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Abstract. The notion of zero-knowledge [20] is formalized by requiring
that for every malicious efficient verifier V ∗, there exists an efficient
simulator S that can reconstruct the view of V ∗ in a true interaction with
the prover, in a way that is indistinguishable to every polynomial-time
distinguisher. Weak zero-knowledge weakens this notions by switching
the order of the quantifiers and only requires that for every distinguisher
D, there exists a (potentially different) simulator SD.
In this paper we consider various notions of zero-knowledge, and investi-
gate whether their weak variants are equivalent to their strong variants.
Although we show (under complexity assumption) that for the stan-
dard notion of zero-knowledge, its weak and strong counterparts are not
equivalent, for meaningful variants of the standard notion, the weak and
strong counterparts are indeed equivalent. Towards showing these equiv-
alences, we introduce new non-black-box simulation techniques permit-
ting us, for instance, to demonstrate that the classical 2-round graph
non-isomorphism protocol of Goldreich-Micali-Wigderson [18] satisfies a
“distributional” variant of zero-knowledge.
Our equivalence theorem has other applications beyond the notion of
zero-knowledge. For instance, it directly implies the dense model theorem
of Reingold et al (STOC ’08), and the leakage lemma of Gentry-Wichs
(STOC ’11), and provides a modular and arguably simpler proof of these
results (while at the same time recasting these result in the language of
zero-knowledge).

1 Introduction

The notion of zero-knowledge, and the simulation-paradigm used to define it, is of
fundamental importance in modern cryptography—most definitions of protocol
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security rely on it. In a zero-knowledge protocol, a prover P can convince a
verifier V of the validity of some mathematical statement x ∈ L, while revealing
“zero (additional) knowledge” to V . This zero-knowledge property is formalized
by requiring that for every potentially malicious efficient verifier V ∗, there exists
an efficient simulator S that, without talking to P , is able to “indistinguishably
reconstruct” the view of V ∗ in a true interaction with P . The traditional way
of defining what it means to “indistinguishably reconstruct” is to require that
the output of S cannot be distinguished (with more than negligible probability)
from the true view of V ∗ by any efficient distinguisher D; that is, we have a
universal simulator that works for all distinguishers D.

A seemingly weaker way to define the zero-knowledge property is to require
that for every distinguisherD, there exists a “distinguisher-dependent” simulator
SD such that the output of SD cannot be distinguished from the true view of V ∗

by the particular distinguisher D; following [12], we refer to this weaker notion
of zero-knowledge as weak zero-knowledge.

The main question addressed in this paper is whether this switch in the order
of the quantifiers yields an equivalent notion. More specifically, we consider vari-
ous notions of zero-knowledge, and investigate whether their weak (distinguisher-
dependent simulator) variants are equivalent to their strong (universal simula-
tor) variants. Towards addressing this question, we introduce new non-black-box
simulation techniques permitting us, for instance, to demonstrate that the classi-
cal 2-round graph non-isomorphism protocol of Goldreich-Micali-Wigderson [18]
satisfies a “distributional” variant of zero-knowledge. Our results also reveal deep
connections between the notion of zero-knowledge and the dense model theorem
of Reingold et al [28] (which in turn is related to questions such as the XOR
Lemma [32] and Szemeredi’s regularity lemma [15]; see [30] for more details).

1.1 From Weak to Strong Zero-Knowledge

Our first result shows that (under plausible complexity-theoretic assumptions)
for the standard definition of zero-knowledge, weak zero-knowledge is a strictly
weaker requirement than (strong) zero-knowledge.

Theorem 1 (Informally stated). Assume the existence of “timed commit-
ments” and “timed one-way permutations”. Then, there exists an interactive
proof for a language L ∈ NP that is weak zero-knowledge but not (strong) zero-
knowledge.

