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Abstract. We consider Primary-Secondary-Resolver Membership Proof
Systems (PSR for short) and show different constructions of that primi-
tive. A PSR system is a 3-party protocol, where we have a primary, which
is a trusted party which commits to a set of members and their values,
then generates public and secret keys in order for secondaries (provers
with knowledge of both keys) and resolvers (verifiers who only know the
public key) to engage in interactive proof sessions regarding elements
in the universe and their values. The motivation for such systems is for
constructing a secure Domain Name System (DNSSEC) that does not
reveal any unnecessary information to its clients.
We require our systems to be complete, so honest executions will re-
sult in correct conclusions by the resolvers, sound, so malicious secon-
daries cannot cheat resolvers, and zero-knowledge, so resolvers will not
learn additional information about elements they did not query explic-
itly. Providing proofs of membership is easy, as the primary can simply
precompute signatures over all the members of the set. Providing proofs
of non-membership, i.e. a denial-of-existence mechanism, is trickier and
is the main issue in constructing PSR systems.
The construction we present in this paper uses a set of cryptographic keys
for all elements of the universe which are not members, which we imple-
ment using hierarchical identity based encryption. In the full version of
this paper we present a full analysis for two additional strategies to con-
struct a denial of existence mechanism. One which uses cuckoo hashing
with a stash, where in order to prove non-membership, a secondary must
prove that a search for an element will fail. Another strategy uses a veri-
fiable “random looking” function and proves non-membership by proving
an element’s value is between two consecutive values of members.
For all three constructions we suggest fairly efficient implementations,
of order comparable to other public-key operations such as signatures
and encryption. The first approach offers perfect ZK and does not reveal
the size of the set in question, the second can be implemented based on
very solid cryptographic assumptions and uses the unique structure of
cuckoo hashing, while the last technique has the potential to be highly
efficient, if one could construct an efficient and secure VRF/VUF or if
one is willing to live in the random oracle model.
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1 Introduction

We consider the cryptographic primitive called Primary-Secondary-Resolver Mem-
bership Proof Systems (PSR for short) and show efficient constructions of that
primitive. The motivation for this type of systems comes from trying to improve
DNSSEC which is a security extension of DNS (Domain Name System) (plain
DNS communication doesn’t guarantee security (confidentiality and authentic-
ity) for the users). The basic problem is as follows, we have a trustworthy source,
called the primary, which maps all valid names (e.g. URLs) in its domain to their
corresponding values (e.g. IP addresses). This primary doesn’t communicate di-
rectly with users (resolvers) who wish to make DNS queries for names; it has the
secondaries for that, which are DNS servers that receive some initial information
from the primary and are in charge of responding to resolvers’ queries. As there
may be many such secondary servers, we cannot be sure they are all honest and
we do not wish to give them the ability to fool resolvers with a false response
to a DNS query. We would like to give them enough information so as to give
correct responses to DNS queries and a short proof of some sort to help convince
the resolver of the authenticity of the data they received. On the other hand, we
do not wish the resolvers get more information about the domain than a simple
answer to their query, i.e. whether the answer is positive or negative is all a
resolver should be able to deduce (the issue of releasing too much information
about the domain has been an obstacle in getting the current DNSSEC adapted
[4]).

A PSR system consists of a setup algorithm, used by the primary which
receives a privileged subset R from a universe U of names (e.g. the list of hosts in
its domain) and a set of corresponding values V , mapping each element xi ∈ R
to its value vi ∈ V (e.g. mapping all URLs in a domain to their IPs). The
primary generates a public key PK (one may think of it as a signature key),
which should be available to all parties of the protocol. It also generates a secret
key SK which provides secondaries the ability to answer queries honestly. We
will be interested only in efficient constructions where the public key size and
the amount of communication between the secondaries and the resolvers are
independent of the cardinality of the set R.

1.1 Our Contributions

In a companion paper to this work [19] the notion of PSR systems was intro-
duced (albeit it was defined as a one-round proof protocol), as well as an efficient
construction named NSEC5 was suggested. NSEC5 is based on RSA and ana-
lyzed in the random oracle model. The main application of PSR systems is for
a secure Domain Name Server that does not reveal information about the un-
derlying set. That paper also gave a lower bound that shows that in order to
preserve soundness and prevent an adversarial resolver from learning additional
information about elements they didn’t query, the secondary must perform some
non-trivial computation: it must do the computational work needed in a a public
key identification scheme, for which the best known implementations are signa-



tures (in the random oracle model these two are equivalent). (This showed that
none of the prior approaches to DNSSEC such as NSEC3 yield a solution that
is secure against zone enumeration, i.e. listing of the set R).

We consider PSR Systems that are more general than those of [19] and
define PSR systems with interactive proofs as well as systems that are perfect
zero-knowledge.

In this paper we investigate in depth PSR systems. Our main interest is
efficiency, where we are interested in the computational and communication
load on all three parties, but in particular in the secondary-resolver part that is
performed online. Our main goal in this work is to provide PSR systems that
are efficient and based on reasonable and well studied assumptions. We aim for
efficiency that is of the order of other public-key primitives such as encryption
and signatures.

We provide three general techniques to constructing PSR systems and present
efficient implementations to each of them. We use signatures and various dif-
ferent cryptographic primitives in our constructions such as: hierarchical iden-
tity based encryption schemes, one-time signatures, cuckoo hashing (with a
stash) with commitments and fixed-set non-membership proofs, verifiable ran-
dom/unpredictable functions and pseudorandom functions with interactive zero-
knowledge proofs. Our constructions are based on solid cryptographic assump-
tions: the discrete logarithm assumption and factoring, the existence of universal
one way hash functions and various Diffie-Hellman assumptions. Some of our
constructions even achieve perfect zero-knowledge.

It is quite clear that the more challenging case in constructing PSR systems
is dealing with the non-members of the set. For the members of the set a precom-
puted signature by the primary solves the problem. We suggest three approaches
for constructing PSR systems. All constructions use (regular) signatures to han-
dle proofs of membership, as we precompute a signature over every xi ∈ R and
its value vi. Thus, the difference between the constructions is how they handle
proofs of non-membership, i.e. we offer different denial of existence mechanisms.

In our first approach the primary matches encryption keys to elements of the
universe U . A secondary with knowledge of such a key can use it to generate a
proof of non-membership for the corresponding element. The primary precom-
putes a set of secret keys K, from which it can derive the keys corresponding
only to the set of elements U\R and sends it to the secondaries as part of their
secret key. As long as we make sure the secondaries cannot produce any key for
an element in R, we can construct a denial of existence mechanism in a num-
ber of ways. Resolvers can encrypt a random challenge, which can be decrypted
only with the secret key corresponding to the queried element x ∈ U , thus non-
membership can be proven only for elements outside of R. One can also just send
that secret key to resolvers when queried, making them verify the correctness
of the key by encrypting and decrypting random challenges by themselves. The
secondaries can also generate signatures for the queried element under a secret
key corresponding to that element and verified with a corresponding public key.
In order to implement those constructions efficiently we use Hierarchical Identity



Based Encryption (or HIBE for short). One can think of a set of identities as
nodes in a full binary tree, where with the secret key for an identity, one can
produce the key to any of its descendants. We think of the leaves as elements in
the universe, so by making sure the set of keys K doesn’t contain any secret key
to an element in R or any of its ancestors, but contains at least an ancestor key
to the rest of the elements in U , we get an efficient denial of existence mecha-
nism. Lastly we consider a construction that uses a chain of signatures from the
root of the tree to the leaf, where each signature signs the public key needed to
verify the next signature in the chain. All those constructions manage to achieve
perfect zero-knowledge.

The idea of the second approach is to imitate an oblivious search for the el-
ement, where by oblivious we mean that the locations examined are determined
by the element searched and some hash functions. The point is to show that the
searched element is in none of the probed locations. For the data structure we use
cuckoo hashing [36] where (unless we are unlucky) each element resides in one of
two locations. That is, as a denial of existence mechanism, we need to prove non
equality just twice. To handle the unlucky case we use a cuckoo hashing scheme
with a stash [26] to store some extra elements. We need to prove non equality to
these elements as well, however we have the advantage that these elements are
fixed for all possible searches. To handle the “normal” case the primary places
Pedersen commitments [37] for the relevant elements in the cells of the cuckoo
hash tables (including “dummies” in the empty cells) and signs these commit-
ments. The secondary is provided with the signed commitments and proves the
committed values are not equal to the queried element. For the stash non equality
we use a generalization of the Feige-Fiat-Shamir identification protocol [15]. Both
proofs are zero knowledge and are rather efficient as the computation needed in
order to execute these two interactive zero-knowledge protocols is dominated
by only a constant number of exponentiations. As Pedersen commitments rely
on the discrete logarithm assumption and the Feige-Fiat-Shamir protocol relies
on the factoring assumption, the result is a PSR system which reveals the size
of the set R but is very efficient and is based on conservative and well studied
cryptographic assumptions.

