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Abstract. Recently, the problem of privacy amplification with an active
adversary has received a lot of attention. Given a shared n-bit weak ran-
dom source X with min-entropy k and a security parameter s, the main
goal is to construct an explicit 2-round privacy amplification protocol
that achieves entropy loss O(s). Dodis and Wichs [1] showed that opti-
mal protocols can be achieved by constructing explicit non-malleable ex-
tractors. However, the best known explicit non-malleable extractor only
achieves k = 0.49n [2] and evidence in [2] suggests that constructing ex-
plicit non-malleable extractors for smaller min-entropy may be hard. In
an alternative approach, Li [3] introduced the notion of a non-malleable
condenser and showed that explicit non-malleable condensers also give
optimal privacy amplification protocols.
In this paper, we give the first construction of non-malleable condensers
for arbitrary min-entropy. Using our construction, we obtain a 2-round
privacy amplification protocol with optimal entropy loss for security pa-
rameter up to s = Ω(

√
k). This is the first protocol that simultaneously

achieves optimal round complexity and optimal entropy loss for arbi-
trary min-entropy k. We also generalize this result to obtain a protocol
that runs in O(s/

√
k) rounds with optimal entropy loss, for security pa-

rameter up to s = Ω(k). This significantly improves the protocol in [4].
Finally, we give a better non-malleable condenser for linear min-entropy,
and in this case obtain a 2-round protocol with optimal entropy loss for
security parameter up to s = Ω(k), which improves the entropy loss and
communication complexity of the protocol in [2].
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1 Introduction

Modern cryptographic applications rely heavily on the use of randomness. In-
deed, true randomness are provably necessary and key ingredients in even basic

? Most work was done while the author was a Simons postdoctoral fellow at University
of Washington.
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tasks such as bit commitment and encryption. However, most of these appli-
cations require uniform random bits, yet real world random sources are rarely
uniformly distributed. In addition, even initially uniform secret keys could be
damaged by side channel attacks of an adversary. Naturally, the random sources
we can use become imperfect, and it is therefore important to study how to
run cryptographic applications using imperfect randomness. In [5], Dodis et.
al showed that even slightly imperfect random sources cannot be used directly
in many important cryptographic applications, thus we have to find a way to
convert the imperfect random sources into nearly uniform random bits first.

In this general context, Bennett, Brassard, and Robert [6] introduced the
basic cryptographic question of privacy amplification. The setting is as follows.
Consider the simple model where two parties (Alice and Bob) share an n-bit se-
cret key X, which is weakly random. They also have access to local (non-shared)
uniform private random bits and share a public channel which is monitored by
an adversary Eve. The goal now is for Alice and Bob to communicate over the
channel to transform X into a nearly uniform secret key, so that Eve has negligi-
ble information about it. To measure the randomness in X, we use the standard
min-entropy.

Definition 1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy
rate H∞(X)/n.

This problem arises naturally in several situations when two parties want
to communicate with each other secretly (e.g., one-time pad). We note that
shared randomness is an important resource and is often harder to obtain than
local randomness. More importantly the quality of shared randomness generally
may be much weaker than local randomness, thus it makes sense in the privacy
amplification problem to assume that the parties have local uniform random bits
and try to boost the quality of the shared weak random source.

Following [6], we assume the adversary Eve has unlimited computational
power. If Eve is passive (i.e., can only see the messages but cannot change them),
then this problem can be solved by using a well-studied combinatorial object
called “strong extractor”.

Notation. We let [s] denote the set {1, 2, . . . , s}. For ` a positive integer, U`
denotes the uniform distribution on {0, 1}`, and for S a set, US denotes the
uniform distribution on S. When used as a component in a vector, each U` or
US is assumed independent of the other components.

Definition 2 (statistical distance). Let W and Z be two distributions on a
set S. Their statistical distance (variation distance) is

∆(W,Z) =: max
T⊆S

(|W (T )− Z(T )|) =
1

2

∑
s∈S
|W (s)− Z(s)|.



Non-Malleable Condensers and Privacy Amplification 3

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution
D on a set S and a function h : S → T , let h(D) denote the distribution on T
induced by choosing x according to D and outputting h(x).

Definition 3. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-
extractor if for every source X with min-entropy k and independent Y which is
uniform on {0, 1}d,

(Ext(X,Y ), Y ) ≈ε (Um, Y ).

Suppose we have a strong extractor Ext, we can then have Alice sample a
fresh random string Y from her local random bits and send it to Bob. They
then both compute R = Ext(X,Y ). Since Eve only sees Y , the property of the
strong extractor guarantees that the output is close to uniform even given this
information.

However, if Eve is active (i.e., can arbitrarily change, delete and reorder
messages), then the problem becomes much harder and the above simple solution
fails. In this case, while one can show the task is still possible, the main goal
is to try to use as few rounds as possible, and achieve a secret nearly uniform
random string R that has length as close to H∞(X) as possible. There has been
a lot of effort in trying to achieve optimal parameters [7, 8, 1, 9, 10, 4, 11, 12, 3, 2].
More specifically, [7] gave the first non-trivial protocol which takes one-round
and works when the entropy rate of X is bigger than 2/3. [8] later improved
this to work for entropy rate bigger than 1/2, yet both these results suffer from
the drawback that the final secret key R is significantly shorter than the min-
entropy of X. [1] showed that it is impossible to construct one-round protocol for
if the entropy rate of X is less than 1/2. Moreover, one can show that the final
output R has to be at least O(s) shorter than H∞(X), where s is the security
parameter of the protocol (A protocol has security parameter s if Eve cannot
predict with advantage more than 2−s over random. When Eve is active, we also
require that Eve cannot make Alice and Bob output different secrets and not
abort with probability more than 2−s.). This difference is call the entropy loss
of the protocol. Thus in general the optimal protocol should take 2 rounds and
have entropy loss O(s).

The first protocol which works for entropy rate below 1/2 appeared in [9],
which was simplified by [10] and shown to run in O(s) rounds and achieve entropy
loss O(s2). [1] improved the number of rounds to 2 but the entropy loss remains
O(s2). [4] improved the entropy loss to O(s) but the number of rounds increases
to O(s). The natural open question is therefore whether there is an explicit 2-
round protocol with entropy loss O(s). In the special case where X has entropy
rate bigger than 1/2, [11, 12, 3] gave 2-round protocols with entropy lossO(s). For
any constant 0 < δ < 1, [11] also gave a protocol for the case whereX has entropy
rate δ, which runs in poly(1/δ) rounds with entropy loss poly(1/δ)s = O(s).
Recently, [2] gave an improved protocol for the case of entropy rate δ, which
runs in 2 rounds and achieves optimal entropy loss 2poly(1/δ)s = O(s), although
the hidden constant can be quite large.
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In [1], Dodis and Wichs introduced the notion of a “non-malleable extrac-
tor” and showed that such an object can be used to construct 2-round privacy
amplification protocols with optimal entropy loss.

Definition 4. 1 A function nmExt : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-
non-malleable extractor if, for any source X with H∞(X) ≥ k and any function
A : {0, 1}d → {0, 1}d such that A(y) 6= y for all y, the following holds. When Y
is chosen uniformly from {0, 1}d and independent of X,

(nmExt(X,Y ), nmExt(X,A(Y )), Y ) ≈ε (Um, nmExt(X,A(Y )), Y ).

Dodis and Wichs showed that non-malleable extractors exist when k >
2m + 3 log(1/ε) + log d + 9 and d > log(n − k + 1) + 2 log(1/ε) + 7. However,
they only constructed weaker forms of non-malleable extractors. The first ex-
plicit construction of non-malleable extractors appeared in [11], which works for
entropy k > n/2. Later, various improvements appeared in [12, 3, 13]. However,
the entropy requirement remains k > n/2. Recently, Li [2] gave the first explicit
non-malleable extractor that breaks this barrier, which works for k = (1/2− δ)n
for some constant δ > 0. [2] also showed a connection between non-malleable
extractors and two-source extractors, which suggests that constructing explicit
non-malleable extractors for smaller entropy may be hard.

Given the above background, an alternative approach seems promising. This
is the notion of a non-malleable condenser introduced in [3]. While a non-
malleable extractor requires the output to be close to uniform, a non-malleable
condenser only requires the output to have enough min-entropy.

Definition 5. [2] A (k, k′, ε) non-malleable condenser is a function nmCond :
{0, 1}n×{0, 1}d → {0, 1}m such that given any (n, k)-source X, an independent
uniform seed Y ∈ {0, 1}d, and any (deterministic) function A : {0, 1}d → {0, 1}d
such that ∀y,A(y) 6= y, we have that with probability 1 − ε over the fixing of
Y = y,

Pr
z′←nmCond(X,A(y))

[nmCond(X, y)|nmCond(X,A(y))=z′ is ε−close to an (m, k′) source] ≥ 1−ε.

As can be seen from the definition, a non-malleable condenser is a strict
relaxation of a non-malleable extractor and thus it may be easier to construct.
In [3], Li showed that non-malleable condensers can also be used to construct
2-round privacy amplification protocols with optimal entropy loss. Thus to give
optimal privacy amplification protocols for smaller min-entropy, one can hope
to first construct explicit non-malleable condensers for smaller min-entropy.

1 Following [11], we define worst case non-malleable extractors, which is slightly dif-
ferent from the original definition of average case non-malleable extractors in [1].
However, the two definitions are essentially equivalent up to a small change of pa-
rameters.
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1.1 Our results

In this paper, we indeed succeed in the above approach. We construct explicit
non-malleable condensers for essentially any min-entropy. Our first theorem is
as follows.

Theorem 1. There exists a constant C > 0 such that for any n, k ∈ N and s > 0
with k ≥ C(log n + s)2, there is an explicit (k, s, 2−s)-non-malleable condenser
with seed length
d = O(log n+ s)2 and output length m = O(log n+ s)2.