Motivated by this separation, we turn to consider relaxed notions of zero-
knowledge. We first consider a concrete security variant of the notion of zero-
knowledge. Roughly speaking, we call a protocol (t, ε)-zero-knowledge if the zero-
knowledge property holds with respect to all t(n)-time bounded distinguishers
(as opposed to all polynomial-time distinguishers), and we require that the dis-
tinguishability gap is bounded by ε(n) (as opposed to being negligible), where
n is the length of the statement x being proved. Weak (t, ε)-zero-knowledge is
defined analogously (by again switching the order of the quantifiers).
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Note that if (P, V ) is (t, ε)-zero-knowledge (resp. weak (t, ε)-zero-knowledge)
for some super-polynomial function t and some negligible function ε, then (P, V )
is zero-knowledge (resp. weak zero-knowledge) in the classic sense. We here con-
sider a slightly relaxed notion where we only require (P, V ) to be (t, ε)-zero-
knowledge for all polynomials t and all inverse polynomials ε. (Note that this is
weaker than the standard definition of zero-knowledge since now the running-
time of the simulator may depend on the bounds t and ε.) Perhaps surprisingly,
we show that for this relaxed notion of zero-knowledge, the weak and strong
versions lead to an equivalent definition.

Theorem 2 (Informally stated). If an interactive proof (P, V ) is weak (t, ε)-
zero knowledge for every polynomial t and every inverse polynomial ε, then (P, V )
is also (t′, ε′)-zero knowledge for every polynomial t′ and every inverse polynomial
ε′.

We highlight that the “universal” simulator S constructed in the proof of
Theorem 2 makes use of the malicious verifier V ∗ in a non-black-box way. On a
very high-level (and significantly oversimplifying), the idea behind Theorem 2 is
to rely on Von Neumann’s minimax theorem to obtain the universal simulator
from the “distinguisher-dependent” simulators; the non-black-box nature of the
universal simulator comes from the fact that defining the “utility function” we
use with the minimax theorem requires knowing the auxiliary inputs received by
V ∗, and thus we make non-black-box use of V ∗.

Implementing this approach becomes quite non-trivial since we require the
existence of a uniform polynomial-time simulator for every uniform polynomial-
time verifier—the minimax theorem only guarantees the existence of a distribu-
tion over polynomial-time machines that simulates the view of the verifier, but
it is not clear if this distribution can be computed in uniform polynomial time.
We overcome this issue by instead relying on a multiplicative weights algorithm
to appropriately implement an approximate minimax strategy; see Section 1.4
for more details.

1.2 From Super-Weak to Strong Distributional Zero-Knowledge

Note that although in the definition of weak zero-knowledge the simulator may
depend on the distinguisher, we still require that the probability that the dis-
tinguisher outputs 1 when given the output of the simulator is close to the
probability that the distinguisher outputs 1 when given the true view of the
malicious verifier V ∗. An even weaker condition (considered in [21]) only re-
quires that the simulator manages to make the distinguisher output 1 with at
least as high probability (minus some “small” gap) as the probability that the
distinguisher outputs 1 when given a true view of V ∗. That is, we only consider
“one-sided” indistinguishability. We refer to such a zero-knowledge property as
super-weak zero-knowledge.

It is not hard to see that super-weak (t, ε)-zero-knowledge is not equiva-
lent to weak (t, ε)-zero-knowledge (see the full version of this paper for the
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proof). Thus, we here consider an alternative “distributional” notion of zero-
knowledge (a la [17]) where indistinguishability of the simulation is only re-
quired for any distribution over statements (and auxiliary inputs), and the sim-
ulator as well as the distinguisher can depend on the distribution. Addition-
ally, we here model both the distinguisher and the simulator as non-uniform
polynomial-time algorithms (as opposed to uniform ones). (The combination of
these variants was previously considered by [12].3) We refer to such a notion of
zero-knowledge as distributional zero-knowledge, and analogously define distri-
butional (t, ε)-zero-knowledge as well as weak (resp. super-weak) distributional
(t, ε)-zero-knowledge. Roughly speaking, distributional zero-knowledge captures
the intuition that proofs of “random” statements do not provide the verifier
with any new knowledge (beyond the statement proved). Perhaps surprisingly,
we show that super-weak distributional (t, ε)-zero-knowledge is equivalent to
(strong) distributional (t, ε)-zero-knowledge if we consider all polynomials t and
all inverse polynomials ε.

