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Abstract. About three decades ago it was realized that implement-
ing private channels between parties which can be adaptively corrupted
requires an encryption scheme that is secure against selective opening
attacks. Whether standard (IND-CPA) security implies security against
selective opening attacks has been a major open question since. The
only known reduction from selective opening to IND-CPA security loses
an exponential factor. A polynomial reduction is only known for the
very special case where the distribution considered in the selective open-
ing security experiment is a product distribution, i.e., the messages are
sampled independently from each other.
In this paper we give a reduction whose loss is quantified via the depen-
dence graph (where message dependencies correspond to edges) of the
underlying message distribution. In particular, for some concrete distri-
butions including Markov distributions, our reduction is polynomial.

Keywords. Public-key encryption, selective opening security, Markov,
IND-CPA, IND-SO-CPA

1 Introduction

Security under Selective Opening Attacks. Consider a scenario where
many parties 1, . . . , n send messages to one common receiver. To transmit a
message mi, party i samples fresh randomness ri and sends the ciphertext
ci = Encpk (mi; ri) to the receiver. Consider an adversary A that does not only
eavesdrop on the sent ciphertexts (c1, . . . , cn), but corrupts a set I ⊆ [n] of the
sender’s systems, thus learning the encrypted message mi and the randomness
ri used to encrypt mi. The natural question to ask is whether the messages of
uncorrupted parties remain confidential. Such attacks are referred to as selective
opening (SO) attacks (under sender corruption).

Selective opening attacks naturally occur in multi-party computation where
we assume secure channels between parties. Since a party might become cor-
rupted, we would need the encryption on the channels to be selective opening
secure. In practice the same argument applies to a server that establishes secure
connections that shall remain secure if users are corrupted.
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Difficulty of Proving Security under Selective Opening Attacks.
The widely accepted standard notion for public-key encryption schemes is indis-
tinguishability under chosen-plaintext attacks (IND-CPA security). At first sight
one might consider a straight-forward hybrid argument to show that IND-CPA
security already implies security against selective opening attacks since every
party samples fresh randomness independently. However, so far nobody has been
able to bring forward such a hybrid argument in general. Notice that revealing
randomness ri allows a selective opening adversary to verify that a corrupted
ciphertext ci is an encryption of mi. The adversary’s possibility to corrupt par-
ties introduces a difficulty in proving that standard (IND-CPA) security already
implies selective opening security. It seems that the reduction has to know (i.e.
guess) the complete set I of all corruptions going to be made by A in order
to serve its security game before A actually announces the senders it wishes to
corrupt. Since I might be any subset of {1, . . . , n}, a direct approach would
lead to an exponential loss in the reduction. A main technical obstacle is that
the encrypted messages may depend on each other. If, for example, they are en-
crypted and sent sequentially, message mi may depend on mi−1 and all previous
messages. Thus, corrupting some parties might already leak some information
on messages sent by parties that have not been corrupted.

Until today, the only result in the standard model, given in [8, 3], shows
that IND-CPA implies selective opening security for the special case of a product
distribution, i.e., when all messages m1, . . . ,mn are sampled independently from
each other. Intuitively, this holds since corrupting some ciphertext cannot reveal
information on related messages if there are no related messages at all and
the hybrid argument one might expect to work goes through. This leaves the
following open question:

Does standard security imply selective opening security for any non-trivial
message distribution?

1.1 Our Contributions

We present the first non-trivial positive results in the standard model, namely
we show that IND-CPA security implies IND-SO-CPA security for a class of mes-
sage distributions with few dependencies. Here IND-SO-CPA security refers to
the indistinguishability-based definition of selective opening security sometimes
referred to as weak IND-SO-CPA security [4].

IND-SO-CPA requires that a passive adversary that obtains a vector of ci-
phertexts (c1, . . . , cn) and has access to a ciphertext opening oracle, revealing
the underlying message mi of some ciphertext ci and the randomness used to
encrypt mi, cannot distinguish the originally encrypted messages from freshly
resampled messages that are as likely as the original messages given the messages
of opened ciphertexts.

We consider graph-induced distributions where dependencies among messages
correspond to edges in a graph and show that IND-CPA implies IND-SO-CPA
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security for all graph-induced distributions that satisfy a certain low connectivity
property.

In particular, our result holds for the class of Markov distributions, i.e. dis-
tributions on message vectors (m1, . . . ,mn) where all information relevant for
the distribution of mi is present in mi−1. We prove that any IND-CPA secure
public-key encryption scheme is IND-SO-CPA secure if the messages are sam-
pled from a Markov distribution. Our results cover for instance distributions
where message mi contains all previous messages (e.g. email conversations) or
distributions where messages are increasing, i.e., m1≤m2 ≤ . . .≤mn.

Note that a positive result on “weak” IND-SO-CPA security for all IND-CPA-
secure encryption schemes for certain distributions is the best we can hope for
due to the negative result of Bellare et al. [1] ruling out such an implication for
SIM-SO-CPA security.

Details. Think of a vector of n messages sampled from some distribution D
as a graph G on n vertices {1, . . . , n} where we have an edge from message mi

to message mj if the distribution of mj depends on mi. Further, fix any subset
I ⊆ {1, . . . , n} of opening queries made by some adversary. The main observa-
tion is that removing I and all incident edges, G decomposes into connected
components C1, . . . , Cn′ that can be resampled independently, since the distri-
bution of messages on Ck solely depends on the messages in the neighborhood
of Ck and D.

To argue that there is no efficient adversary ASO that distinguishes sampled
and resampled messages in the selective opening experiment, we proceed in a se-
quence of hybrid games, starting in a game where after receiving encryptions of
sampling messages and replies to opening queries, ASO obtains the sampled mes-
sages. In each hybrid step we use IND-CPA security to replace sampled messages
on a connected component Ck with resampled messages without ASO noticing.
To this end, the reduction from IND-CPA to the indistinguishability of two con-
secutive hybrids has to identify Ck to embed its own challenge before ASO makes
any opening query.

We consider two approaches for guessing Ck. The first will consider graphs
that have only polynomially many connected subgraphs; hence, the reduction
can guess Ck right away. The second approach studies graphs for which every
connected subgraph has a neighborhood of constant size; this allows the reduc-
tion to guess Ck by guessing its neighborhood. We show that the first approach
ensures a reduction with polynomial loss for a strictly greater class of graphs
than the second one.

Additionally, when the distribution is induced by an acyclic graph, we give
a more sophisticated hybrid argument for the second approach, where in each
hybrid transition only a single sampled message is replaced by a resampled mes-
sage, allowing for a tighter reduction. Due to the definition of the hybrids, it will
suffice to guess on fewer vertices of Ck’s neighborhood.
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1.2 Previous Work

There are three not polynomially equivalent definitions of SO-secure encryp-
tion [4]. Since messages in the IND-SO experiment have to be resampled condi-
tioned on opened messages, there are two notions based on indistinguishability:
Weak IND-SO restricts to distributions that support efficient conditional re-
sampling. Bellare et al. [2] gave an indistinguishability-based notion for passive
adversaries, usually referred to as IND-SO-CPA. Full IND-SO allows for arbitrary
distributions on the messages and is due to Böhl et al. [4], who adopted a notion
for commitment schemes from [2] to encryption.

SIM-SO captures semantic security and demands that everything an adver-
sary can output can be computed by a simulator that only sees the messages of
corrupted parties, whereas it does not see the public key, any ciphertext or any
randomness. The notion dates back to Dwork et al. [8], who studied the selective
decommitment problem, and does not suffer from a distribution restriction like
weak IND-SO, since it does not involve resampling.