Combining this theorem with the protocol in [3], we immediately obtain a
2-round privacy amplification protocol with optimal entropy loss for any security
parameter up to Ω(

√
k). This is the first explicit protocol that simultaneously

achieves optimal parameters in both round complexity and entropy loss, for
arbitrary min-entropy.

Theorem 2. There exists a constant C such that for any ε > 0 with k ≥
C(log n + log(1/ε))2, there exists an explicit 2-round privacy amplification pro-
tocol for (n, k) sources with security parameter log(1/ε), entropy loss O(log n+
log(1/ε)) and communication complexity O(log n+ log(1/ε))2.

We note that except the protocol in [4], all previous results that work for
arbitrary min-entropy k only achieve security parameter up to s = Ω(

√
k) like

our protocol and all of them have entropy loss Ω(s2). In this paper, we finally
manage to reduce the entropy loss to O(s). Thus, for this range of security pa-
rameter, ignoring the communication complexity, we essentially obtain optimal
privacy amplification protocols.

For the special case where k = δn for some constant 0 < δ < 1, we can do
better. Here we have the following theorem.

Theorem 3. For any constant 0 < δ < 1 and k = δn there exists a constant
C = 2poly(1/δ) such that given any 0 < s ≤ k/C, there is an explicit (k, s, 2−s)-
non-malleable condenser with seed length d = poly(1/δ)(log n + s) and output
length m = 2poly(1/δ)(log n+ s).

Combined with the protocol in [3], this theorem yields:

Theorem 4. There exists an absolute constant C0 > 1 such that for any con-
stant 0 < δ < 1 and k = δn there exists a constant C1 = 2poly(1/δ) such that given
any ε > 0 with C1 log(1/ε) ≤ k, there exists an explicit 2-round privacy amplifi-
cation protocol for (n, k) sources with security parameter log(1/ε), entropy loss
C0(log n+ log(1/ε)) and communication complexity poly(1/δ)(log n+ log(1/ε)).

Note that for security parameter s, the 2-round protocol for k = δn in [2]
has entropy loss 2poly(1/δ)s and communication complexity 2poly(1/δ)s. Here, we
improve the entropy loss to C0s for an absolute constant C0 > 1 and the com-
munication complexity to poly(1/δ)s.

Finally, one can ask what if for arbitrary min-entropy k, we want to achieve
security parameter bigger than

√
k, as in [4]. Using our techniques combined

with some techniques from [4], we obtain the following theorem.
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Theorem 5. There exists a constant C > 1 such that for any n, k ∈ N with
k ≥ log4 n and any ε > 0 with k ≥ C(log(1/ε)) there exists an explicit O((log n+
log(1/ε))/

√
k) round privacy amplification protocol for (n, k) sources with secu-

rity parameter log(1/ε), entropy loss O(log n + log(1/ε)) and communication
complexity O((log n+ log(1/ε))

√
k).

Thus, we can essentially achieve security parameter up to s = Ω(k) with
optimal entropy loss, at the price of increasing the number of rounds to O(s/

√
k).

Note that the protocol in [4], though also achieving optimal entropy loss, runs
in Ω(s) rounds. Thus our protocol improves their round complexity by a

√
k

factor. For large k this is a huge improvement, especially in practice.

Table 1 summarizes our results compared to some previous results, assuming
the security parameter is s.

Construction Entropy of X Security parameter Rounds Entropy loss

Optimal
non-explicit

k > logn s ≤ Ω(k) 2 Θ(s+ logn)

[7] k > 2n/3 s = Θ(k) 1 (n− k)

[8] k > n/2 s = Θ(k) 1 (n− k)

[9, 10] k ≥ polylog(n) s ≤ Ω(
√
k) Θ(s+ logn) Θ((s+ logn)2)

[1] k ≥ polylog(n) s ≤ Ω(
√
k) 2 Θ((s+ logn)2)

[4] k ≥ polylog(n) s ≤ Ω(k) Θ(s+ logn) Θ(s+ logn)

[11] k ≥ δn s ≤ k/poly(1/δ) poly(1/δ) poly(1/δ)(s+ logn)

[2] k ≥ δn s ≤ k/2poly(1/δ) 2 2poly(1/δ)(s+ logn)

This work k ≥ polylog(n) s ≤ Ω(
√
k) 2 Θ(s+ logn)

This work k ≥ polylog(n) s ≤ Ω(k) Θ((s+ logn)/
√
k) Θ(s+ logn)

This work k ≥ δn s ≤ k/2poly(1/δ) 2 Θ(s+ logn)
Table 1. Summary of Results on Privacy Amplification with an Active Ad-
versary

Subsequent Work. After the first version of this paper appeared online, Ag-
garwal et. al [14] made several improvements to our protocols to make them
satisfy further security properties, such as post-application robustness and source
privacy, at the cost of one or two extra rounds. In addition, they also applied
techniques in our paper to the case of local computability and Bounded Retrieval
Model [15, 16].

2 Overview of The Constructions and Techniques

Here we give an informal overview of our constructions and the technique used.
To give a clear description, we shall be imprecise sometimes.
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2.1 Non-malleable condenser for arbitrary min-entropy

For an (n, k) source X, our non-malleable condenser uses a uniform seed Y =
(Y1, Y2), where Y2 has a bigger size than Y1, say |Y1| = d and |Y2| = 10d.
Consider now any function A(Y ) = Y ′ = (Y ′1 , Y

′
2). In the following we will use

letters with prime to denote variables produced with Y ′. Since Y ′ 6= Y , we have
two cases: Y1 = Y ′1 or Y1 6= Y ′1 . The output of our non-malleable condenser
will be Z = nmCond(X,Y ) = (V1, V2). Intuitively, V1 handles the case where
Y1 = Y ′1 and V2 handles the case where Y1 6= Y ′1 . We now describe the two cases
separately.

If Y1 = Y ′1 , then we take a strong extractor Ext and compute W = Ext(X,Y1).
Note that W ′ = Ext(X,Y ′1) = W since Y1 = Y ′1 . Note that Y ′ 6= Y , thus we must
have Y ′2 6= Y2. We now fix Y1 (and Y ′1). Note that conditioned on this fixing,
W = W ′ is still (close to) uniform since Ext is a strong extractor, and now Y ′2
is a deterministic function of Y2. At this point, we can take any non-malleable
extractor nmExt from [11, 12, 3] and compute V1 = nmExt(W,Y2). Since W is
uniform, by the property of the non-malleable extractor we have that V1 is
(close to) uniform even conditioned on the fixing of V ′1 and (Y2, Y

′
2). Now let the

size of V1 be bigger than the size of V2, say |V1| ≥ |V2| + s. Thus the further
conditioning on the fixing of V ′2 will still leave V1 with entropy roughly s. This
takes care of our first case.

If Y1 6= Y ′1 , then we first fix (Y1, Y
′
1). Note that fixing Y ′1 may cause Y2 to

lose entropy. However, since |Y2| = 10|Y1|, conditioned on this fixing Y2 still has
entropy rate roughly 9/10, and now Y ′2 is a deterministic function of Y2. We
further fix W ′ = Ext(X,Y ′1), which is now a deterministic function of X. As long
as the entropy of X is larger than the size of W , conditioned on this fixing X still
has a lot of entropy. Note that after these fixings X and Y2 are still independent.
Now, we use X and Y2 to perform an alternating extraction protocol. Specifically,
take the first 3d bits of Y2 to be S0, we compute the following random variables:
R0 = Raz(S0, X), S1 = Ext(Y2, R0), R1 = Ext(X,S1), S2 = Ext(Y2, R1), R2 =
Ext(X,S2), · · · , St = Ext(Y2, Rt−1), Rt = Ext(X,St). Here Raz is the strong two
source extractor in [17], which works as long as the first source has entropy rate
> 1/2, and Ext is a strong extractor. We take t = 4d and let each Ri output s
bits. Note that in the first step S0 roughly has entropy rate 2/3, thus we need
to use the two-source extractor Raz. In all subsequent steps Si, Ri are (close to)
uniform, thus it suffices to use a strong extractor. The alternating extraction
protocol is shown in Figure 1.

In the above alternating extraction protocol, as long as the size of each
(Si, Ri) is relatively small, one can show that for any j, Rj is (close to) uni-
form conditioned on {Ri, R′i, i < j} and (Y2, Y

′
2) (recall {R′j} are the random

variables produced by Y ′2 instead of Y2). The intuitive reason is that in each
step X still has enough entropy conditioned on all previous random variables
produced, and we use a strong extractor which guarantees that the output is
uniform even conditioned on the seed. Next, we borrow some ideas from [1].
Specifically, there they showed an efficient map f from a string with d bits to
a subset of [4d], such that for any µ ∈ {0, 1}d, f(µ) has 2d elements. Moreover,
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Y2, S0 X

S0

S0

−−−−−−−−−−−−−−→
R0

←−−−−−−−−−−−−−− R0 = Raz(S0, X)

S1 = Ext(Y2, R0)
S1

−−−−−−−−−−−−−−→
R1

←−−−−−−−−−−−−−− R1 = Ext(X,S1)

S2 = Ext(Y2, R1)
S2

−−−−−−−−−−−−−−→
R2

←−−−−−−−−−−−−−− R2 = Ext(X,S2)

· · ·

St = Ext(Y2, Rt−1)
St

−−−−−−−−−−−−−−→
Rt = Ext(X,St)

Fig. 1. Alternating Extraction.

for any µ 6= µ′, there exists a j ∈ [4d] such that |f(µ)≥j | > |f(µ′)≥j |, where
f(µ)≥j denotes the subset of f(µ) which contains all the elements ≥ j. Now,
let R = (R1, · · · , Rt) be the t random variables Ri produced in the above alter-
nating extraction protocol. As in [1], we define a “look-ahead” MAC (message
authentication code) laMAC that uses R as the key. For any µ ∈ {0, 1}d, we
define laMACR(µ) = {Ri}i∈f(µ). Now our V2 is computed as V2 = laMACR(Y1).

