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Abstract. A multiparty computation protocol is said to be adaptively
secure if it retains its security in the presence of an adversary who can
adaptively corrupt participants as the protocol proceeds. This is in con-
trast to a static corruption model where the adversary is forced to choose
which participants to corrupt before the protocol begins. A central tool
for constructing adaptively secure protocols is non-committing encryp-
tion (Canetti, Feige, Goldreich and Naor, STOC ’96). The original pro-
tocol of Canetti et al. had ciphertext expansion O(k2) where k is the
security parameter, and prior to this work, the best known constructions
had ciphertext expansion that was either O(k) under general assump-
tions, or alternatively O(log(n)), where n is the length of the message,
based on a specific factoring-based hardness assumption.
In this work, we build a new non-committing encryption scheme from
lattice problems, and specifically based on the hardness of (Ring) Learn-
ing With Errors (LWE). Our scheme achieves ciphertext expansion as
small as polylog(k). Moreover when instantiated with Ring-LWE, the
public-key is of size O(npolylog(k)). All previously proposed schemes
had public-keys of size Ω(n2polylog(k)).
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1 Introduction

Secure multiparty computation (MPC) allows a group of players to compute
any joint function of their private inputs, even when some of the players are ad-
versarial [GMW87,BGW88,CCD88]. MPC protocols are often categorized based
on the security properties they offer. One natural and well-studied distinction
is between protocols which are secure against an adaptive adversary, and those
which are only secure when the adversary is static. A static adversary is one who
chooses which parties to corrupt before the protocol begins, while an adaptive
adversary can choose which parties to corrupt on the fly, and thus the corruption
pattern may depend on the messages exchanged during the protocol. Adaptive
security is desirable as it models real-world adversarial behavior more honestly.
Unfortunately, adaptively secure protocols are significantly harder to construct
as several techniques from the literature for proving security in the static model
do not seem to carry over to the adaptive model.

Adaptively Secure MPC. The information-theoretic MPC protocol of [BGW88]
is adaptively secure when each pair of parties is connected by a secure channel
(so communication between honest parties may not be observed by the adver-
sary). Roughly, this is because for a security threshold of t, the views of any
t players are statistically independent of the secret inputs of all other parties.
Thus the information the adversary obtains from corrupting fewer than t parties
can be simulated and so adaptively choosing new parties to corrupt does not
provide an advantage. One might hope to obtain an adaptively secure protocol
in the plain model (i.e. without ideal channels) by using semantically secure
encryption. Specifically, each pair of parties might first exchange public keys
and then communicate “privately” by publicly broadcasting encryptions of their
messages. The ideal adversary might then be able to emulate a real interaction
by broadcast encryptions of zero, and prove indistinguishability using semantic
security. However, as pointed out in [CFGN96], this intuition does not exactly
work. Essentially the problem is that the ciphertext in ordinary encryption “com-
mits” the sender to one message. An ideal adversary, therefore, would be unable
to open an encryption of zero to anything except zero. This is problematic for
adaptive security because if a party is corrupted after it has already sent en-
cryptions, then upon learning the secret keys and previously used randomness,
the adversary will be able to tell if it is in the ideal or real world based on
whether the entire communication is encryptions of zero or not. [CFGN96] goes
on to define and construct a stronger type of encryption called non-committing
encryption (NCE) which allows the above intuition to go through.

Non-Committing Encryption. An encryption scheme is non-committing if a
simulator can geterate a public key/ciphertext pair that is indistinguishable
from a real public key/ciphertext, but for which it can later produce a secret
key/encryption randomness pair which “explains” the ciphertext as an encryp-
tion of any adversarily chosen message. This provides a natural method for



creating adaptively secure MPC protocols: first design a statically secure pro-
tocol in the private channels model, then instantiate the private channels with
NCE.

Prior Work on NCE. The original work of [CFGN96] gives an NCE protocol
based on the existence of a special type of trapdoor permutations and is relatively
inefficient: requiring a sender to send a ciphertext of size O(k2) to encrypt a
single bit (for security parameter k). In other words, its ciphertext expansion
factor is O(k2). Choi, Dachman-Soled, Malkin and Wee [CDSMW09] construct
an NCE protocol with ciphertext expansion O(k) starting from any obvliviously-
samplable cryptosystem. The paradigm of using obliviously-samplable encryption
to achieve adaptive security goes back to [DN00] who give a three-round protocol
which adaptively, securely realizes the ideal message transmission functionality
(thus, allowing for adaptively secure MPC). [DN00] show how to instantiate
obvliviously-samplable encryption based on a variety of assumptions, building
on an earlier work of Beaver [Bea97], which essentially constructs obvliviously-
samplable encryption assuming DDH. Very recently, Hemenway, Ostrovsky and
Rosen [HOR15] construct an NCE protocol with logarithmic expansion based
on the Φ−hiding assumption, which is related to (though generally believed to
be stronger than) RSA.

See Figure 1 for a comparison of past and current work on NCE.

Reference Rounds CT Expansion Public-Key Size Assumption

[CFGN96] 2 O(k2) O(n3polylog(k)) Common-Domain TDPs

[Bea97] 3 O(k) O(n2polylog(k)) DDH

[DN00] 3 O(k) O(n2polylog(k)) Oblivious samplable PKE

[CDSMW09] 2 O(k) O(n2polylog(k)) Oblivious samplable PKE

[HOR15] 2 O(logn) O(n2polylog(k)) Φ-hiding

This work 2 polylog(k) O(n2polylog(k)) LWE

This work 2 polylog(k) O(n polylog(k)) Ring-LWE

Fig. 1. Comparison to prior work. The parameter k denotes the security parameter,
and n denotes the message length.