The first IND-SO-CPA-secure encryption scheme in the standard model was given
in [2] based on lossy encryption. Selective opening secure encryption can be con-
structed from deniable encryption [6] as well as non-committing encryption [7].
Bellare et al. [3, 1] separated SIM-SO-CPA from IND-CPA security and showed
that IND-CPA security implies weak IND-SO-CPA security if the messages are
(basically) sampled independently. The same result was already established for
commitment schemes in [8].

To date, this is the only positive result that shows that IND-CPA implies
weak IND-SO-CPA in the standard model. Full IND-SO-CPA and SIM-SO-CPA
security were separated in [4]; neither of them implies the other. Hofheinz et
al. [10] proved that IND-CPA implies weak IND-SO-CPA in the generic group
model for a certain class of encryption schemes and separated IND-CCA from
weak IND-SO-CCA security.

Recently, Hofheinz et al. [9] constructed the first (even IND-CCA-secure) PKE
that is not weakly IND-SO-CPA secure. Their result relies on the existence of
public-coin differing-inputs obfuscation and certain correlation intractable hash
functions. Their scheme employs “secret-sharing message distributions” whose
messages are evaluations of some polynomial. It is easily seen that such distri-
butions have too many dependencies to be covered by our positive result. There
is a gap between their result and ours, that is, distributions for which it is still
open whether IND-CPA implies IND-SO-CPA.

2 Preliminaries

We denote by λ the security parameter. A function f is polynomial in n, f(n) =
poly(n), if f(n) = O(nc) for some c > 0. Let 0 < n := n(λ) = poly(λ). A
function f(n) is negligible in n, f(n) = negl(n), if f(n) = O(n−c) for all c > 0.
Any algorithm receives the unary representation 1λ of the security parameter as
first input. We say that an algorithm is a PPT algorithm if it runs in probabilistic
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polynomial time (in λ). For a finite set S we denote the sampling of a uniform
random element a by a←$ S, and the sampling according to some distribution D
by a ← D. For a, b ∈ N, a ≤ b, let [a, b] := {a, a + 1, . . . , b} and [a] := [1, a].
For a < b let [b, a] := ∅. For I ⊆ [n] let I := [n] \ I. We use boldface letters to
denote vectors, which are of length n if not indicated otherwise. For a vector m
and i ∈ [n] let mi denote the i-th entry of m and |m| the number of entries
in m. For a set I = {i1, . . . , i|I|}, i1 < . . . < i|I| let mI denote the projection
of m to its I-entries: mI := (mi1

, . . . ,mi|I|
). For an event E let E denote the

complementary event.

2.1 Games

A game G is a collection of procedures or oracles {Initialize,P1,P2, . . . ,Pt,
Finalize} for t ≥ 0. Procedures P1 to Pt and Finalize might require some
input parameters. We implicitly assume that boolean flags are initialized to
false, numerical types are initialized to 0, sets are initialized to ∅, while strings
are initialized to the empty string ε. An adversary A is run in game G if A calls
Initialize. During the game A may run some procedure Pi as often as allowed
by the game.

For each game in this paper, the “Open” procedure may be called an ar-
bitrary number of times, while every other procedure is called once during the
execution.

The interface of the game is provided by the challenger. If A calls P, the
output of P is returned to A, except for the Finalize procedure. On A’s call of
Finalize the game ends and outputs whatever Finalize returns. Let GA ⇒ out
denote the event that G runs A and outputs out. The advantage Adv(GA,HA)
of A in distinguishing games G and H is defined as

∣∣Pr[GA ⇒ 1]− Pr[HA ⇒ 1]
∣∣.

We let Bad denote the event that a boolean flag Bad was set to true during the
execution of some game.

2.2 Public-Key Encryption Schemes

A public-key encryption scheme consists of three PPT algorithms. Gen generates
a key pair (pk, sk)← Gen(1λ) on input 1λ. The public key pk implicitly contains
1λ and defines three finite sets: the message spaceM, the randomness space R,
and the ciphertext space C. Given pk, a message m ∈M and randomness r ∈ R,
Enc outputs an encryption c = Encpk (m; r) ∈ C of m under pk. The decryption
algorithm Dec takes a secret key sk and a ciphertext c ∈ C as input and outputs
a message m = Decsk (c) ∈ M, or a special symbol ⊥ 6∈ M indicating that c is
not a valid ciphertext. In the following we let PKE = (Gen,Enc,Dec) denote a
public-key encryption scheme.

We require PKE to be correct: for all security parameters λ, for all (pk , sk)←
Gen(1λ), and for all m ∈M we have Pr[Decsk (Encpk (m; r)) = m] = 1 where the
probability is taken over the choice of r. We apply Enc and Dec to message
vectors m = (m1, . . . ,mn) and randomness r = (r1, . . . , rn) as Enc(m; r) :=
(Enc(m1; r1), . . . ,Enc(mn; rn)).
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Procedure Initialize

(pk , sk)← Gen(1λ)
Return pk

Procedure Challenge(m0,m1)

c← Encpk (mb)
Return c

Procedure Finalize(b′)

Return b′

Fig. 1. Game mult-IND-CPAPKE,b; Bmult must submit m0,m1 ∈Ms

2.3 IND-CPA and mult-IND-CPA Security

We revise the standard notion of IND-CPA security and give a definition of in-
distinguishable ciphertext vectors under chosen-plaintext attacks that will allow
for cleaner proofs of our results.

Definition 1 (mult-IND-CPA security). For PKE, an adversary Bmult, s ∈ N
and a bit b we consider game mult-IND-CPABmult

PKE,b as given in Fig. 1. Bmult may

only submit message vectors m0, m1 ∈ Ms. To PKE, Bmult and λ we associate
the following advantage function

Advmult-IND-CPA
PKE (Bmult, λ) := Adv

(
mult-IND-CPABmult

PKE,0,mult-IND-CPABmult

PKE,1

)
.

PKE is mult-IND-CPA secure if Advmult-IND-CPA
PKE (Bmult, λ) is negligible for all PPT

adversaries Bmult.

For an adversary BCPA, we obtain the definition of IND-CPA security by letting
s := 1 and write AdvIND-CPA

PKE (BCPA, λ) instead of Advmult-IND-CPA
PKE (BCPA, λ). A

standard hybrid argument proves the following lemma.

Lemma 2. For any adversary Bmult sending message vectors from Ms to the
mult-IND-CPA game there exists an IND-CPA adversary BCPA with roughly the
same running time as Bmult such that

Advmult-IND-CPA
PKE (Bmult, λ) ≤ s ·AdvIND-CPA

PKE (BCPA, λ) .

2.4 IND-SO-CPA Security

In this section we recall an indistinguishability-based definition for selective
opening security under chosen-plaintext attacks and discuss the existing notions
of SO security.

Definition 3 (Efficiently resamplable distribution). LetM be a finite set.
A family of distributions {Dλ}λ∈N over Mn =Mn(λ) is efficiently resamplable
if the following properties hold for every λ ∈ N:

Length consistency. For every i ∈ [n]: Prm1,m2←Dλ

[
|m1

i | = |m2
i |
]

= 1.