Note that since we have fixed (Y1, Y
′
1), we can now view them as two different

strings in {0, 1}d. Thus, there exists a j ∈ [4d] such that |f(Y1)≥j | > |f(Y ′1)≥j |.
We will now show that V2 has entropy at least s conditioned on V ′2 . To show this,
let R̄ be the concatenation of those Ris in f(Y1)≥j and R̄′ be the concatenation
of those R′is in f(Y ′1)≥j , then the size of R̄ is bigger than the size of R̄′ by at
least s. Moreover, R̄ is (close to) uniform conditioned on the fixing of {R′i, i < j}
and (Y2, Y

′
2). Thus R̄ roughly has entropy s even conditioned on the fixing of

(R̄′, {R′i, i < j}) and (Y2, Y
′
2), which also determines V ′2 . Since R̄ is part of V2,

we have that V2 has entropy at least s conditioned on V ′2 . Since we have fixed W ′

before, V ′1 = nmExt(W ′, Y ′2) is also fixed. Thus we have that Z = (V1, V2) has
entropy roughly s even conditioned on the fixing of Z ′ = (V ′1 , V

′
2) and (Y2, Y

′
2).

This takes care of our second case.

Thus, we obtain a non-malleable condenser for any min-entropy. However,
since in the alternating extraction protocol each Ri outputs s bits, and we need
d = Ω(s) to achieve error 2−s, the entropy of X has to be larger than 4ds =
Ω(s2). Thus we can only achieve s up to Ω(

√
k).
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2.2 Privacy amplification protocol

Combined with the techniques in [2], our non-malleable condenser immediately
gives a 2-round privacy amplification protocol with optimal entropy loss for any
min-entropy, with security parameter s up to Ω(

√
k). To better illustrate the key

idea, we also give a slightly simpler 2-round protocol with optimal entropy loss,
without using the non-malleable condenser. Assuming the security parameter we
want to achieve is s, we now describe the protocol below.

In the first round, Alice samples 3 random strings (Y1, Y2, Y3) from her local
random bits and sends them to Bob, where Bob receives (Y ′1 , Y

′
2 , Y

′
3). We let

|Y1| = d, |Y2| = 10d, |Y3| = 50d. Take a strong extractor Ext, now Alice and
Bob each computes R1 = Ext(X,Y1) and R′1 = Ext(X,Y ′1) respectively. Let
R1, R

′
1 each output 4s bits. Next, Alice and Bob each uses (X,Y2) and (X,Y ′2)

to perform the alternating extraction protocol we described above, where they
compute R2 = (R21, · · · , R2t) and R′2 = (R′21, · · · , R′2t) respectively, with t =
4d. Finally, using R2 and R′2 as the key, they compute Z = laMACR2(Y1) and
Z ′ = laMACR′2(Y ′1) respectively as described before.

In the second round, Bob samples a random string W ′ from his local random
bits and sends it to Alice, where Alice receives W . Together with W ′, Bob also
sends two tags (T ′1, T

′
2), where Alice receives (T1, T2). For T ′1, Bob takes the two-

source extractor Raz and computes T ′1 = Raz(Y ′3 , Z
′). Let T ′1 output s bits. For

T ′2, Bob takes a standard message authentication code (MAC) and computes
T ′2 = MACR′1(W ′), where R′1 is used as the key to authenticate the message
W ′. Bob then computes RB = Ext(X,W ′) as the final output. When receiving
(W,T1, T2), Alice will check whether T1 = Raz(Y3, Z) and T2 = MACR1(W ).
If either test fails, Alice rejects and aborts. Otherwise Alice computes RA =
Ext(X,W ) as the final output. The protocol is shown in Figure 2.

As before, the analysis can be divided into two cases: Y1 = Y ′1 and Y1 6= Y ′1 .
In the first case, we have R1 = R′1 and is (close to) uniform and private. Thus
R1 can be used in the MAC to authenticate W ′ to Alice. The MAC works by
the property that if Eve changes W ′ to a different W , then with high probability
Even cannot produce the correct tag T2 = MACR1

(W ) even given T ′2. This works
except that here Eve also has additional information from T ′1. However, although
T ′1 may give some information about the MAC key R1, note that R1 has size 4s
and T ′1 has size s. Thus even conditioned on T ′1, R1 has entropy roughly 3s. We
note that the MAC works as long as the entropy rate of R1 is bigger than 1/2.
Thus in this case Bob can indeed authenticate W ′ to Alice and they will agree
on a uniform and private final output.

In the second case, again we can first fix (Y1, Y
′
1) and R′1. As before we

have that after this fixing, Y2 still has entropy rate roughly 9/10, X still has a
lot of entropy, and X is independent of (Y2, Y3). Now we can view (Y1, Y

′
1) as

two different strings and by the same analysis before, Z roughly has entropy
s conditioned on the fixing of Z ′ and (Y2, Y

′
2). Note that after this fixing Y3

still has entropy rate > 1/2, and Y ′3 is a deterministic function of Y3. Since Raz
is a strong two-source extractor, we have that Raz(Y3, Z) is (close to) uniform
even given (Y ′3 , Z

′, R′1,W
′), which also determines (T ′1, T

′
2). Thus, in this case
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Alice: X Eve: E Bob: X

Sample random Y = (Y1, Y2, Y3).
Compute R2 = (R21, · · · , R2t)
by alternating extraction of (X,Y2).
Z = laMACR2(Y1).
R1 = Ext(X,Y1) and output 4s bits.

(Y1, Y2, Y3)
−−−−−−−→

(Y ′1 , Y
′
2 , Y

′
3 )

Sample random W ′ with d bits.
Compute R′2 = (R′21, · · · , R′2t)
by alternating extraction of (X,Y ′2 ).
Z′ = laMACR′2(Y ′1 ).

R′1 = Ext(X,Y ′1 ) and output 4s bits.
T ′1 = Raz(Y ′3 , Z

′) with s bits,
T ′2 = MACR′1(W ′).

Set final RB = Ext(X,W ′).
(W ′, T ′1, T

′
2)

←−−−−−−−
(W,T1, T2)

If T1 6= Raz(Y3, Z) or
T2 6= MACR1(W ) reject.
Set final RA = Ext(X,W ).

Fig. 2. 2-round Privacy Amplification Protocol.

Alice will reject with probability 1− 2−s, since the probability that Eve guesses
Raz(Y3, Z) correctly is at most 2−s.

We note that our protocol shares some similarities with the 2-round protocol
in [1], as they both use the alternating extraction protocol and the “look-ahead”
MAC. However, there is one important difference. The protocol in [1] uses the
look-ahead MAC to authenticate the string W ′ that Bob sends to Alice in the
second round. The look-ahead MAC has size Ω(s2) and is revealed in the second
round, which causes an entropy loss of Ω(s2). Our protocol, on the other hand,
uses the look-ahead MAC to authenticate the string Y1 that Alice sends to Bob
in the first round. Although in the protocol we do compute some variables that
have size Ω(s2) (namely (Z,Z ′)), they are computed locally by Alice and Bob,
and are never revealed in the protocol to Eve. Instead, what is revealed to Eve
is T ′1 = Raz(Y ′3 , Z

′), which only has size O(s). In other words, in the case where
Y1 6= Y ′1 , since we know that Z has entropy s conditioned on Z ′, we can apply
another extractor Raz to Z and Z ′ respectively, such that the resulting variable
T ′1 only has size O(s) and Raz(Y3, Z) is (close to) uniform conditioned on T ′1.
This is enough for the purpose of authentication, while bringing the entropy loss
down to O(s).
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One might think that the same trick can also be applied to the protocol in
[1] directly. However, this is not the case. The reason is that conditioned on
(Y, Y ′), all the random variables in our protocol that are used to authenticate
W ′ are (R1, T1, R

′
1, T

′
1), which are deterministic functions of X and have size

O(s). Thus in the case where Bob successfully authenticates W ′ to Alice, we can
fix them and conditioned on the fixing, X and W are still independent so we can
apply a strong extractor to obtain the final output Ext(X,W ). This results in a
protocol with optimal entropy loss. In the protocol in [1], conditioned on (Y, Y ′),
the random variables that are used to authenticate W ′ include the output of the
look-ahead extractor, which has size Ω(s2). Thus conditioning on this random
variable will cause X to lose entropy Ω(s2). On the other hand, we cannot simply
apply another extractor to this MAC to reduce the output size; since then the
output will be a function of W and X, and thus conditioned on the fixing of it,
W and X will no longer be independent.

We now describe our protocol for security parameter s >
√
k. The very

high level strategy is as follows. At the beginning of the protocol, Alice sam-
ples a random string Y from her local random bits with d1 = O(s) bits and
sends it to Bob, where Bob receives Y ′. They each compute R = Ext(X,Y ) and
R′ = Ext(X,Y ′) respectively, by using a strong extractor Ext. At the end of the
protocol, Bob samples a random string W ′ from his local random bits with d1

bits and sends it to Alice, together with a tag T = MACR′(W
′). Alice receives

(W,T ). Bob will compute RB = Ext(X,W ′) as his final output and Alice will
check if T = MACR(W ). If the test fails then Alice rejects. Otherwise she will
compute RA = Ext(X,W ) as her final output. In the case where Y = Y ′, again
we will have that R = R′ and is uniform and private. Thus in this case Bob can
authenticate W ′ to Alice by using a MAC and R′ as the key. We will now modify
the protocol to ensure that if Y 6= Y ′, then with probability 1− 2−s either Alice
or Bob will reject.

If s <
√
k then we can use our 2-round protocol described above. However,

we want to achieve s >
√
k and X does not have enough entropy for the 2-

round protocol. On the other hand, we note that we can still use the 2-round
protocol to authenticate a substring of Y with s′ = Θ(

√
k) bits to Bob, such

that if Eve changes this string, then with probability 1 − 2−s
′

Alice will reject.
The key observation now is that after running this 2-round protocol, conditioned
on the transcript revealed to Eve, X only loses O(s′) entropy. Thus X still has
entropy k − O(

√
k) in Eve’s view. Therefore, we can run the 2-round protocol

again, using fresh random strings sampled from Alice and Bob’s local random
bits. This will authenticate another substring of Y with s′ = Θ(

√
k) bits to Bob.