Our third approach to constructing PSR systems applies a “random look-
ing” function F , for which we can prove the value F (x) in a zero knowledge
fashion, without revealing information about the value of the function at other
locations. The primary precomputes the values of F over the set R, sorts them
lexicographically and signs them in pairs, {Sign(yi, yi+1)}ri=0. In order to prove
non-membership for an element x /∈ R one simply provides a proof that F (x) = y
and the signature Sign(yi, yi+1) for which yi < y < yi+1 (we choose F to have
negligible probability for collisions). This construction reveals the size of the set
R during multiple executions of the protocol as a resolver which issues enough
random queries will eventually witness all signatures Sign(yi, yi+1) and learn the
size of R, but in some applications such as DNSSEC, revealing the size of the set
is acceptable. In order to construct the function F we use variants of Verifiable
Random Functions (VRF) and Verifiable Unpredictable Functions (VUF) [30],



the Naor-Reingold PRF [32] with zero knowledge interactive proofs, the GHR
signature scheme [16] and a random oracle construction which uses the famous
BLS signature scheme [7]. The scheme NSEC5 presented in [19] (which resides
in the random oracle model) falls into this category as well.

For all three constructions we suggest fairly efficient implementations. The
first approach offers perfect ZK and does not reveal the size of the set in question,
the second can be implemented based on very solid cryptographic assumptions
and uses the unique structure of cuckoo hashing, while the last technique has
the potential to be highly efficient, if one could construct an efficient and secure
VRF/VUF or one is willing to live in the random oracle model.

Structural Issues: We analyze and prove that PSR systems with one-round
proofs are secure even in a concurrent setting. This means that in the case of
one-round proofs, even a coordinated attack of resolvers trying to learn infor-
mation about elements in the universe which they did not query explicitly will
fail with overwhelming probability. In the case of many-rounds proofs we show
that providing each secondary with an independent set of keys also results in a
concurrently secure PSR system. We prove that PSR systems exist if and only
if one way functions exist, which in turn helps us get a black box separation
from zero knowledge sets [29], which is a more restrictive membership proving
system (see details in Section 1.3), thus showing that the two primitives are
indeed inherently different.

1.2 A Guide for Reading the Paper

In Section 2 we present our model, the definition of PSR systems, our require-
ments of completeness, soundness and zero-knowledge and in Section 3 we show
cases where the system is secure in a concurrent setting. In Section 4 we show a
HIBE based construction which achieves perfect ZK. In Section 5 we give a short
description and intuition regrading our cuckoo hashing with a stash based PSR
and the one based on “random looking” functions (the full version [34] gives a
more detailed description). We also present a signature based PSR system and
use it to prove that the existence of one way functions is equivalent to the ex-
istence of PSR systems, which leads us to a black box separation between PSR
systems and ZKS [29]. In Section 6 we present concluding remarks.

1.3 Related Work

There are several types of cryptographic primitives that are related to PSR sys-
tems. Consider zero-knowledge sets, introduced by Micali, Rabin and Kilian [29]
(ZKS for short) and its generalization zero-knowledge elementary databases. The
latter is a primitive, defined in the common reference string model or the trusted
parameters model, where a user (prover) can commit to a database and later
open and prove its values to a verifier in a zero knowledge fashion. The existence
of ZKS implies the existence of a PSR system, as a zero-knowledge elementary
database construction implements a PSR System (the other direction is not true



as implied by Corollary 2). However, the problem is that even the best known
constructions of ZKS are inefficient. The point is that in a ZKS the requirements
are too stringent: even the primary cannot cheat. This is not something of in-
terest in our setting, since the primary is a trustworthy party that commits to
a set of its choosing and it does not make sense for it to cheat. We are only
interested in preventing the secondaries from cheating. Hence we introduced a
more complex setting with three parties, at the benefit of gaining efficiency.

Chase et al. [12] introduce the notion of trapdoor mercurial commitments
(TMC for short) and construct ZKS based on TMCs. They show a few imple-
mentations of their new primitive where their most efficient implementation is a
constant factor improvement on the original MRK construction, while both rely
on the discrete logarithm assumption. Catalano et al. [11] extend their notion
of TMC to trapdoor q-mercurial commitments (q-TMC for short) and by that
further improve the efficiency of ZKS implementation by shortening the non-
memberships proofs by a constant factor, at the expense of slowing down the
verification process. Their construction of q-TMC relies on the q-strong Diffie-
Hellman assumption. Later, Libert and Yung [28] introduced a new construction
for q-TMCs, based on the q-Diffie Hellman exponent assumption, and managed
to shorten the memberships proofs by a constant factor as well. All those ZKS
constructions have the same basic structure: a tree (either binary as in [29,12] or
with arity q as in [11,28]), where the leaves represent the elements in the universe
and a proof of membership or non-membership is a path of commitments from
the root to the leaf. All four ZKS constructions use proofs made up of O(log |U |)
group elements and require O(log |U |) modular exponentiations for verification.

Prabhakaran and Xue introduced statistically hiding sets [38] (SHS for short),
which are a slight variation on ZKS. Their definition of statistical hiding is
formulated with computationally unbounded simulation, which means it is a
relaxation of the security requirement of ZKS as they do not require efficient
simulation. Their construction uses accumulators, first presented in [5], in order
to accumulate a set of values into one value, where there is a short proof for every
value in the set. Although it is more efficient than ZKS and can be extended
to statistical hiding databases, their underlying assumptions are rather new and
strong. They use the strong RSA assumption and an assumption they call the
knowledge of exponent assumption. They require the use of a hash function
which maps elements to large prime numbers and a trapdoor DDH group.

Ostrovsky, Rackoff and Smith [35] generalized ZKS by defining Consistent
Query Protocols, which allow more general queries than membership queries.
They also suggested a relaxation for ZK proofs, allowing the server to leak an
upper bound T on the size of the database (called size-T-Privacy). Our privacy
requirement, f -ZK, is a generalization of this size-T-Privacy requirement.

Another related line of investigation is that of data structures that come with
a guarantee of correctness. That is when the data structure, like a dictionary,
returns an answer it also provides a proof that the answer is correct in the
sense that it is consistent with some external information. One motivation for
these investigations comes from data structure for managing CRLs (certificate



revocation lists). The difference with the current work is that no additional
information than the result of the query should leak.

A recent paper by Ghosh, Ohrimenko and Tamassia [18] introduces two new
primitives which are related notions to PSR systems: a 2-party and a 3-party
protocols for proving values of elements in a database and their order (lists). The
2-party protocol they define is Zero Knowledge Lists (ZKL for short), where their
construction of the primitive is too inefficient for our needs, as it builds upon
ZKS (which, as we mentioned, does not have an efficient implementation yet).
The 3-party protocol is Privacy Preserving Authenticated Lists (PPAL) which
unlike ZKL is closer in spirit to our PSR systems but it cannot answer non-
membership queries (their construction only handles queries for elements in the
list and returns their order in the list combined with a proof). Besides that, their
constructions are also analyzed in the random oracle model, where we strive to
find constructions in the standard model.

2 Model and Security Definitions

We model Primary-Secondary-Resolver Membership Proof systems as a 3-party
protocol where the primary, a trusted party, commits to a set R, a subset of
the universe U , where each element xi ∈ R is coupled with a value vi ∈ V . The
primary generates two keys for the committed set, the secret key SK given only
to secondaries in the system and the public key PK given to all parties of the
protocol, i.e. secondaries and resolvers. The resolvers in the system engage in an
interactive protocol with the secondaries in order to learn whether a given x ∈ U
is in R or not and if yes then they obtain its value vx. The secondaries use their
secret key to generate proofs (possibly interactive) for the correct statement re-
garding the queried element, while resolvers verify the correctness of the proofs
they get. We require that the secondaries won’t be able to cheat the resolvers
and if the secondaries are following the protocols then the resolvers should be
able to verify the correctness of the responses with overwhelming success prob-
ability. Another important requirement we would like from such a system is
zero-knowledge, i.e. for resolvers to learn as little as possible about elements
they didn’t query explicitly. See Figure 1 for an illustration of the 3-parties’
engagement in the protocol.

Remark 1. Note that we chose to focus on the static version of this problem, i.e.
when the sets R and V are determined at the beginning of the process and do not
change throughout the process. The dynamic case for this problem is out of the
scope of this paper, though we discuss the issues of defining requirements for the
dynamic case, as well as give guidelines on how to transform our constructions
into ones which can handle dynamic changes in the full version of the paper [34].



Fig. 1. Illustration of a PSR system.