Resamplability. There exists a PPT resampling algorithm ResampDλ
(·, ·) that

runs on (m, I) for m ∈ Mn, I ⊆ [n] and outputs a Dλ-distributed vector
m′ ∈Mn conditioned on m′I = mI .
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Procedure Initialize

(pk , sk)← Gen(1λ)
Return pk

Procedure Enc(D,ResampD)

m0 ← D
r←$Rn
c = Encpk (m0; r)
Return c

Procedure Open(i)

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

m1 ← ResampD(m0, I)
Return mb

Procedure Finalize(b′)

Return b′

Fig. 2. Game IND-SO-CPAPKE,b

A class of families of distributions D is efficiently resamplable if every family
{Dλ}λ∈N ∈ D is efficiently resamplable.

Since the security parameter uniquely specifies an element of a family Dλ we
write D instead of Dλ whenever the security parameter is already fixed.

Definition 4. For PKE, a bit b, an adversary ASO and a class of families of
distributions D over Mn we consider game IND-SO-CPAASO

PKE,b in Fig. 2. Run in
the game, ASO calls Enc once right after Initialize and has to submit D ∈ D
along with a PPT resampling algorithm ResampD. ASO may call Open multiple
times and invokes Challenge once after its last Open query before calling
Finalize. We define the advantage of ASO run in game IND-SO-CPAPKE,b as

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) := Adv

(
IND-SO-CPAASO

PKE,0, IND-SO-CPAASO

PKE,1

)
.

PKE is IND-SO-CPA secure w.r.t. D if AdvIND-SO-CPA
PKE (ASO,Dλ, λ) is negligible

for all PPT ASO.

Notions of Selective Opening Security. Def. 4 is in the spirit of [2] but
we allow for adaptive corruptions and let the adversary choose the distribution,
as done by Böhl et al. [4]. The latter renamed IND-SO-CPA to weak IND-SO-CPA
and introduced a strictly stronger notion, called full IND-SO-CPA, where ASO

may submit any distribution (even one not efficiently resamplable) and need
not provide a resampling algorithm.1 We consider the name weak IND-SO-CPA
unfortunate and simply refer to the security notion in Def. 4 as IND-SO-CPA
security.

3 Selective Opening for Graph-Induced Distributions

This section considers graph-induced distributions and identifies connectivity
properties so that IND-CPA entails IND-SO-CPA security. We introduce some

1 E.g., for a one-way function OWF a distribution (m,OWF(m)) may not support
efficient resampling.
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notation in Section 3.1. Sections 3.2 and 3.3 discuss a hybrid argument that
considers the connected components of GI , switching one of them from sampled
to resampled in each transition. Section 3.4 discusses a different hybrid argument
that will allow for tighter proofs if the distribution-inducing graph is acyclic.

3.1 Graphs

A directed graph G consists of a set of vertices V , identified with [n] for n > 0 and
a set of edges E ⊆ V 2\{(v, v) : v ∈ V }, i.e. we do not allow loops. G is undirected
if (v2, v1) ∈ E for each (v1, v2) ∈ E. For V ′ ⊆ V let GV ′ := (V ′, E′) denote the
induced subgraph of G where E′ := E ∩ (V ′)2. For G = (V,E) we obtain its
undirected version, G↔ = (V,E↔) where E↔ ⊇ E is obtained by adding the
minimum number of edges to E so that the graph becomes undirected. For
V ′ ⊆ V let N(V ′) := {v ∈ V \ V ′ : ∃v′ ∈ V ′ s.t. (v, v′) ∈ E↔} denote the (open)
neighborhood of V ′ in G. For a vertex v, we denote by P (v) = {j : (j, v) ∈ E}
the set of its parents.

A path from v1 to v` in G is a list of at least two vertices (v1, . . . , v`) where
vi ∈ V for i ∈ [`] and (vi, vi+1) ∈ E for all i ∈ [` − 1]. If there is a path from u
to v then u is a predecessor of v. Let pred(v) denote the set of all predecessors
of v. A cycle is a path where v` = v1. If G contains no cycles, it is acyclic. A
directed, acyclic graph is called DAG.

A non-empty subset V ′ ⊆ V is connected in G if for every pair of distinct
vertices (v1, v2) ∈ V ′ there exists a path form v1 to v2 in G↔. G is connected if
V is connected in G. G is disconnected if G is not connected. We assume G to
be connected if not stated otherwise. A (set-)maximal connected set of vertices
of G is called connected component.

Notational convention. We do not distinguish between the i-th message of
an n-message vector and vertex i in a graph on n vertices.

We start with defining Markov distributions, which are distributions on vectors
of random variables reflecting processes, that is, variables with higher indices
depend on ones with lower indices. A distribution is Markov if it is memoryless
in the sense that all relevant information for the distribution of a value Mi is
already present in Mi−1, although the latter itself depends on its predecessor.

Definition 5. Let {Dλ}λ∈N be a family of distributions over Mn. Let M =
(M1, . . . ,Mn) denote a vector of M-valued random variables. We say {Dλ}λ∈N
is Markov if the following holds for all λ ∈ N and all m ∈Mn:

Pr
M←Dλ

[
Mi = mi

∣∣∣ i−1∧
j=1

Mj = mj

]
= Pr

M←Dλ

[
Mi = mi

∣∣∣Mi−1 = mi−1

]
.

Markov distribution can be seen as “induced” by a chain graph M1 →M2 →
. . . → Mn, where edges represent dependencies. We will now generalize this
to arbitrary graphs and still require (a generalization of) “memorylessness”.
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We say that a graph G induces a distribution D if whenever the distribution
of Mj depends on Mi then there is a path from i to j in G. As for Markov
distributions, we require that the distribution of a message only depends on its
parents; in particular, for all λ ∈ N, all j ∈ [n] and M = (M1, . . . ,Mn) ← Dλ

the distribution of Mj only depends on its parents in Gλ, i.e. the set P (j), rather
than all its predecessors pred(j).

Definition 6 (Graph-induced distribution). Let {Dλ}λ∈N be a family of
distributions over Mn and let {Gλ}λ∈N be a family of graphs on n vertices. We
say that {Dλ}λ∈N is {Gλ}λ∈N-induced if the following holds for all λ ∈ N:

– For all i 6= j ∈ [n] if for Dλ the distribution of Mj depends on Mi then
there is a path from i to j in Gλ.

– For all j ∈ [n] and all m ∈Mn we have

Pr
M←Dλ

[
Mj = mj

∣∣∣ ∧
i∈pred(j)

Mi = mi

]
= Pr

M←Dλ

[
Mj = mj

∣∣∣ ∧
i∈P (j)

Mi = mi

]
.

We demand that for any λ ∈ N one can efficiently reconstruct Gλ from Dλ.

As with a family of distributions, we drop the security parameter and say that
D is G-induced whenever λ is already fixed. Note that G may contain cycles
and may be undirected. Further note that Markov distributions can be seen as
graph-induced distributions where the graph G = (V,E) is a chain on n vertices,
that is, V = [n] and E = {(i− 1, i) : i ∈ [n]}.

Although our proof ideas can be applied to disconnected graphs directly, Sections
3.2 – 3.4 consider connected graphs for simplicity. A hybrid argument over the
connected components of a graph as given in Section 3.5 extends all our results
to disconnected graphs.

3.2 A Bound Using Connected Subgraphs

Definition 7 (Number of connected subgraphs). Let G = (V,E). We de-
fine the number of connected subgraphs of G:

S(G) := |{V ′ ⊆ V : V ′ connected}| .

For example, for a chain graph on n vertices we have S(G) = 1
2 · n · (n+ 1) and

for the complete graph Cn on n vertices we have S(Cn) = 2n − 1.

