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rity and efficiency.
Previously, Goyal, Jain, Koppula and Sahai [TCC, 2015] constructed a
public-key functional encryption scheme for any family of randomized
functionalities based on indistinguishability obfuscation.
One of the key insights underlying our work is that, in the private-key
setting, a sufficiently expressive functional encryption scheme may be
appropriately utilized for implementing proof techniques that were so far
implemented based on obfuscation assumptions (such as the punctured
programming technique of Sahai and Waters [STOC, 2014]). We view
this as a contribution of independent interest that may be found useful
in other settings as well.
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1 Introduction

The cryptographic community’s vision of functional encryption [28, 11, 27] is
rapidly evolving. Whereas traditional encryption schemes offer an all-or-nothing
guarantee when accessing encrypted data, functional encryption schemes offer
tremendous flexibility. Specifically, such schemes support restricted decryption
keys that allow users to learn specific functions of the encrypted data and nothing
else.

Motivated by the early examples of functional encryption schemes for specific
functionalities (such as identity-based encryption [30, 8, 16]), extensive research
has recently been devoted to the construction of functional encryption schemes
for rich and expressive families of functions (see, for example, [28, 11, 27, 23, 2, 7,
13, 17, 18, 22, 32, 19, 15, 5] and the references therein).

Until very recently, research on functional encryption has focused on the case
of deterministic functions. More specifically, in a functional encryption scheme
for a family F of deterministic functions, a trusted authority holds a master
secret key msk that enables to generate a functional key skf for any function
f ∈ F . Now, anyone holding the functional key skf and an encryption of some
value x, can compute f(x) but cannot learn any additional information about
x. In many scenarios, however, dealing only with deterministic functions may
be insufficient, and a more general framework allowing randomized functions is
required.

Functional encryption for randomized functionalities. Motivated by var-
ious real-world scenarios, Goyal et al. [24] have recently put forward a gener-
alization of functional encryption to randomized functionalities. In this setting,
given a functional key skf for a randomized function f and given an encryp-
tion of a value x, one should be able to obtain a sample from the distribution
f(x). As Goyal et al. pointed out, the case of randomized functions presents new
challenges for functional encryption. These challenge arise already when formal-
izing the security of functional encryption for randomized functions3, and then
become even more noticeable when designing such schemes.

Goyal et al. [24] presented a realistic framework for modeling the security
of functional encryption schemes for randomized functionalities. Even more im-
portantly, within their framework they constructed a public-key functional en-
cryption scheme supporting the set of all randomized functionalities (that are
computable by bounded-size circuits). Their construction builds upon the ele-
gant approach of punctured programming due to Sahai and Waters [29], and they
prove the security of their construction based on indistinguishability obfuscation
[6, 18].

3 For example, an adversary holding a functional key skf and an encryption of a value
x, should not be able to tamper with the randomness that is used for sampling
from distribution f(x). This is extremely well motivated by the examples provided
by Goyal et al. in the contexts of auditing an encrypted database via randomized
sampling, and of performing differentially-private analysis on an encrypted database
via randomized perturbations. We refer the reader to [24] for more details.



Identifying the minimal assumptions for functional encryption. The
work of Goyal et al. [24] naturally gives rise to the intriguing question of whether
functional encryption for randomized functionalities can be based on assump-
tions that are seemingly weaker than indistinguishability obfuscation. On one
hand, it may be the case that functional encryption for randomized functionali-
ties is indeed a significantly more challenging primitive than functional encryp-
tion for deterministic functionalities. In this case, it would be conceivable to use
the full power of indistinguishability obfuscation for constructing such schemes.
On the other hand, however, it may be possible that a functional encryption
scheme for randomized functions can be constructed in a direct black-box man-
ner from any such scheme for deterministic functions.

This question is especially interesting since various functional encryption
schemes for (general) deterministic functionalities are already known to exist
based on assumptions that seem significantly weaker than indistinguishability
obfuscation (such as Learning with Errors assumption or even the existence of
any one-way function) offering various trade-offs between security and efficiency
(see Section 2.2 for more details on the existing schemes).

1.1 Our Contributions

In this work we consider functional encryption in the private-key setting, where
the master secret key is used both for generating functional keys and for encryp-
tion. In this setting we provide an answer to the above question: we present a
construction of a private-key functional encryption scheme for any family F of
randomized functions based on any private-key functional encryption scheme for
deterministic functions that is sufficiently expressive4. Inspired by the work of
Goyal et al. [24] in the public-key setting, we prove the security of our construc-
tion within a similarly well-motivated framework for capturing the security of
private-key functional encryption for randomized functions.

Instantiations. Our resulting scheme inherits the flavor of security guaran-
teed by the underlying scheme (e.g., full vs. selective security, and one-key vs.
many-keys security), and can be instantiated by a variety of existing functional
encryption schemes. Specifically, our scheme can be based either on the Learn-
ing with Errors assumption, on obfuscation assumptions, on multilinear-maps
assumptions, or even on the existence of any one-way function (offering various
trade-offs between security and efficiency – we refer the reader to Section 2.2 for
more details on the possible instantiations).

Applicable scenarios. Following-up on the motivating applications given by
Goyal et al. [24] in the contexts of auditing an encrypted database via random-
ized sampling, and of performing differentially-private analysis on an encrypted
database via randomized perturbations, we observe that these two examples are

4 Our only assumption on the underlying scheme is that it supports the family F (when
viewed as a family of single-input deterministic functions), supports the evaluation
procedure of a pseudorandom function family, and supports a few additional basic
operations (such as conditional statements).



clearly valid in the private-key setting as well. Specifically, in both applications,
the party that provides functional keys is more than likely the same one who
encrypts the data.

Obfuscation-based techniques via function privacy. One of the key in-
sights underlying our work is that in the private-key setting, where encryption is
performed honestly by the owner of the master secret key, the power of indistin-
guishability obfuscation may not be needed. Specifically, we observe that in some
cases one can instead rely on the weaker notion of function privacy [31, 9, 1, 15].
Intuitively, a functional encryption scheme is function private if a functional key
skf for a function f reveals no “unnecessary” information on f . For functional
encryption in the private-key setting, this essentially means that encryptions of
messages m1, . . . ,mT together with functional keys corresponding to functions
f1, . . . , fT reveal essentially no information other than the values {fi(mj)}i,j∈[T ].
Brakerski and Segev [15] recently showed that a function-private scheme can be
obtained from any private-key functional encryption scheme.

Building upon the notion of function privacy, we show that any private-key
functional encryption scheme may be appropriately utilized for implementing
some of the proof techniques that were so far implemented based on indistin-
guishability obfuscation. These include, in particular, a variant of the punctured
programming approach of Sahai and Waters [29]. We view this as a contribution
of independent interest that may be found useful in other settings as well.

1.2 Additional Related Work

A related generalization of functional encryption is that of functional encryption
for multiple-input functions due to Goldwasser et al. [21]. A multiple-input func-
tional encryption scheme for a function family F allows generating a functional
key skf for any function f ∈ F , and this enables to compute f(x, y) given an
encryption of x and an encryption of y, while not learning any additional in-
formation. Although capturing the security guarantees that can be provided by
such schemes is quite challenging, multiple-input functional encryption might be
useful for dealing with single-input randomized functionalities: One can view a
randomized function f(x; r) as a two-input function, where its first input is the
actual input x, and its second input is the randomness r (that is possibly de-
rived by a PRF key). However, the construction of Goldwasser et al. is based on
indistinguishability obfuscation, and our goal is to rely on weaker assumptions.
In addition, it is not clear that the notion of security of Goldwasser et al. suffices
for capturing our notion of “best-possible” message privacy which allows for an
a-priori non-negligible advantage in distinguishing the output distributions of
two randomized functions (see Sections 1.3 and 3 for our notion of privacy).