As long as X has enough entropy, we can keep doing this and it will take us
O(s/

√
k) rounds to authenticate the entire Y to Bob, while the entropy loss is

O(s′)O(s/
√
k) = O(s). Thus as long as k ≥ Cs for a sufficiently large constant

C, the above approach will work.

However, the simple idea described above is not enough. The reason is that
to change Y , Eve only needs to change one substring, and she can succeed with
probability 2−s

′
>> 2−s. To fix this, we modify the protocol to ensure that, if
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Eve changes Y to Y ′ 6= Y , then she has to change Ω(s/
√
k) substrings, i.e., a

constant fraction of the substrings. This is where we borrow some ideas from [4].
Specifically, instead of having Alice just authenticate substrings of Y to Bob, we
will use an asymptotically good code for edit errors and have Alice authenticate
substrings of the encoding of Y to Bob. More specifically, let M = Edit(Y )
be the encoding of Y , which has size O(d1). At the beginning of the protocol,
Alice will send Y to Bob, where Bob receives Y ′. Next, our protocol will run
in L = O(s/

√
k) phases, with each phase consisting of two rounds. In phase i,

Alice will send the i’th substring Mi of M to Bob, where Mi has d2 = Θ(
√
k)

bits. In the first round of phase i, Alice samples two random strings (Yi2, Yi3)
from her local random bits and sends them to Bob, together with Mi. Bob
receives (M ′i , Y

′
i2, Y

′
i3). We will let |Yi3| ≥ 10|Yi2|. As in the previous 2-round

protocol, Alice will use X and Yi2 to perform an alternating extraction protocol,
where she computes Ri = (Ri1, · · · , Rit) with t = 4d2 and Zi = laMACRi

(Mi),
where laMAC is the look-ahead MAC described before. Correspondingly, Bob
will compute R′i and Z ′i = laMACR′i(M

′
i), using X and Y ′i2. In the second round,

Bob will send T ′i = Raz(Y ′i3, Z
′
i) to Alice, where Alice receives Ti. Alice will now

check if Ti = Raz(Yi3, Zi) and she rejects if the test fails. By the same analysis
of the 2-round protocol, if Eve changes the substring Mi to M ′i 6= Mi, then with

probability 1− 2−Ω(
√
k) Alice will reject.

One problem of the above approach is that Eve can first delay messages
from Alice, send fake messages to Bob to get responses that contain additional
information, and then resume execution with Alice. To avoid this problem, we
need to synchronize between Alice and Bob. To achieve this, in the second round
of phase i, we will also have Bob sample a fresh random string W ′i from his
local random bits and send it as a challenge to Alice, together with T ′i . Alice
will receive (Wi, Ti). Now if Alice does not reject, then she will also compute a
response Vi = Ext(X,Wi) and send it back to Bob in the first round of phase
i + 1. Bob will receive V ′i and then check if V ′i = Ext(X,W ′i ). If the test fails
then he rejects. Otherwise he proceeds as before. At the end of the protocol, Bob
will first check if the received codeword M ′ = M ′1 ◦ · · · ◦M ′L is indeed equal to
Edit(Y ′). If the test fails he rejects. Otherwise he proceeds as before. This gives
our whole protocol. The formal protocol appears in Section 6, Figure ??.

For the analysis, by the property of the code, if Eve wants to change M =
Edit(Y ) to M ′ = Edit(Y ′) with Y ′ 6= Y , then she has to make Ω(d1) edit opera-
tions (insertion, deletion or altering). Since changing one substring costs at most√
k edit operations, Eve has to change at least Ω(s/

√
k) substrings. As in [4], we

then show that as long as X has an extra entropy of O(s), for a constant fraction
of these changes, conditioned on the event that Eve has successfully made all
previous changes, the probability that Eve can make this change successfully is at

most 2−Ω(
√
k). Thus the overall probability that Eve can change M to M ′ with-

out causing either Alice or Bob to reject is at most (2−Ω(
√
k))Ω(s/

√
k) = 2−Ω(s).

The round complexity is O(s/
√
k) and the communication complexity is O(s

√
k)

since in each phase, the communication complexity is O(k).
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2.3 Non-malleable condenser for linear min-entropy

Our non-malleable condenser for linear min-entropy is similar to the construc-
tion for arbitrary min-entropy, except we use a different alternating extraction
protocol, namely that in [2]. Specifically, we will again use a seed Y = (Y1, Y2),
where |Y1| = d and |Y2| ≥ 10d. The output will also be Z = (V1, V2). For any
function A(Y ) = Y ′ = (Y ′1 , Y

′
2), we use V1 to take care of the case where Y1 = Y ′1

and use V2 to take care of the case where Y1 6= Y ′1 .
If Y1 = Y ′1 , then again we take a strong extractor Ext and compute W =

Ext(X,Y1) and V1 = nmExt(W,Y2). By the same argument before, as long as
|V1| ≥ |V2| + s, we have that V1 roughly has min-entropy s conditioned on
(V ′1 , V

′
2). This takes care of our first case.

If Y1 6= Y ′1 , then again we first fix (Y1, Y
′
1) and W ′. Conditioned on this fixing

Y2 still has entropy rate roughly 9/10, and now Y ′2 is a deterministic function of
Y2. Moreover X still has a lot of entropy (say δn for some constant δ > 0) and is
independent of Y2. Now we use the alternating extraction protocol in [2]. More
specifically, sinceX has min-entropy k = δn we can apply a somewhere condenser
in [18], [17], [19] to X and obtain X̄ = (X1, · · · , XC) with C = poly(1/δ) such
that at least one Xi has entropy rate 0.9. In [2], Li showed that as long as k ≥
2poly(1/δ)s, one can use X, X̄, Y2 to perform an alternating extraction protocol
and then use the output and Y1 to obtain V2 with size 2poly(1/δ)s, such that
whenever Y1 6= Y ′1 , V2 roughly has entropy s conditioned on the fixing of V ′2 and
(Y2, Y

′
2). Since we have fixed (Y1, Y

′
1) and W ′ before, this means that Z roughly

has entropy s conditioned on the fixing of Z ′ and (Y, Y ′).
Combined with the protocol in [3], we thus reduce the entropy loss of the

protocol in [2] to O(s) for an absolute constant O(·) and the communication
complexity to poly(1/δ)s.

Organization. in Section 3 we give the formal definition of the privacy am-
plification problem. We then give some preliminaries in Section 4 and define
alternating extraction in Section 5. We give our non-malleable condenser for
arbitrary min-entropy and the 2-round protocol in Section 6. The general multi-
round protocol and non-malleable condenser for linear min-entropy are deferred
to the full version. We conclude with some open problems in Section 7.

3 Privacy Amplification with an Active Adversary

In this section we formally define the privacy amplification problem. First we
define average conditional min-entropy.

Definition 6. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(

Ew←W

[
max
x

Pr[X = x|W = w]
])

= − log
(

Ew←W

[
2−H∞(X|W=w)

])
.
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We will follow [11] and define a privacy amplification protocol (PA, PB).
The protocol is executed by two parties Alice and Bob, who share a secret
X ∈ {0, 1}n. An active, computationally unbounded adversary Eve might have

some partial information E about X satisfying H̃∞(X|E) > k. Since Eve is
unbounded, we can assume without loss of generality that she is deterministic.

We assume that Eve has full control of the communication channel between
the two parties. This means that Eve can arbitrarily insert, delete, reorder or
modify messages sent by Alice and Bob to each other. In particular, Eve’s strat-
egy PE defines two correlated executions (PA, PE) and (PE , PB) between Alice
and Eve, and Eve and Bob, called “left execution” and “right execution”, re-
spectively. Alice and Bob are assumed to have fresh, private and independent
random bits Y and W , respectively. Y and W are not known to Eve. In the
protocol we use ⊥ as a special symbol to indicate rejection. At the end of the
left execution (PA(X,Y ), PE(E)), Alice outputs a key RA ∈ {0, 1}m∪{⊥}. Sim-
ilarly, Bob outputs a key RB ∈ {0, 1}m ∪ {⊥} at the end of the right execution
(PE(E), PB(X,W )). We let E′ denote the final view of Eve, which includes E
and the communication transcripts of both executions (PA(X,Y ), PE(E)) and
(PE(E), PB(X,W ). We can now define the security of (PA, PB).

Definition 7. An interactive protocol (PA, PB), executed by Alice and Bob on a
communication channel fully controlled by an active adversary Eve, is a (k,m, ε)-
privacy amplification protocol if it satisfies the following properties whenever
H̃∞(X|E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB ∧ RA 6=⊥ ∧ RB 6=⊥] = 1.
2. Robustness. We start by defining the notion of pre-application robustness,

which states that even if Eve is active, Pr[RA 6= RB∧ RA 6=⊥ ∧ RB 6=⊥] 6 ε.
The stronger notion of post-application robustness is defined similarly, ex-
cept Eve is additionally given the key RA the moment she completed the left
execution (PA, PE), and the key RB the moment she completed the right ex-
ecution (PE , PB). For example, if Eve completed the left execution before the
right execution, she may try to use RA to force Bob to output a different key
RB 6∈ {RA,⊥}, and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m∪{⊥}, let purify(r) be ⊥ if r =⊥, and
otherwise replace r 6=⊥ by a fresh m-bit random string Um: purify(r)← Um.
Letting E′ denote Eve’s view of the protocol, we require that

∆((RA, E
′), (purify(RA), E′)) ≤ ε and ∆((RB , E

′), (purify(RB), E′)) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random
string to Eve.

The quantity k −m is called the entropy loss and the quantity log(1/ε) is called
the security parameter of the protocol.