Theorem 8. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
w.r.t. the class of efficiently resamplable and G-induced distribution families over
Mn where S(G) = poly(n) and G is connected.

Precisely, for any adversary ASO run in game IND-SO-CPAPKE there exists
an IND-CPAPKE adversary BCPA with roughly the running time of ASO plus two
executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ n · (n− 1) · S(Gλ) ·AdvIND-CPA

PKE (BCPA, λ) .
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Procedure Challenge

m1 ← ResampD(m0, I)

mi :=

{
m1
i for i ∈

⋃k
j=1 Cj

m0
i else

Return m = (m1, . . . ,mn)

Fig. 3. Challenge procedure of hybrid game Hk. Ci denotes the i-th connected com-
ponent of GI . The challenge vector contains resampled messages in the first k batches
C1, . . . , Ck while the other messages remain sampled.

Proof Idea. Recall game IND-SO-CPAPKE,b given in Fig. 2. During Challenge
the game sends mb, where m0

I consists of messages sampled at the beginning,

while m1
I is resampled (conditioned on m1

I = m0
I). We will define hybrid games

H0,H1, . . . ,Hn. For this, let S ⊆ 2V denote all the connected subgraphs of G.
We have |S| = S(G).

Note that GI consists of connected components C1, . . . , Cn′ ⊆ S for some
n′ ≤ n − 1. (This upper bound is attained by the star graph when I consists
of the internal node.) We assume those components to be ordered, e.g. by the
smallest vertex contained in each.

Thus, if b = 1 in game IND-SO-CPA then the challenger can resample m1
I in

n′ batches m1
C1
, . . . ,m1

Cn′
(as I =

⋃n′
i=1 Ci). Moreover, each batch m1

Ci
can be

resampled independently, i.e., as a function of m0
I and D, but not m1

Cj
, j 6= i.

Proof (Theorem 8). For k = 0, . . . , n we define hybrid game Hk as a modified
game IND-SO-CPAPKE, in which the messages of the first k batches C1, . . . , Ck
are resampled during Challenge while the remaining batches stay sampled.

Every procedure except Challenge remains as in Def. 4, and Challenge is
given in Fig. 3. Clearly, H0 is the (real) game IND-SO-CPAPKE,0 and Hn′ for some
n′ ≤ n − 1 is the (random) game IND-SO-CPAPKE,1. Note that for k, j ∈ [n′, n]
hybrids Hk and Hj are identical. We have

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv

(
HASO

0 ,HASO

n′

)
≤
n′−1∑
k=0

Adv
(
HASO

k ,HASO

k+1

)
.

We now upper-bound the distance between two consecutive hybrids using the
following lemma.

Lemma 9. For every adversary ASO that distinguishes hybrids Hk and Hk+1

there exists a mult-IND-CPA adversary Bmult with roughly the running time of
ASO plus two executions of Resamp such that

Adv
(
HASO

k ,HASO

k+1

)
≤ S(G) ·Advmult-IND-CPA

PKE (Bmult, λ) .

Proof. We construct adversary Bmult as follows (cf. Fig. 4):
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Procedure Initialize

pk ← Initializemult-IND-CPA(1λ)
Return pk

Procedure Enc(D,ResampD)

C∗k+1←$ S
m0 ← D
m1 ← ResampD(m0, N(C∗k+1))
cC∗

k+1
← Challengemult-IND-CPA(m0

C∗
k+1

,m1
C∗
k+1

)

r←$Rn

ci =

{
ci for i ∈ C∗k+1

Encpk (m0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Open(i)

if i ∈ C∗k+1

Bad :=true
I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

if C∗k+1 6= Ck+1

Bad :=true
m̃1 ← ResampD(m0, I)

mi =

{
m̃1
i for i ∈

⋃k
j=1 Cj

m0
i else

Return m = (m1, . . . ,mn)

Procedure Finalize(b′)

Finalizemult-IND-CPA(b′)

Fig. 4. ASO’s game interface as provided by Bmult run in game mult-IND-CPA. Bmult

interpolates between hybrids Hk, Hk+1 for k ∈ [0, n− 1].

Bmult forwards pk to ASO and picks C∗k+1←$ S uniformly at random (trying to
guess Ck+1) after receiving (D,ResampD). Bmult samples m0 ← D and resamples
m1 keeping the neighborhood of C∗k+1 fixed. It submits (m0

C∗k+1
,m1

C∗k+1
) to its

mult-IND-CPA challenger, obtains ciphertexts for positions in C∗k+1, picks ran-

domness and uses it to encrypt each message in C∗k+1. Bmult sends (c1, . . . , cn)
to ASO, embedding its challenge at positions C∗k+1 and answers opening queries
honestly if they do not occur on C∗k+1. If ASO issues such a query, Bmult cannot
answer and sets Bad := true since it guessed Ck+1 wrong. During Challenge,
Bmult verifies that it guessed Ck+1 correctly and sets Bad := true if not. Bmult

resamples messages m̃1 that are sent in the first k batches while messages from
m0 are sent in every other position. Bmult outputs ASO’s output.

In the following we use m ≡ m′ if m and m′, interpreted as random variables,
are identically distributed where the probability is taken over all choices in the
computation of m, m′, respectively.

Assume, Bmult guessed correctly, i.e. C∗k+1 = Ck+1. Clearly, Bmult perfectly
simulates hybrids Hk and Hk+1 for messages and ciphertexts at positions in
Ck+1. Run in mult-IND-CPAPKE,0, Bmult obtains Encpk (m0

Ck+1
) and ASO therefore

receives encryptions of sampled messages. During Challenge the (k + 1)-th
batch contains sampled messages m0

Ck+1
, thus Bmult perfectly simulates hybrid

Hk.
When Bmult is run in mult-IND-CPAPKE,1, ASO obtains encryptions of re-

sampled messages Encpk (m1
Ck+1

) while it expects encrypted sampled messages:

Encpk (m0
Ck+1

). During Challenge ASO expects resampled messages m̃1
Ck+1

but

obtains sampled m0
Ck+1

. Thus, the sampled and resampled messages change roles
on Ck+1.
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However, they are equally distributed, i.e., m0
Ck+1

≡ m1
Ck+1

since the mes-

sages in N(Ck+1) were fixed when resampling m1 and the distribution of mes-
sages in Ck+1 depends on D and messages in positions N(Ck+1) only. Likewise,
m1
Ck+1

≡ m̃1
Ck+1

for m1 ← ResampD(m0, N(Ck+1)) and m̃1 ← ResampD(m0, I)
since the distribution of messages in Ck+1 solely depends on D and messages in
N(Ck+1) ⊆ I and ASO’s view is identical to hybrid Hk+1. We have

Pr[mult-IND-CPABmult

PKE,0 ⇒ 1] = Pr[HASO

k ⇒ 1 ∧ Bad] and

Pr[mult-IND-CPABmult

PKE,1 ⇒ 1] = Pr[HASO

k+1 ⇒ 1 ∧ Bad] .

Observe that Bad does not happen when Bmult guessed Ck+1 correctly. Since Bad

is independent of ASO’s output in a hybrid and |S| = S(G), we have

Advmult-IND-CPA
PKE (Bmult, λ) ≥ 1

S(G)
·Adv

(
HASO

k ,HASO

k+1

)
,

which concludes the proof. ut

We proceed with the proof of Theorem 8. Using Lemma 9 we have

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

n′−1∑
k=0

Adv(HASO

k ,HASO

k+1)

≤
n′−1∑
k=0

S(Gλ) ·Advmult-IND-CPA
PKE (Bmult, λ) .