Our construction relies on the notion of function privacy for functional en-
cryption schemes, first introduced by Boneh et al. [9, 10] in the public-key setting,
and then studied by Agrawal et al. [1] and by Brakerski and Segev [15] in the
private-key setting (generalizing the work on predicate privacy in the private-key
setting by Shen et al. [31]). As discussed in Section 1.1, for functional encryption



in the private-key setting, function privacy essentially means that encryptions of
messages m1, . . . ,mT together with functional keys corresponding to functions
f1, . . . , fT reveal essentially no information other than the values {fi(mj)}i,j∈[T ].
In terms of underlying assumptions, we rely on the fact that Brakerski and Segev
[15] showed that a function-private scheme can be obtained from any private-key
functional encryption scheme.

Lastly, Alwen et al. [3] studied the relationship between functional encryption
and fully homomorphic encryption. In their work, they define public-key multi-
input functional encryption schemes for randomized functionalities and construct
such a scheme assuming a public-key multi-input function encryption scheme for
deterministic functionalities. This result is incomparable to ours since multi-input
functional encryption schemes are a much stronger assumptions (in particular,
they imply indistinguishability obfuscation [21]), where our construction can be
instantiated assuming seemingly weaker assumptions such as one-way function.

1.3 Overview of Our Approach

A private-key functional encryption scheme for a family F of randomized func-
tions consists of four probabilistic polynomial-time algorithms (Setup,KG,Enc,
Dec). The syntax is identical to that of functional encryption for determinis-
tic functions (see Section 2.2), but the correctness and security requirements
are more subtle. In this section we begin with a brief overview of our notions
of correctness and security. Then, we provide a high-level overview of our new
construction, and the main ideas and challenges underlying its proof of security.

Correctness and independence of decrypted values. Our notion of cor-
rectness follows that of Goyal et al. [24] by adapting it to the private-key setting.
Specifically, we ask that for any sequence of messages x1, . . . , xT and for any se-
quence of functions f1, . . . , fT ∈ F , it holds that the distribution obtained by
encrypting x1, . . . , xT and then decrypting the resulting ciphertexts with func-
tional keys corresponding to f1, . . . , fT is computationally indistinguishable from
the distribution {fj(xi; ri,j)}i,j∈[T ] where the ri,j ’s are sampled independently
and uniformly at random. As noted by Goyal et al. [24], unlike in the case of de-
terministic functions where is suffices to define correctness for a single ciphertext
and a single key, here it is essential to define correctness for multiple (possibly
correlated) ciphertexts and keys. We refer the reader to Section 3.1 for our formal
definition.

“Best-possible” message privacy. As in functional encryption for determin-
istic functions, we consider adversaries whose goal is to distinguish between
encryptions of two challenge messages, x∗0 and x∗1, when given access to an en-
cryption oracle (as required in private-key encryption) and to functional keys of
various functions. Recall that in the case of deterministic functions, the adversary
is allowed to ask for functional keys for any function f such that f(x∗0) = f(x∗1).

When dealing with randomized functions, however, it is significantly less
clear how to prevent adversaries from choosing functions f that will enable to
easily distinguish between encryptions of x∗0 and x∗1. Our notions of message



privacy ask that the functional encryption scheme under consideration will not
add a non-negligible advantage to the (possibly non-negligible) advantage that
adversaries may already have in distinguishing between the distributions f(x∗0)
and f(x∗1). That is, given that adversaries are able to obtain a sample from the
distribution f(x∗0) or from the distribution f(x∗1) using the functional key skf ,
and may already have some advantage in distinguishing these distributions, we
ask for “best-possible” message privacy in the sense that essentially no additional
advantage can be gained.

Concretely, if the distributions f(x∗0) and f(x∗1) can be efficiently distin-
guished with advantage at most ∆ = ∆(λ) to begin with (where ∆ does not
necessarily have to be negligible), then we require that no adversary that is given
a functional key for f will be able to distinguish between encryptions of x∗0 and
x∗1 with advantage larger than ∆ + neg(λ), for some negligible function neg(·).
More generally, an adversary that is given functional keys for T = T (λ) such
functions (and access to an encryption oracle), should not be able to distinguish
between encryptions of x∗0 and x∗1 with advantage larger than T · ∆ + neg(λ).
We note that our approach for realistically capturing message privacy somewhat
differs from that of Goyal et al. [24], and we refer the reader to the full version
[26] for a brief comparison between the two approaches5.

We put forward two flavors of “best-possible” message privacy, a non-adaptive
flavor and an adaptive flavor, depending on the flavor of indistinguishability
guarantee that is satisfied by the function family under consideration. Details
follow.

Out first notion addresses function families F such that for a randomly sam-
pled f ← F , no efficient adversary given f can output x0 and x1 and distinguish
the distributions f(x0) and f(x1) with probability larger than ∆ (note again
that ∆ does not have to be negligible). One possible example for such a function
family is a function that on input x samples a public-key pk for a public-key
encryption scheme, and outputs pk together with a randomized encryption of
x. Our second notion addresses function families F such that no efficient ad-
versary can output f ∈ F together with two inputs x0 and x1, and distinguish
the distributions f(x0) and f(x1) with probability larger than ∆. One possible
example for such a function family is that of differentially private mechanisms,
as discussed by Goyal et al. [24]. We refer the reader to Section 3.2 for more
information and the formal definitions.

Our construction. Let (Setup,KG,Enc,Dec) be any private-key functional en-
cryption scheme that provides message privacy and function privacy6. Our new
scheme is quite intuitive and is described as follows:

5 We emphasize that we view the main contribution of our paper as basing the se-
curity of our scheme on any underlying functional encryption scheme (and avoiding
obfuscation-related assumptions), and not as offering alternative notions of message
privacy.

6 As discussed above, function privacy can be assumed without loss of generality using
the transformation of Brakerski and Segev [15].



– The setup and decryption algorithms are identical to those of the underlying
scheme.

– The encryption algorithm on input a message x, samples a string s uniformly
at random, and outputs an encryption ct← Enc(msk, (x,⊥, s,⊥)) of x and s
together with two additional “empty slots” that will be used in the security
proof.

– The key-generation algorithm on input a description of a randomized func-
tion f , samples a PRF key K, and outputs a functional key for the deter-
ministic function Leftf,K defined as follows: On input (xL, xR, s, z) output
f(xL; r) where r = PRFK(s).

The correctness and independence of our scheme follow in a straightforward
manner from the correctness of the underlying scheme and the assumption that
PRF is pseudorandom. In fact, it suffices that PRF is weakly pseudorandom (i.e.,
computationally indistinguishable from a truly random function when evaluated
on independent and uniformly sampled inputs).

As for the message privacy of the scheme, recall that we consider adversaries
that can access an encryption oracle and a key-generation oracle, and should not
be able to distinguish between an encryption Enc(msk, (x∗0,⊥, s∗,⊥)) of x∗0 and an
encryption Enc(msk, (x∗1,⊥, s∗,⊥)) of x∗1 with advantage larger than T ·∆+neg(λ)
(where T is the number of functional keys given to the adversary, and ∆ is the a-
priori distinguishing advantage for the functions under consideration as described
above).

The first step in our proof of security is to replace the challenge ciphertext
with a modified challenge ciphertext Enc(msk, (x∗0, x

∗
1, s
∗,⊥)) that contains in-

formation on both challenge messages (this is made possible due to the message
privacy of the underlying scheme). Next, denoting the adversary’s key-generation
queries by f1, . . . , fT , our goal is to replace the functional keys Leftf1,K1 , . . . ,
LeftfT ,KT with the functional keys Rightf1,K1

, . . . ,RightfT ,KT , where the func-
tion Rightf,K is defined as follows: On input (xL, xR, s, z) output f(xR; r) where
r = PRFK(s). At this point we note that, from the adversary’s point of view,
when providing only Left keys the modified challenge ciphertext is indistinguish-
able from an encryption of x∗0, and when providing only Right keys the modified
challenge ciphertext is indistinguishable from an encryption of x∗1.