2.1 PSR Systems

The system consists of three algorithms: the Setup algorithm is used by the
primary to generate the public key PK which it publishes to all parties in the
protocol and the secret key SK, delivered to the secondaries. The resolvers
use the Verify algorithm in order to initiate an interactive proof session with
the secondaries who use the Prove algorithm to prove interactively the correct
membership statement about the element, queried by the resolver.

Definition 1. Let U be a universe of elements. A Primary-Secondary-Resolver
system (PSR for short) is specified by three probabilistic polynomial-time algo-
rithms (Setup, Prove, V erify):

Setup(R, V, 1k): On input k the security parameter, a privileged set R ⊆ U and
its values V , where |R| = |V | = r (for every xi ∈ R the corresponding value
is vi ∈ V ), this algorithm outputs two strings: (PK,SK) which are the public
and secret keys for the system.

V erify(x, PK): The algorithm gets as input x ∈ U and the public key PK. It
initiates an interactive proof protocol over the element x ∈ U with a sec-
ondary of its choice and verifies the correctness of the proof given by the
secondary. It outputs 1 when it accepts the interactive proof and 0 other-
wise.

Prove(x, PK, SK): On input x ∈ U and both the public and secret keys (PK,SK)
this algorithm proves interactively to a resolver either the statement x ∈ R
and its value is vx or x /∈ R.

We require the above three algorithms to satisfy three properties: complete-
ness, soundness and zero knowledge.



2.2 Completeness and Soundness

The completeness requirement means that when the parties at hand are honest
and follow the protocol, then the system works properly. The resolvers will learn
successfully whether the element x ∈ U , which they queried, is in R (and its
value) or not. We do allow a negligible probability of failure.

Definition 2. Completeness: For all R ⊆ U , for all V and ∀x ∈ U ,

Pr

 (PK,SK)
R← Setup(R, V, 1k);

V erify(x, PK)
R↔ Prove(x, PK, SK);

V erify(x, PK) = 1

 ≥ 1− µ(k)

For a negligible function µ(k).

As for soundness, we want that even a malicious secondary A, would not
be able to convince an honest resolver of a false statement with more than a
negligible probability. We require this to hold even when the adversary gets to
choose R and V , then gets the keys (PK,SK) and then chooses x ∈ U on which
it wishes to cheat. At the end of the protocol A outputs either 0 if it tries to
convince the resolver that x /∈ R or (1, v) if it tries to convince him that x ∈ R
and its value is v.

Definition 3. Soundness: for all probabilistic polynomial time stateful adver-
saries A we have

Pr



(R, V )
R← A(1k);

(PK,SK)
R← Setup(R, V, 1k);

x
R← A(PK,SK);

V erify(x, PK)
R↔ A(x, PK, SK);

V erify(x, PK) = 1∧
((A(x, PK, SK) = 0 ∧ x ∈ R)∨
(A(x, PK, SK) = (1, v) ∧ (x /∈ R ∨ (x = xi ∧ v 6= vi))))


≤ µ(k)

For a negligible function µ(k).

Note that our definitions are strong because they ensure (up to negligible
probability) that an adversary cannot find any x ∈ U violating either com-
pleteness or soundness, even after getting its relevant keys, i.e. (PK,SK) for a
secondary in the soundness condition and PK for a resolver in the completeness
condition.

2.3 Zero-Knowledge

We want to restrict the amount of information learned about the set R by
resolvers during the interactive proofs. Besides the answer to the question being
asked by the resolver we would like him to learn as little as possible about the



set R. In some cases we let some information about the set R leak during the
protocol (or many executions of the protocol on different elements), which is why
we choose to define zero-knowledge with respect to a function f acting on R. We
show two constructions of PSR systems which don’t leak any information about
the set R (see Sections 4 and 5.1), while the rest of the constructions leak the
size of the set R (see Section 5) We define this property as f-Zero-Knowledge
(f -ZK for short), where f(R) is some information about the set which we can
tolerate leaking to resolvers.

We require that the resolver cannot distinguish between: (1) a real system
which provides the original proofs, and (2) a simulator that can only obtain
the answer to each query asked by the resolver online, but must still be able to
“forge” a satisfactory proof for that response. This allows us to deduce that the
resolver has not learned much about R from the proofs, for if it had, it would
be able to distinguish between an interaction with the simulator and one with
the real secondary (at least after it gets R explicitly).
The PSR simulator: Let SIM be an interactive polynomial time algorithm
with restricted oracle access to the set R, which means it can query the oracle
only on elements which the adversary communicating with him queried explicitly.
On its first step SIM receives f(R) and outputs a fake public key PK∗, a fake
secret key SKSIM and f(R). On its following steps an adversary interacts with
the simulator and queries different elements in the universe. Following every
such query xi the simulator queries its oracle for xi and either learns xi /∈ R or
xi ∈ R and its value is vi. SIM proves interactively the statement on xi to the
adversary. The simulator is successful if its output, i.e. its random tape, public
key and transcripts of the interactive protocols, is indistinguishable from that of
a real PSR system.

The first step of the interactive protocol for the PSR system1 is:

(PK,SK, f(R))
R← Setup(R, V, 1k)

and for the simulator the first step is:

(PK∗, SKSIM , f(R))
R← SIMR(f(R), 1k)

The rest is a series of interactive proofs of membership between the adversary
and either a PSR system or a simulator, where the simulator uses the fake public
key PK∗ and the fake secret key SKSIM to respond to queries and the system
uses the real keys (PK,SK).

Definition 4. Let f() be some function from 2U to some domain and let al-
gorithms (Setup, Prove, V erify) be a PSR system. We say that it is f -zero
knowledge (f -ZK for short) if it satisfies the following property for a negligible
function µ(k):

1 Note that the Setup algorithm is not defined to output f(R), but it is obviously a
simple modification, as it gets R and can compute f(R) easily. We add this output
in order to generate comparable views.



There exists a simulator SIM such that for every probabilistic polynomial
time algorithms A (adversary) and D (distinguisher), a set R ⊆ U and V , the
distinguisher D cannot distinguish (See Remark 2 below) between the following
two views (interactions of A with a PSR system or a PSR simulator) with an
advantage greater than µ(k), even for D that knows R:

viewreal = {rreal, PK, f(R), (x1, π1), (x2, π2), . . .}

and
viewSIM = {rSIM , PK∗, f(R), (x1, π

∗
1), (x2, π

∗
2), . . .}

where the two views are generated by the protocols described above, πi and
π∗i are the transcripts for the interactive protocols over the element xi and rSIM
and rreal are the random tapes of the simulator and secondaries respectively.

Remark 2. We have three notions of Zero-knowledge for PSR systems: compu-
tational ZK, which means that the distinguisher cannot computationally dis-
tinguish between the two views, statistical ZK, where the distributions of the
two views are statistically close and perfect ZK where the two distributions are
identical. Note that the perfect and statistical ZK have the added advantage of
being secure in an information theoretic sense, which guarantees everlasting pri-
vacy. As both these ZK properties are information theoretic, they require their
underlying assumptions to hold only during the execution of the protocol, while
for computational ZK, we require the assumptions to hold ‘forever’ in order to
prevent an adversary from breaking the privacy of the scheme at a later point
in time. Our HIBE and signature based constructions (Section 4 and 5.1 respec-
tively) achieve perfect ZK, the cuckoo hashing construction (Section 5.2) achieves
statistical ZK, while the last construction (Section 5.3) achieves computational
ZK.

In our companion paper [19], we prove two very important facts about non-
interactive PSR systems. The first is that f -ZK, where f(R) is the cardinality of
the set R, implies prevention of zone enumeration, i.e. if a PSR is f -ZK, then a
resolver cannot learn any information about an element it didn’t query explicitly.
All of the constructions in this paper are at least f -ZK for this f (the HIBE and
signature based constrictions are even perfect ZK), which means they all prevent
zone enumeration. The second important result is that PSR systems require a
heavy computational task from the secondaries, such as public key cryptography
or public key authentication, in order to maintain both soundness and f -ZK.
This fact is crucial to understanding why the secondaries work hard in our
constructions. Note that both these proofs were for the single-round PSR and in
the random oracle model, but the proofs generalize to our (possibly interactive)
setting as well. The prevention of zone enumeration holds as is in the standard
model for interactive proofs, while the reduction to public key authentication for
interactive PSRs in the standard model is only selectively secure, as opposed to
existentially secure in the random oracle model. We state the resulting theorem:



Theorem 1. Given an f -ZK PSR system (where f(R) = |R| or f(R) = null),
one can construct a public-key identification or a selectively secure public key
authentication protocol from the PSR system where the prover’s complexity is
similar to the secondary’s. The construction is black box.2.