Bmult sends message vectors of length |C∗k+1| ≤ n to its mult-IND-CPA challenger.
Using Lemma 2, we have

≤
n′−1∑
k=0

n ·S(Gλ) ·AdvIND-CPA
PKE (BCPA, λ) ≤ n ·(n−1) ·S(Gλ) ·AdvIND-CPA

PKE (BCPA, λ) ,

since n′ ≤ n− 1, which completes the proof of Theorem 8. ut

Markov Distributions. Markov distributions (Def. 5) are induced by the
chain graph (V = [n], E = {(i− 1, i) : i ∈ [n]}), for which S(G) = 1

2 · n · (n+ 1).
We thus immediately obtain the following corollary from Theorem 8.

Corollary 10. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
w.r.t. efficiently resamplable Markov distributions over Mn.

Precisely, for any adversary ASO run in game IND-SO-CPAPKE there exists
an IND-CPAPKE adversary BCPA with roughly the running time of ASO plus two
executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 1

2 · n
2 · (n2 − 1) ·AdvIND-CPA

PKE (BCPA, λ) .
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3.3 A Bound Using the Maximum Border

Definition 11 (Maximum border). Let G = (V,E). We define the maximum
border of G as the maximal size of the neighborhood of any connected subgraph
in G.

B(G) := max
{
|N(V ′)| : V ′ ⊆ V connected

}
.

For example, if G is an n-path for n ≥ 3 then B(G) = 2. For the complete graph
or star graph on n vertices we have B(G) = n− 1. Notice that B(G) < n.

In the reduction in Section 3.2 we guessed a connected component in GI that
would be switched from sampled to resampled in a hybrid transition. Alterna-
tively, we can guess a connected component in GI via its neighborhood. The
following theorem expresses S(G) in terms of B(G).

Theorem 12. Let G be a connected graph. Then the following bound on S(G)
holds:

S(G) ≤ 2

(B(G)− 1)!
· nB(G) for all 0 < B(G) ≤ n− 2

3
.

We begin with a simple observation before proving the theorem.

Lemma 13. Let G = (V,E) and V1 6= V2 each of them connected in G such
that N(V1) = N(V2). Then V1 ∩ V2 = ∅.

Proof. Assume V1 ∩ V2 6= ∅. As V1 6= V2 we have V1 \ V2 6= ∅ without loss
of generality. Because V1 is connected, there exist vertices v∩ ∈ V1 ∩ V2 and
v1 ∈ V1 \V2 such that (v1, v∩) ∈ E↔. Since v1 /∈ V2, v∩ ∈ V2 and (v1, v∩) ∈ E↔,
we see that v1 ∈ N(V2). As N(V2) = N(V1) it follows that v1 ∈ N(V1); a
contradiction since v1 ∈ V1. ut

Proof (Theorem 12). Let B := B(G). We have

S(G) =

B∑
i=0

∣∣{V ′ ⊆ V : V ′ connected ∧ |N(V ′)| = i
}∣∣ .

For i = 0 we count the connected components of G.

= 1 +

B∑
i=1

∣∣{V ′ ⊆ V : V ′ connected ∧ |N(V ′)| = i
}∣∣

= 1 +

B∑
i=1

∑
Vi⊆V
|Vi|=i

∣∣{V ′ ⊆ V : V ′ connected ∧N(V ′) = Vi
}∣∣ .

Let Vi ⊆ V be non-empty and {V ′ ⊆ V : V ′ connected ∧ N(V ′) = Vi} =
{V ′1 , . . . , V ′k} for appropriate k. Applying Lemma 13 to V ′1 , . . . , V

′
k, we see that
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those sets V ′j are pairwise disjoint. Fix any vertex vi ∈ Vi. Since N(V ′j ) = Vi for
j ∈ [k] and all V ′j are pairwise disjoint, there exists at least one vertex v′j in each
V ′j such that (v′j , vi) ∈ E for all j ∈ [k]. Thus, N(vi) ≥ k, i.e. B ≥ k. Hence,
k ≤ B for given B and we obtain an upper bound for the number of possible
sets V ′ for each fixed Vi. It follows

S(G) ≤ 1 +

B∑
i=1

∑
Vi⊆V
|Vi|=i

B = 1 +B ·
B∑
i=1

(
n

i

)
≤ B ·

B∑
i=0

(
n

i

)
. (1)

To bound the sum in (1) we use the geometric series and upper-bound the
quotient of two consecutive binomial coefficients by 1

2 :(
n
i

)(
n
i+1

) =
i+ 1

n− i
≤ 1

2
⇔ i ≤ n− 2

3
.

Hence

B ·
B∑
i=0

(
n

i

)
≤ B ·

B∑
i=0

1

2i

(
n

B

)
≤ B ·

(
n

B

)
·
∞∑
i=0

1

2i
≤ 2 ·B · n

B

B!
=

2

(B − 1)!
·nB

for B(G) ≤ n−2
3 , which concludes the proof. ut

Theorems 8 and 12 together now yield the following corollary.

Corollary 14. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
w.r.t. the class of efficiently resamplable and G-induced distribution families over
Mn where B(G) = const, n ≥ 3 ·B(G) + 2 and G is connected.

Concretely, for any adversary ASO in game IND-SO-CPAPKE there exists an
IND-CPAPKE adversary BCPA with roughly the running time of ASO plus two
executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 2 · (n− 1)

(B(Gλ)− 1)!
· nB(Gλ)+1 ·AdvIND-CPA

PKE (BCPA, λ) .

Since Corollary 14 ensures a polynomial loss in the reduction for B(G) = const
and we are interested in asymptotic statements, we do not consider the restriction
to n ≥ 3 ·B(G) + 2 grave. One can easily obtain a version of Theorem 12 that is
weaker by a factor of roughly B(G) but holds for all B(G) < n. To this end one
bounds the sum of binomial coefficients in (1) in terms of the incomplete upper
gamma function Γ to get

B∑
i=1

(
n

i

)
≤

B∑
i=1

ni

i!
=
enΓ (B + 1, n)

B!
− 1 .

Using a nice bound on Γ due to [11] that can be found in [5] we obtain a bound
for B(G) < n.
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Procedure Challenge

m1 ← ResampD(m0, [k+1, n] ∪ I)
Return mb

Fig. 5. Challenge procedure of hybrid game Hk. For k = n we have [n + 1, n] = ∅.

Think of a direct reduction for proving Corollary 14 as implicitly guessing Ck+1

via guessing N(Ck+1) by picking up to B(G) vertices in G and guessing one of
at most B(G) connected subgraphs that have the guessed neighborhood.

Note that Corollary 14 cannot provide a tighter bound on the loss than
Theorem 8. In particular, there are (even connected) graphs for which Theorem 8
ensures an at most polynomial loss, while Corollary 14 does not. For instance,
let G be the star graph on log n vertices attached to the chain graph of n− log n
vertices, then S(G) = poly(n), but B(G) > const.

3.4 A Tighter Reduction for Acyclic Graphs

While we considered graph-induced distributions for arbitrary graphs in Sec-
tions 3.2 and 3.3, we now consider DAG-induced distributions for which we obtain
a tighter reduction than what is guaranteed by Corollary 14.