The most challenging part of the proof is in bounding the adversary’s advan-
tage in distinguishing the sequences of Left and Right keys, based on the function
privacy and the message privacy of the underlying scheme. The basic idea is to
switch the functional keys from Left to Right one by one, following different proof
strategies for pre-challenge keys and for post-challenge keys7.

When dealing with a pre-challenge key skf , the function f is already known
when producing the challenge ciphertext. Therefore, we can use the message
privacy of the underlying scheme and replace the (already-modified) challenge ci-
phertext with Enc(msk, (x∗0, x

∗
1, s
∗, z∗)), where z∗ = f(x∗0; r∗) and r∗ = PRFK(s∗).

7 We use the term pre-challenge keys for all functional keys that are obtained before
the challenge phase, and the term post-challenge keys for all functional keys that are
obtained after the challenge phase.



Then, we use the function privacy of the underlying scheme, and replace the func-
tional key Leftf,K with a functional key for the function OutputZ that simply
outputs z whenever s = s∗. From this point on, we use the pseudorandomness
of PRF and replace r∗ = PRFK(s∗) with a truly uniform r∗, and then replace
z∗ ← f(x∗0) with z∗ ← f(x∗1). Similar steps then enable us to replace the func-
tional key OutputZ with a functional key for the function Rightf,K .

When dealing with a post-challenge key skf , we would like to follow the
same approach of embedding the value f(x∗0; r∗) or f(x∗1; r∗). However, for post-
challenge keys, the function f is not known when producing the challenge cipher-
text. Instead, in this case, the challenge messages x∗0 and x∗1 are known when
producing the functional key skf . Combining this with the function privacy of
the underlying scheme enables us to embed the above values in the functional
key skf , and once again replace the Left keys with the Right keys. We refer the
reader to Section 4 for the formal description of our scheme and its proof of
security.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide
an overview of the basic notation and standard tools underlying our construc-
tion. In Section 3 we introduce our notions of security for private-key functional
encryption schemes for randomized functionalities. In Section 4 we present our
new scheme and prove its security. Formal proofs of the claims that are stated
in Section 4 can be found in the full version [26].

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x← X the process of sampling a value
x from the distribution X. Similarly, for a set X we denote by x← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. A function neg : N → R is negligible if for every constant c > 0
there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc.

The statistical distance between two random variables X and Y over a fi-
nite domain Ω is defined as SD(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω]− Pr[Y = ω]|. Two

sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computa-
tionally indistinguishable if for any probabilistic polynomial-time algorithm A
there exists a negligible function neg(·) such that∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]

∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N.



2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval)
be a function family with the following syntax:

– PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the
unary representation of the security parameter λ, and outputs a key K ∈ Kλ.

– PRF.Eval is a deterministic polynomial-time algorithm that takes as input a
key K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range
of the function family, respectively. For easy of notation we may denote by
PRF.EvalK(·) or PRFK(·) the function PRF.Eval(K, ·) for K ∈ Kλ. The following
is the standard definition of a pseudorandom function family.

Definition 1 (Pseudorandomness). A function family PRF = (PRF.Gen,
PRF.Eval) is pseudorandom if for every probabilistic polynomial-time algorithm
A there exits a negligible function neg(·) such that

AdvPRF,A(λ)
def
=

∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr
f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣ ≤
neg(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of functions that map Xλ into
Yλ.

In addition to the standard notion of a pseudorandom function family, we rely
on the seemingly stronger (yet existentially equivalent) notion of a puncturable
pseudorandom function family [25, 12, 29, 14]. In terms of syntax, this notion
asks for an additional probabilistic polynomial-time algorithm, PRF.Punc, that
takes as input a key K ∈ Kλ and a set S ⊆ Xλ and outputs a “punctured” key
KS . The properties required by such a puncturing algorithm are capture by the
following definition.

Definition 2 (Puncturable PRF). A pseudorandom function family PRF =
(PRF.Gen,PRF.Eval,PRF.Punc) is puncturable if the following properties are sat-
isfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and
for every x ∈ Xλ \ S it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at Punctured Points: Let A = (A1,A2) be any
probabilistic polyomial-time algorithm such that A1(1λ) outputs a set S ⊆
Xλ, a value x ∈ S, and state information state. Then, for any such A there
exists a negligible function neg(·) such that

AdvpuPRF,A(λ)
def
=

|Pr [A2(KS ,PRF.EvalK(x), state) = 1]− Pr [A2(KS , y, state) = 1]| ≤ neg(λ)



for all sufficiently large λ ∈ N, where (S, x, state)← A1(1λ), K ← PRF.Gen
(1λ), KS = PRF.Punc(K,S), and y ← Yλ.

As observed by [25, 12, 29, 14] the GGM construction [20] of PRFs from one-
way functions can be easily altered to yield a puncturable PRF.

2.2 Private-Key Functional Encryption

A private-key functional encryption scheme over a message space X = {Xλ}λ∈N
and a function space F = {Fλ}λ∈N is a quadruple (Setup,KG,Enc,Dec) of proba-
bilistic polynomial-time algorithms. The setup algorithm Setup takes as input the
unary representation 1λ of the security parameter λ ∈ N and outputs a master-
secret key msk. The key-generation algorithm KG takes as input a master-secret
key msk and a function f ∈ Fλ, and outputs a functional key skf . The encryption
algorithm Enc takes as input a master-secret key msk and a message x ∈ Xλ,
and outputs a ciphertext ct. In terms of correctness we require that for all suffi-
ciently large λ ∈ N, for every function f ∈ Fλ and message x ∈ Xλ it holds that
Dec(KG(msk, f),Enc(msk, x)) = f(x) with all but a negligible probability over
the internal randomness of the algorithms Setup, KG, and Enc.

In terms of security, we rely on the private-key variants existing indistin-
guishability based notions for message privacy (see, for example, [11, 27, 7]) and
function privacy (see [1, 15]). When formalizing these notions it would be con-
venient to use the following standard notion of a left-or-right oracle.

Definition 3 (Left-or-right oracle). Let O(·, ·) be a probabilistic two-input
functionality. For each b ∈ {0, 1} we denote by Ob the probabilistic three-input

functionality Ob(k, z0, z1)
def
= O(k, zb).

Message Privacy

A functional encryption scheme is message private if the encryptions of any
two messages x0 and x1 are computationally indistinguishable given access to
an encryption oracle (as required in private-key encryption) and to functional
keys for any function f such that f(x∗0) = f(x∗1). We consider two variants of
message privacy: (full) message privacy in which adversaries are fully adaptive,
and selective-function message privacy in which adversaries must issue their key-
generation queries in advance.

Definition 4 (Message privacy). A functional encryption scheme FE = (
Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space
F = {Fλ}λ∈N is message private if for any probabilistic polynomial-time adver-
sary A there exists a negligible function neg(·) such that

AdvMP
FE,A,F (λ)

def
=∣∣∣Pr

[
AKG(msk,·),Enc0(msk,·,·)(1λ) = 1

]
− Pr

[
AKG(msk,·),Enc1(msk,·,·)(1λ) = 1

]∣∣∣
≤ neg(λ)



for all sufficiently large λ ∈ N, where for every (x0, x1) ∈ Xλ × Xλ and f ∈ Fλ
with which A queries the oracles Encb and KG, respectively, it holds that f(x0) =
f(x1). Moreover, the probability is taken over the choice of msk← Setup(1λ) and
the internal randomness of A.