1.1 Our Contribution.

In this work, we construct an NCE scheme with polylogarithmic ciphertext ex-
pansion and which improves upon the recent work of [HOR15] in a number of
ways.

Assumption: Learning with errors (LWE) [Reg09] is known to be as hard
as worst-case lattice problems, and is widely accepted as a cryptographic
hardness assumption. Its ring variant is as hard as worst-case problems on



ideal lattices and is widely used in practice as it allows representing a vector
consicely as a single ring element. For comparison, the Φ−hiding assumption
is not as widely used or accepted, and certain choices of parameters must be
carefully avoided as they are susceptible to polynomial time attacks.

Smaller Public Keys: When instantiated with Ring-LWE, the public-key of
our scheme is of size O(npolylog(k)). All previously proposed schemes had
public-keys of size Ω(n2polylog(k)).

No Sampling Issues: One subtle shortcoming of the [HOR15] work is that
the non-committing property of their encryption scheme necessitates the
existence of a public modulus N whose factorization is not known. This
means that in order to attain full simulatability the modulus N will have
to be sampled jointly by the parties, using a secure protocol (which itself
needs to be made adaptively secure). Our current work, in contrast, does
not suffer from this shortcoming and does not necessitate joint simulation of
the public parameters.

1.2 Our Construction.

For this high-level description of our protocol we assume familiarity with the def-
inition of non-committing encryption as well as Regev’s LWE-based encryption
scheme [Reg09], and Micciancio-Peikert trapdoors for LWE [MP12]. We refer
the reader to Section 2 or the papers themselves for more information on these
topics.

KeyGen. Let q,m, k be LWE parameters and n a parameter linear in the message
length `. The receiver chooses a random subset IR ⊂ {1, . . . , n} of size n/8, a
matrix A ∈ Zm×kq and vectors v1, . . . ,vn ∈ Zmq , where vi is an LWE instance

if i ∈ IR and is random otherwise. The public key is
(
A,v1, . . . ,vn

)
and the

secret key is
(
IR, {si}i∈IR

)
where si ∈ Zkq is the LWE secret for vi. So receiver

has generated n Regev public keys, but for which it only knows n/8 of the
corresponding secret keys.

Enc. Let msg ∈ {0, 1}` be a plaintext, and let y = (y1, . . . , yn) = ECC(msg) ∈
{0, 1}n be the image of msg under a suitable error-correcting code. The sender
chooses a random subset IS ⊂ {1, . . . , n} of size n/8 and generates Regev en-
cryptions, under public key (A,vi) of yi if i ∈ IS or of a random bit if i /∈ IS .
Important for the efficiency of our protocol is that these encryptions be gener-
ated using shared randomness. Specifically, the sender chooses a random short
r ∈ Zmq and constructs the ciphertext (u, w1, . . . , wn) where u = rtA ∈ Zkq
and wi = rtvi + ei +

(
q/2
)
zi where zi = yi if i ∈ IS and is random otherwise

(the ei are short Gaussian errors). So sender has encrypted a string z ∈ {0, 1}n
which agrees with y in 9n/16 of the positions on expectation. The encryption
randomness consists of r, IS as well as the Gaussian errors.



Dec. Given a ciphertext (u, w1, . . . , wn) and secret key
(
IR, {si}i∈IR

)
, receiver

constructs y′ ∈ {0, 1}n by setting y′i =
⌊(

2/q
)
(wi − utsi)

⌉
if i ∈ IR and y′i to be

a random bit otherwise. Then receiver decodes y′i and outputs msg′ ∈ {0, 1}`.
So receiver is decrypting the ciphertexts for which he knows the secret key, and
is completing this to a string in {0, 1}n by filling in the remaining positions
randomly.

Correctness. Let y = ECC(msg) ∈ {0, 1}n be the coded message and let y′ ∈
{0, 1}n be the string obtained during decryption. Note that whenever i ∈ IR∩IS ,
yi = y′i with high probability, and whenever i /∈ IR ∩ IS yi = y′i with probability
1/2. Therefore, yi = y′i for 65n/128 of the values i ∈ {1, . . . , n} on expectation.
It can be shown using the tail bound (Lemma 1), that there exists a constant
δ > 0 such that yi = y′i for at least (1/2 + δ)n values of i with high probability.
By our choice of error correcting code, we can decode given such a tampered
codeword.

Adversary’s Real World View. The non-committing adversary receives the secret
key and encryption randomness and tries to use these values to distinguish the
real and ideal worlds. The most difficult aspects of the real world view to simulate
are the subsets IR, IS ⊂ {1, . . . , n}. In the real world, both sets are random of size
n/8 and so the size of their intersection is a hypergeometric random variable.
This must be replicated in the ideal world in order for indistinguishability to
hold. To complicate matters, it is important that the right number of i ∈ IR∩IS
are such that yi = 0 and y′i = 0. Likewise, we must make sure that the right
number of i ∈ IR ∩ IS are such that yi = 0 and y′i = 1, and so on. This involves
carefully computing the multivariate hypergeometric distribution which arises
from the real world execution so that we may emulate it in the ideal world. We
will leave out most of the details for this overview; the specifics are given in
Section 3.

Simulating the Public Key and Ciphertext. The simulator chooses a partition
Igood ∪ Ibad = {1, . . . , n} at random, and chooses vectors v1, . . . ,v ∈ Zmq so it
knows an LWE secret si for vi whenever i ∈ Igood, and so that it knows an MP

trapdoor for the matrix Â =
[
A|V

]
where the columns of V are {vi}i∈Ibad . The

sets Igood and Ibad correspond to the i ∈ {1, . . . , n} for which it knows/doesn’t
know a secret key. It is important for simulation that Igood is much larger than
IR. A good choice, for example is |Igood| = 3n/4. The simulator then sets its
public key to (A,v1, . . . ,vn). It further partitions Igood into Igood,0 ∪ Igood,1 and
sets the ciphertext (u, w1, . . . , wn) to be so that u = rtA and wi is a valid Regev
encryption of 0 (resp. 1) if i ∈ Igood,0 (resp. i ∈ Igood,1), and wi is random if
i ∈ Ibad.