Theorem 3 (Informally stated). If an interactive proof (P, V ) is super-weak
distributional (t, ε)-zero-knowledge for every polynomial t and every inverse poly-
nomial ε, then (P, V ) is also distributional (t′, ε′)-zero knowledge for every poly-
nomial t′ and every inverse polynomial ε′.

In contrast to Theorem 2, the proof of Theorem 3 follows from a rather direct
use of the minimax theorem; see Section 1.4 for more details. We also show that
any protocol where the prover is “laconic” [19]—that is, it sends only O(log n)
bits in total, is super-weak (distributional) zero-knowledge; combining this result
with Theorem 3 thus yields the following theorem.

Theorem 4 (Informally stated). Let (P, V ) be an interactive proof with a la-
conic prover for a language L. Then (P, V ) is distributional (t, ε)-zero-knowledge
for every polynomial t and every inverse polynomial ε.

Given Theorem 3, the proof of Theorem 4 is very straight-forward: to show
that laconic proofs are super-weak zero-knowledge, have the simulator simply
enumerate all possible prover messages and keep the one that the distinguisher
“likes the most” (i.e., makes the distinguisher output 1 with as high probability
as possible); note that we here rely crucially on the fact that we only need to
achieve “one-sided” indistinguishability.

Theorem 4 may seem contradictory. An interactive proof with a laconic prover
(i.e., with small prover communication complexity) can reveal, say, the first log n
bits of the witness w to the statement x proved, yet Theorem 4 states that such
a protocol satisfies a notion of zero-knowledge. But if we leak something specific
about the witness, how can we expect the protocol to be “zero-knowledge”? The
key point here is that (as shown in Theorem 4), for random statements x, the
information revealed about the witness can actually be efficiently generated. In

3 More specifically, the notion of “ultra-weak zero-knowledge” of [12] considers both
of these relaxations, but relaxes the notion even further.
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other words, the whole process where the prover first picks the statement (at
random), and then provides the proof, is zero-knowledge.

Despite the simplicity of the proof of Theorem 4, it has many (in our eyes)
intriguing corollaries. The first one is that the classic two-round graph non-
isomorphism protocol of [18] (which is only known to be “honest-verifier” zero-
knowledge) is distributional (t, ε)-zero-knowledge for every polynomial t and ev-
ery inverse polynomial ε.4 In fact, by the complete problem for SZK [29], we can
show that every language in SZK has a 2-round interactive proof that is distribu-
tional (t, ε)-zero-knowledge for every polynomial t and every inverse polynomial
ε.

Theorem 5 (Informally stated). For every language L ∈ SZK and every
polynomial p, there exists a 2-round interactive proof (P, V ) for L with com-
pleteness 1 − negl(·) and soundness error 1

p(·) , and is distributional (t, ε)-zero-

knowledge for every polynomial t and every inverse polynomial ε.

We proceed to outline two other applications of Theorem 4.

Leakage Lemma of Gentry-Wichs. Roughly speaking, the “Leakage Lemma”
of Gentry-Wichs [16] states that for every joint distribution (X,π(X)), where
|π(x)| = O(log |x|) (π should be thought of as leakage on X), and for every
distribution Y that is indistinguishable from X, there exists some leakage π̃
such that the joint distributions (X,π(X)) and (Y, π̃(Y )) are indistinguish-
able. As we now argue, this lemma (and in fact, a stronger version of it) is
a direct consequence of Theorem 4.

In the language of zero-knowledge, let X be a distribution over statements,
and consider a one-message interactive proof where π(x) denotes the dis-
tribution over the prover’s message when the statement is x. By Theorem
4, this protocol is distributional zero-knowledge, and thus there exists an
efficient simulator S that can simulate the interaction (i.e, (X,S(X)) is
indistinguishable from (X,π(X))). By the indistinguishability of Y and X
(and the efficiency of S), it directly follows that (Y, S(Y )) is indistinguishable
from (X,π(X)). Thus we have found π̃ = S.