Definition 5 (Selective-function message privacy). A functional encryp-
tion scheme FE = (Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N and
a function space F = {Fλ}λ∈N is T -selective-function message private, where
T = T (λ), if for any probabilistic polynomial-time adversary A = (A1,A2) there
exists a negligible function neg(·) such that

AdvsfMP
FE,A,F,T (λ)

def
=∣∣∣Pr

[
Expt

(0)
FE,A,F,T (λ) = 1

]
− Pr

[
Expt

(1)
FE,A,F,T (λ) = 1

]∣∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the random

variable Expt
(b)
FE,A,F,T (λ) is defined as follows:

1. msk← Setup(1λ).

2. (f1, . . . , fT , state)← A1(1λ), where fi ∈ Fλ for all i ∈ [T ].

3. skfi ← KG(msk, fi) for all i ∈ [T ].

4. b′ ← AEncb(msk,·,·)
2 (skf1 , . . . , skfT , state), where for each of A2’s queries (x0, x1)

∈ Xλ ×Xλ to Encb(msk, ·, ·) it holds that fi(x0) = fi(x1) for all i ∈ [T ].

5. Output b′.

Such a scheme is selective-function message private if it is T -selective-function
message private for all polynomials T = T (λ).

Known constructions. Private-key functional encryption schemes that satisfy
the notions presented in Definitions 4 and 5 (and support circuits of any a-priori
bounded polynomial size) are known to exist based on various assumptions. The
known schemes are in fact public-key schemes, which are in particular private-
key ones.

Specifically, a public-key scheme that satisfies the notion of 1-selective func-
tion message privacy was constructed by Gorbunov, Vaikuntanathan and Wee
[23] under the sole assumption that public-key encryption exists. In the private-
key setting, their transformation can in fact rely on any private-key encryption
scheme (and thus on any one-way function). By assuming, in addition, the exis-
tence of a pseudorandom generator computable by small-depth circuits (which
is known to be implied by most concrete intractability assumptions), they con-
struct a scheme that satisfies the notion of T -selective-function message privacy
for any predetermined polynomial T = T (λ). However, the length of the cipher-
texts in their scheme grows linearly with T and with an upper bound on the
circuit size of the functions that the scheme allows (which also has to be known
ahead of time). Goldwasser et al. [22] showed that based on the Learning with
Errors (LWE) assumption, T -selective-function message privacy can be achieved



where the ciphertext size grows with T and with a bound on the depth of allowed
functions.

In addition, schemes that satisfy the notion of (full) message privacy (Defi-
nition 4) were constructed by Boyle et al. [13] and by Ananth et al. [4] based on
differing-input obfuscation, by Waters [32] based on indistinguishability obfus-
cation, and by Garg et al. [19] based on multilinear maps. Very recently, Ananth
et al. [5] gave a generic transformation from selective-message message privacy
to full message privacy. We conclude that there is a variety of constructions of-
fering various flavors of security under various assumptions that can be used as
a building block in our construction.

Function Privacy

A private-key functional-encryption scheme is function private [31, 1, 15] if a
functional key skf for a function f reveals no “unnecessary” information on
f . More generally, we ask that encryptions of messages m1, . . . ,mT together
with functional keys corresponding to functions f1, . . . , fT reveal essentially no
information other than the values {fi(mj)}i,j∈[T ]. We consider two variants of
function privacy: (full) function privacy in which adversaries are fully adaptive,
and selective-function function privacy in which adversaries must issue their key-
generation queries in advance.

Definition 6 (Function privacy). A functional encryption scheme FE = (
Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space
F = {Fλ}λ∈N is function private if for any probabilistic polynomial-time adver-
sary A there exists a negligible function neg(·) such that

AdvFPFE,A,F (λ)
def
=∣∣∣Pr

[
AKG0(msk,·,·),Enc0(msk,·,·)(1λ) = 1

]
− Pr

[
AKG1(msk,·,·),Enc1(msk,·,·)(1λ) = 1

]∣∣∣
≤ neg(λ)

for all sufficiently large λ ∈ N, where for every (f0, f1) ∈ Fλ×Fλ and (x0, x1) ∈
Xλ × Xλ with which A queries the oracles KGb and Encb, respectively, it holds
that f0(x0) = f1(x1). Moreover, the probability is taken over the choice of msk←
Setup(1λ) and the internal randomness of A.

Definition 7 (Selective-function function privacy). A functional encryp-
tion scheme FE = (Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N
and a function space F = {Fλ}λ∈N is said T -selective-function function private,
where T = T (λ), if for any probabilistic polynomial-time adversary A = (A1,A2)
there exists a negligible function neg(·) such that

AdvsfFPFE,A,F,T (λ)
def
=∣∣∣Pr

[
Expt

(0)
FE,A,F,T (λ) = 1

]
− Pr

[
Expt

(1)
FE,A,F,T (λ) = 1

]∣∣∣ ≤ neg(λ),



for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the random

variable Expt
(b)
FE,A,F,T (λ) is defined as follows:

1. msk← Setup(1λ).

2. ((f0,1, . . . , f0,T ), (f1,1, . . . , f1,T ), state) ← A1(1λ), where fσ,i ∈ Fλ for all
σ ∈ {0, 1} and i ∈ [T ].

3. sk∗i ← KG(msk, fb,i) for all i ∈ [T ].

4. b′ ← AEncb(msk,·,·)
2 (sk∗1, . . . , sk

∗
T , state), where for each query (x0, x1) ∈ Xλ ×

Xλ to Encb(msk, ·, ·) it holds that f0,i(x0) = f1,i(x1) for all i ∈ [T ].

5. Output b′.

Such a scheme is selective-function function private if it is T -selective-function
function private for all polynomials T = T (λ).

Known constructions. Brakerski and Segev [15] showed how to transform
any (selective-function or fully secure) message-private functional encryption
scheme into a (selective-function or fully secure, respectively) functional encryp-
tion scheme which is also function private. Thus, any instantiation of a message-
private (or selective-function message private) function encryption scheme as
discussed in Section 2.2 can be used as a building block in our construction.

3 Private-Key Functional Encryption for Randomized Func-
tionalities

In this section we present a framework for capturing the security of private-key
functional encryption for randomized functionalities. Our framework is inspired
by that of Goyal et al. [24] in the public-key setting, but takes a slightly different
approach as we discuss below.

Throughout this section, we let F = {Fλ}λ∈N be a family of randomized
functionalities, where for every λ ∈ N the set Fλ consists of functions of the
form f : Xλ × Rλ → Yλ. That is, such a function f maps Xλ into Yλ using
randomness from Rλ.

A private-key functional encryption scheme for a family F of randomized
functions consists of four probabilistic polynomial-time algorithms (Setup,KG,
Enc,Dec) with the same syntax that is described in Section 2.2 for deterministic
functions. Although the syntax in this setting is the same as in the deterministic
setting, the correctness and security requirements are more subtle.

3.1 Correctness and Independence

In terms of correctness we rely on the definition of Goyal et al. [24] (when adapted
to the private-key setting). As discussed in Section 1.3, we ask that for any se-
quence of messages x1, . . . , xT and for any sequence of functions f1, . . . , fT ∈ F ,
it holds that the distribution obtained by encrypting x1, . . . , xT and then de-
crypting the resulting ciphertexts with functional keys corresponding to f1, . . . , fT



is computationally indistinguishable from the distribution {fj(xi; ri,j)}i,j∈[T ]

where the ri,j ’s are sampled independently and uniformly at random.