Simulating the Secret Key and Decryption Randomness. Upon receiving msg, the
simulator sets (y1, . . . , yn) = ECC(msg) ∈ {0, 1}n and must produce IR, IS ⊂
{1, . . . , n}, string y′ ∈ {0, 1}n and short r ∈ Zmq which look like the quantities
which arise from a real world execution (we ignore the Gaussian errors in this



discussion). The simulator must choose IR ⊂ Igood since the vi for i ∈ Ibad are
“lossy” and so have no secret keys (this is why we chose Igood much larger than
IR). The simulator must also choose y′i = b for i ∈ Igood,b, since these wi are
valid encryptions of b. More subtly, the simulator must make sure to choose y′

so that the number of i for which y′i = 0 and i ∈ IR is as in the real world. As
mentioned above, this more delicate than one might think; see the paragraph
below for an example. Finally, the simulator sets IS to be a subset of {i : yi = y′i}
of appropriate size and so the sizes of its intersections with the sets chosen so far
are distributed as in the real world. Finally, the simulator sets y′i for i ∈ Ibad to
be as needed to complete the real world view. Note the simulator has a trapdoor
for Â and so may choose short r ∈ Zmq so that rtÂ is as he chooses.

We conclude this discussion with an example which illustrates the care re-
quired to make the above proof go through. For ease of this discussion, we let
y′ = y, even though this is not true for our construction (which makes it even
more complicated). Consider only the choice of IR and the number of i ∈ IR
such that yi = 0. In the real world, IR is chosen randomly from {1, . . . , n},
and since yi = 0 for exactly n/2 of the i ∈ {1, . . . , n} (ECC is balanced),
#{i ∈ IR : yi = 0} is distributed according to the hypergeometric distribution
H
(
n
8 ,

n
2 , n

)
. In the ideal world, IR is chosen randomly from Igood which is itself

partitioned into Igood,0 and Igood,1 of equal size so that yi = b for all i ∈ Igood,b.
Therefore, in the ideal world #{i ∈ IR : yi = 0} is distributed according to the
hypergeometric distribution H

(
n
8 ,

3n
8 ,

3n
4

)
. While the expectations are equal, the

random variables themselves are not and so IR must be chosen in the ideal world
carefully in order to emulate the real world successfully. Details are in Section 3.

2 Preliminaries

2.1 Notation

If A is a Probabilistic Polynomial Time (PPT) machine, then we use a
$← A to

denote running the machine A and obtaining an output, where a is distributed

according to the internal randomness of A. If R is a set, we use r
$← R to

denote sampling uniformly from R. If R and X are sets then we use the notation
Prr,x

[
A(x, r) = c

]
to denote the probability that A outputs c when x is sampled

uniformly from X and r is sampled uniformly from R. A function is said to be
negligible if it vanishes faster than the inverse of any polynomial. For simplicity,
we often suppress random inputs to functions. In such cases, we use a semicolon

to separate optional random inputs. Thus c
$← Enc(pk,m) and c = Enc(pk,m; r)

both indicate an encryption of m under the public key pk, but in the first case,
we consider Enc as a randomized algorithm, and in the second we consider Enc
as a deterministic algorithm depending on the randomness r.

2.2 Non-Committing Encryption

Non-committing encryption was introduced by Canetti, Feige, Goldreich and
Naor in [CFGN96] as a primitive which allows one compile a protocol which



is adaptively secure as long as all pairs of parties are connected with a secure
channel, into an adaptively secure protocol in the plain model. The following
definition is from [DN00] and is consistent with this viewpoint.

Definition 1 (Non-Committing Encryption). We say that a two party pro-
tocol Π is a non-committing encryption scheme if it adaptively, securely realizes
the message transmission functionality:

f(m,⊥) = (⊥,m).

The following indistinguishability based definition is sufficient and easier to
work with. In our proof of security we will this second definition in its game
form.

Definition 2. A cryptosystem PKE = (Gen,Enc,Dec) is called non-committing,
if there exists a PPT simulator Sim = (Sim1,Sim2) with the following properties:

1. Efficiency: The algorithms Gen,Enc,Dec and Sim are all PPT.
2. Correctness: For any message m ∈M(pp)

Pr
[
Dec(sk, c) = m : (pk, sk)

$← Gen(1k), c
$← Enc(pk,m)

]
= 1− negl

3. Simulatability: For any PPT adversary A, the distributions ΛIdeal and
ΛReal are computationally indistinguishable where

ΛIdeal = {(m, pk, c, r1, r2) : (pk, c, t)
$← Sim1(1k),m

$← A(pk), (sk, r1, r2)
$← Sim2(m, t)}

and

ΛReal = {(m, pk, c, r1, r2) : (pk, sk)
$← Gen(pp; r1),m

$← A(pk), c
$← Enc(pk,m; r2)}

Note that semantic security follows from simulatability.

2.3 Learning With Errors

The learning with errors (LWE) problem [Reg09] is specified by the security
parameter k, a modulus q and an error distribution χ over Zq. In this paper our
errors will be drawn exclusively from discrete Gaussians. We specify the discrete
Gaussian with standard deviation σ by χσ. In its decisional form, the problem
asks one to distinguish, for a random s ∈ Zkq , between the distribution As,χ

from Unif
(
Zkq × Zq

)
where As,χ =

{
(a, 〈a, s〉 + e)

}
a←Zk

q ,e←χ
. Several important

results [Reg09,Pei09,BLP+13] establish the hardness of decisional LWE based
on worst-case lattice problems. The following fact is standard.