Remark 1. Our protocol, as well as many others in [1], [9], [10], [4], [11], [12],
[3], [2] only achieve pre-application robustness. Recently, Aggarwal et. al [14]
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gave a general transformation that can convert any privacy amplification proto-
col with pre-application robustness into another privacy amplification protocol
with post-application robustness at the cost of one extra round. Thus, using
their transformation, our protocol can be turned into a 3-round post-application
robust privacy amplification protocol with optimal entropy loss, for security pa-
rameter up to s = Ω(

√
k) (as Aggarwal et. al did in [14]); or a O(s/

√
k) round

post-application robust privacy amplification protocol with optimal entropy loss,
for security parameter up to s = Ω(k).

4 Preliminaries

We often use capital letters for random variables and corresponding small letters
for their instantiations. Let |S| denote the cardinality of the set S. All logarithms
are to the base 2.

4.1 Somewhere Random Sources, Extractors and Condensers

Definition 8 (Somewhere Random sources). A source X = (X1, · · · , Xt)
is (t × r) somewhere-random (SR-source for short) if each Xi takes values in
{0, 1}r and there is an i such that Xi is uniformly distributed.

Definition 9. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt),
such that some Xi is a k-source. A somewhere k-source is a convex combination
of elementary somewhere-k-sources.

Definition 10. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-
condenser if for every k-source X, C(X,Ud) is ε-close to some l-source. When
convenient, we call C a rate-(k/n→ l/m, ε)-condenser.

Definition 11. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-
somewhere-condenser if for every k-source X, the vector (C(X, y)y∈{0,1}d) is
ε-close to a somewhere-l-source. When convenient, we call C a rate-(k/n →
l/m, ε)-somewhere-condenser.

Definition 12. A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong
two source extractor for min-entropy k1, k2 and error ε if for every independent
(n1, k1) source X and (n2, k2) source Y ,

|(TExt(X,Y ), X)− (Um, X)| < ε

and

|(TExt(X,Y ), Y )− (Um, Y )| < ε,

where Um is the uniform distribution on m bits independent of (X,Y ).
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4.2 Average conditional min-entropy

Dodis and Wichs originally defined non-malleable extractors with respect to
average conditional min-entropy. However, this notion is essentially equivalent
to the standard (worst-case) min-entropy, up to a small loss in parameters.

Lemma 1 ([20]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥
1− 2−s.

Lemma 2 ([20]). If a random variable B has at most 2` possible values, then

H̃∞(A|B) ≥ H∞(A)− `.

To clarify which notion of min-entropy and non-malleable extractor we mean,
we use the term worst-case non-malleable extractor when we refer to our Def-
inition 4, which is with respect to traditional (worst-case) min-entropy, and
average-case non-malleable extractor to refer to he original definition of Dodis
and Wichs, which is with respect to average conditional min-entropy.

Corollary 1. A (k, ε)-average-case non-malleable extractor is a (k, ε)-worst-
case non-malleable extractor. For any s > 0, a (k, ε)-worst-case non-malleable
extractor is a (k + s, ε+ 2−s)-average-case non-malleable extractor.

Throughout the rest of our paper, when we say non-malleable extractor, we
refer to the worst-case non-malleable extractor of Definition 4.

4.3 Prerequisites from previous work

One-time message authentication codes (MACs) use a shared random key to
authenticate a message in the information-theoretic setting.

Definition 13. A function family {MACR : {0, 1}d → {0, 1}v} is a ε-secure one-
time MAC for messages of length d with tags of length v if for any w ∈ {0, 1}d
and any function (adversary) A : {0, 1}v → {0, 1}d × {0, 1}v,

Pr
R

[MACR(W ′) = T ′ ∧W ′ 6= w | (W ′, T ′) = A(MACR(w))] ≤ ε,

where R is the uniform distribution over the key space {0, 1}`.

Theorem 6 ([10]). For any message length d and tag length v, there exists an
efficient family of (ddv e2

−v)-secure MACs with key length ` = 2v. In particular,
this MAC is ε-secure when v = log d+ log(1/ε).
More generally, this MAC also enjoys the following security guarantee, even if
Eve has partial information E about its key R. Let (R,E) be any joint distribu-
tion. Then, for all attackers A1 and A2,

Pr
(R,E)

[MACR(W ′) = T ′ ∧W ′ 6= W |W = A1(E),

(W ′, T ′) = A2(MACR(W ), E)] ≤
⌈
d

v

⌉
2v−H̃∞(R|E).
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(In the special case when R ≡ U2v and independent of E, we get the original
bound.)

Remark 2. Note that the above theorem indicates that the MAC works even if
the key R has average conditional min-entropy rate > 1/2.

Sometimes it is convenient to talk about average case seeded extractors,
where the source X has average conditional min-entropy H̃∞(X|Z) ≥ k and the
output of the extractor should be uniform given Z as well. The following lemma
is proved in [20].

Lemma 3 ([20]). For any δ > 0, if Ext is a (k, ε) extractor then it is also a
(k + log(1/δ), ε+ δ) average case extractor.

Theorem 7 ([18, 17, 19]). For any constant β, δ > 0, there is an efficient
family of rate-(δ → 1 − β, ε = 2−Ω(n))-somewhere condensers Cond : {0, 1}n →
({0, 1}m)D where D = O(1) and m = Ω(n).

For a strong seeded extractor with optimal parameters, we use the following
extractor constructed in [21].

Theorem 8 ([21]). For every constant α > 0, and all positive integers n, k
and any ε > 0, there is an explicit construction of a strong (k, ε)-extractor Ext :
{0, 1}n×{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)) and m ≥ (1−α)k. It is
also a strong (k, ε) average case extractor with m ≥ (1−α)k−O(log n+log(1/ε)).

We need the following construction of strong two-source extractors in [17].

Theorem 9 ([17]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

– n1 ≥ 6 log n1 + 2 log n2

– k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

– k2 ≥ 5 log(n1 − k1)
– m ≤ δmin[n1/8, k2/40]− 1

There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1×
{0, 1}n2 → {0, 1}m for min-entropy k1, k2 with error 2−1.5m.

Theorem 10 ([11, 12, 3]). For every constant δ > 0, there exists a constant
β > 0 such that for every n, k ∈ N with k ≥ (1/2+ δ)n and ε > 2−βn there exists
an explicit (k, ε) non-malleable extractor with seed length d = O(log n+ log ε−1)
and output length m = Ω(n).

The following theorem is proved in [3].

Theorem 11 ([3]). There exists a constant C > 1 such that the following holds.
For any n, k ∈ N and ε > 0, assume that there is an explicit (k, k′, ε)-non-
malleable condenser with seed length d such that k′ ≥ C(log n+ log(1/ε)). Then
there exists an explicit 2-round privacy amplification protocol for (n, k) sources
with entropy loss O(log n+log(1/ε)) and communication complexity O(d+log n+
log(1/ε)).
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The following standard lemma about conditional min-entropy is implicit in
[22] and explicit in [7].

Lemma 4 ([7]). Let X and Y be random variables and let Y denote the range
of Y . Then for all ε > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε.

We also need the following lemma.

Lemma 5. Let (X,Y ) be a joint distribution such that X has range X and Y
has range Y. Assume that there is another random variable X ′ with the same
range as X such that |X−X ′| = ε. Then there exists a joint distribution (X ′, Y )
such that |(X,Y )− (X ′, Y )| = ε.

Proof. First let (X ′′, Y ) be the same probability distribution as (X,Y ). For
any x ∈ X , let p′′x = Pr[X ′′ = x] and p′x = Pr[X ′ = x]. For any y ∈ Y, let
py = Pr[Y = y]. Let p′′xy = Pr[X ′′ = x, Y = y]. Let W = {x ∈ X : p′′x > p′x} and
V = {x ∈ X : p′′x < p′x}. Thus we have that

∑
x∈W |p′′x−p′x| =

∑
x∈V |p′′x−p′x| = ε.

We now gradually change the probability distribution X ′′ into X ′, while
keeping the distribution Y the same, as follows. While W is not empty or V is
not empty, do the following.

1. Pick x ∈W ∪ V such that |p′′x − p′x| = min{|p′′x − p′x|, x ∈W ∪ V }.
2. If x ∈ W , we decrease Pr[X ′′ = x] to p′x. Let τ = p′′x − p′x. To ensure

this is still a probability distribution, we also pick any x̄ ∈ V and increase
Pr[X ′′ = x̄] to Pr[X ′′ = x̄] + τ . To do this, we pick the elements y ∈ Y
one by one in an arbitrary order and while τ > 0, do the following. Let
τ ′ = min(p′′xy, τ), Pr[X ′′ = x, Y = y] = Pr[X ′′ = x, Y = y] − τ ′, Pr[X ′′ =
x̄, Y = y] = Pr[X ′′ = x̄, Y = y] + τ ′ and τ = τ − τ ′. We then update the sets
{p′′x} and {p′′xy} accordingly. Note that since p′′x = τ + p′x ≥ τ , this process
will indeed end when τ = 0 and now Pr[X ′′ = x] = p′x. Note that after
this change we still have that p′′x̄ ≤ p′x̄. Also, for any y ∈ Y the probability
Pr[Y = y] remains unchanged. Finally, remove x from W and if p′′x̄ = p′x̄,
remove x̄ from V .

3. If x ∈ V , we increase Pr[X ′′ = x] to p′x. Let τ = p′x − p′′x. To ensure that
X ′′ is still a probability distribution, we also pick any x̄ ∈ W and decrease
Pr[X ′′ = x̄] to Pr[X ′′ = x̄] − τ . To do this, we pick the elements y ∈ Y
one by one in an arbitrary order and while τ > 0, do the following. Let
τ ′ = min(p′′x̄y, τ), Pr[X ′′ = x, Y = y] = Pr[X ′′ = x, Y = y] + τ ′, Pr[X ′′ =
x̄, Y = y] = Pr[X ′′ = x̄, Y = y]− τ ′ and τ = τ − τ ′. We then update the sets
{p′′x} and {p′′xy} accordingly. Note that since p′′x̄ ≥ τ + p′x̄, this process will
indeed end when τ = 0 and we still have p′′x̄ ≥ px̄. Also, for any y ∈ Y the
probability Pr[Y = y] remains unchanged. Finally, remove x from V and if
p′′x̄ = px̄, remove x̄ from W .
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Note that in each iteration, at least one element will be removed from W ∪
V . Thus the iteration will end after finite steps. When it ends, we have that
∀x,Pr[x′′ = x] = p′x, thus X ′′ = X ′. Since in each step the probability Pr[Y = y]
remains unchanged, the distribution Y remains the same. Finally, it is clear from
the algorithm that |(X ′′, Y )− (X,Y )| = ε.