Definition 8 (Correctness). A functional encryption scheme Π = (Setup,
KG,Enc,Dec) for a family F of randomized functions is correct if for all suffi-
ciently large λ ∈ N, for every polynomial T = T (λ), and for every x1, . . . , xT ∈
Xλ and f1, . . . , fT ∈ Fλ, the following two distributions are computationally
indistinguishable:

– Real(λ)
def
=
{
Dec(skfj , cti)

}
i,j∈[T ]

, where:

• msk← Setup(1λ),

• cti ← Enc(msk, xi) for all i ∈ [T ],

• skfj ← KG(msk, fj) for all j ∈ [T ].

– Ideal(λ)
def
= {fj(xi)}i,j∈[T ].

As noted by Goyal et al. [24], unlike in the case of deterministic functions
where is suffices to define correctness for a single ciphertext and a single key, here
it is essential to define correctness for multiple (possibly correlated) ciphertexts
and keys. We refer the reader to [24] for more details.

3.2 “Best-Possible” Message Privacy

We consider indistinguishability-based notions for capturing message privacy in
private-key functional encryption for randomized functionalities. As in the (stan-
dard) case of deterministic functions (see Section 2.2), we consider adversaries
whose goal is to distinguish between encryptions of two challenge messages x∗0
and x∗1, when given access to an encryption oracle (as required in private-key
encryption) and to functional keys of various functions. Recall that in the case
of deterministic functions, the adversary is allowed to ask for functional keys for
any function f such that f(x∗0) = f(x∗1).

As discussed in Section 1.3, our notions of message privacy ask that the
functional encryption scheme under consideration will not add any non-negligible
advantage to the (possibly non-negligible) advantage that adversaries holding a
functional key for a function f may already have in distinguishing between the
distributions f(x∗0) and f(x∗1) to begin with. That is, given that adversaries are
able to obtain a sample from the distribution f(x∗0) or from the distribution
f(x∗1) using the functional key skf , and may already have some advantage in
distinguishing these distributions, we ask for “best-possible” message privacy in
the sense that essentially no additional advantage can be gained.

In what follows we put forward two flavors of “best-possible” message privacy,
depending on the flavor of indistinguishability guarantee that is satisfied by the
function family under consideration.

Message privacy for non-adaptively-admissible functionalities. Our first
notion is that of non-adaptively-admissible function families. These are families
F such that for a randomly sampled f ← F , no efficient adversary on input f



can output x0 and x1 and distinguish the distributions f(x0) and f(x1) with
probability larger than ∆ (note again that ∆ does not have to be negligible).
One possible example for such a function family is a function that on input
x samples a public-key pk for a public-key encryption scheme, and outputs pk
together with a randomized encryption of x.

For such function families we consider a corresponding notion of message
privacy in which the adversary obtains functional keys only for functions that
are sampled uniformly and independently from F . This is formally captured by
the following two definitions.

Definition 9 (Non-adaptively-admissible function family). A family F =
{Fλ}λ∈N of efficiently-computable randomized functions is ∆(λ)-non-adaptively
admissible if for any probabilistic polynomial-time algorithm A = (A1,A2) it
holds that

AdvnaADM
F,A (λ)

def
=

∣∣∣∣Pr
[
ExptnaADM

F,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ ∆(λ)

for all sufficiently large λ ∈ N, where the random variable ExptnaADM
F,A (λ) is defined

via the following experiment:

1. b← {0, 1}, f ← Fλ.

2. (x0, x1, state)← A1(1λ, f).

3. y = f(xb; r) for r ← {0, 1}∗.
4. b′ ← A2(y, state).

5. If b′ = b then output 1, and otherwise output 0.

Definition 10 (Message privacy; non-adaptive case). Let F = {Fλ}λ∈N
be a ∆(λ)-non-adaptively admissible function family. A private-key functional
encryption scheme Π = (Setup,KG,Enc,Dec) is message private with respect to
F if for any probabilistic polynomial-time adversary A = (A1,A2) and for any
polynomial T = T (λ) there exists a negligible function neg(λ) such that

AdvnaMPRF
Π,F,A,T (λ)

def
=

∣∣∣∣Pr
[
ExptnaMPRF

Π,F,A,T (λ) = 1
]
− 1

2

∣∣∣∣ ≤ T (λ) ·∆(λ) + neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExptnaMPRF
Π,F,A,T (λ) is

defined via the following experiment:

1. b← {0, 1}, msk← Setup(1λ), f1, . . . , fT ← Fλ.

2. skfi ← KG(msk, fi) for all i ∈ [T ].

3. (x∗0, x
∗
1, state)← A

Enc(msk,·)
1 (1λ, f1, . . . , fT , skf1 , . . . , skfT ).

4. c∗ = Enc(msk, x∗b).

5. b′ ← AEnc(msk,·)
2 (c∗, state).

6. If b′ = b then output 1, and otherwise output 0.



Message privacy for adaptively-admissible functionalities. Our second
notion is that of adaptively-admissible function families. These are families F
such that no efficient adversary can output f ∈ F together with two inputs x0
and x1, and distinguish the distributions f(x0) and f(x1) with probability larger
than ∆. One possible example for such a function family is that of differentially
private mechanisms, as discussed by Goyal et al. [24]. Specifically, these are
randomized functions that on any two inputs that differ on only a few of their
entries, produce output distributions whose statistical distance is polynomially
small (i.e., ∆ is polynomial in 1/λ)8.

It is easy to observe that there are function families that are non-adaptively
admissible but are not adaptively admissible. One possible example is functions
of the form fpk that are indexed by a public encryption key pk, and on input x
output a randomized encryption of x under pk. Giving adversaries the possibility
of adaptively choosing such functions, they can choose a function fpk for which
they know the corresponding decryption key sk. In this case, although for a
randomly chosen pk the distributions fpk(x0) and fpk(x1) are computationally
indistinguishable, they may be easily distinguishable given the randomness used
by the adversary (from which it may be easy to compute the corresponding
decryption key sk).

For adaptively-admissible function families we consider a corresponding no-
tion of message privacy in which the adversary obtains functional keys for func-
tions that are adaptively chosen from F . This is formally captured by the fol-
lowing two definitions.

Definition 11 (Adaptively-admissible function family). A family F =
{Fλ}λ∈N of efficiently-computable randomized functions is ∆(λ)-adaptively ad-
missible if for any probabilistic polynomial-time algorithm A = (A1,A2) it holds
that

AdvaADM
F,A (λ)

def
=

∣∣∣∣Pr
[
ExptaADM

F,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ ∆(λ)

for all sufficiently large λ ∈ N, where the random variable ExptaADM
F,A (λ) is defined

via the following experiment:

1. b← {0, 1}.
2. (f, x0, x1, state)← A1(1λ), where f ∈ Fλ.

3. y = f(xb; r) for r ← {0, 1}∗.
4. b′ ← A2(y, state).

5. If b′ = b then output 1, and otherwise output 0.

Definition 12 (Message privacy; adaptively-admissible case). Let F =
{Fλ}λ∈N be a ∆(λ)-adaptively admissible function family. A private-key func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) is message private with re-
spect to F if for any probabilistic polynomial-time adversary A = (A1,A2) that

8 The definitions of differential privacy are in fact stronger than requiring small sta-
tistical distance.



issues at most T = T (λ) key-generation queries there exists a negligible function
neg(λ) such that

AdvaMPRF
Π,F,A(λ)

def
=

∣∣∣∣Pr
[
ExptaMPRF

Π,F,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ T (λ) ·∆(λ) + neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExptaMPRF
Π,F,A(λ) is defined

via the following experiment:

1. b← {0, 1}, msk← Setup(1λ).

2. (x∗0, x
∗
1, state)← A

Enc(msk,·),KG(msk,·)
1 (1λ).

3. c∗ = Enc(msk, x∗b).

4. b′ ← AEnc(msk,·),KG(msk,·)
2 (c∗, state).