Fact 1. Let q = kω(1) be superpolynomial in the security parameter k. Let
B, σ < q be such that σ/B = kω(1), and let χ be a B−bounded distribution.
Then with high probability over e← χ, we have χσ ≈s e+ χσ.



Ring LWE. The ring variant of LWE [LPR13] is often used in practice as it
allows representing vectors succinctly as ring elements. The vectors in the usual
LWE problem formulated above are replaced by elements in the quotient ring
R = Z[x]/Φ(x) for an irreducible cyclotomic polynomial Φ (often Φ(x) = x` + 1
for ` a power of 2). Cryptographic schemes instantiated using ring LWE often are
considerably more efficient than the corresponding constructions over ordinary
LWE. If we instantiate our basic NCE scheme (which is based on LWE) on
top of ring LWE instead, we can shrink the public key size from Õ(k2) to Õ(k).
Finally, we remark that the hardness of ring LWE can be based on the worst-case
hardness of lattice problems on ideal lattices.

Trapdoors for LWE. Micciancio and Peikert [MP12] show how to embed a trap-
door into a matrix A ∈ Zm×kq which allows solving several tasks which are
usually believed to be hard. In their construction, the trapdoor of A is a matrix

T ∈ {0, 1}(k log q)×m such that TA = G, where G ∈ Z(k log q)×k
q is the so-called

“gadget matrix”. To be precise, [MP12] shows (among other things) how to
sample the pair (A,T) in such a way so that 1) A is statistically close to uni-
form in Zm×kq and 2) there is an efficient algorithm Sampleσ which takes as

input the tuple (u,A,T) where u ∈ Zkq is arbitrary and outputs a vector r ∈ Zmq
from a distribution which is statistically close to Dσ,u,A, the discrete Gaussian
of standard deviation σ on the lattice

Λu(A) = {v ∈ Zmq : vtA = ut}.

Their construction carries over to the ring setting as well.

2.4 Error Correcting Codes

Our construction makes use of constant-rate binary codes which are uniquely and
efficiently decodeable from a

(
1/2− δ

)
−fraction of computationally bounded er-

rors. Such codes are constructed in [MPSW05] by using efficient list-decodeable
codes along with computationally secure signatures. We will further assume that
our codes are balanced, in the sense that exactly half of the bits of all codewords
are 0s and the other half are 1s. This can be arranged, for example, by concate-
nating a list decodeable code with a suitable binary error correcting code.

2.5 The Binomial and Hypergeometric Distributions

Binomial Distribution. A binomial random variable Xp,n is equal to the number
of successes when an experiment with success probability p is independently
repeated n times. The density function is given by Pr(Xp,n = k) =

(
n
k

)
pk(1 −

p)n−k with expectation E
[
Xp,n

]
= pn. We denote the binomial distribution by

Bp(n).



Hypergeometric Distribution. Our construction involves the randomized process:
given a, b < n independently choose random subsets A,B ⊂ {1, . . . , n} of sizes a
and b. We will be interested in the size of the intersection A∩B, which defines a
hypergeometric random variable Xa,b,n with density function Pr(Xa,b,n = k) =(
b
k

)(
n−b
a−k
)/(

n
a

)
and expectation E

[
Xa,b,n

]
= ab/n. We denote the hypergeometric

distribution of Xa,b,n by H(a, b, n).

Multivariate Hypergeometric Distribution. We will also use a variant of the above
process when {1, . . . , n} has been partitioned {1, . . . , n} = B1 ∪ · · · ∪ Bt where
|Bi| = bi. Then if A ⊂ {1, . . . , n} of size a is chosen randomly, independent of
the partition, the tuple

(
|A∩B1|, . . . , |A∩Bt|

)
is a multivariate hypergeometric

random variable Xa,{bi},n with density function

Pr
(
Xa,{bi},n = (k1, . . . , kt)

)
=

(
b1
k1

)
· · ·
(
bt
kt

)(
n
a

) ,

where k1 + · · · + kt = a. The expectation is
(
ab1/n, . . . , abt/n

)
. We denote

the multivariate hypergeometric distribution Ht
(
a, {b1, . . . , bt}, n

)
. Note that the

single variable hypergeometric distribution H(a, b, n) is the same as H2
(
a, {b, n−

b}, n
)

corresponding to the partition {1, . . . , n} = B ∪ B. We will make use

of the following tail bounds on Bp(n), H(a, b, n) and Ht
(
a, {bi}, n

)
proved by

Hoeffding [Hoe63].

Lemma 1 (Tail Bounds). Let α, β, ε ∈ (0, 1) be constants. Also for a constant
t, choose constants β1, . . . , βt ∈ (0, 1) such that β1 + · · · + βt = 1. Set a = αn,
b = βn and bi = βin.

1. Let X be a random variable drawn either from Bαβ(n) or H(a, b, n). Then

Pr
(
X ≥ (αβ + ε)n OR X ≤ (αβ − ε)n

)
= e−Ω(n)

.
2. Let (X1, . . . , Xt) be a random variable drawn from Ht

(
a, {b1, . . . , bt}, n

)
.

Then

Pr
(
∃ i st Xi ≥ (αβi + ε)n OR Xi ≤ (αβi − ε)n

)
= e−Ω(n).

The constants hidden by Ω depend quadratically on ε.