3 Concurrent Zero Knowledge

In this section we prove that in some cases PSR systems are not only f -ZK as
defined earlier, but also concurrent zero knowledge with respect to that same
function f . Concurrent ZK was introduced by Dwork, Naor and Sahai [14] as
an extension to zero knowledge. In order for an interactive proof system to be
concurrent ZK we require that if we have up to a polynomial number of provers
and verifiers, where the verifiers are controlled by a malicious adversary and
work concurrently (one could start an interactive proof with a prover, put it on
hold and finish an earlier interaction), then still no information is leaked to the
adversary controlling the verifiers.

We use similar definitions to the ones defined by Rosen [40] and adapt them
to our setting. For an interactive proof system 〈P, V 〉, we define a nonuniform
probabilistic polynomial time concurrent adversary A. A gets some input I (for
PSR systems I = PK), controls a polynomial number of verifiers and has access
to an unbounded number of copies of the prover P . A can use verifiers to interact
with the provers and controls the scheduling of all the messages in the system,
meaning that A controls when any verifiers output a message and when every
prover outputs a message. We denote by viewPA(I) the view of the adversary,
which is a random variable which contains the random tape of A and all the
concurrent interaction of A with the provers (copies of P).

Roughly speaking, a protocol is concurrent ZK if for every such adversary A
there is a probabilistic polynomial time simulator SA such that the two ensembles
{viewPA(I)} and {SA(I)} are computationally indistinguishable, where I is some
x ∈ L and SA(I) is the output of a simulator which uses the adversary A as an
oracle. But PSR systems, as we defined them, consist of multiple executions of
membership/non-membership interactive proofs using the keys (PK,SK). Thus
it is more natural for us to define I = PK and compare between the view of an
adversary communicating with secondaries (provers) on the public key PK and
the view of an adversary communicating with the simulator on the fake public
key PK∗.

Thus we define a concurrent PSR simulator as a probabilistic polynomial
time algorithm SIM, with restricted oracle access to the set R, such that on its
first step of the computation, SIM gets f(R) and outputs a fake public key PK∗,
a fake secret key SKSIM and f(R). SIM is not allowed to query its oracle on
x ∈ U if it was not explicitly queried by a resolver (verifier) on it. When an
adversary interacts with a simulator, the copies of the prover are replaced with
the simulator itself which acts as a prover (i.e. it emulates all the provers), uses

2 See the original paper for the proof and definitions for public key authentication.



the fake cryptographic keys it generated and can query its oracle for the element
queried by the resolvers.

We consider two different concurrent settings: where all the secondaries get
the exact same pair of keys and when each secondary and resolver get a pair
of keys generated independently for them. We prove, that in the case we use
independent keys, every PSR system which is f -ZK in the sequential (regular)
setting is also f -CZK, thus by making the primary work k ·m times harder, one
can get a concurrently secure PSR system with k secondaries and m resolvers,
from a sequentially secure PSR system. When all secondaries get the exact same
pair of keys we prove that non-interactive PSRs remain concurrently secure as
well.

We denote by {viewSIMA (f(R))} the view which contains f(R), PK∗, the
random tape of A and the concurrent interaction between SIM and A. We denote
by {viewrealA (R)} the view which contains f(R), PK the random tape of A and
the concurrent interaction between the real PSR system and A, where the keys
are generated by the setup algorithm of the PSR and the provers are honest
secondaries in a real PSR system.

Definition 5. A PSR system is f -Concurrent Zero Knowledge (f -CZK) if for
every nonuniform probabilistic polynomial time concurrent adversary A and ev-
ery R ⊆ U there exists a concurrent PSR simulator SIM, such that the two
views: {viewSIMA (f(R))} and {viewrealA (R)} are indistinguishable, even for a
distinguisher which knows R.

Note that the way we defined the f -ZK simulator in Section 2.3 the simula-
tion occurs online, meaning there is no rewinding. Rewinding usually raises an
obstacle in going from regular ZK to concurrent ZK, so this is a good property
to have for the simulator. We prove that a non interactive PSR system (one-
round proofs) is always an f -CZK PSR system. On the other hand, we show
that for many-round PSR systems this is not necessarily the case: we provide a
counter example with more than one round proofs which is not concurrent zero
knowledge.

Theorem 2. If (Setup, Prove, V erify) constitute an f -ZK PSR system with
one round proofs then it is also f -Concurrent Zero Knowledge.

Proof. Assume towards contradiction that there exists a concurrent adversary A
such that there exists a distinguisher D, that can distinguish between an interac-
tion of A with a real PSR system and an interaction of A with a concurrent PSR
simulator. We describe an adversary B which uses A as a subroutine in order
to generate two views (one of B interacting with the system and one interacting
with the f -ZK simulator) which can be distinguished with a non-negligible ad-
vantage. B simply acts as a mediator between the concurrent adversary A and
the prover (system/simulator). Every time A issues a new query to some prover,
B simply sends the first message of the interaction to the prover and records the
response. Notice that although A might be asking for different provers, B only
uses the one prover it has access to and as this is only a two message protocol, B



simply records the response to the query. When A asks for the response of that
interaction, B sends back the recorded response. When A wishes to terminate
the interaction, B terminates the interaction with the prover. At the end of the
interaction the view generated by the adversary B isn’t in the concurrent setting
as in practice B executed the interactions with the provers sequentially. This is
not a problem as we can describe a distinguisher D′ which uses D to distinguish
between interactions with an f -ZK PSR simulator and ones with a real PSR
system.

When D′ gets a view of the interaction between B and the prover it also
gets B’s random tape, so D′ can run it again with the same random bits (the
random tape is included in the view) and rearrange the view it got to look like
a concurrent view (i.e. rearrange the order of the messages). Now D′ runs D on
the newly generated view and outputs its output. If D succeeds in distinguishing
between the provers with non-negligible advantage ε, then so does D′ as the
view of the adversary A interacting with the provers is identical to the view of
B interacting with the same provers after D′ completed its transformation of
the view to look concurrent. Thus we reach a contradiction, which means that
non-interactive f -ZK PSR systems are also f -concurrent zero knowledge in the
same sense: computational, statistical or perfect ZK. ut

Counter example for a many-round PSR: We show that Theorem 2 does
not hold when we try to generalize it to many-rounds PSRs. Suppose that we
have a one-round proof f -ZK PSR. We modify it by adding two more rounds to
its proof. During the setup algorithm the primary selects some pseudorandom
function F , such that for an adversary (who doesn’t know the secret key), the
probability of guessing F (x) for a randomly chosen x will be negligible in the
security parameter for the PSR. The first round of the interaction will be the
resolver asking to learn the value F (x1) for x1 of its choice (under honest behavior
it should be uniformly random). The second round will be the secondary sending
an element x2, chosen uniformly at random, to the resolver and if the resolver
returns the correct value F (x2) then the secondary returns a description of R.
Otherwise it continues to the original one round proof of the PSR. One can
see this is still an f -ZK PSR, as guessing F (x2) for a randomly chosen x2 is
successful with only negligible probability, even after seeing several values of F .
Thus the resolver will learn more than it should about R only with negligible
probability, making the new PSR secure if the original one was secure.

On the other hand, in a concurrent setting, a malicious resolver can simply
interact with a secondary and when it gets its challenge x2, stop the interaction
and start a new one with a new secondary. In the first round, the resolver will
set x′1 = x2, i.e. it asks the new secondary what is the value of F (x2); it will
then return the answer to the first secondary, which should accept it as the
correct answer and then it will “spill the beans” and reveal the entire set R,
thus violating the f -CZK property (no concurrent simulator can do it for a
random set R).



Concurrent Zero-knowledge with independent keys: The reason the
above counter example was successful is that the provers were confined by the
common key of the PRF they all shared. We claim that in case we have a
concurrent execution of the PSR system but where each prover (secondary) -
verifier (resolver) couple receives different and independently chosen keys (that
is for each secondary-resolver the primary executes the setup algorithm indepen-
dently), then the resulting PSR systems are f -CZK3.
Proof Sketch: the way the concurrent simulator will work is by running the
(regular) simulator for each secondary independently. We now use a hybrid ar-
gument to show that if we are in the described setting and we have an adversary
A that can generate two distinguishable views for the concurrent setting, then
we can construct an adversary B that can generate distinguishable views for the
sequential setting. If there is a distinguisher D that can distinguish with non-
negligible advantage between the two views (generated by A) then it can also
distinguish between at least two adjacent hybrids with non-negligible advantage,
due to the hybrid argument. This means that there is some index i for which we
can construct the adversary B as follows: the first i−1 provers will be simulated
by B to be a real PSR system secondaries (this is done by running the setup
algorithm i−1 times), the ith prover will be the prover interacting with B (either
a simulator or a real secondary) and the rest of the provers will be simulated
by B using the strategy employed by the (regular) simulator. The two possible
views resulting from interacting with this adversary B will be distinguishable
with a non-negligible advantage due to the hybrid argument, thus contradicting
the assumption that the PSR system is f -ZK. ut

Remark 3. In the full version of the paper [34] we claim and give a proof sketch
to show that in the Universally Composable security (UC security) framework,
introduced by Canetti [10], PSR systems which have non-interactive proofs or
use independent keys are also secure in the UC framework.