5. If b′ = b then output 1, and otherwise output 0.

4 Our Functional Encryption Scheme

In this section we present our construction of a private-key functional encryption
scheme for randomized functionalities. Let F = {Fλ}λ∈N be a family of random-
ized functionalities, where for every λ ∈ N the set Fλ consists of functions of the
form f : Xλ ×Rλ → Yλ (i.e., f maps Xλ into Yλ using randomness from Rλ).
Our construction relies on the following building blocks:

1. A private-key functional encryption scheme FE = (FE.Setup,FE.KG,FE.Enc,
FE.Dec).

2. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval). We assume
that for every λ ∈ N and for every key K that is produced by PRF.Gen(1λ),
it holds that PRF.Eval(K, ·) : {0, 1}λ → Rλ.

As discussed in Section 1.1, we assume that the scheme FE is sufficiently
expressive in the sense that it supports the function family F (when viewed as a
family of single-input deterministic functions), the evaluation procedure of the
pseudorandom function family PRF, and a few additional basic operations (such
as conditional statements). Our scheme Π = (Setup,KG,Enc,Dec) is defined as
follows.

– The setup algorithm. On input the security parameter 1λ the setup algo-
rithm Setup samples FE.msk← FE.Setup(1λ), and outputs msk = FE.msk.

– The key-generation algorithm. On input the master secret key msk
and a function f ∈ Fλ, the key-generation algorithm KG samples K ←
PRF.Gen(1λ) and outputs skf ← FE.KG(msk, Leftf,K), where Leftf,K is a
deterministic function that is defined in Figure 1.

– The encryption algorithm. On input the master secret key msk and a
message x ∈ Xλ, the encryption algorithm Enc samples s ← {0, 1}λ and
outputs ct← FE.Enc(msk, (x,⊥, s,⊥)).

– The decryption algorithm. On input a functional key skf and a ciphertext
ct, the decryption algorithm Dec outputs FE.Dec(skf , ct).



Leftf,K(xL, xR, s, z):

1. Let r = PRF.Eval(K, s).

2. Output f(xL; r).

Rightf,K(xL, xR, s, z):

1. Let r = PRF.Eval(K, s).

2. Output f(xR; r).

Figure 1: The functions Leftf,K and Rightf,K . The function Leftf,K is used by
the actual scheme, whereas the function Rightf,K is used in the proofs of its
security.

The correctness and independence of the above scheme with respect to any
family of randomized functionalities follows in a straightforward manner from
the correctness of the underlying functional encryption scheme FE and the as-
sumption that PRF is a pseudorandom function family (in fact, it suffices that
PRF is a weak pseudorandom function family). Specifically, consider a sequence
of messages x1, . . . , xT and a sequence of functions f1, . . . , fT . As the encryp-
tion FE.Enc(msk, (xi,⊥, si,⊥)) of each message xi uses a uniformly sampled si ∈
{0, 1}λ, and the functional key for a function fj contains a freshly sampled keyKj

for the pseudorandom function family, the distribution {fj(xi;PRF.Eval(Kj , si)}
is computationally indistinguishable from the distribution {fj(xi; ri,j)}, where
the ri,j ’s are sampled independently and uniformly at random.

The following two theorems capture the security of the scheme. These the-
orems state that under suitable assumptions on the underlying building blocks,
the scheme is message private for non-adaptively-admissible randomized func-
tionalities and for adaptively-admissible randomized functionalities.

Theorem 1. Assuming that PRF is a pseudorandom function family and that
FE is selective-function function private, then Π is message private for non-
adaptively-admissible randomized functionalities.

Theorem 2. Assuming that PRF is a puncturable pseudorandom function fam-
ily and that FE is function private, then Π is message private for adaptively-
admissible randomized functionalities.

As discussed in Sections 2.1 and 2.2, Theorems 1 and 2 can be instantiated
based on a variety of known pseudorandom function families and functional
encryption schemes. In particular, Theorem 1 can be based on the minimal as-
sumption that a selective-function message-private functional encryption scheme
exists, and Theorem 2 can be based on the minimal assumption that a message-
private functional encryption scheme exists.

Due to lack of space we omit the proof of Theorem 1 and include only the
proof of Theorem 2. We refer to the full version of the paper [26] for the missing
details.



4.1 Proof of Theorem 2

We prove that the scheme Π is message private for adaptively-admissible func-
tionalities (see Definition 12) based on the assumptions that PRF is a puncturable
pseudorandom function family and that FE is function private (see Definition 6).

Let A be a probabilistic polynomial-time adversary that issues at most
T1 = T1(λ) pre-challenge key-generation queries, at most T2 = T2(λ) post-
challenge key-generation queries (where T = T1 + T2), and at most T = T (λ)
encryption queries (note that T1, T2 and T may be any polynomials and are not
fixed in advance), and let F be a ∆-adaptively admissible family of random-
ized functionalities. We denote by f1, . . . , fT the key-generation queries that are
issued by A.

We present a sequence of experiments and upper bound A’s advantage in
distinguishing each two consecutive experiments. Each two consecutive exper-
iments differ either in the distribution of their challenge ciphertexts or in the
distribution of the functional keys that are produced by the key-generation or-
acle. The first experiment is the experiment ExptaMPRF

Π,F,A,T (λ) (see Definition 12),
and the last experiment is completely independent of the bit b. This enables us
to prove that there exists a negligible function neg(·) such that

AdvaMPRF
Π,F,A,T (λ)

def
=

∣∣∣∣Pr
[
ExptaMPRF

Π,F,A,T (λ) = 1
]
− 1

2

∣∣∣∣ ≤ T (λ) ·∆(λ) + neg(λ)

for all sufficiently large λ ∈ N. Throughout the proof we use, in addition to
the functions Leftf,K and Rightf,K that were defined in Figure 1, the functions
PuncOutputYf,K′,y,s∗ and PuncOutputZf,K′,s∗ that are defined in Figure 2. In

PuncOutputYf,K′,y,s∗(xL, xR, s, z):

1. If s = s∗ then output y.

2. Otherwise, let r = PRF.Eval(K′, s)
and output f(xL; r).

PuncOutputZf,K′,s∗(xL, xR, s, z):

1. If s = s∗ then output z.

2. Otherwise, let r = PRF.Eval(K′, s)
and output f(xL; r).

Figure 2: The functions PuncOutputYf,K′,y,s∗ and PuncOutputZf,K′,s∗ .

what follows we describe the experiments. We note that in all experiments the
encryption oracle is as defined by the encryption procedure of the scheme.

Experiment H(0)(λ). This is the experiment ExptaMPRF
Π,F,A(λ) (see Definition 12).

Experiment H(1)(λ). This experiment is obtained from the experimentH(0)(λ)
by modifying the encryption oracle so that on the challenge input (x∗0, x

∗
1) it

samples s∗ ← {0, 1}λ and outputs ct ← FE.Enc(msk, (x∗b , x
∗
1 , s

∗,⊥)) instead of

ct← FE.Enc(msk, (x∗b , ⊥ , s∗,⊥)).
Note that for each function f ∈ {f1, . . . , fT } with an associated PRF key K,

for the deterministic function Leftf,K and the challenge ciphertext it holds that



Leftf,K(x∗b , x
∗
1, s
∗,⊥) = Leftf,K(x∗b ,⊥, s∗,⊥). Therefore, the message privacy of

the underlying scheme FE (with respect to deterministic functions) guarantees
that the adversary A has only a negligible advantage in distinguishing exper-
iments H(0) and H(1). Specifically, let F ′ denote the family of deterministic
functions Leftf,K and Rightf,K for every f ∈ F and PRF key K (as defined in
Figure 1) as well as the function PuncOutputYf,K′,y,s∗ and PuncOutputZf,K′,s∗

for every f ∈ F , punctured PRF key K ′, value y ∈ Yλ and string s∗ ∈ {0, 1}λ (as
defined in Figure 2). In the full version (see [26]) we prove the following lemma:

Lemma 1. There exists a probabilistic polynomial-time adversary B(0)→(1) such
that ∣∣∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(0)→(1),T (λ).