3 Non-Committing Encryption from LWE

3.1 The Basic Scheme

Params. Our scheme involves the following parameters:

– integers k, n, q and m > 2k log q;
– real numbers σ, σ′ such that 2

√
k < σ < σ′ < q/

√
k and such that σ2/σ′ =

negl(k);
– integers cR, cS ≤ n and δ ∈ (0, 1) such that δ < cRcS/2n

2. To be concrete,
we set cR = cS = n/8.



KeyGen. Draw A
$← Zm×kq and let IR ⊂ {1, . . . , n} be a random subset of size

cR. Define vectors vi ∈ Zmq for i = 1, . . . , n:

vi =

{
Asi + ei, i ∈ IR
uniform in Zmq , i /∈ IR

where si
$← Zkq and ei

$← χmσ . Output (pk, sk) =
(
(A,v1, . . . ,vn); {si}i∈IR

)
.

Encryption. Given msg ∈ {0, 1}` and pk = (A,v1, . . . ,vn), let y = (y1, . . . , yn) =
ECC(msg) ∈ {0, 1}n where ECC is a balanced binary error-correcting code
with constant rate, which is uniquely decodeable from a

(
1/2 − δ

)
−fraction of

computationally bounded errors, as described in Section 2.3. Choose a random
subset IS ⊂ {1, . . . , n} of size cS . Also, for each i /∈ IS , choose a random bit
zi ← {0, 1}. Finally, choose r ← χmσ and e′1, . . . , e

′
n ← χσ′ . Output ciphertext

ct = (u, w1, . . . , wn) where ut = rtA ∈ Z1×k
q , and wi ∈ Zq is given by

wi =

{
rtvi + e′i + (q/2)yi, i ∈ IS
rtvi + e′i + (q/2)zi, i /∈ IS

.

The encryption randomness is
(
IS , {zi}i/∈IS , r, e′1, . . . , e′n

)
.

Decryption. Given ct = (u, w1, . . . , wn) and sk = {si}i∈IR , set

y′i =

⌊
2(wi − utsi)

q

⌉
for all i ∈ IR, and extend to a string y′ ∈ {0, 1}n via y′i

$← {0, 1} when i /∈ IR.
Output msg′ ∈ {0, 1}` obtained by applying the decoding algorithm of ECC to
y′.

3.2 Correctness and Real World Subsets

Correctness. Let y′ = (y′1, . . . , y
′
n) ∈ {0, 1}n be the faulty codeword obtained

during decryption. We must show that the decoding algorithm correctly outputs
msg with overwhelming probability. We have:

– i ∈ IR ∩ IS : then y′i = yi. The number of such i is k ← H(cR, cS , n).
– i /∈ IR ∩ IS : then y′i = yi with probability 1/2 independently of all other i.

It follows that the codeword y′ has k′ errors and n − k′ correct symbols where
k′ ← B1/2(n − k). Fix a constant ε > 0 with 3ε < cRcS/n

2 − 2δ. We have, by
Lemma 1, that with all but negligible probability in n,

k′ ≤ (1/2 + ε)(n− k) ≤ n(1/2 + ε)(1 + ε− cRcS/n2) ≤ n(1/2− δ).

In this case, the fraction of errors in the faulty codeword y′ is less than 1/2− δ
and so y′ decodes correctly and decryption succeeds.



Efficiency. The ciphertext size of our scheme is (n+k) log q = O
(
n polylog(k)

)
,

while the public key is of size m(k+n) log q = O
(
k2 polylog(k)

)
. We remark that

when this construction is instantiated using a ring-LWE based encryption scheme
as described in [LPR13], the public key size can be reduced to O

(
k polylog(k)

)
.

This requires using the ring based version of the trapdoors from [MP12].

Real World Subsets. The most technically delicate issue with our construction
is that the faulty codeword y′ produced in simulation must have the same dis-
tribution of errors as in the real world. In particular, the adversary learns four
sets

– ECC0 : The set of coordinates where the codeword is 0.
– IS : The set of coordinates “honestly” generated by the sender.
– D0 : The set of coordinates outside of IS that “randomly” encrypt a 0.
– IR : The set of coordinates where the receiver has the decryption key.

These sets also define their complements, ECC0 = ECC1 is the set of coordinates
where the codeword is one, and D1 is the set of coordinates that were random
encryptions of a one, thus D0 ∩D1 = IS . Note that ECC0 and ECC1 are defined
by the message, IS , D0 and D1 are defined by the sender’s randomness and
IR is defined by the receiver’s randomness. Therefore, in an honest execution,
the sets IS , D0, D1 will be independent of ECC0, and IR will be independent
of everything. We let Freal be the resulting distribution on (IR, IS , D0, D1). So
whenever |IR| = cR, |IS | = cS and {1, . . . , n} = IS ∪D0 ∪D1 is a partition, the
probability density function is given by

Pr
(
Freal = (IR, IS , D0, D1)

)
=

1

2n
(
n
cR

)(
n
cS

) .
Even though Freal is independent of msg, we often write (IR, IS , D0, D1) ←
Freal(msg) when we are interested in how the sets intersect ECC0 and ECC1,
defined by msg. The three different partitions

{1, . . . , n} = ECC0 ∪ ECC1 = IS ∪D0 ∪D1 = IR ∪ IR,

let us further partition {1, . . . , n} into 12 subsets by choosing one set from each
partition. We compute now the sizes of the various intersections as this informa-
tion will be important in defining our simulator.

As the error correcting code is balanced, we have |ECC0| = |ECC1| = n
2 . We

have, therefore, that |IS ∩ ECC0| = k ← H
(
cS ,

n
2 , n

)
, and |IS ∩ ECC1| = cS − k.