4 HIBE Based Construction of PSR Systems

In this section we introduce a PSR system based on Hierarchical Identity Based
Encryption (or HIBE for short). We think of the universe of elements U , as
the leaves of a full binary tree. The primary can generate an encryption key
for any node in the tree, where this encryption key holds the power to prove
non-membership for every element in the universe which is a descendant of that
node. A proof of non-membership for an element x ∈ U uses the encryption
key of the leaf that corresponds to x, while an encryption key for an internal
node can generate the keys of its descendants. Thus if the primary generates the

3 Note that it is critical to use different keys for every couple (secondary-resolver) run-
ning concurrently, otherwise in the scenario described in the counter example, either
a malicious resolver can communicate with two secondaries using the same keys and
break the f -CZK property, or two malicious resolvers can collide and interact with
one secondary using the same keys to break the f -CZK property.



encryption key for the root node, it can then generate a set of keys K which
contains keys only to the elements in U\R. In order to do that the primary
removes the entire path of keys from the root to a leaf x ∈ R and generates keys
to the siblings of each node along that path. One might notice the similarity to
revocation schemes, as we “revoke” all keys for the elements in R and as shown

by Naor et al. [31], this process results in a forest of O(|R| · log |U ||R| ) full binary

trees (See Figure 2 for an example).
In order to generate this set of keys K we will use a HIBE scheme, which is an

identity based encryption scheme (i.e. an element’s encoding is its identity) with
the special property we need: that every key can generate keys to its descendants
in the hierarchy tree. For high efficiency we use the HIBE construction of Boneh
et al. [6], which we describe in more details in Section 4.4. Agrawal, Boneh and
Boyen also offer two HIBE constructions [3,2] based on lattices, which give us
also two lattice based assumptions from which we can construct a PSR system.
The HIBE construction is perfect ZK, in the sense that it doesn’t reveal any
information about the set R to any adversarial resolver, not even its cardinality,
while providing perfect simulation.

Fig. 2. A full binary tree that represents a set R and its set of keys K.

4.1 HIBE Definition

An IBE (Identity Based Encryption) is a scheme where one can encrypt messages
to users using their names/IDs or any other unique identifiers one chooses to use.



A trusted party generates a master public key (also called system parameters
sometimes) and a master secret key, where the first is used by users to encrypt
messages under any identity they wish, while the latter is used to generate secret
keys for all identities in the scheme, which are then distributed to the users
(each user gets its own secret key). A user can then use its secret key to decrypt
messages intended for him. A HIBE is an hierarchical IBE, which means that
identities in the scheme are defined by up to ` coordinates and anyone who has
a secret key for its identity x, can generate secret keys to any of its descendants,
i.e. to any identity with x as its prefix.

We use the following definition for HIBE which is similar to that of Gentry
and Silverberg [17]. An ID-tuple is a description of a user in the system defined
by (I1, . . . , It) where t ≤ ` and ` is the maximum depth of the hierarchy of iden-
tities, i.e. the maximal number of coordinates in an identity. In our construction
we use binary vectors as the identities.

Definition 6. A HIBE is defined by five algorithms: Setup, MKeyGen, KeyGen,
Encrypt and Decrypt.

Setup Gets a security parameter k and the depth of the hierarchy ` and gener-
ates the master public key MKP , which should be distributed to all the users
in the system and a master secret key MKS given only to the root user, both
corresponding to the HIBE of depth `.

MKeyGen Gets the master key MKS and a target identity ID = (I1, . . . , It)
and generates a private key (from a distribution of valid keys) denoted as
SKID, which user ID can use to decrypt messages intended for him and also
to generate properly distributed private keys (i.e. with same distribution, as
if it was generated using MKS) to any of its descendants (any user who has
the identity ID as a prefix to its own identity).

KeyGen Gets a private key SKID for identity ID = (I1, . . . , It) and some
descendant of that identity of any level, ID∗ = (I1, . . . , It, It+1, . . . , Im) and
generates a private key SKID∗ from its proper distribution. It is critical that
for every identity, two different ancestors produce the same distribution on
the generation of its private key. Sometimes this algorithm is described only
for one level deeper than that of ID, but this can be extended by invoking the
algorithm recursively.

Encrypt Gets the master public key, a message m and a target identity ID and
outputs a ciphertext CT which is an encryption of m intended for ID.

Decrypt Gets a private key for identity ID and a ciphertext CT intended for
that identity and decrypts it to retrieve the original message m.

We include the description of the HIBE by Boneh et al. [6] in Section 4.4,
which is the most efficient HIBE implementation we could find for our purposes.
It uses only a constant number of pairing computations and exponentiations and
a logarithmic number (in the size of the universe U) of multiplications in a group,
for the algorithms used by the secondaries and resolvers: Encrypt, Decrypt and
KeyGen for leaves in the tree. Not all algorithms are as efficient as those three,
but we may allow the primary setup to take longer time as it commits to the set
R only once.



4.2 HIBE Security

There are four types of security notions for HIBE. We have indistinguishability
under chosen plaintext attack and under chosen ciphertext attack, where in the
first an adversary can issue queries to different secret keys in the HIBE and
in the second it can also issue decryption queries where it can ask to decrypt
ciphertexts. For the needs of our construction the weaker notion of security will
suffice, i.e. indistinguishability under chosen plaintext attack. We can also talk
about the difference between selective and existential security, where in the first
an adversary selects a priori the target identity it wishes to be tested on and in
the second it can choose the target identity after it issues some queries. Again
we only need the weaker notion of security for our construction, i.e. selective
security. We use the definitions of security as defined by Boneh et al. [6].

Definition 7. Indistinguishability under selective identity chosen plaintext at-
tack (IND-sID-CPA). We say that a HIBE system is (t, q, ε) IND-sID-CPA if
any t-time adversary A that uses q queries wins the following game with an ad-
vantage of at most ε. This is a communication game between an adversary A
and a challenger which controls the HIBE system at hand.

step 1: A sends a target identity ID∗ to the challenger and two equal length
messages m0,m1 on which it wishes to be tested.

step 2: The challenger runs the HIBE’s setup algorithm, sends the master pub-
lic key to the adversary and keeps the master secret key to himself.

step 3: A adaptively issues up to q key queries to the challenger, where it asks
to know the private key of an identity ID. The challenger responds with the
correct keys to all queries. The only restriction is that A didn’t issue a key
query on identity ID∗ or a prefix of it.

step 4: The challenger draws a bit at random b ∈ {0, 1}, computes CT =
Encrypt(MKP , ID

∗,mb) and sends CT to A.

step 5: A issues more queries (where the total number of queries is at most q)
where again A cannot issue key queries to prefixes of the identity ID∗ or to
ID∗ itself. When A finishes with the queries it issues a guess b′ ∈ {0, 1} and
wins the game if b′ = b.

Notation. If we have a HIBE which is (t, q, ε) IND-sID-CPA secure, t, q
are polynomials and ε is negligible in the scheme’s security parameter, then we
simply say it is IND-sID-CPA secure.

Remark 4. In a recent paper, Lewko and Waters [27] examine the difficulty in
proving full (existential) security for HIBEs. They show that proving full security
for a large class of HIBEs results in an exponential degradation (in the depth of
the hierarchy) in security. Luckily for us we only need selective chosen plaintext
security (the weakest security notion for HIBEs), which most if not all HIBEs
achieve, without the exponential degradation.



4.3 PSR from HIBE

Suppose that all possible queries that resolvers issue are in the domain {0, 1}`.
We can assume that, as we may use a collision resistant hash function h in order
to map our domain of queries into a domain with the appropriate `. We will use
a HIBE of depth `. As we do in all constructions, for x ∈ R we will use consistent
signatures on the element and its value, i.e. a signing algorithm that produces the
same signature on the same message. We will use the HIBE scheme to deal with
non-membership proofs. In order to prove non-membership in R, the secondaries
will get as part of the secret key SK, a set of secret HIBE keys K, from which
they can generate a secret key corresponding to any x /∈ R (the secret key is
SKh(x)) and prove its possession by decrypting random challenges encrypted by
the resolvers under the queried element’s identity h(x) (alternatively the key
may be given to the resolvers who should verify its correctness).

We do not want the secondary to be able to prove the non membership of an
actual member x ∈ R, so we make sure it cannot obtain the secret keys to any
element in R. Thus secondaries will not be able to prove false statements with
overwhelming probability, as in order to prove false statements the secondary
will have to either forge signatures or decrypt a message it doesn’t have the
private key for.