Let us note that our proof of the leakage lemma yields an even stronger
statement—namely, we have found an efficient simulator π̃; such a version of
the leakage lemma was recently established by Jetchev and Pietrzak [23]. (As
an independent contribution, our proof of Theorem 4 is actually significantly
simpler than both the proof of [16] and [23].) Additionally, since our result
on zero-knowledge applies also to interactive protocols, we directly also get
an interactive version of the leakage lemma.

Dense Model Theorem. Roughly speaking, the Dense Model Theorem of [28,
30] states that if X is indistinguishable from the uniform distribution over n-

4 Recall that in the classic Graph Non-Isomorphism protocol the prover sends just a
single bit and thus is very laconic.
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bits, Un, and R is δ-dense5 in X, then there exists a “model-distribution” M
that is (approximately) δ-dense in Un such that M is indistinguishable from
R. Again, we show that this lemma is a direct consequence of Theorem 4.
(Furthermore, our proof of Theorem 4 is arguably simpler and more modular
than earlier proofs of the dense model theorem.)
Let us first translate the statement of the dense model theorem into the
language of zero-knowledge. Let X be a distribution over statements x, and
consider some distribution R that is δ-dense in X, i.e., there exists a joint dis-
tribution (X,B(X)) with Pr[B(X) = 1] ≥ δ such that R = X|(B(X) = 1).
Define a one-bit proof where the prover sends the bit B(x), where x is the
statement. By Theorem 4, there exists a simulator S for this interactive
proof; let M = Un|(S(Un) = 1). By the indistinguishability of the simula-
tion, (X,S(X)) is indistinguishable from (X,B(X)), and thus by indistin-
guishability of X and Un, (Un, S(Un)) is indistinguishable from (X,B(X)). It
follows that M is (approximately) δ-dense in Un, and M is indistinguishable
from R.

1.3 A Note on Our Non-Black-Box Simulation Technique

The universal simulators in Theorem 3, 4, and 5 are indirectly obtained via the
minimax theorem used in the proof of Theorem 3, and again we make non-black-
box usage of the verifier V ∗. We remark that our non-black-box usage of V ∗ is
necessary (assuming standard complexity-theoretic assumptions): We show that
black-box simulation techniques cannot be used to demonstrate distributional
(t, ε)-zero-knowledge for 2-round proof systems for languages that are hard-on-
average.

Theorem 6 (Informally stated). Let L be any language that is hard-on-
average for polynomial-size circuits, and let (P, V ) be any 2-round interactive
proof (with completeness 2/3 and soundness error 1/3) for L. Then, there exists
a polynomial t such that for every ε(n) < 1/12, (P, V ) is not black-box distribu-
tional (t, ε)-zero-knowledge

As as consequence we have that as long as SZK contains a language that is
hard-on-average, our non-black-box techniques are necessary (otherwise, Theo-
rems 5 and 6 would contradict each other). As far as we know, the above yields
the first example where a non-black-box simulation technique can be used to an-
alyze “natural” protocols (e.g., the classic graph non-isomorphism protocol) that
were not “tailored” for non-black-box simulation, but for which black-box sim-
ulation is not possible. This stands in sharp contrast to the non-black-box tech-
nique of Barak [2] and its follow-ups (see e.g., [26, 25, 27, 3, 11, 5, 10, 6]), where
non-black-box simulation is enabled by a very specific protocol design. This gives

5 R is said to be δ-dense in X if for every r, Pr[R = r] ≤ (1/δ)·Pr[X = r]; equivalently,
R is δ-dense inX if there exists a joint distribution (X,B(X)) with Pr[B(X) = 1] ≥ δ
such that R = X|(B(X) = 1).
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hope that non-black-box techniques can be used to analyze simple/practical pro-
tocols.

Let us finally remark that in our non-black-box technique, we only need to
make non-black-box use of the malicious verifier V ∗’s auxiliary input z and its
running-time t, but otherwise we may treat V ∗’s Turing machine as a black-
box. Although the non-black-box simulation technique of Barak [2] also makes
non-black-box usage of V ∗’s Turing machine, it is not hard to see that also this
technique can be modified to only make non-black-box usage of z and t (but
not its Turing machine)—since the description of V ∗’s Turing machine is of
constant length the non-black-box simulator can simply enumerate all possible
Turing machines in the protocol of Barak.