For a DAG G we require that the vertices are semi-ordered in such a way that
there is no directed path from i to j for i < j. Such an ordering always exists as
G has no cycles. Note that the dependencies now go the other way as for Markov
distributions, but this will allow us to replaced sampled messages by resampled
ones from left to right as in the previous hybrids. We will traverse dependencies
backwards, that is, if message mi depends on mj then mi is switched from sam-
pled to resampled before mj is switched. So, as in the previous proofs, messages
m1, . . . ,mi will be resampled in the i-th hybrid.

Theorem 15. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
w.r.t. the class of efficiently resamplable and G-induced distribution families over
Mn where B(G) = const and G is a connected DAG.

Precisely, for any adversary ASO run in game IND-SO-CPAPKE there exists
an IND-CPAPKE adversary BCPA with roughly the running time of ASO plus three
executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 3 · nB(Gλ)+1 ·AdvIND-CPA

PKE (BCPA, λ) .

Proof. We proceed in a sequence of hybrid games H0,H1, . . . ,Hn and switch
message mk+1 from sampled to resampled in hybrid transition Hk to Hk+1.
Hybrid Hk will return the sampled messages for all positions [k + 1, n] ∪ I, but
resampled messages on all positions [k] \ I where the resampling is conditioned
on every message in [k + 1, n] ∪ I. The code for Challenge in given in Fig. 5,
every other procedure stays as in Fig. 2.



16 G. Fuchsbauer, F. Heuer, E. Kiltz, K. Pietrzak

left middle rightk+1

Fig. 6. Structure of G. Edges between particular sets cannot exist if there is no arrow
depicted. If right 6= ∅ then there is at least one edge from right to middle since G is
connected. left and middle are disconnected in GI .

Hybrid H0 is identical to game IND-SO-CPAPKE,0, whereas Hn is identical to
game IND-SO-CPAPKE,1, hence

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv

(
HASO

0 ,HASO
n

)
≤
n−1∑
k=0

Adv
(
HASO

k ,HASO

k+1

)
. (2)

We bound the distance between two consecutive hybrids Hk, Hk+1 and proceed
with the following lemma.

Lemma 16. For every adversary ASO that distinguishes hybrids Hk and Hk+1

there exists a mult-IND-CPA adversary Bmult with roughly the running time of
ASO plus three executions of Resamp such that

Adv
(
HASO

k ,HASO

k+1

)
≤ Pr[Badk]

−1 ·Advmult-IND-CPA
PKE (Bmult, λ) ,

where Pr[Badk]−1 =
∑B(Gλ)−1
i=0

(
k
i

)
for k < n− 1 and Pr[Badk]−1 =

∑B(Gλ)
i=0

(
k
i

)
for k = n− 1.

Proof Idea: We construct a mult-IND-CPA adversary Bmult that interpolates
between hybrids Hk and Hk+1. Ideally, Bmult embeds its own challenge at position
k + 1, but might have to resample some already resampled messages in m[k] to
avoid inconsistencies. Let middle denote the connected component in G[k+1]\I

that contains mk+1. Let right := [k + 2, n], and left := (middle ∪ right). Observe
that it is sufficient to resample middle again to obtain consistent resampled
messages. In particular, there is no need to resample any right message due to
the semi-order imposed on the vertices, as a message in right does not depend
on any message in right (cf. Fig. 6). The reduction will guess middle to embed
its mult-IND-CPA challenge, while it waits for all opening queries to happen to
resample the left messages. Note that middle and left are disconnected in GI , thus
can be resampled independently of each other only depending on their respective
neighborhood. Since right messages are fixed while resampling, it suffices to guess
N(middle) ∩ [k]. Further, G is connected, i.e. N(middle) contains at least one
vertex from right = [k+ 2, n] as long as k < n− 1. Hence, for k < n− 1, we have
|N(middle) ∩ [k]| ≤ B(G)− 1.

Proof (Lemma 16). For k ∈ [0, n] and i ∈ [n] let Openk(i) denote the event
that ASO calls Open(i) in hybrid Hk. Two arbitrary hybrids only differ in the
Challenge procedure, hence Pr[Opens(i)] = Pr[Opent(i)] for all s, t ∈ [0, n],
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Procedure Initialize

pk ← Initializemult-IND-CPA(1λ)
Return pk

Procedure Enc(D,ResampD)

if k < n− 1
N∗←$ {V ′ ⊆ [k] : |V ′| ∈ [0, B(G)− 1]}

else
N∗←$ {V ′ ⊆ [k] : |V ′| ∈ [0, B(G)]}

Let middle∗ denote the connected com-
ponent in G[k+1]\N∗ that contains k+ 1.

m0 ← D
m1,0 ← ResampD(m0, N∗ ∪ right)
m1,1 ← ResampD(m0, N∗ ∪ right ∪ {k + 1})
cmiddle∗ ← Challengemult-IND-CPA(m1,0

middle∗ ,m
1,1
middle∗)

r←$Rn

ci =

{
ci for i ∈ middle∗

Encpk (m0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Open(i)

if i ∈ middle∗ \ {k + 1}
Bad :=true

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

if N∗ 6⊆ I
Bad :=true

m1← ResampD(m0, I ∪ right)

mi =

{
m1
i for i ∈ left

m0
i else

Return m = (m1, . . . ,mn)

Procedure Finalize(b′)

Finalizemult-IND-CPA(b′)

Fig. 7. ASO’s game interface as provided by Bmult run in game mult-IND-CPA. Bmult

interpolates between hybrids Hk, Hk+1 for k ∈ [0, n− 1].

for all i ∈ [n]. Additionally, two consecutive hybrids Hk, Hk+1 only differ in the
(k+1)-th message returned during Challenge unless ASO calls Open(k+ 1) in
game Hk+1. Thus, we have

Pr[HASO

k ⇒ 1 ∧ Openk(k + 1)] = Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k + 1)]

and obtain

Adv(HASO

k ,HASO

k+1) =∣∣Pr
[
HASO

k+1 ⇒ 1 ∧ Openk+1(k + 1)
]
− Pr

[
HASO

k ⇒ 1 ∧ Openk(k + 1)
]∣∣ . (3)

We describe Bmult (cf. Fig. 7): It passes pk on to ASO; obtaining (D,ResampD),
Bmult makes a guess for middle (labeled middle∗) by making a guess (labeled
N∗) of middle’s neighborhood in G[k+1] and samples m0 ← D. Bmult resam-
ples m1,0 fixing N∗ ∪ right and resamples m1,1 fixing N∗ ∪ right ∪ {k + 1}.
Bmult sends (m1,0

middle∗ ,m
1,1
middle∗) to its mult-IND-CPA challenger, receives cmiddle∗ ,

samples fresh randomness to encrypt messages in middle∗ on its own and for-
wards (c1, . . . , cn) to ASO. Bmult sets Bad := true if ASO calls Open(i) for some
i ∈ middle∗\{k+1} since it cannot answer those queries.2 Other opening queries
are answered honestly. On ASO’s call of Challenge, Bmult checks if N∗ ⊆ I. If
not, Bmult guessed middle wrong and sets Bad to true. Otherwise, Bmult resamples

2 Equation (3) directly accounts for ASO calling Open(k + 1).
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messages fixing those at positions I ∪ right to obtain resampled messages m1

and sends m1
i for all left positions and m0

i for all remaining positions to ASO.
Bmult outputs whatever ASO outputs.

Assume that Bmult guessed correctly, i.e. N∗ is the neighborhood of middle in G[k].
Then middle∗ = middle holds and by definition of middle, Bad cannot happen.