Similarly, |D0 ∩ ECC0| = k′ ← B1/2

(
n
2 − k

)
and |D0 ∩ ECC1| = k′′ ← B1/2

(
n
2 −

cS +k
)

which fixes |D1 ∩ECC0| = n
2 −k−k

′ and |D1 ∩ECC1| = n
2 − cS +k−k′′.

As IR is chosen independently to be a random subset of {1, . . . , n} of size cR, if
we set

αb = |IR ∩ IS ∩ ECCb|; βb = |IR ∩D0 ∩ ECCb|; γb = |IR ∩D1 ∩ ECCb|,



(thus fixing |IR ∩ IS ∩ ECC0| = k − α0 and so on), then

(α0, β0, γ0, α1, β1, γ1)←− H6

(
cR,
{
k, k′,

n

2
−k−k′, cS−k, k′′,

n

2
−cS+k−k′′

}
, n

)
.

This calculation will be useful when building our simulator.

3.3 The Simulator

Simulated Public Key and Ciphertext. Fix cgood = 3n/4. The simulator chooses

Â ∈ Zm×(k+n−cgood)q along with a trapdoor T ∈ {0, 1}n log q×m such that TÂ =
G according to [MP12]. He picks a random subset Igood ⊂ {1, . . . , n} of size

cgood, and sets Ibad = {1, . . . , n} − Igood. Write Â =
[
A
∣∣V] where A ∈ Zm×kq

and V ∈ Zm×(n−cgood)q . For i ∈ Igood, draw si ← Zkq and ei ← χmσ and define
v1, . . . ,vn ∈ Zmq :

vi =

{
Asi + ei, i ∈ Igood
column of V, i ∈ Ibad

,

so that the vectors {vi}i∈Ibad are the columns of V. The public key is pk =
(A,v1, . . . ,vn) and the data {si}i∈Igood is stored as it will be used when gener-
ating the secret key: IR will be a proper subset of Igood.

The simulater then chooses r
$← χmσ , e∗i

$← χσ′ for i ∈ Igood, and randomly
partitions Igood into subsets of equal size Igood,0 and Igood,1. The ciphertext is
ct = (u, w1, . . . , wn) where ut = rtA ∈ Z1×k

q and

wi =


rtvi + e∗i , i ∈ Igood,0
rtvi + e∗i +

(
q/2
)
, i ∈ Igood,1

w′
$← Zq, i ∈ Ibad

The subsets Igood,0, Igood,1, Ibad are stored for use when generating the encryption
randomness.

Simulated Secret Key and Randomness. S draws (IR, IS , D0, D1)← Fideal(msg, Igood,0, Igood,1),
where the ideal world subset function Fideal is defined below (so in particular,
|IR| = cR, |IS | = cS and IS , D0, D1 is a partition of {1, . . . , n}). The simulator
then sets the secret key to {si}i∈IR using the vectors {si}i∈Igood computed during
public key generation. To compute the randomness, S sets zi = b for all i ∈ Db.
Then for each i ∈ Ibad, it draws e′i ← χσ′ and uses the trapdoor T to sample a
Gaussian r ∈ Zmq such that rtA = u and rtvi = wi− e′i− (q/2)zi for all i ∈ Ibad.
Finally, for i ∈ Igood, S sets e′i = e∗i + (r − r)tei and defines the encryption
randomness rand =

(
IS , {zi}i/∈IS , r, e′1, . . . , e′n

)
.

Ideal World Subsets. We now describe the distribution Fideal which the simulator
chooses to define the sets IR, IS , D0, D1. For simplicity, we assume that the
target message msg is given at the beginning before all random choices are made.
This is not exactly what happens in the ideal world, where the non-committing



adversary A gets to see pk before specifying msg. However, it follows directly
from the hardness of LWE that A cannot gain advantage by specifying msg after
seeing pk.

Upon receiving msg ∈ {0, 1}` as input, Fideal sets y = (y1, . . . , yn) = ECC(msg) ∈
{0, 1}n to be the target codeword, defining ECC0 = {i : yi = 0} and ECC1 =
{i : yi = 1}. It then chooses a random Igood ⊂ {1, . . . , n} of size cgood and
Ibad = {1, . . . , n} − Igood as in the real world. It further divides Igood randomly
into two halves Igood,0 and Igood,1 defining two partitions

{1, . . . , n} = ECC0 ∪ ECC1 = Igood,0 ∪ Igood,1 ∪ Ibad.

The resulting six intersections have sizes:

– |Igood,0 ∩ ECC0| = t← H
(
n
2 ,

cgood
2 , n

)
; |Igood,0 ∩ ECC1| = cgood

2 − t;
– |Igood,1 ∩ ECC0| = t′ ← H

(
n
2 − t,

cgood
2 , n− cgood

2

)
; |Igood,1 ∩ ECC1| = cgood

2 − t
′;

– |Ibad ∩ ECC0| = n
2 − t− t

′; |Ibad ∩ ECC1| = n
2 − cgood + t+ t′.

Fideal needs to output IR, IS , D0, D1 ⊂ {1, . . . , n} such that the various intersec-
tions have the same sizes as in the real world. It proceeds as follows:

1. Fideal draws random variables k ← H
(
cS ,

n
2 , n

)
, k′ ← B1/2

(
n
2 − k

)
, k′′ ←

B1/2

(
n
2 − cS + k

)
and (α0, β0, γ0, α1, β1, γ1)← H6

(
cR, {k, k′, n2 − k− k

′, cS −
k, k′′, n2 − cS + k − k′′}, n

)
.