1.4 Our Techniques

As mentioned, both Theorem 2 and 3 rely on the minimax theorem from game
theory. Recall that the minimax theorem states that in any finite two-player
zero-sum game, if for every distribution over the actions of Player 1, there exists
some action for Player 2 that guarantees him an expected utility of v, then
there exists some (universal) distribution of actions for Player 2 such that no
matter what action Player 1 picks, Player 2 is still guaranteed an expected
utility of v. For us, Player 1 will be choosing a distinguisher, and Player 2 will
be choosing a simulator; roughly speaking, Player 2’s utility will be “high” if
the simulation is “good” for the distinguisher chosen by Player 1. Now, by the
weak zero-knowledge property, we are guaranteed that for every distinguisher
chosen by Player 1, there exists some simulator for Player 2 that guarantees him
a high utility. Thus intuitively, by the minimax theorem, Player 2 should have
a simulator that yields him high utility with respect to any distinguisher.

There are two problems with this approach. First, to apply the minimax
theorem, we require the existence of a good “distinguisher-dependent” simulator
for every distribution over distinguishers. Secondly the minimax theorem only
guarantees the existence of a distribution over simulators that works well against
every distinguisher. We resolve both of these issues in quite different ways for
Theorem 3 and Theorem 2.

In the context of Theorem 3, since we model both the simulator and dis-
tinguisher as non-uniform machines, we can use standard techniques to “de-
randomize” any distribution over simulators/distinguishers into a single simula-
tor/distinguisher that gets some extra non-uniform advice: we simply approxi-
mate the original distribution by sufficiently many samples from it, and these
samples can be provided to a single machine as non-uniform advice. (Such “de-
randomization” techniques originated in the proof of the hard-core lemma [22].)

In the context of Theorem 2, the situation is more difficult since we need both
the distinguisher and the simulator to be uniform. In particular, we are only
guaranteed the existence of a good distinguisher-dependent simulator for every
uniform distinguisher and not necessarily for non-uniform ones. Here, we instead
try to efficiently and uniformly find the “minimax” distribution over simulator
strategies. If this can be done, then we do have a single uniform (and efficient)
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simulator algorithm. Towards this, we use a multiplicative weights algorithm,
which can be used to approximately find the minimax strategies of two-player
zero-sum games (e.g., see [14]). The multiplicative weights algorithm roughly
works as follows. In the first round, Player 1 chooses the uniform distribution over
the set of all t(n)-time Turing machines with description size ≤ log n (note that
any t(n)-time uniform distinguisher will be a member of this set for sufficiently
large n), and then Player 2 chooses a “good simulator” that yields high payoff
with respect to Player 1’s distribution (note that since Player 1’s distribution is
uniformly and efficiently computable, we can view the process of sampling from
it, and next running the sampled distinguisher, as a single uniform and efficient
distinguisher, and thus we may rely on the weak zero-knowledge definition to
conclude that a good simulator exists). In the next round, Player 1 updates
its distribution using a multiplicative update rule that depends on Player 2’s
chosen simulator in the previous round; Player 2 again chooses a simulator that
yields high payoff with respect to Player 1’s new distribution, etc. By repeating
this procedure for polynomially many rounds, Player 2 obtains a sequence of
simulators such that the uniform distribution over the multiset of simulators
yields high payoff no matter what distinguisher Player 1 chooses.

There are some issues that need to be resolved. In each round, we need
to pick a simulator that works well against a (uniformly and efficiently com-
putable) distribution over t(n)-time distinguishers. Although the running-time
of the underlying distinguishers is bounded by t(n), the time needed to sample
from this distribution could be growing (exponentially) in each round, which in
turn could potentially lead to an exponential growth in the running-time of the
simulator. Thus after polynomially many rounds, it is no longer clear that the
simulator or the distribution over distinguishers is polynomial-time.6 To deal
with this issue, we rely on the “good” distinguisher-dependent simulator for a
single universal distinguisher that receives as auxiliary input the code of the
actual distinguisher it is running; we can then at each step approximate the
distribution over distinguishers and feed this approximation as auxiliary input
to the universal distinguisher.