Next we have the following lemma.

Lemma 6. Let X and Y be random variables and let Y denote the range of Y .
Assume that X is ε-close to having min-entropy k. Then for any ε′ > 0

Pr
Y

[
(X|Y = y) is ε′-close to a source with min-entropy k − log |Y| − log

(
1

ε′

)]
≥ 1− ε′ − ε

ε′
.

Proof. Let X denote the range of X. Assume that X ′ is a distribution on X with
min-entropy k such that |X − X ′| ≤ ε. Then by lemma 5, there exists a joint
distribution (X ′, Y ) such that

|(X,Y )− (X ′, Y )| ≤ ε.

Now for any y ∈ Y, let ∆y =
∑
x∈X |Pr[X = x, Y = y]−Pr[X ′ = x, Y = y]|.

Then we have

∑
y∈Y

∆y ≤ ε.

For any y ∈ Y, the statistical distance between X|Y = y and X ′|Y = y is

δy =
∑
x∈X
|Pr[X = x|Y = y]− Pr[X ′ = x|Y = y]|

= (
∑
x∈X
|Pr[X = x, Y = y]− Pr[X ′ = x, Y = y]|)/(Pr[Y = y]) = ∆y/Pr[Y = y].

Thus if δy ≥ ε′ then ∆y ≥ ε′ Pr[Y = y]. Let BY = {y : δy ≥ ε′} then we have

ε′ Pr[y ∈ BY ] =
∑
y∈BY

ε′ Pr[Y = y] ≤
∑
y∈BY

∆y ≤
∑
y∈Y

∆y ≤ ε.

Thus Pr[y ∈ BY ] ≤ ε
ε′ . Note that when y /∈ By we have |X|Y = y −X ′|Y =

y| < ε′. Thus by Lemma 4 we have the statement of the lemma.
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Quentin: Q,S0 Wendy: X

S0

S0

−−−−−−−−−−−−−−→
R0

←−−−−−−−−−−−−−− R0 = Raz(S0, X)

S1 = Extq(Q,R0)
S1

−−−−−−−−−−−−−−→
R1

←−−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2

−−−−−−−−−−−−−−→
R2

←−−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·

St = Extq(Q,Rt−1)
St

−−−−−−−−−−−−−−→
Rt = Extw(X,St)

Fig. 3. Alternating Extraction.

5 Alternating Extraction Protocol and Look Ahead
Extractor

Recall that, an important ingredient in our construction is the following alter-
nating extraction protocol modified from that in [1].

Alternating Extraction. Assume that we have two parties, Quentin and
Wendy. Quentin has a source Q, Wendy has a source X. Also assume that
Quentin has a weak source S0 with entropy rate > 1/2 (which may be correlated
with Q). Suppose that (Q,S0) is kept secret from Wendy and X is kept secret
from Quentin. Let Extq, Extw be strong seeded extractors with optimal param-
eters, such as that in Theorem 8. Let Raz be the strong two-source extractor
in Theorem 9. Let d be an integer parameter for the protocol. For some integer
parameter t > 0, the alternating extraction protocol is an interactive process
between Quentin and Wendy that runs in t+ 1 steps.

In the 0’th step, Quentin sends S0 to Wendy, Wendy computesR0 = Raz(S0, X)
and replies R0 to Quentin, Quentin then computes S1 = Extq(Q,R0). In this step
R0, S1 each outputs d bits. In the first step, Quentin sends S1 to Wendy, Wendy
computes R1 = Extw(X,S1). She sends R1 to Quentin and Quentin computes
S2 = Extq(Q,R1). In this step R1, S2 each outputs d bits. In each subsequent step
i, Quentin sends Si to Wendy, Wendy computes Ri = Extw(X,Si). She replies
Ri to Quentin and Quentin computes Si+1 = Extq(Q,Ri). In step i, Ri, Si+1

each outputs d bits. Therefore, this process produces the following sequence:

S0, R0 = Raz(S0, X),S1 = Extq(Q,R0), R1 = Extw(X,S1), · · · ,
St = Extq(Q,Rt−1), Rt = Extw(X,St).
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Look-Ahead Extractor. Now we can define our look-ahead extractor. Let
Y = (Q,S0) be a seed, the look-ahead extractor is defined as

laExt(X,Y ) = laExt(X, (Q,S0)) =: R1, · · · , Rt.

Note that the look-ahead extractor can be computed by each party (Alice or
Bob) alone in our final protocol. We now have the following lemma.

Lemma 7. In the alternating extraction protocol, assume that X has n bits and
Q has at most n bits. Let ε > 0 be a parameter and d = O(log n + log(1/ε)) >
log(1/ε) be the number of random bits needed in Theorem 8 to achieve error
ε. Assume that X has min-entropy at least 12d2, Q has min-entropy at least
11d2 and S0 is a (40d, 38d) source. Let Extw and Extq be strong extractors in
Theorem 8 that use d bits to extract d bits. Let t = 4d.

Let (Q′, S′0) be another distribution on the same support of (Q,S0) such that
(Q,S0, Q

′, S′0) is independent of X. Now run the alternating extraction protocol
with X and (Q′, S′0) where in each step we obtain S′i, R

′
i. For any i, 0 ≤ i ≤

t − 1, let Si = (S0, · · · , Si), S′i = (S′0, · · · , S′i), Ri = (R0, · · · , Ri) and R′i =
(R′0, · · · , R′i). Then for any i, 0 ≤ i ≤ t− 1, we have

(Ri, Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i, Q,Q

′)

≈(2i+2)ε(Ud, Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i, Q,Q

′).

Proof. We first prove the following claim.

Claim. In step 0, we have

(R0, S0, S
′
0, Q,Q

′) ≈ε (Ud, S0, S
′
0, Q,Q

′)

and
(S1, R0, S0, R

′
0, S
′
0) ≈3ε (Ud, R0, S0, R

′
0, S
′
0).

Moreover, conditioned on (S0, S
′
0), (R0, R

′
0) are both deterministic functions

of X; conditioned on (R0, S0, R
′
0, S
′
0), (S1, S

′
1) are deterministic functions of

(Q,Q′).

Proof (Proof of the claim.). Note that S0 is a (40d, 38d) source. Thus by Theo-
rem 9 we have that

(R0, S0) ≈ε (Ud, S0).

Since conditioned on S0, R0 is a deterministic function of X, which is inde-
pendent of (Q,Q′), we also have that

(R0, S0, S
′
0, Q,Q

′) ≈ε (Ud, S0, S
′
0, Q,Q

′).

Now we fix (S0, S
′
0) and (R0, R

′
0) are both deterministic functions of X. Since

the size of (S0, S
′
0) is at most 80d, by Lemma 4 we have that with probability

1− ε over these fixings, Q is a source with entropy 10d2. Since R0, R
′
0 are both
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deterministic functions of X, they are independent of Q. Therefore by Theorem 8
we have

(S1, R0, R
′
0) ≈ε (Ud, R0, R

′
0).

Thus altogether we have that

(S1, R0, S0, R
′
0, S
′
0) ≈3ε (Ud, R0, S0, R

′
0, S
′
0)

Moreover, conditioned on (R0, S0, R
′
0, S
′
0), (S1, S

′
1) are deterministic functions of

(Q,Q′).

Now we fix (R0, S0, R
′
0, S
′
0). Note that after this fixing, S1, S

′
1 are are deter-

ministic functions of (Q,Q′). Note that with probability 1 − ε over this fixing,
Q has min-entropy at least 10d2.

We now prove the lemma. In fact, we prove the following stronger claim.

Claim. For any i, we have that

(Ri, Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i, Q,Q

′)

≈(2i+2)ε(Ud, Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i, Q,Q

′)

and

(Si+1, Si, S′i, Ri, R
′
i) ≈(2i+3)ε (Ud, Si, S′i, Ri, R

′
i).

Moreover, conditioned on (Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i), (Ri, R

′
i) are both de-

terministic functions of X; conditioned on (Si, S′i, Ri, R
′
i), (Si+1, S

′
i+1) are de-

terministic functions of (Q,Q′).

We prove the claim by induction on i. When i = 0, the statements are already
proved in Claim 5. Now we assume that the statements hold for i = j and we
prove them for i = j + 1.

We first fix (Sj , S′j , Rj , R
′
j). Since now (Sj+1, S

′
j+1) are deterministic func-

tions of (Q,Q′), they are independent of X. Moreover Sj+1 is (2j + 3)ε-close
to uniform. Note that the average conditional min-entropy of X is at least
12d2 − 2d · 4d ≥ 4d2. Therefore by Theorem 8 we have that

(Rj+1, Sj , S′j , Rj , R
′
j , Sj+1, S

′
j+1) ≈(2j+4)ε (Ud, Sj , S′j , Rj , R

′
j , Sj+1, S

′
j+1).

Since (Sj+1, S
′
j+1) are deterministic functions of (Q,Q′), we also have

(Rj+1, Sj , S′j , Rj , R
′
j , Sj+1, S

′
j+1, Q,Q

′) ≈(2j+4)ε (Ud, Sj , S′j , Rj , R
′
j , Sj+1, S

′
j+1, Q,Q

′).