Experiment H(2,i)(λ) where i ∈ [T2 + 1]. This experiment is obtained from
the experiment H(1)(λ) by modifying the post challenge key-generation oracle to
generate keys as follows. The functional keys for the fT1+1, . . . , fT1+i−1 are gen-
erated as PuncOutputYf,K′,y,s∗ (the definition of PuncOutputYf,K′,y,s∗ appears

in Figure 2), where K ′ is generated by sampling a PRF key K ← PRF.Gen(1λ)
and then puncturing it at s∗, and where y ← f(x∗b), and the functional keys for
fT1+i, . . . , fT1+T2

= fT are generated as PuncOutputYf,K′,y,s∗ , where K ′ and s∗

are as before but y = f(x∗b ;PRFK(s∗)).
Note that every x 6= x∗b with which the encryption oracle is queries (with

probability negligibly close to 1) it holds that s 6= s∗, hence, using the function-
ality feature of the punctured PRF, for every f ∈ {fT1+1, . . . , fT } it holds that
Leftf,K(x, x, s,⊥) = PuncOutputYf,K′,y,s∗(x, x, s,⊥). In addition, for the chal-
lenge x∗b it holds that Leftf,K(x∗b , x

∗
1, s
∗,⊥) = PuncOutputYf,K′,y,s∗(x

∗
b , x
∗
1, s
∗,⊥)

since PuncOutputYf,K′,y,s∗ simply outputs y, where y = f(x∗b ;PRFK(s∗)). Thus,
the function-privacy of the underlying scheme FE guarantees that the adversary
A has only a negligible advantage in distinguishing experiments H(1)(λ) and
H(2,1)(λ). In the full version (see [26]) we prove the following lemma:

Lemma 2. There exists a probabilistic polynomial-time adversary B(1)→(2,1) such
that∣∣∣Pr

[
H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣∣∣ ≤ AdvFPFE,F ′,B(1)→(2,1),T (λ) + neg(λ).

Moreover, note that the pseudorandomness of PRFK(·) at punctured point
s∗ (see Definition 2) guarantees that the adversary A has only a negligible ad-
vantage in distinguishing experiments H(2,i) and H(2,i+1). In the full version (see
[26]) we prove the following lemma:

Lemma 3. For every i ∈ [T2] there exists a probabilistic polynomial-time adver-
sary B(2,i)→(2,i+1) such that∣∣∣Pr

[
H(2,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(2,i)→(2,i+1)(λ).



Experiment H(3,i)(λ) where i ∈ [T2 + 1]. This experiment is obtained from
the experiment H(2,T2)(λ) by modifying the post-challenge key-generation or-
acle as follows. The functional keys for the fT1+1, . . . , fT1+i−1 are generated
as PuncOutputYf,K′,y,s∗ , where K ′ is generated by sampling a PRF key K ←
PRF.Gen(1λ) and then puncturing it at s∗, and where y ← f(x∗1) , and the func-

tional keys for fT1+i, . . . , fT1+T2 are generated as PuncOutputYf,K′,y,s∗ , where

K ′ and s∗ are as before but y ← f(x∗b). We observe thatH(2,T+1)(λ) = H(3,1)(λ).
The adaptive admissibility of the function family F (see Definition 11) guar-

antee that the advantage of the adversary A in distinguishing experiments H(3,i)

and H(3,i+1) is at most ∆(λ). In the full version (see [26]) we prove the following
lemma:

Lemma 4. For every i ∈ [T2] there exists a probabilistic polynomial-time adver-
sary B(3,i)→(3,i+1) such that∣∣∣Pr

[
H(3,i)(λ) = 1

]
− Pr

[
H(3,i+1)(λ) = 1

]∣∣∣ ≤ AdvaADM
F,B(3,i)→(3,i+1) ≤ ∆(λ).

Experiment H(4,i)(λ) where i ∈ [T1 + 1]. This experiment is obtained from
the experiment H(3,T )(λ) by modifying the pre-challenge key-generation or-
acle as follows. The functional keys for f1, ..., fi−1 are generated as skf ←
FE.KG(msk, Rightf,K ) instead of as skf ← FE.KG(msk, Leftf,K ) (where Rightf,K

is defined in Figure 1), and the functional keys for fi, ..., fT1
are generated as

before (i.e., as skf ← FE.KG(msk, Leftf,K)). We observe that H(3,T+1)(λ) =
H(4,1)(λ).

Experiment H(5,i)(λ) where i ∈ [T1]. This experiment is obtained from the
experiment H(4,i)(λ) by modifying the encryption oracle so that on the challenge
input (x∗0, x

∗
1) it samples s∗ ← {0, 1}λ and outputs ct← FE.Enc(msk, (x∗b , x

∗
1, s
∗,

z∗ )), where z∗ = fi(x
∗
b ;PRF.Eval(Ki, s

∗)), instead of ct← FE.Enc(msk, (x∗b , x
∗
1,

s∗, ⊥ )).
Notice that both Leftf,K and Rightf,K are defined to ignore the fourth in-

put z, hence, for the first i − 1 keys it holds that Rightf,K(x∗b , x
∗
1, s
∗,⊥) =

Rightf,K(x∗b , x
∗
1, s
∗, z∗) and for the next T1−i+1 keys it holds that Leftf,K(x∗b , x

∗
1,

s∗,⊥) = Leftf,K(x∗b , x
∗
1, s
∗, z∗). Therefore, the message privacy of the underly-

ing scheme FE guarantees that the adversary A has only a negligible advantage
in distinguishing experiments H(4,i) and H(5,i). In the full version (see [26]) we
prove the following lemma:

Lemma 5. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(4,i)→(5,i) such that∣∣∣Pr

[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(4,i)→(5,i),T (λ).

Experiment H(6,i)(λ) where i ∈ [T1]. This experiment is obtained from
the experiment H(5,i)(λ) by modifying the behavior of the pre-challenge key-
generation oracle on the ith query fi (without modifying its behavior on all other



queries). On input the ith query fi, the pre-challenge key-generation oracle com-

pute skfi ← FE.KG(msk, PuncOutputZfi,K′i,s∗ ) instead of skfi ← FE.KG(msk,

Leftfi,Ki ) (where the function PuncOutputZfi,K′i,s∗ is defined in Figure 2).

Note that by the functionality feature of the punctured PRF (see Defini-
tion 2), for every ciphertext (x,⊥, s, z) which is not the challenge ciphertext (with
probability negligibly close to 1) it holds that PuncOutputZfi,K′i,s∗(x,⊥, s, z) =

Leftfi,Ki(x,⊥, s, z) (since s 6= s∗ with very high probability). For the challenge
ciphertext the latter also holds since PuncOutputZfi,K′i,s∗(x

∗
b , x
∗
1, s
∗, z∗) outputs

z∗ = fi(x
∗
b ;PRFKi(s

∗)). Thus, the function-privacy of the underlying scheme FE
guarantees that the adversary A has only a negligible advantage in distinguish-
ing experiments H(6,i)(λ) and H(7,i)(λ). In the full version (see [26]) we prove
the following lemma:

Lemma 6. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(5,i)→(6,i) such that∣∣∣Pr

[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣∣∣ ≤ AdvFPFE,F ′,B(5,i)→(6,i),T (λ) + neg(λ).

Experiment H(7,i)(λ) where i ∈ [T1]. This experiment is obtained from
the experiment H(6,i)(λ) by modifying the encryption oracle so that on the
challenge input (x∗0, x

∗
1) it outputs ct ← FE.Enc(msk, (x∗b , x

∗
1, s
∗, z∗)), where

z∗ = fi(x
∗
b ; r

∗ ) for a fresh and uniformly sampled value r∗ instead of z∗ =

fi(x
∗
b ; PRF.Eval(Ki, s

∗) ).