In order to give secondaries the correct set of private keys, consider the full
binary tree of depth `. The primary removes all nodes which are in R or are
ancestors/prefixes of elements in R. All the remaining nodes in the tree (both
internal and leaves) comprise a forest of full binary trees of different depths.
The primary then generates the secret key to all the roots of the binary trees
in the forest and distributes it to the secondaries. Now, the union of all those
keys, denoted as K, can generate all keys corresponding to leaves that are not
members of R. As mentioned before, the number of trees in the forest can be

shown to be O(r log |U |r ) [31].
We now describe the PSR construction that uses a HIBE which is required

to be only IND-sID-CPA secure (see Definition 7 for details) and an existentially
unforgeable signature scheme.

Setup(R, V, 1k): Use the setup algorithm for the signature scheme in order to
obtain the keys (PKsig, SKsig, h) where h is a collision resistant hash func-
tion that maps elements from U to {0, 1}`. Use the setup algorithm for
the HIBE scheme and obtain the master public key MKP and the master
secret key MKS for a HIBE of depth `. Set the public key to be PK =
(PKsig,MKP , h).
Now generate the forest of full binary trees, as specified above, by removing
all the nodes in the full binary tree of depth `, which are prefixes of h(xi)
for every xi ∈ R. For every root tj in that forest, generate its corresponding
secret key kj (using the MKeyGen algorithm) and set K = {(tj , kj)}. Now
sign every element xi ∈ R with its value: si = (SignSKsig

(xi, vi), (xi, vi))
and set the secret key to be SK = (K, {si}ri=1).

V erify(x, PK): Gets an element x ∈ U and the public key and initiates an
interactive protocol with a secondary. It draws uniformly at random a mes-



sage m from the message domain of the HIBE scheme and encrypts it under
the public key of h(x): CT = Encrypt(m,h(x),MKP ). It send (CT, x) to a
secondary. If it gets in return back m, it returns 1 and “x /∈ R”; if it gets
in return a signature s and a pair (x, v) where it verifies correctly that s is
a valid signature on (x, v) then it accepts that x ∈ R and its value is v and
returns 1. Otherwise it returns 0.

Prove(x, PK, SK): Gets the public and private keys and also (CT, x) from a
resolver. If there exists a signature si for which xi = x, then it returns si.
Otherwise the secret key SK contains, in its HIBE set of keys K, a key for
a prefix of h(x). The secondary generates the secret key for h(x) (using the
HIBE KeyGen algorithm), decrypts CT under that secret key and returns
m to the verifier.

Theorem 3. The three algorithms described above constitute a (perfect) ZK
PSR (i.e. f is the null function and the simulation is perfect).

Proof. In order to prove the above scheme constitutes a PSR system we need to
prove it fulfills the three properties required from a PSR system: completeness,
soundness and zero-knowledge.
Perfect Completeness. For all R ⊆ U , for all V and for all x ∈ U we need
to show that after obtaining the keys (PK,SK) from the setup algorithm, it
always holds that an honest secondary manages to convince an honest resolver
of the true statement regarding the queried element x. For every element xi ∈ R
the primary precomputed si = (SignSKsig

(xi, vi), (xi, vi)) which is part of the
secret key and thus the secondary will always succeed in proving membership
statements. As for statements of the type x /∈ R, using the set of HIBE keys
K given to the secondaries, they can derive a secret key for every x ∈ U\R
(actually a key for every such h(x)). Using that key SKh(x), secondaries can
always decrypt a random challenge issued by resolvers and thus will always
manage to prove statements of non-membership.
Soundness. Assume for contradiction that there exits some polynomial time
adversary that using (PK,SK) can provide for some x /∈ R a proof that x ∈ R
with non-negligible probability. This means it can forge a signature with non-
negligible probability for that x and some value v, violating the unforgeability
assumption on the underlying signature scheme. The same holds if an adversary
is trying to prove for some x ∈ R with value v a different value v′ 6= v, i.e. due
to the existential unforgeability of the signature scheme proving a false value for
x ∈ R is infeasible as well.

If we assume to have such an adversary A that can provide for some x ∈ R
a proof that x /∈ R with non-negligible probability ε, then we can use A to con-
struct an adversary B that wins the IND-sID-CPA security game (Definition 7)
with a non-negligible advantage ε

2 . If A can cheat with probability ε for the set
R ⊆ U and some x ∈ R then the adversary B (trying to win the IND-sID-CPA
security game) will first select h(x) as its target identity (h will be chosen by him
as well), choose two random messages as the challenge messages {m0,m1} and
get the HIBE master public key, MKP . Then B runs the setup algorithm for



the PSR over U and R while using MKP as its master public key for the HIBE
in the PSR and will use the key queries in the security game to generate the set
of HIBE keys K. Note that as x ∈ R all the key queries will be for non-prefixes
of h(x) as K doesn’t contain any ancestors of h(R) = {h(xi)|xi ∈ R}.

Thus B will generate a valid pair of keys (PK,SK) for a PSR and hand
them to the adversarial secondary A. B will now send the random challenge it
got form the IND-sID-CPA security game (an encryption under h(x) of m0 or
m1) to A which will try to decrypt the ciphertext. A succeeds in decrypting the
challenge with probability ε and if the decryption A offers matches one of the
two original challenge messages (m0,m1) then B chooses this message and else
it guesses uniformly at random. Thus B wins the IND-sID-CPA security game
with an advantage of about ε

2
4. Thus violating the security assumption made

on the HIBE scheme being used.

We also note that it is infeasible for an adversary to find an element on which
it can provide a false proof. As the adversary gets both keys we can assume it
knows R. The adversary cannot find an element x /∈ R and provide a false proof
with non-negligible probability as this again violates the unforgeability of the
signature scheme. Regarding x ∈ R as we know that the HIBE is selectively
secure then we know that if the target identity is chosen in advance, then any
polynomial time adversary has at most a negligible advantage ε in distinguishing
between the two target messages, which makes its probability of decrypting the
target ciphertext at most 2ε (by the reduction shown above). So as this time
there are |R| = r target identities, any adversary has at most a probability of
2ε · r (still negligible as r is polynomial) to decrypt a random challenge under
one of the identities of h(R), thus it is also infeasible to find x ∈ R for which a
secondary can cheat on.

Perfect ZK. In order to show that this PSR is indeed zero knowledge we need
to show a suitable simulator SIM which can fool any adversary into believing it
is a real PSR system. SIM simply chooses the function h as the primary does,
runs the setup algorithm for the HIBE to obtain (MKP ,MKS) and the setup
algorithm for the signature scheme to obtain (Pksig, SKsig). SIM then sets the
fake public key to be PK∗ = (MKP , PKsig, h) and the fake secret key to be
SKSIM = (SKsig,MKS). Note that the fake public key is generated the exact
same way the original public key is generated and the fake secret key has the
master secret key for the HIBE instead of the subset of the keys (K) and the
secret key for the signature scheme instead of the signatures on the elements
of R and their values ({si}ri=1). When SIM is queried on an element x ∈ U ,
it queries its oracle to R on x. If x ∈ R and its value is vx it returns s =
(SignSKsig

(x, vx), (x, vx)). If x /∈ R then SIM gets (CT, x) and it can generate
the secret key for h(x) using the master secret key MKS , decrypt the challenge
and return it to the adversary.

4 There is a probability that A decrypts CT to a wrong message that happens to be
m1−b while mb was chosen as the challenge. But, as {m0,m1} are chosen uniformly
at random and are not known at all to A this probability is negligible.



We claim that the two views generated by the simulator and a real PSR
system are not only indistinguishable but identically distributed, thus making
this construction perfect zero-knowledge. The public keys are generated by the
same algorithm. The signatures (proofs regarding x ∈ R) are generated online
instead of during the setup algorithm as the primary does, but yield the same
distribution over the signatures, due their consistency. Proofs for elements x /∈ R
are also identical as both the simulator and a PSR system decrypt successfully
the random challenges on elements outside of R with probability 1 and simply
return it. This concludes the proof that this PSR system is perfect ZK. ut

Remark 5. Note that we can also use two variants of HIBEs, one where secon-
daries deliver the queried element’s decryption key to the resolver (and by that
make it verify the key’s correctness by itself) and one where we use signatures in-
stead of encryption, i.e. secondaries produce signatures over the queried element
with its corresponding secret key.