Moreover, conditioned on (Sj , S′j , Rj , R
′
j , Sj+1, S

′
j+1), (Rj+1, R

′
j+1) are both

deterministic functions of X.
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Next, since conditioned on (Sj , S′j , Rj , R
′
j , Sj+1, S

′
j+1), (Rj+1, R

′
j+1) are both

deterministic functions of X, they are independent of (Q,Q′). Moreover Rj+1 is
(2j + 4)ε-close to uniform. Note that the average conditional min-entropy of Q
is at least 10d2 − 8d2 = 2d2. Therefore by Theorem 8 we have that

(Sj+2, Sj , S′j , Rj , R
′
j , Sj+1, S

′
j+1, Rj+1, R

′
j+1)

≈(2j+5)ε(Ud, Sj , S
′
j , Rj , R

′
j , Sj+1, S

′
j+1, Rj+1, R

′
j+1).

Namely,

(Sj+2, Sj+1, S′j+1, Rj+1, R′j+1) ≈(2(j+1)+3)ε (Ud, Sj+1, S′j+1, Rj+1, R′j+1).

Moreover, conditioned on (Sj+1, S′j+1, Rj+1, R′j+1), (Sj+2, S
′
j+2) are determinis-

tic functions of (Q,Q′).

6 Non-Malleable Condensers for Arbitrary Min-Entropy

In this section we give our construction of non-malleable condensers for arbitrary
min-entropy.

First, we need the following definitions and constructions from [1].

Definition 14. [1] Given S1, S2 ⊆ {1, · · · , t}, we say that the ordered pair

(S1, S2) is top-heavy if there is some integer j such that |S≥j1 | > |S
≥j
2 |, where

S≥j =: {s ∈ S|s ≥ j}. Note that it is possible that (S1, S2) and (S2, S1) are both
top-heavy. For a collection Ψ of sets Si ⊆ {1, · · · , t}, we say that Ψ is pairwise
top-heavy if every ordered pair (Si, Sj) of sets Si, Sj ∈ Ψ with i 6= j, is top-heavy.

Now, for any m-bit message µ = (b1, · · · , bm), consider the following mapping
of µ to a subset S ⊆ {1, · · · , 4m}:

f(µ) = f(b1, · · · , bm) = {4i− 3 + bi, 4i− bi|i = 1, · · · ,m}
i.e., each bit bi decides if to include {4i− 3, 4i} (if bi = 0) or {4i− 2, 4i− 1}

(if bi = 1) in S.
We now have the following lemma.

Lemma 8. [1] The above construction gives a pairwise top-heavy collection Ψ
of 2m sets S ⊆ {1, · · · , t} where t = 4m. Furthermore, the function f is an
efficient mapping of µ ∈ {0, 1}m to Sµ.

Now we have the following construction.
Let r ∈ ({0, 1}d)t be the output of the look-ahead extractor defined above,

i.e., r = (r1, · · · , rt) = laExt(X, (Q,S0)). Let Ψ = {S1, · · · , S2m} be the pairwise
top-heavy collection of sets constructed above. For any message µ ∈ {0, 1}m,
define the function laMACr(µ) =: [ri|i ∈ Sµ], indexed by r.

Now we can describe our construction of the non-malleable condenser.
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Algorithm 12 (nmCond(x, y))

Input: `–an integer parameter. x — a sample from an (n, k)-source with
k ≥ 60d2. y–an independent random seed with y = (y1, y2) such that y1 has
size d = O(log n+ `) > 5` and y2 has size 12d2.
Output: z — an m bit string.

Sub-Routines and Parameters:
Let nmExt be the non-malleable extractor from Theorem 10, with error 2−4`.
Let Ext be the strong extractor with optimal parameters from Theorem 8,
with error 2−5`.
Let laExt be the look-ahead extractor defined above, using Ext as Extq and
Exts. laExt is set up to extract from x using seed (q, s0) such that q = y2

and s0 is the string that contains the first 40d bits of y2, and output a string
r ∈ ({0, 1}d)t with t = 4d.
Let laMACr(µ) be the function defined above.

1. Compute w = Ext(x, y1) with output size 20d2 and r = laExt(x, (q, s0)).
2. Output z = (nmExt(w, y2), laMACr(y1)) such that nmExt(w, y2) has size

8d2.

We can now prove the following theorem.

Theorem 13. There exists a constant C > 0 such that given any s > 0, as
long as k ≥ C(log n + s)2, the above construction is a (k, s, 2−s)-non-malleable
condenser with seed length O(log n+ s)2 and output length O(log n+ s)2.

Proof. Let A be any (deterministic) function such that ∀y ∈ Supp(Y ),A(y) 6= y.
We will show that for most y, with high probability over the fixing of nmCond(X,A(y)),
nmCond(X, y) is still close to having min-entropy at least `. Let Y ′ = A(Y ).
Thus Y ′ 6= Y . In the following analysis we will use letters with prime to de-
note the corresponding random variables produced with Y ′ instead of Y . Let
V1 = nmExt(W,Y2) and V2 = laMACR(Y1). Thus Z = (V1, V2). We have the
following two cases.

Case 1: Y1 = Y ′1 . In this case, since Y ′ 6= Y , we must have that Y2 6= Y ′2 .
Now by Theorem 8 we have that

(W,Y1) ≈2−5` (U, Y1).

Therefore, we can now fix Y1 (and thus Y ′1), and with probability 1 − 2−`

over this fixing, W is 2−4`-close to uniform. Moreover, after this fixing W is a
deterministic function of X and thus is independent of Y2. Note also that after
this fixing, Y ′2 is a deterministic function of Y2. Thus by Theorem 10 we have
that

(V1, V
′
1 , Y2, Y

′
2) ≈O(2−4`) (U8d2 , V

′
1 , Y2, Y

′
2).
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Therefore, we can now further fix Y2 (and thus Y ′2) and with probability at
least 1 − O(2−`) over this fixing, (V1, V

′
1) is 2−3`-close to (U8d2 , V

′
1). Thus we

can further fix V ′1 , and with probability at least 1 − 2−` over this fixing, V1 is
2−2`-close to uniform. Now note that V1 has size 8d2 and V ′2 has size 2d2. Thus
by Lemma 6, we can further fix V ′2 , and with probability at least 1− 2 · 2−` over
this fixing, V1 is 2`-close to having min-entropy at least 8d2 − 2d2 − ` ≥ 5d2.

Thus in this case we have shown that, with probability 1− O(2−`) over the
fixing of Y , with probability 1 − O(2−`) over the fixing of Z ′, Z is 2−`-close to
having min-entropy at least 5d2 > 5`2.

Case 2: Y1 6= Y ′1 . In this case, we first fix Y1 and Y ′1 . Note that after this
fixing, W and W ′ are now deterministic functions of X. We now further fix W
and W ′ and after this fixing, X and Y2 are still independent. Since the total size
of (W,W ′) is 40d2, by Lemma 4 we have that with probability 1 − 2−2` over
this fixing, X still has min-entropy at least 60d2 − 40d2 − 2` > 12d2. Note also
that after this fixing, Y ′2 is a deterministic function of Y2. However, since Y ′1
may be a function of Y2, fixing Y ′1 may cause Y2 to lose entropy. Note that Y ′1
only has size d, thus by Lemma 4, with probability 1− 2 · 2−2` over the fixing of
(Y1, Y

′
1), we have that Y2 has min-entropy at least 12d2 − d− 2` > 11d2 and S0

has min-entropy at least 40d− d− 2` > 38d.
Now assume that X has min-entropy at least 12d2, Y2 has min-entropy at

least 11d2 and S0 has min-entropy at least 38d. This happens with probability at
least 1−O(2−`). For any i, 0 ≤ i ≤ t−1, let Si = (S0, · · · , Si), S′i = (S′0, · · · , S′i),
Ri = (R0, · · · , Ri) and R′i = (R′0, · · · , R′i). Now by Lemma 7 (note that Y2 =
(Q,S0)) we have that for any i, 0 ≤ i ≤ t− 1,

(Ri, Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i, Y2)

≈(2i+2)2−5`(Ud, Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i, Y2).

Therefore, we have that for any i,

(Ri, Ri−1, R′i−1, Y2) ≈(2i+2)2−5` (Ud, Ri−1, R′i−1, Y2).

Thus, for any i, with probability 1− 2−1.25` over the fixing of Y2, we have

(Ri, Ri−1, R′i−1) ≈(2i+2)2−3.75` (Ud, Ri−1, R′i−1).

By the union bound, we have that with probability 1−t2−1.25` over the fixing
of Y2, for any i,

(Ri, Ri−1, R′i−1) ≈(2i+2)2−3.75` (Ud, Ri−1, R′i−1).

Consider a typical fixing of Y2. Now note that V2 = laMACR(Y1) and V ′2 =
laMACR′(Y

′
1). Let the two sets in Lemma 8 that correspond to Y1 and Y ′1 be H

and H ′. Since Y1 6= Y ′1 , by definition there exists j ∈ [4d] such that |H≥j | >
|H ′≥j |. Let l = |H≥j |. Thus l ≤ t and |H ′≥j | ≤ l−1. Let RH be the concatenation
of {Ri, i ∈ H≥j} and R′H′ be the concatenation of {R′i, i ∈ H ′≥j}.

By the above equation and the hybrid argument we have that
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(RH , Rj−1, R′j−1) ≈3t2·2−3.75` (Uld, Rj−1, R′j−1).

Thus now we can first fix R′j−1, and with probability 1 − 2−1.25` over this
fixing, we have

RH ≈3t2·2−2.5` Uld.

We now fix R′H′ . Since |H ′≥j | ≤ l − 1, the size of R′H′ is at most (l − 1)d.
Thus by Lemma 6 we have that with probability at least 1 − (3t2 + 1) · 2−1.25`

over this fixing, RH is 2−1.25`-close to having min-entropy d − 1.25` > `. Note
that after we fix R′j−1 and R′H′ , we have also fixed V ′2 . Since W ′ and Y ′2 are
already fixed, V ′1 is also fixed. Thus Z ′ is fixed. Therefore altogether we have
that with probability 1− 2 · 2−2` − t2−1.25` = 1−O(2−`) over the fixings of Y ,
with probability 1− 2−1.25` − (3t2 + 1) · 2−1.25` = 1−O(2−`) over the fixings of
Z ′, Z is 2−1.25`-close to having min-entropy `.