Clearly, Bmult correctly simulates ASO’s hybrid view in all left and right posi-
tions. Note that ASO obtains resampled encryptions Encpk (m1,b

middle) during Enc,
but expects sampled encryptions Encpk (m0

middle), while receiving sampled m0
middle

when calling Challenge, expecting resampled mmiddle. Thus, sampled middle
messages become resampled middle messages from ASO’s view and vice versa.

However, we have mmiddle ≡ m0
middle since N(middle) ⊆ I ∪ right, whereby

I ∪ right is fixed when resampling mmiddle.
For Bmult run in game mult-IND-CPAPKE,0, ASO receives Encpk (m1,0

middle) where

m1,0
middle ≡ m0

middle since N∗ ∪ right = N ∪ right is fixed when m1,0 is resampled.
Hence, all middle messages sent during Challenge look resampled and ASO’s
view is identical to hybrid Hk+1.

When Bmult is run in mult-IND-CPAPKE,1, it forwards Encpk (m1,1
middle) to ASO

where m1,1
middle ≡m1

middle for the same reason as for b = 0. In particular, we have

m0
k+1 = m1,1

k+1 since m0
k+1 is fixed while resampling. Consequently, each message

in middle except the (k + 1)-th looks resampled during Challenge and ASO’s
view is identical to hybrid Hk.
Bmult outputs 1 in its game mult-IND-CPA if ASO outputs 1 in its respective

hybrid and ASO does not open ciphertext ck+1 and Bad does not happen. We
thus have

Advmult-IND-CPA
PKE (Bmult, λ) ≥∣∣∣Pr[mult-IND-CPABmult

PKE,0 ⇒ 1]− Pr[mult-IND-CPABmult

PKE,1 ⇒ 1]
∣∣∣

=
∣∣∣Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k+1) ∧ Bad]− Pr[HASO

k ⇒ 1 ∧ Openk(k+1) ∧ Bad]
∣∣∣ .

Since Bad is independent of HASO
i ⇒ 1 ∧ Openi(k + 1) for i ∈ {k, k + 1} we have

= Pr[Bad] ·
∣∣∣Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k + 1)]− Pr[HASO

k ⇒ 1 ∧ Openk(k + 1)]
∣∣∣

= Pr[Bad] ·Adv
(
HASO

k ,HASO

k+1

)
,

by Equation (3). Bmult picks N∗ from a set of size
∑B(Gλ)−1
i=0

(
k
i

)
for k < n − 1,

and of size
∑B(Gλ)
i=0

(
k
i

)
for k = n− 1, respectively, which proves Lemma 16. ut

The remaining proof consists of tedious computations. From Equation (2) and
Lemma 16 we have

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

n−1∑
k=0

Pr[Badk]
−1 ·Advmult-IND-CPA

PKE (Bmult, λ) .
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Let B := B(G). Since Bmult submits message vectors of length |middle∗| ≤ k + 1
to its mult-IND-CPA challenger and by Lemma 2:

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤(

n−2∑
k=0

(k+1) ·
B−1∑
i=0

(
k

i

)
+ n ·

B∑
i=0

(
n−1

i

))
·AdvIND-CPA

PKE (Bmult, λ) . (4)

We upper-bound the loss in (4). Let 2 ≤ B < n.

n−2∑
k=0

(k + 1) ·
B−1∑
i=0

(
k

i

)
+ n ·

B∑
i=0

(
n− 1

i

)

=

B−1∑
i=0

(
0

i

)
+ 2 ·

B−1∑
i=0

(
1

i

)
+

n−2∑
k=2

(k + 1) ·
B−1∑
i=0

(
k

i

)
+ n ·

B∑
i=0

(
n− 1

i

)

≤ 5 +

n−2∑
k=2

(k + 1) ·
B−1∑
i=0

ki + n ·
B∑
i=0

(
n− 1

i

)

= 5 +

n−2∑
k=2

(k + 1) · k
B − 1

k − 1
+ n ·

B∑
i=0

(
n− 1

i

)

= 5 +

n−2∑
k=2

k + 1

k − 1︸ ︷︷ ︸
≤3

·(kB − 1) + n ·
B∑
i=0

(
n− 1

i

)

≤ 5 + 3 ·
n−2∑
k=2

(kB − 1) + n ·
B∑
i=0

(
n− 1

i

)

= 5 + 3 ·
n−2∑
k=2

kB − 3 · (n− 3) + n ·
B∑
i=0

(
n− 1

i

)

= 14− 3n+ 3 ·
n−2∑
k=2

kB + n ·
B∑
i=0

(
n− 1

i

)

= 11− 3n+ 3 ·
n−2∑
k=0

kB + n ·
B∑
i=0

(
n− 1

i

)
since B ≥ 1

≤ 11− 3n+ 3 ·
n−2∑
k=0

kB + n ·
B∑
i=0

ni = 11− 3n+ 3 ·
n−2∑
k=0

kB + n · n
B+1 − 1

n− 1

= 11− 3n+ 3 ·
n−2∑
k=0

kB +
n

n− 1︸ ︷︷ ︸
≤2

·(nB+1 − 1) since n ≥ 2
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≤ 9− 3n+ 3 ·
n−2∑
k=0

kB + 2 · nB+1 ≤ 9− 3n+ 3 ·
n∫

0

kBdk + 2 · nB+1

= 9− 3n+ 3 · n
B+1

B + 1
+ 2 · nB+1 = 9− 3n+

(
2 +

3

B + 1

)
· nB+1

≤ 9− 3n+ 3 · nB+1 since B ≥ 2

≤ 3 · nB+1 since n ≥ 3 .

Since G is connected we have B = 0⇔ n = 1, B = 1⇔ n = 2. Thus, it is easily
verified that the bound holds for (B,n) ∈ {(0, 1), (1, 2)} as well. ut

Because Markov distributions are DAG-induced by chain graphs and the max-
imum border of a chain graph is at most 2 we immediately obtain a tighter
version of Corollary 10 whose proof directly follows from Theorem 15.

Corollary 17. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
with respect to efficiently resamplable Markov distributions over Mn.

In particular, for any adversary ASO run in game IND-SO-CPAPKE there
exists an IND-CPAPKE adversary BCPA with roughly the running time of ASO

plus three executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 3 · n3 ·AdvIND-CPA

PKE (BCPA, λ) .

Applying the proof of Theorem 15 directly to the Markov case gives a slightly
better bound on the loss, namely n·(n+1)·(2n+1)/6, since N(middle)∩[n−1] = 1
even for the last transition Hn−1 to Hn. Hence, the loss in Equation (4) decreases

to
∑n−1
k=0 (k + 1)

2
.

Recall that the hybrids in the proof of Theorem 15 saved us a factor of n because
it suffices to guess a set of size at most B(G)− 1 instead of B(G) for k < n− 1
as at least one vertex of the neighborhood of middle is contained in right.

The same hybrids can be used to strengthen Theorem 8 as it suffices to guess
a connected subgraph in [k + 1] (instead of [n]) containing vertex k + 1.

Since G is connected, there is at least a path in {k+ 1} ∪ right that contains
k + 1, i.e. at least n − k connected subgraphs in right ∪ {k + 1}. Thus, there
exist at least n− k connected subgraphs in G that contain vertex k+ 1 and are
identical if restricted to [k+ 1]. Hence the probability that the reduction guesses
Ck+1 correctly can be increased from 1/S(G) to (n− k)/S(G), bringing the loss
from O(n2) · S(G) down to O(n · log n) · S(G).