4.4 HIBE Construction by Boneh, Boyen and Goh

We describe the construction by Boneh et al. [6] as it is the most efficient HIBE
implementation for our needs. Its greatest virtue, with respect to our construc-
tion, is the fact that generating secret keys for nodes get more efficient the
deeper the node is in the hierarchy. Thus generating keys for leaves is very
efficient, which is critical for us, since this is done online by the secondaries
generating non-membership proofs. Let G be a bilinear group of prime order
p and let e : G × G → G1 be an admissible bilinear map (i.e. its bilinear-
∀g1, g2 ∈ G it holds that e(gx1 , g

y
2 ) = e(g1, g2)xy, non-degenerate - e(g, g) 6= 1

and efficiently computable). We choose arbitrarily how to map J0, J1 to Z∗p,
since the original HIBE can handle identities of the type ID ∈ (Z∗p)` (or shorter),
while we only require binary identities of length at most `. This means that for
some node in level k of the tree, u = x1 . . . xk where xi ∈ {0, 1} has identity
Iu = (Jx1

, . . . , Jxk
) = (I1, . . . , Ik), which will be also its public key. We also

assume that the messages to be encrypted are elements in G1. We choose `, the
depth of the hierarchy, to be dlog |U |e, in order for the leaves of the full binary
tree of depth ` to represent the elements in the universe.

The HIBE system works as follows:

– Setup(1k, 1`): Gets k the security parameter and ` the depth of the hierarchy.
To generate the public master key for the HIBE of maximum depth `, draw
uniformly at random: g ∈ G, α ∈ Z∗p, set g1 = gα and pick some more random

elements g2, g3, h1, . . . , h` ∈ G. Next compute Aux = (hJ01 , h
J1
1 , . . . , h

J0
` , h

J1
` )

and define the master secret key to be MKS = gα2 and the public master
key to be: MKP = (g, g1, g2, g3, h1, . . . , h`, Aux).

– MKeyGen(MKS , ID): To generate a private key for ID = (I1, . . . , Ik) ∈
(Z∗p)k pick uniformly at random r ∈ Zp and output:

SKID = (gα2 · (h
I1
1 · · ·h

Ik
k · g3)r, gr, hrk+1, . . . , h

r
`) ∈ G`−k+2



Note that the deeper the node the smaller the private key.
– KeyGen(SKID, ID

∗): For ID∗ = (I1, . . . , Im) ∈ (Z∗p)m and a private key of
its ancestor ID = (I1, . . . , Ik) (m > k) do the following in order to generate
a properly distributed key:
If SKID = (gα2 · (h

I1
1 · · ·h

Ik
k · g3)r

′
, gr
′
, hr

′

k+1, . . . , h
r′

` ) = (a0, a1, bk+1, . . . , b`)
then choose uniformly at random t ∈ Zp and output: SKID∗ =

(a0 · b
Ik+1

k+1 · · · b
Im
m (hI11 · · ·hImm · g3)t, a1 · gt, bm+1 · htm+1, . . . , b` · ht`) ∈ G`−m+2.

This can be computed using 4 + (`−m) exponentiations and O(`) multipli-
cations by utilizing Aux. This private key is a properly distributed key for
ID∗ = (I1, . . . , Im) with r = r′ + t ∈ Zp. Note that the deeper the node –
the shorter the key, thus computing a secret key for a leaf is very efficient.
If ID∗ is a leaf (m = `) we get:

SKID∗ = (a0 · b
Ik+1

k+1 · · · b
I`
` (hI11 · · ·h

I`
` · g3)t, a1 · gt) ∈ G2.

Computing secret keys for the leaves takes only 4 exponentiations and O(`)
multiplications, since by utilizing Aux, the secondary multiplies all the bi’s
where Ii = J1 and then raises them to the power of J1 and similarly for J0;

exponentiations of h
Jj
i are already calculated and included in Aux.

– Encrypt(MKP , ID,m): To encrypt a message m ∈ G1 under the public key
ID = (I1, . . . , Ik) draw uniformly at random s ∈ Zp and output:

CT = (e(g1, g2)s ·m, gs, (hI11 · · ·h
Ik
k · g3)s) ∈ G1 ×G2

Which takes 1 pairing computation, 3 exponentiations and O(`) multiplica-
tions (we can also add e(g1, g2) to MKP in order to avoid computing pairings
in the encryption).

– Decrypt(SKID, CT ): Consider a ciphertext CT = (A,B,C) encrypted for
ID = (I1, . . . , Ik) where the private key is SKID = (a0, a1, bk+1, . . . , b`).
Output:

A · e(a1, C)

e(B, a0)
= e(g1, g2)s ·m ·

e(gr, (hI11 · · ·h
Ik
k · g3)s)

e(gs, gα2 · (h
I1
1 · · ·h

Ik
k · g3)r)

=

= e(g1, g2)s ·m · 1

e(g, g2)sα
= m

Which takes only two pairing computations and one multiplication.

This HIBE achieves selective-ID security for both chosen plaintext and chosen
ciphertext attacks (IND-sID-CPA and IND-sID-CCA respectively) under the
`-weak decisional Bilinear Diffie-Hellman Inversion assumption (`-wBDHI, see
definition in [6]) in the standard model and is fully secure in the random oracle
model, where ` is the number of levels of the hierarchy.

Performance. As for the performance of the resulting PSR, the setup algo-
rithm’s running time is dominated by the generation of the set of private keys K



which is of size O(r log |U |r ). In order to provide proofs of non-membership, the
secondaries have to decrypt a message intended for an identity of depth `, for
which they have to first generate a proper key. This takes 4 exponentiations and
O(`) multiplications. The secondaries then decrypt the message, which takes 2
pairing computations and one multiplication. For a resolver to issue a query for
an element it has to encrypt one message which takes 3 exponentiations and O(`)
multiplications (we avoid the pairing computation in the encryption by adding
e(g1, g2) to MKP ).

So in total a secondary has to do at most 2 pairing computations, 4 exponenti-
ations and O(`) multiplications, while a resolver has to do only 3 exponentiations
and O(`) multiplications. As mentioned before, we can also have a variant of the
protocol where the resolvers receive the secret key itself (and have them encrypt
and decrypt random challenges by themselves). This moves the computational
load of 2 pairing computations to the resolvers. The primary has to work harder
as the setup algorithm is more costly, but that is understandable as the primary
has to set up the system only once.

5 PSR system Constructions

In the full version of this paper [34] we present two additional strategies for
constructing PSR systems and another construction which follows the lines of
the HIBE construction but uses one-time signatures. We describe them here
informally, where the full version contains a more comprehensive and formal
treatment of these constructions.

5.1 Using One-time Signatures

One-time signatures are signatures with a very weak security/unforgeability re-
quirement, where an adversary who witnesses at most one signature of its choice
cannot forge a signature, which will be verified successfully. We utilize the same
strategy we used for the HIBE construction (Section 4), with the difference of
using one-time signatures to produce a chain of signatures from the root of a
binary tree to the leaf corresponding to the queried element (again where a
secondary cannot generate this proof for elements in the set R). The chain of
signatures consists of public keys corresponding to the nodes along the path,
signed using the secret key of their parents. In the full version of this paper [34]
we prove this construction is a non-interactive PSR system and has perfect ZK.

Now as we can construct both types of signatures (one-time and regular)
from universally one way hash functions (UOWHF) [33], we can conclude that
the existence of UOWHFs implies the existence of PSR systems with perfect ZK.
UOWHFs in turn can be constructed from one-way functions [39]. PSR systems
imply identification schemes, as shown in our companion paper [19], which in
turn imply the existence of one-way functions, as shown by Impagliazzo and
Luby [24] (see also [23]).



Thus the point of this construction is not efficiency, but to use this black box
constructions to prove the following corollary:

Corollary 1. Single round PSR systems exist if and only if one-way functions
exist. If many rounds PSR systems exist then a single round PSR system exists.

This also gives us a separation result from ZKS [29], since Chase et al. [12]
proved that interactive ZKS and collision resistant hash functions (CRH) are
existentially equivalent and Simon [43] showed a separation result, which states
that no CRH can be constructed from one-way functions (or even permutations)
in a black box manner. Thus we get the following corollary:

Corollary 2. One cannot construct ZKS (and even interactive ZKS) in a black
box manner from PSR systems (interactive or not).

5.2 Using Cuckoo Hashing with a Stash

We now discuss an instantiation of the second approach for constructing PSRs
mentioned in the introduction, imitating an oblivious search for the element,
where the locations examined are determined by the element searched and some
hash functions. The point is that the secondary needs to show that the searched
element is in none of the probed locations.

Cuckoo Hashing is a scheme first introduced by Pagh and Rodler [36]. If we
have a set |R| = r for which we want to prove (non) membership, we use two
tables T1 and T2 of size (1 + ε)r (where ε is constant) and two hash functions
(F1, F2), which map elements in the universe into those two tables. Every element
x ∈ R is placed in either location F1(x) in table T1 or location F2(x) in table T2.
This off course may fail for the choice of some functions (F1, F2) (with probability
O( 1

r )), thus we also use a stash, to store elements we could not place in the cuckoo
hash tables due to collisions. Kirsch, Mitzenmacher and Wieder [26] show that
the probability that the stash is larger than s is bounded by O(r−s). This helps
us bound the amount of information that leaks on the set R, by the choice of
the functions (F1, F2). In order to prove x /∈ R we need to show that x was not
placed in the stash and not in either of the two possible locations in the cuckoo
hash tables.