Combining Case 1 and Case 2, and notice that the fraction of “bad seeds”
that an adversary can achieve is at most the sum of the fraction of bad seeds
in both cases. Thus by choosing an appropriate ` = O(s) we have that the
construction is a (k, s, 2−s)-non-malleable condenser with seed length O(log n+
s)2.

Combining Theorem 11 and Theorem 13, we immediately get a 2-round pri-
vacy amplification protocol with optimal entropy loss for any (n, k) source.

Theorem 14. There exists a constant C such that for any ε > 0 with k ≥
C(log n + log(1/ε))2, there exists an explicit 2-round privacy amplification pro-
tocol for (n, k) sources with security parameter log(1/ε), entropy loss O(log n+
log(1/ε)) and communication complexity O(log n+ log(1/ε))2.

In fact, we have a slightly simpler protocol that uses the look-ahead extractor
and MAC somewhat more directly, while achieving the same performance.

We assume that the shared weak random source has min-entropy k, and
the error ε we seek satisfies ε < 1/n and k > C(log n + log(1/ε))2 for some
constant C > 1. For convenience, in the description below we introduce an
“auxiliary” security parameter s. Eventually, we will set s = log(C ′/ε) +O(1) =
log(1/ε) + O(1), so that C ′/2s < ε, for a sufficiently large constant C ′ related
to the number of “bad” events we need to account for. We need the following
building blocks:

– Let Ext be a (k, 2−5s)-extractor with optimal entropy loss and seed length
d = O(log n+ s) > 202s, from Theorem 8. Assume that k ≥ 15d2.

– Let Raz be the two source extractor from Theorem 9.
– Let MAC be the (“leakage-resilient”) MAC, as in Theorem 6, with tag length
v = 2s and key length ` = 2v = 4s.

– Let laExt be the look-ahead extractor defined above, using Ext as Extq and
Exts. laExt is set up to extract from x using seed (q, s0) such that q = y2

and s0 is the string that contains the first 40d bits of y2, and output a string
r ∈ ({0, 1}d)t with t = 4d.
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– Let laMACr(µ) be the function defined above.
– In the protocol Alice will sample three random strings Y1, Y2, Y3, with size
d, 12d2 and 50d2 respectively.

Using the above building blocks, the protocol is given in Figure 4. To em-
phasize the adversary Eve, we use letters with ‘prime’ to denote all the variables
seen or generated by Bob; e.g., Bob picks W ′, but Alice may see a different W .

Alice: X Eve: E Bob: X

Sample random Y = (Y1, Y2, Y3).
Compute R2 = laExt(X,Y2).
Z = laMACR2(Y1).
R1 = Ext(X,Y1) and output 4s bits.

(Y1, Y2, Y3)
−−−−−−−→

(Y ′1 , Y
′
2 , Y

′
3 )

Sample random W ′ with d bits.
Compute R′2 = laExt(X,Y ′2 ).
Z′ = laMACR′2(Y ′1 ).

R′1 = Ext(X,Y ′1 ) and output 4s bits.
T ′1 = Raz(Y ′3 , Z

′) with s bits,
T ′2 = MACR′1(W ′).

Set final RB = Ext(X,W ′).
(W ′, T ′1, T

′
2)

←−−−−−−−
(W,T1, T2)

If T1 6= Raz(Y3, Z) or
T2 6= MACR1(W ) reject.
Set final RA = Ext(X,W ).

Fig. 4. 2-round Privacy Amplification Protocol.

Theorem 15. Assume that k > C(log n+ log(1/ε))2 for some constant C > 1.
The above protocol is a privacy amplification protocol with security parameter
log(1/ε), entropy loss O(log(1/ε)) and communication complexity O(log(1/ε)2).

Proof. The proof can be divided into two cases: whether the adversary changes
Y1 or not.

Case 1: The adversary does not change Y1. In this case, note that R1 = R′1
and is 2−5s-close to uniform in Eve’s view (even conditioned on Y1, Y2, Y3). Thus
the property of the MAC guarantees that Bob can authenticate W ′ to Alice. How-
ever, one thing to note here is that Eve has some additional information, namely
T ′1 which can leak information about the MAC key. On the other hand, the size
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of T ′1 is s, thus by Lemma 2 the average conditional min-entropy H∞(R1|T ′1) is
at least 3s. Therefore by Theorem 6 the probability that Eve can change W ′ to
a different W without causing Alice to reject is at most⌈

d1

2s

⌉
22s−H̃∞(R1|T ′1) + 2−5s ≤ O(22s−3s) + 2−5s ≤ O(2−s).

When W = W ′, by Theorem 8 RA = RB and is 2−5s-close to uniform in
Eve’s view.

Case 2: The adversary does change Y1. Thus we have Y1 6= Y ′1 . Here the
proof is similar to the proof of the non-malleable condenser. We first fix Y1

and Y ′1 . Note that after this fixing, R1 and R′1 are now deterministic functions
of X. We now further fix R1 and R′1 and after this fixing, X and (Y2, Y3) are
still independent. Since the total size of (R1, R

′
1) is 8s, by Lemma 4 we have

that with probability 1− 2−2s over this fixing, X still has min-entropy at least
15d2 − 8s − 2s > 12d2. Note also that after this fixing, Y ′2 is a deterministic
function of (Y2, Y3). However, since Y ′1 may be a function of Y2, fixing Y ′1 may
cause Y2 to lose entropy. Note that Y ′1 only has size d, thus by Lemma 4, with
probability 1−2·2−2s over the fixing of (Y1, Y

′
1), we have that Y2 has min-entropy

at least 12d2−d−2s > 11d2 and S0 has min-entropy at least 40d−d−2s > 38d.
Now assume that X has min-entropy at least 12d2, Y2 has min-entropy at

least 11d2 and S0 has min-entropy at least 38d. This happens with probability at
least 1−O(2−s). For any i, 0 ≤ i ≤ t−1, let Si = (S0, · · · , Si), S′i = (S′0, · · · , S′i),
Ri = (R0, · · · , Ri) and R′i = (R′0, · · · , R′i). Again by Lemma 7 we have that for
any i,

(Ri, Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i, Y2, Y

′
2)

≈(2i+2)2−5s(Ud, Si−1, S′i−1, Ri−1, R′i−1, Si, S
′
i, Y2, Y

′
2).

Thus for any i, we have

(Ri, Ri−1, R′i−1, Y2, Y
′
2) ≈(2i+2)2−5s (Ud, Ri−1, R′i−1, Y2, Y

′
2).

Now by the same analysis as in the proof of the non-malleable condenser
(and recall that Y1 6= Y ′1), we have that with probability 1 − t2−1.25` over the
fixing of (Y2, Y

′
2), with probability at least 1− (3t2 + 1) · 2−1.25s over the fixing

of Z ′, Z is 2−1.25s-close to having min-entropy d− 1.25s > 200s.
Note that we have now fixed (Y1, Y

′
1 , Y2, Y

′
2) and (R1, R

′
1, Z

′). After all these
fixings, Z is a deterministic function of X and is 2−1.25s-close to having min-
entropy 200s. Thus Z is independent of Y3 (note that Z ′ is also a deterministic
function of X, thus fixing Z ′ does not influence the independence of Z and Y3).
Note that after these fixings, Y ′3 is a deterministic function of Y3, and since
the size of (Y ′1 , Y

′
2) is d + 12d2 < 13d2, by Lemma 4 Y3 is 2−s-close to having

min-entropy 50d2 − 13d2 − s > 36d2. Thus by Theorem 9 we have

(Raz(Y3, Z), Y3, Y
′
3) ≈O(2−s) (Us, Y3, Y

′
3).
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Since we already fixed (Y1, Y
′
1 , Y2, Y

′
2) and (R1, R

′
1, Z

′), and W ′ is indepen-
dent of all random variables above, this also implies that

(Raz(Y3, Z), R′1, Z
′, Y, Y ′,W ′) ≈O(2−s) (Us, R

′
1, Z

′, Y, Y ′,W ′).

Note that T ′1 = Raz(Y ′3 , Z
′) and T ′2 = MACR′1(W ′). Thus we have

(Raz(Y3, Z), T ′1, T
′
2, Y, Y

′,W ′) ≈O(2−s) (Us, T
′
1, T

′
2, Y, Y

′,W ′).

Therefore, the probability that the adversary can guess the correct T1 is at
most 2−s +O(2−s) = O(2−s). For an appropriately chosen s = log(1/ε) +O(1)
this is at most ε. Note that conditioned on the fixing of Y , the random variables
that are used to authenticate W ′ are (R1, T1), which are deterministic functions
of X and have size O(s), thus the entropy loss of the protocol is O(log(1/ε)).
The communication complexity can be easily verified to be O(log(1/ε)2).

7 Conclusions and Open Problems

In this paper we construct explicit non-malleable condensers for arbitrary min-
entropy, and use them to give an explicit 2-round privacy amplification protocol
with optimal entropy loss for arbitrary min-entropy k, with security parameter
up to s = Ω(

√
k). This is the first explicit protocol that simultaneously achieves

optimal parameters in both round complexity and entropy loss, for arbitrary
min-entropy.

We then generalize this result to give a privacy amplification protocol that
runs in O(s/

√
k) rounds and achieves optimal entropy loss for arbitrary min-

entropy k, with security parameter up to s = Ω(k). This significantly improves
the protocol in [4]. In the special case where k = δn for some constant δ > 0,
we give better non-malleable condensers and a 2-round privacy amplification
protocol with optimal entropy loss for security parameter up to s = Ω(k), which
improves the entropy loss and communication complexity of the 2-round protocol
in [2].

Some open problems include constructing better non-malleable extractors or
non-malleable condensers, and to construct optimal privacy amplification pro-
tocols for security parameter bigger than

√
k. Another interesting problem is to

find other applications of non-malleable extractors or non-malleable condensers.
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