The pseudorandomness at punctured point s∗ of PRF.Eval(Ki, ·) guarantees
that the adversary A has only a negligible advantage in distinguishing exper-
iments H(6,i) and H(7,i). In the full version (see [26]) we prove the following
lemma:

Lemma 7. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(6,i)→(7,i) such that∣∣∣Pr

[
H(6,i)(λ) = 1

]
− Pr

[
H(7,i)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(6,i)→(7,i)(λ).

Experiment H(8,i)(λ) where i ∈ [T1]. This experiment is obtained from
the experiment H(7,i)(λ) by modifying the encryption oracle so that on the
challenge input (x∗0, x

∗
1) it outputs ct ← FE.Enc(msk, (x∗b , x

∗
1, s
∗, z∗)), where

z∗ = fi( x
∗
1 ; r∗) instead of z∗ = fi( x

∗
b ; r∗) (both with fresh and uniform r∗).

The adaptive admissibility of the function family F (see Definition 11) guar-
antees that the advantage of the adversaryA in distinguishing experimentsH(7,i)

and H(8,i) is at most ∆(λ). In the full version (see [26]) we prove the following
lemma:



Lemma 8. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(7,i)→(8,i) such that∣∣∣Pr

[
H(7,i)(λ) = 1

]
− Pr

[
H(8,i)(λ) = 1

]∣∣∣ ≤ AdvaADM
F,B(7,i)→(8,i) ≤ ∆(λ).

Experiment H(9,i)(λ) where i ∈ [T1]. This experiment is obtained from
the experiment H(8,i)(λ) by modifying the encryption oracle so that on the
challenge input (x∗0, x

∗
1) it outputs ct ← FE.Enc(msk, (x∗b , x

∗
1, s
∗, z∗)), where

z∗ = fi(x
∗
1; PRF.Eval(Ki, s

∗) ) instead of z∗ = fi(x
∗
1; r∗ ) for a fresh and uni-

formly sampled value r∗.
The pseudorandomness at punctured point s∗ of PRF.Eval(Ki, ·) guarantees

that the adversary A has only a negligible advantage in distinguishing experi-
ments H(9,i) and H(10,i). The proof of the following lemma is essentially identical
to the proof of Lemma 7 (see [26]):

Lemma 9. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(8,i)→(9,i) such that∣∣∣Pr

[
H(8,i)(λ) = 1

]
− Pr

[
H(9,i)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(8,i)→(9,i)(λ).

Experiment H(10,i)(λ) where i ∈ [T1]. This experiment is obtained from
the experiment H(9,i)(λ) by modifying the behavior of the pre-challenge key-
generation oracle on the ith query fi (without modifying its behavior on all other
queries). On input the ith query fi, the key-generation oracle compute skfi ←
FE.KG(msk, Rightfi,Ki ) instead of skfi ← FE.KG(msk, PuncOutputZfi,K′i,s∗ ).

As in the proof of Lemma 6, the function privacy of the underlying scheme
FE (with respect to deterministic functions) guarantees that the adversary A
has only a negligible advantage in distinguishing experiments H(9,i) and H(10,i).
The proof of the following lemma is essentially identical to the proof of Lemma 6
(see [26]):

Lemma 10. For every i ∈ [T1] there exists a probabilistic polynomial-time ad-
versary B(9,i)→(10,i) such that∣∣∣Pr

[
H(9,i)(λ) = 1

]
− Pr

[
H(10,i)(λ) = 1

]∣∣∣ ≤ AdvFPFE,F ′,B(9,i)→(10,i),T (λ) + neg(λ).

Next, we observe that experiment H(4,i+1)(λ) is obtained from the exper-
iment H(10,i)(λ) by modifying the challenge ciphertext to be computed using
z∗ = ⊥ instead of z∗ = fi(x

∗
1;PRF.Eval(Ki, s

∗)).
Note that for each function f ∈ {f1, . . . , fT } with an associated PRF key K,

for the deterministic functions Leftf,K and Rightf,K and the challenge ciphertext
it holds that Leftf,K(x∗b , x

∗
1, s
∗,⊥) = Leftf,K(x∗b , x

∗
1, s
∗, z∗) and Rightf,K(x∗b , x

∗
1,

s∗,⊥) = Rightf,K(x∗b , x
∗
1, s
∗, z∗). Therefore, the selective-function message pri-

vacy of the underlying scheme FE (with respect to deterministic functions) guar-
antees that the adversary A has only a negligible advantage in distinguishing



experiments H(10,i) and H(4,i+1). The proof of the following lemma is essentially
identical to the proof of Lemma 5 (see [26]):

Lemma 11. For every i ∈ [T1] there exists a probabilistic polynomial-time ad-
versary B(10,i)→(4,i+1) such that

∣∣∣Pr
[
H(10,i)(λ) = 1

]
− Pr

[
H(4,i+1)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(10,i)→(4,i+1),T (λ).

Experiment H(11)(λ). This experiment is obtained from the experiment H
(4,T+1)(λ) by modifying the encryption oracle so that on the challenge input

(x∗0, x
∗
1) it outputs ct← FE.Enc(msk, ( x∗1 , x

∗
1, s
∗,⊥)) instead of ct← FE.Enc(msk,

( x∗b , x
∗
1, s
∗,⊥)). Note that this experiment is completely independent of the bit

b, and therefore Pr
[
H(11)(λ) = 1

]
= 1/2.

In addition, note that for every function f ∈ {f1, . . . , fT1
} with an associated

PRF key K, for the deterministic function Rightf,K it holds that Rightf,K(x∗b , x
∗
1,

s∗,⊥) = Rightf,K(x∗1, x
∗
1, s
∗,⊥). Therefore, the message privacy of the underlying

scheme FE (with respect to deterministic functions) guarantees that the adver-
sary A has only a negligible advantage in distinguishing experiments H(4,T1+1)

and H(11). The proof of the following lemma is essentially identical to the proof
of Lemma 1 (see [26]):

Lemma 12. There exists a probabilistic polynomial-time adversary B(4,T1+1)→(11)

such that

∣∣∣Pr
[
H(4,T1+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣ ≤ AdvsfFPFE,F ′,B(4,T+1)→(11),T (λ).

Finally, putting together Lemmas 1–12 with the facts that ExptaMPRF
Π,F,A,T (λ) =

H(0)(λ), H(1)(λ) = H(2,1)(λ), H(2,T+1)(λ) = H(3,1)(λ), H(3,T+1)(λ) = H(4,1)(λ)



and Pr
[
H(11)(λ) = 1

]
= 1/2, we observe that

AdvaMPRF
Π,F,A,T

def
=

∣∣∣∣Pr
[
ExptaMPRF

Π,F,A,T (λ) = 1
]
− 1

2

∣∣∣∣
=
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣
+
∣∣∣Pr
[
H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣∣∣
+

3∑
j=2

T2∑
i=1

∣∣∣Pr
[
H(j,i)(λ) = 1

]
− Pr

[
H(j,i+1)(λ) = 1

]∣∣∣
+

T1∑
i=1

9∑
j=4

∣∣∣Pr
[
H(j,i)(λ) = 1

]
− Pr

[
H(j+1,i)(λ) = 1

]∣∣∣
+

T1∑
i=1

∣∣∣Pr
[
H(10,i)(λ) = 1

]
− Pr

[
H(4,i+1)(λ) = 1

]∣∣∣
+
∣∣∣Pr
[
H(4,T+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤ (T1(λ) + T2(λ)) ·∆(λ) + neg(λ)

= T (λ) ·∆(λ) + neg(λ).
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