2. Fideal defines:
– IR ∩ IS ∩ ECCb : a random subset of Igood,b ∩ ECCb of size αb;
– IR ∩D0 ∩ ECCb : a random subset of Igood,0 ∩ ECCb of size βb;
– IR ∩D1 ∩ ECCb : a random subset of Igood,1 ∩ ECCb of size γb;

in such a way so that all six sets are disjoint. We prove in Claim 3.3 that
the subsets Igood,b ∩ ECCb′ are large enough to allow the above definitions
with high probability. This fully defines IR, but not IS , D0, D1 (we still
need their intersections with IR). Let Remb ⊂ Igood,b be the i ∈ Igood,b that
remain unassigned after this process.

Remark: As IR is now fully defined, we will not need the secret keys for the
i ∈ Rem0 ∪ Rem1. The only difference moving forward between Rem0, Rem1

and Ibad is that the ciphertexts vi for i ∈ Remb can only be decrypted to b,
whereas the ciphertexts vi for i ∈ Ibad can be decrypted to 0 or 1 as they
were generated with lossy public keys.

3. The sizes computed so far, along with the requirements |IS | = cS , |IS ∩
ECC0| = k, |D0 ∩ ECC0| = k′, and |D0 ∩ ECC1| = k′′ determine the sizes of
the remaining six sets. For example,

|IR ∩ IS ∩ ECC0| = |IS ∩ ECC0| − |IR ∩ IS ∩ ECC0| = k − α0.

Fideal sets
– IR ∩ IS ∩ ECCb : subset of (Remb ∪ Ibad) ∩ ECCb;

– IR ∩D0 ∩ ECCb : subset of (Rem0 ∪ Ibad) ∩ ECCb;



– IR ∩D1 ∩ ECCb : subset of (Rem1 ∪ Ibad) ∩ ECCb;

randomly such that 1) all six sets are disjoint and of the required size, 2)
Remb ∩ ECCb is fully contained in IR ∩ (IS ∪Db) ∩ ECCb, Remb ∩ ECC1−b is
fully contained in IR ∩Db ∩ ECC1−b. We prove in Claim 3.3 below that this
is possible whp.

4. Fideal outputs (IR, IS , D0, D1).

Claim. If we set cgood = 3n/4, cR = cS = n/8 then whp over the choice of
Igood,0, Igood,1 and the random variables drawn in step 1, it is possible to define
the subsets in steps 2 and 3 above.

Proof. Step 2 requires

(IR ∩ (IS ∪Db)∩ECCb) ⊂ Igood,b ∩ECCb; (IR ∩D1−b ∩ECCb) ⊂ Igood,1−b ∩ECCb

for b = 0, 1 which is possible if and only if the four inequalities are satisfied:

α0 + β0 ≤ t; α1 + γ1 ≤
cgood

2
− t′; γ0 ≤ t′; β1 ≤

cgood
2
− t.

To see that all four are satisfied with high probability, note that the expectation
of each right side is cgood/4, while the largest expectation of a left side is cR +
3cRcS/2n.

On the other hand, step 3 requires

Remb ∩ ECCb ⊂ IR ∩ (IS ∪Db) ∩ ECCb; Rem1−b ∩ ECCb ⊂ IR ∩D1−b ∩ ECCb,

for b = 0, 1, which is possible if and only if the four inequalities are satisfied:

t ≤ k + k′;
cgood

2
− t′ ≤ n

2
− k′′; t′ ≤ n

2
− k − k′; cgood

2
− t ≤ k′′.

The expectations of all four left hand sides is cgood/4, while the smallest right
hand side has expectation (n − cS)/4. If we set ε = 1/64 then cgood = 3n/4,
cR = cS = n/8 satisfy

cR +
3cRcS

2n
+ εn <

cgood
4

<
n− cS

4
− εn,

and so the tail bound in Lemma 1, implies that all of the inequalities are satisfied
with high probability.

We note that while ε = 1/64 might be unsatisfactory in practice since the
confidence offered by Lemma 1 is 1−exp

(
−ε2n/2

)
(recall n is the message length

which is a large constant times the security parameter, so ε = 1/64 might well
be fine), different values of ε may be obtained by varying cR, cS , and cgood.

Claim. The subsets IR, IS , D0, D1 output by the above process are distributed
within negligible statistical distance of the corresponding subsets which arise in
the real world, with high probability.



Proof. We compute the probability that the tuple (IR, IS , D0, D1) is output in
the ideal worlds and check that it equals

1

2n
(
n
cR

)(
n
cS

) ,
like in the real world. We make two observations. Note first that for any msg ∈
{0, 1}` which defines ECC0 and ECC1, a process which outputs (IR, IS , D0, D1)
can be equivalently thought of as a process which outputs 12 pairwise disjoint
subsets corresponding to the twelve intersections of the three partitions

{1, . . . , n} = ECC0 ∪ ECC1 = IS ∪D0 ∪D1 = IR ∪ IR.

The second observation is that choosing a random subset A ⊂ {1, . . . , n} of size
a and then outputting a random subset B ⊂ A of size b is the same as just
outputting a random subset of {1, . . . , n} of size b. With these observations in
mind, it is not difficult to complete the computation that

Prideal(IR, IS , D0, D1) =
1

2n
(
n
cR

)(
n
cS

) ,
for any msg ∈ {0, 1}`. The details are left to the reader.

3.4 Proof of Security

H0 − The Ideal World.

– C chooses a random Igood ⊂ {1, . . . , n} of size cgood and Â =
[
A|V

]
∈

Zm×(k+n−cgood)q along with a trapdoor T ∈ {0, 1}n log q×m such that TÂ = G
according to [MP12]. Then for each i ∈ Igood, C draws si ← Znq and ei ← χmσ
and sets vi = Asi + ei. For i ∈ Ibad C lets vi be a column of V. C sets
pk = (A,v1, . . . ,vn) and saves {si}i∈Igood .