3.5 A Hybrid Argument for Disconnected Graphs

Let G be a graph with z′ connected components. Fix any semi-order on them, e.g.
ordered by the smallest vertex in each component and let V1, . . . , Vz′ denote the
sets of vertices of the connected components of G. For j ∈ [z′+ 1, n] let Vj := ∅.
We define a security game where an adversary plays the IND-SO-CPA game on a
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Procedure Initialize

(pk , sk)← Gen(1λ)
Return pk

Procedure Enc(D,ResampD)

m0 ← D
r←$Rn
c = Encpk (m0

Vz ; rVz )
Return c

Procedure Open(i)

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

m1 ← ResampD(m0, I)
Return mb

Vz

Procedure Finalize(b′)

Return b′

Fig. 8. BG-SO’s interface in game G-IND-SO-CPAPKE,b,z.

connected component of the graph that induced the distribution chosen by the
adversary.

Definition 18. For a public-key encryption scheme PKE := (Gen,Enc,Dec), a
bit b, a family F of efficiently resamplable, G-induced distributions over Mn,
z ∈ [n] and an adversary BG-SO we consider game G-IND-SO-CPABG-SO

PKE,b,z given
in Fig. 8. Run in the game, BG-SO calls Enc once right after Initialize and
submits D ∈ F along with a PPT resampling algorithm ResampD. BG-SO may
call Open multiple times but only for i ∈ Vz and invokes Challenge once after
its last Open query before calling Finalize. We define the advantage of BG-SO
run in IND-SO-CPAPKE,b,z as

AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ) :=

Adv(G-IND-SO-CPABG-SO

PKE,0,z,G-IND-SO-CPABG-SO

PKE,1,z) .

PKE is G-IND-SO-CPAz secure w.r.t. F if AdvIND-SO-CPA
PKE,z (BG-SO,Dλ, λ) is neg-

ligible for all PPT adversaries BG-SO. PKE is G-IND-SO-CPA secure w.r.t. F if
PKE is G-IND-SO-CPAz secure w.r.t. F for all z ∈ [n].

We have AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ) = 0 for z ∈ [z′ + 1, n].

Theorem 19. Let PKE be G-IND-SO-CPA secure w.r.t. a family F of efficiently
resamplable and G-induced distributions over Mn, then PKE is IND-SO-CPA
secure w.r.t F .

Proof. Again, the main idea is that connected components can be dealt with
independently. We give a hybrid argument over the connected components of
Gλ using G-IND-SO-CPAz security for switching connected component z from
sampled to resampled. See Fig. 9 for code of Challenge in hybrid Hz; every
other procedure stays as in IND-SO-CPAPKE,b (cf. Fig. 2).
Note that H0 is identical to game IND-SO-CPAPKE,0, and Hz′ is identical to game
IND-SO-CPAPKE,1. Thus

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv

(
HASO

0 ,HASO

z′

)
≤
z′−1∑
z=0

Adv
(
HASO
z ,HASO

z+1

)
.
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Procedure Challenge

m1 ← ResampD(m0, I)

mi =

{
m1
i for i ∈

⋃z
j=1 Vj

m0
i else

Return m = (m1, . . . ,mn)

Fig. 9. Hybrid Hz. The first z connected components are already resampled conditioned
on opening queries, while the rest remain sampled.

We proceed with the following Lemma.

Lemma 20. For every adversary ASO distinguishing hybrids Hz and Hz+1 there
exists an adversary BG-SO run in game G-IND-SO-CPAPKE,z+1 with roughly the
running time plus one executions of Resamp such that

Adv
(
HASO
z ,HASO

z+1

)
≤ AdvG-IND-SO-CPA

PKE,z+1 (BG-SO,Dλ, λ) .

Proof. We construct an adversary BG-SO that interpolates between hybrids Hz
and Hz+1 for ASO. BG-SO proceeds as follows (cf. Fig. 10).
BG-SO forwards pk to ASO. On ASO’s call of Enc, BG-SO calls EncG-IND-SO-CPAz+1

to obtain an encryption cVz+1
of messages in the component Vz+1. BG-SO sam-

ples messages m0 ← D on its own and encrypts the messages in Vz+1. BG-SO
sends c = (c1, . . . , cn) to ASO. BG-SO answers opening queries on its own unless
they occur on Vz+1, where it invokes its OpenG-IND-SO-CPAz+1 oracle to answer.
On Challenge, BG-SO receives a challenge message vector mVz+1

by calling

ChallengeG-IND-SO-CPAz+1
and resamples m1 conditioned on I. BG-SO returns

resampled messages m1 on
⋃z
j=1 Vj , its challenge messages mVz+1

and sampled

messages m0 for
⋃n
j=z+2 Vj to ASO. BG-SO outputs whatever ASO outputs.

Obviously BG-SO simulates the hybrids correctly during Enc since it always re-
turns encryptions of sampled messages. On ASO’s call of Challenge the mes-
sages in the first z connected components are already resampled while the mes-
sages in the last n−z−1 connected components are sampled as in hybrids Hz and
Hz+1. When BG-SO is run in game G-IND-SO-CPAPKE,0,z+1, it obtains sampled
messages for the (z + 1)-th connected component; thus it runs ASO in hybrid
Hz. When run in G-IND-SO-CPAPKE,1,z+1, BG-SO receives resampled messages for
Vz+1; hence running ASO in hybrid Hz+1. Thus

Pr[G-IND-SO-CPABG-SO

PKE,0,z+1 ⇒ 1] = Pr[HASO
z ⇒ 1] and

Pr[G-IND-SO-CPABG-SO

PKE,1,z+1 ⇒ 1] = Pr[HASO
z+1 ⇒ 1] .

Lemma 20 follows. ut

We obtain

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

z′∑
z=1

AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ)
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Procedure Initialize

pk ← GenG-IND-SO-CPAz+1(1λ)
Return pk

Procedure Enc(D,ResampD)

cVz+1
← EncG-IND-SO-CPAz+1(D,ResampD)

m0 ← D
r←$Rn

ci =

{
ci for i ∈ Vz+1

Encpk (m0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Finalize(b′)

FinalizeG-IND-SO-CPA(b′)

Procedure Open(i)

I := I ∪ {i}
if i ∈ Vz+1

Return OpenG-IND-SO-CPAz+1(i)
else

Return (m0
i , ri)

Procedure Challenge

mVz+1
← ChallengeG-IND-SO-CPAz+1

m1 ← ResampD(m0, I)

mi =


m1
i for i ∈

⋃z
j=1 Vj

mi for i ∈ Vz+1

m0
i else

Return m = (m1, . . . ,mn)

Fig. 10. Reduction run by BG-SO to simulate Hz (or Hz+1) when BG-SO is run in
G-IND-SO-CPAPKE,0,z+1 (or G-IND-SO-CPAPKE,1,z+1).

and Theorem 19 follows immediately since z′ ≤ n. ut

In particular, we achieve versions of Theorem 8, Corollary 14 and Theorem 15
for disconnected graphs, where

S(G) =

z′∑
i=1

S(Ci) and B(G) = max
i∈[z′]
{B(Ci)}

for a graph G consisting of connected components C1, . . . , Cz′ .

Moreover, for G = ([n], ∅), G-induced distributions become product distribu-
tions, i.e. the messages are sampled independently. Hence, the positive result of
[3] can be seen as a special case of Theorem 19.
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