In order to prove non-membership in the tables we use commitment schemes
(see [20] for definitions) with inequality proofs, where we require the commit-
ments to be: hiding, so that commitments to two different values are identically
distributed, and binding, so that even the commiter cannot open a commit-
ment to a value, different than the committed value. We also want the proofs
of inequality to be complete (honest execution results in correct conclusions),
sound (commiter can’t cheat) and have indistinguishability between two proofs
of inequality, i.e. proving the inequality of x to two commitments to elements
different than x is indistinguishable. In order to prove an element was not placed
in the stash we use a scheme for proving non-membership in a fixed set, from
which we require the exact same conditions as we require from commitments,
with the difference that we need to commit to a set of elements instead of a
single element.



We chose to use Pedersen commitments [37] with ZK proofs of inequality. The
inequality proofs use ZK proofs of equality for Pedersen commitments (based on
the adaptation of Schnorr’s identification protocol [41]) and the ZK proofs of
inequality for discrete logarithms, suggested by Camenisch and Shoup [9]. In
order to construct a scheme to prove non-membership in a fixed set (our stash
S), we use a generalization of the Feige-Fiat-Shamir identification protocol [15]
combined with the set lower bound technique of Goldwasser and Sipser [21],
to allow secondaries to prove they know a large fraction of the secrets (corre-
sponding to the queried element) as opposed to knowing none of them (when the
queried element is placed in the stash). Every element in the universe is mapped
to n challenges and the primary distributes the corresponding secret to every
challenge that doesn’t correspond to an element in the stash S. This way we get
that for every x ∈ S the secondaries know none of the secrets, but they know a
large fraction of the secrets for every element x /∈ S.

All and all we get an interactive PSR system which leaks the cardinality of the
set R and is quite efficient. The denial-of-existence mechanism we described re-
quires a constant number of exponentiations for both parties (9 for the secondary
and 8 for the resolver) in order to prove inequalities for Pedersen’s commitments
and at most n = log |U | modular multiplications and a Gaussian elimination
process (for a matrix of size n

4 ×
n
3 ), for the fixed set non-membership proof sys-

tem, suggested to implement the stash. Its great advantage is that it uses very
conservative and well studied assumptions: factoring (for the Feige-Fiat-Shamir
protocol) and discrete logarithm (for the Pedersen commitments).

5.3 Using Verifiable Random Looking Functions

In the full version of this paper [34] we show a few constructions for PSR systems
based on variants of Verifiable Random/Unpredictable Functions [30] (VRF and
VUF for short), a construction that uses Pseudorandom Functions with interac-
tive ZK proofs and discuss constructions in the random oracle model. All these
constructions employ the same strategy which uses functions that map elements
in the universe to some large domain {0, 1}m, where a secondary, holding a secret
key, can prove to a resolver, holding a public key, the value of F (x). Another
important property we require from our functions is to appear random, in the
sense that an adversary (without knowledge of the secret key) who knows the
set R, cannot distinguish between the set of values F (R) = {F (x)|x ∈ R} and a

set of random values {ri|i ∈ [r] : ri
R
∈ {0, 1}m}, even after a series of queries to

the function (which do not include queries to elements in R)5.
The PSR system itself does the following: the primary computes the values of

the function over the set R and arranges them in lexicographical order y1, . . . , yr.
Next it signs all the couples of adjacent values and gives the signatures to the sec-
ondaries: Sign(yi, yi+1) (adding an opening and a closing value 0m and 1m). Now
in order to prove non-membership for an element x /∈ R the secondary simply

5 Both VRFs and PRFs achieve this property naturally by their definitions, while we
need to modify VUFs a bit in order to get this property.



computes F (x) and finds and index i for which yi < F (x) < yi+1, proves to the
resolver that it computed F (x) honestly and sends the signature Sign(yi, yi+1).
The resolver is convinced after verifying that F (x) was computed correctly and
that its value is truly in between two values of the set R, precomputed by the
primary (i.e. it verifies that yi < F (x) < yi+1).

This construction leaks the size of the set R and can be instantiated using
different implementations for the function F , thus resulting in different efficiency
and PSR systems which are based on different cryptographic assumptions. The
VRF and VUF constructions are non-interactive and can be implemented using
the constructions of [22,8,1,25] (VRF) and [16,25] (VUF) in the standard model.
As a PRF with interactive ZK proofs we suggest the Naor-Reongold PRF [32].
In the random oracle model we can get very efficient implementations by using
functions comprised of the BLS signature scheme [7] and random oracles or the
NSEC5 construction suggested in our companion paper [19].

6 Conclusions and Future Directions

We introduced PSR systems and presented three general strategies for construct-
ing them, with different implementations for the underlying primitives. Our focus
in this paper was on trying to find efficient constructions, based on solid cryp-
tographic assumptions. A construction can be measured by a few standards:
efficiency, the underlying cryptographic assumptions and the ZK requirement
(for which f does the f -ZK requirement hold and whether it is computational,
statistical or perfect ZK). There is no clear overall winner that dominates in all
criteria.

If the (null f) ZK property is critical (e.g. in case the primary does not want
to reveal the size of the set), then the HIBE construction (Section 4) and the
signature based PSR (Section 5.1) both achieve perfect f -ZK, where f is the
null function. Both schemes are one-round PSRs and hence they are also secure
in a concurrent setting (as proved in Theorem 2). The rest of the constructions
reveal the size of the set R and do not achieve perfect ZK. The HIBE construc-
tion by Boneh et al. is efficient (Section 4.4), as secondaries and resolvers use
only O(log |U |) group multiplications and a constant number of pairing com-
putations and modular exponentiations for their computations. It is based on
the O(log |U |)-weak decisional Bilinear Diffie-Hellman Inversion assumption6 (`-
wBDHI, see definition in [6]). The downside for this scheme is the computational

load on the primary, which has to compute keys for O(|R| log |U ||R| ) nodes, which

may result in superlinear time for generating the scheme’s keys, but at least it
is only executed once.

6 Boneh et al. prove this assumption holds in the generic group model [42]. This means
that using generic algorithms (ones that don’t exploit any special properties of the
group elements’ encodings), one cannot construct a polynomial time algorithm to
break the assumption, which is an encouraging result towards using this assumption.



Our cuckoo hash based PSR construction (Section 5.2) offers both an ap-
pealing technique and an efficient implementation, based on very solid and well
studied cryptographic assumptions: factoring and the discrete logarithm (defined
in the original papers [15] and [37] respectively). If the security of the PSR is the
most important thing for its users (e.g. a database containing top secret informa-
tion), it makes sense to use the cuckoo hashing construction as it is based on two
very well studied assumptions and has the statistical ZK property, which gives
us everlasting privacy (see Remark 2). This technique’s efficiency depends on the
implementations of the commitment scheme and the fixed set non-membership,
which using the implementations we suggest (see full version of the paper for
exact details [34]) results in the resolvers and secondaries doing a constant num-
ber of modular exponentiations and O(log |U |) modular multiplications, which
is about as efficient as the HIBE construction asymptotically.

Our PSR based on random looking functions (Section 5.3) reveals the size
of the set R, but has the potential of being very efficient if we can construct
a VRF/VUF which is both efficient and secure. We would like to use such a
function which is secure for large domains but can be evaluated and verified with,
say, a constant number of operations ([13] is that efficient but lacks security),
as secondaries only have to evaluate the function on the queried element and
generate its proof, while the resolvers verify the value and one signature. We note
that the four secure VRFs [22,8,1,25] are not a lot less efficient than the HIBE
construction. If we can implement an efficient division intractable hashing family
then we can use the GHR signature scheme [16] to implement the random looking
function, which is highly efficient, as computing and verifying each value requires
one hash computation and one modular exponentiation. These constructions
also have the added advantage of being non-interactive, which also makes them
concurrently secure.

If one is willing to live with random oracles, then this technique yields very
efficient PSR systems. Both the BLS signature scheme [7] based PSR and the
NSEC5 construction described in our companion paper [19] are very efficient,
while the first relies on a gap Diffie-Hellman group (see definition in the original
paper [7]) and the latter on the RSA hardness assumption (see definition in [19]).

The implementations proposed are fairly efficient, but undoubtedly it is pos-
sible to optimize them or come up with other ones. In terms of readiness to
deployment, i.e. whether the implementations are mature, then probably HIBE
is the best bet unless one is willing to trust random oracles in which case both
the BLS and NSEC5 schemes are good.
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