&D, ·) operations a client performs can
thus vary in each round, but we can apply the same analysis as for Subtree-
OPRAM above. Namely, given we are using logN levels of recursion, the
per-client server communication is O(logN · α(N/m+R)) in the amortized
case, and O((logN + ω(log λ)) · α(N/m+R)) in the worst case.

– Inter-client communication. The analysis is the same as the one for
Subtree-OPRAM.

Correctness.We analyze our scheme and show that it is indeed a valid OPRAM
scheme.

Lemma 2. Generic-OPRAM satisfies correctness, and in particular only over-
flows with negligible probability, as long as OD is also correct and only fails with
negligible probability.

We omit part of the correctness proof, and restrict ourselves to the more
involved part of the analysis, proving that none of the stashes SSi ever overflows,
and that none of the partition is supposed to hold more than 2N/m+R elements.
Conditioned on no overflows, correctness can then be verified by inspection.

The final result on the overflow probability summarized by the following
lemma.

Lemma 3. For every constant κ ≥ 2, every T = T (λ), and every logical access
sequence y of T batches of m parallel logical instructions,

Pr[The protocol outputs “overflow”] ≤ T ·m · e−Θ(R),

where the randomness is taken over the partition assignment, and the constant
in the exponent depends on κ only.
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We split the proof of the lemma into two propositions – the first pertain-
ing to SSi overflowing, the second to partition load. We stress that the proof
first proposition relies on some interesting (and non-elementary) fact from basic
queueing theory to ensure that a constant outflow of (at most) two blocks is
sufficient to avoid an overflow.

Proposition 2. For every constant κ ≥ 2, every T = T (λ), and every logical
access sequence y of T batches of m logical instructions,

Pr[One of the stashes SSi overflows] ≤ T ·m · e−Θ(R),

where the randomness is taken over the partition assignment, and the constant
in the exponent depends on κ only.

Proof. We prove the lemma for κ = 2. It will be clear that the bound only
improve for larger κ > 2. Let us look at what happens with one particular stash
SSi for some i ∈ [m] over time, and compute the probability that it ever contains
more than R elements. We model this via the following process:

Single-bin process: In each iteration, m balls are thrown into one out of m
bins independently, and each one lands in the single bin we are looking at
with probability 1/m. Then, κ = 2 balls are taken out of the bin (if the bin
contains at least κ = 2 balls), and otherwise the bin is emptied.

Note that in the actual protocol execution, less than m balls may be thrown into
bins at each round because of possible repetition patterns, but it is clear that by
always assuming that up to potential m balls can be thrown in the bin can only
increase the probability of overflowing, and thus this will be assumed without
loss of generality.

To analyze the probability that the bin overflows at some point in time (i.e., it
contains more than R balls), we use the stochastic process proposed in Example
23 of [22], with a = 0, b = +∞. There, it is shown that the number of balls in
the bin at iteration T is distributed as the random variable

XT = max
0≤i≤T

Zi

where Z0 = 0 and

Zi =
∑
j≤i

(Vj − Uj) ,

with Vj denoting the number of balls going to the bin in iteration j and Uj
denoting the potential number of balls taken out from the bin in iteration j.
Here Uj = 2 for every j, thus

Zi = Ti − 2i ,

where Ti =
∑
j≤i Vj . Note that Vj can be seen as the sum of m independent

Bernoulli random variables, each being one with probability 1/m. Therefore, Ti
is the sum of m · i Bernoulli random variables with expected value i. We want
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to show now that with very high probability, Ti ≤ 2i + R. We can simply use
the Chernoff bound, and consider two cases. First, if R/i ≥ 1, then

Pr [Ti ≥ 2i+R] ≤ Pr[Ti ≥ i · (1 +R/i)] ≤ e−
ε2

2+ε i ,

where ε = R/i. Note that

ε2

2 + ε
i = R · 1

1 + 2i/R
≥ R/3 .

Thus Pr [Ti ≥ 2i+R] ≤ e−R/3. The second case is that R/i ≤ 1. Then,

Pr [Ti ≥ 2i+R] ≤ Pr[Ti ≥ i · (1 + 1)] ≤ e−i/3 ≤ e−R/3 .

Therefore, by the union bound, the probability that there exists some i such that
Zi ≥ R is at most T · e−R/3, i.e., XT ≤ R, except with probability T · e−R/3. To
conclude, once again by the union bound, we obtain the bound on the probability
that one of the m stashes overflows. ut

We also need to analyze the probability that too many elements are assigned
to one partition, as otherwise our protocol would also fail.

Lemma 4. For a given partition map partition : [N ] → [m], denote by L the
maximum numbers of addresses a ∈ [N ] assigned to the same partition p. Then,
for any sequence of T batches of m operations and any R ≥ 2, the probability
that any point in time, L ≥ 2N/m+R ist at most T ·m · e−R/2.

Proof. Take the partition map contents at some fixed point in time, and fix some
partition i ∈ [m]. The entire contants of the partition map are N independent
random variables, and each one of them is equal to i with probability 1/m. Let
Li be the number of addresses assigned to this given i, and let L = maxi L

i.
Note that Li is a sum of Bernoulli random variables with expectation N/m. We
can then use the Chernoff bound to see that

Pr
[
Li ≥ 2N/m+R

]
= Pr [S ≥ N/m(1 + 1 + ε)] ≤ e−R/2 ,

for ε = Rm/N . By the union bound,

Pr [L ≥ N/m+R] ≤ m · e−R/2 .

And finally, note that there are at most T different “assignments” of position
maps due to the structure of the protocol, and thus the overall bound on the
probability follows – once again – by the union bound. ut

Obliviousness. Generic-OPRAM also satisfies the obliviousness property. The
formal proof (which we omit) relies on the obliviousness of the ODi’s and the
fact that whenever processing a batch of m logical accesses, the above scheme
accesses first m randomly chosen partitions, and moreover, in the second phase,
each partition is accessed exactly twice.
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