– C randomly partitions Igood into two halves of equal sizes Igood,0 and Igood,1
and chooses r ← χmσ , setting ut = rtA ∈ Z1×k

q . For i ∈ Igood,b, C sets
wi = rtvi + e∗i + (q/2)b where each e∗i ← χσ′ . For i ∈ Ibad, C lets wi ∈ Zq be
random. C sets ct = (u, w1, . . . , wn).

– C sends pk to A and receives msg.

– C computes (IR, IS , D0, D1)← Fideal(msg, Igood,0, Igood,1) and sets sk =
(
IR, {si}i∈IR

)
.

– Finally, for each i ∈ Ibad ∩ Db, C draws e′i ← χσ′ and sets w′i = wi −
e′i− (q/2)b, then C draws r← Sampleσ

(
u′, Â,T

)
according to [MP12] where

u′ =
(
u, {w′i}i∈Ibad

)
∈ Zk+n−cgoodq . For each i ∈ Igood, C sets e′i = e∗i+(r−r)tei.

Lastly, for each i ∈ Db, C sets zi = b. He collects all of this information into
rand =

(
IS , {zi}i/∈IS , r, e′1, . . . , e′n

)
.

– C sends (ct, sk, rand).



H1 − The main difference between this world and H0 is that here C does not
choose ct until after he sends pk to A and receives msg. This allows us to avoid
selecting r or the e∗i .

– C chooses Igood ⊂ {1, . . . , n}, Â =
[
A|V

]
∈ Zm×(k+n−cgood)q , {si}i∈Igood and

{ei}i∈Igood and {vi}i=1,...,n just as in H0 and sets pk = (A,v1, . . . ,vn), saving
{si}i∈Igood .

– C sends pk to A and receives msg.
– C randomly chooses Igood,0 and Igood,1 and computes (IR, IS , D0, D1) ←

Fideal(msg, Igood,0, Igood,1), and sets sk =
(
IR, {si}i∈IR

)
.

– C chooses r← χmσ and for i ∈ (IS ∩ Igood,b)∪Db, sets zi = b and wi = rtvi +
e′i+(q/2)zi. C sets ct = (u, w1, . . . , wn) and rand = (IS , {zi}i/∈IS , r, e′1, . . . , e′n).

– C sends (ct, sk, rand).

Claim. H1 ≈s H0.

Proof. We must show that the pair
(
r, {e′i}i=1,...,n

)
← H0 is statistically close to(

r, {e′i}i
)
← H1. Note that r is chosen by first drawing r← χmσ and then using

the trapdoor preimage sampler to draw Gaussian r such that rtÂ = rtÂ. The
induced distribution on r is statistically close to simply drawing r ← χmσ as in
H1. Second note that e′i ← χσ′ for all i in H1, while in H0, this is only the case
for i ∈ Ibad. For i ∈ Igood, e′i = e∗i + (r − r)tei where e∗i ← χσ′ and ei ← χmσ .
This is statistically close to χσ′ as σ2/σ′ = negl(k), using Fact 1.

H2 − In this world we draw A ∈ Zm×kq and {vi}i∈Ibad randomly instead of along
with a trapdoor.

– C chooses Igood ⊂ {1, . . . , n}, A ∈ Zm×kq , and sets vi = Asi + ei for i ∈ Igood
and v← Zmq for i ∈ Ibad, where {si}i∈Igood and {ei}i∈Igood are as in H1. C sets
pk = (A,v1, . . . ,vn), and saves {si}i∈Igood .

– C sends pk to A and receives msg.
– C randomly chooses Igood,0 and Igood,1 and computes (IR, IS , D0, D1) ←

Fideal(msg, Igood,0, Igood,1), and sets sk =
(
IR, {si}i∈IR

)
.

– C chooses r← χmσ and for i ∈ (IS ∩ Igood,b)∪Db, sets zi = b and wi = rtvi +
e′i+(q/2)zi. C sets ct = (u, w1, . . . , wn) and rand = (IS , {zi}i/∈IS , r, e′1, . . . , e′n).

– C sends (ct, sk, rand).

Claim. H2 ≈s H1.

Proof. This follows immediately from the fact that matrices drawn along with
their trapdoors as in [MP12] are statistically close to uniform. As we weren’t

using the trapdoor in H1 anyway, changing Â to a uniform matrix, this does not
affect anything functionally.

H3 − The Real World. In this world we change the way the subsets (IR, IS , D0, D1)
are drawn; we draw them from Freal instead of Fideal.



– C draws (IR, IS , D0, D1) ← Freal and a random A ∈ Zm×kq and sets vi =
Asi + ei for i ∈ IR and v← Zmq for i /∈ IR, where {si}i∈IR and {ei}i∈IR are
as in H2. C sets pk = (A,v1, . . . ,vn), and sk = {si}i∈IR .

– C sends pk to A and receives msg and sets y = ECC(msg).
– C draws r← χmσ and sets ut = rtA and wi = rtvi + e′i + (q/2)yi for i ∈ IS ,

where e′i ← χσ′ . Then for each i ∈ Db, C sets zi = b and wi = rtvi + e′i +
(q/2)zi. Finally C sets ct = (u, w1, . . . , wn) and rand = (IS , {zi}i/∈IS , r, e′1, . . . , e′n).

– C sends (ct, sk, rand).

Claim. H3 ≈c H2.

Proof Sketch. This follows from Claim 3.3, which states that the (IR, IS , D0, D1)
from Freal is identical to the tuple drawn from Fideal, combined with the fact that
a PPT adversary cannot gain advantage by choosing msg after seeing pk rather
than before or else it can be used to break LWE.
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