Another important issue to deal with is the fact that to evaluate the “good-
ness” of a simulation w.r.t. to some distinguisher (i.e., to compute the utility
function), we need to be able to sample true views of the malicious verifier in
an interaction with the honest prover—but if we could do this, then we would
already be done! Roughly speaking, we overcome this issue by showing that the
goodness of a simulation w.r.t. a particular distinguisher D can be approximated
by using the distinguisher-dependent simulator SD for D.

We remark that in both of the above proofs, the reason that we work with
a (t, ε)-notion of zero-knowledge is that the running-time of the simulator we
construct is polynomial in t and 1/ε.

6 A similar issue appeared in a recent paper by us in the context of forecast testing
[9], where we used a related, but different, technique to overcome it.
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1.5 Related Work

As mentioned above, the notion of weak zero-knowledge was first introduced by
Dwork, Naor, Reingold and Stockmeyer [12]. Dwork et al also considered non-
uniform versions and distributional versions of zero-knowledge; distributional
versions of zero-knowledge were first considered by Goldreich [17] in a uniform
setting (called uniform zero-knowledge).

The minimax theorem from game-theory has been applied in various contexts
in complexity theory (e.g., [22, 4, 28, 30, 31]) and more recently also in cryptog-
raphy (e.g., [28, 13, 8, 16, 31, 23]). The proof of Theorem 4 is related to the ap-
proaches taken in these previous works, and most closely related to the approach
taken in [30]. However, as far as we know, none of the earlier results have ap-
plied the minimax theorem in the context of zero-knowledge. Nevertheless, as
we mentioned above, our Theorem 4 implies some of these earlier results (and
shows that they can be understood in the language of zero-knowledge).

In a recent paper [31], Vadhan and Zheng proved a uniform minimax theorem,
but our usage of the multiplicative weights algorithm cannot be simplified by
using their uniform minimax theorem. One reason is that in our setting, the
payoff (utility) function of the zero-sum game cannot be efficiently computed,
and thus we have to approximate it. The uniform minimax theorem of [31] does
not handle the usage of an approximate payoff function (their theorem does
allow the usage of approximate KL projections in the algorithm, but from what
we can see, this is not sufficient for handling our approximate payoff function).

1.6 Overview

In Section 2, we show that weak zero-knowledge is not equivalent to zero-
knowledge (Theorem 1 above). In Section 3, we show that weak and strong
(t, ε)-zero-knowledge are equivalent (Theorem 2 above). In Section 4, we show
that super-weak and strong distributional (t, ε)-zero-knowledge are equivalent
(Theorem 3 above), and interactive proofs with a laconic prover are distribu-
tional zero-knowledge (Theorem 4 above), and we also describe applications of
this result. In the full version of this paper, we separate the notion of super-weak
and weak (t, ε)-zero-knowledge.

2 Separation of Weak and Strong Zero-Knowledge

Given a prover P , a verifier V ∗, and x, z ∈ {0, 1}∗, let OutV ∗ [P (x)↔ V ∗(x, z)]
denote the output of V ∗(x, z) after interacting with P (x). We now state the
definition of zero-knowledge for convenient reference.

Definition 1 (zero-knowledge). Let (P, V ) be an interactive proof system for
a language L. We say that (P, V ) is zero-knowledge if for every PPT adversary
V ∗, there exists a PPT simulator S such that for every PPT distinguisher D,
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there exists a negligible function ν(·) such that for every n ∈ N, x ∈ L∩ {0, 1}n,
and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ν(n).

Remark 1. If L is a language in NP with witness relation RL, we usually require
the prover P to be efficient, but on common input x, we also give any witness
y ∈ RL(x) to the prover P . We refer to such a notion as efficient prover zero-
knowledge. More formally, in the definition of zero-knowledge above, we would
change “x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗” to “x ∈ L ∩ {0, 1}n, y ∈ RL(x), and
z ∈ {0, 1}∗”, and we would change P (x) to P (x, y) and require P to be efficient.
All subsequent definitions can be extended to an efficient prover setting in an
obvious way.

One can relax the definition of zero-knowledge by switching the order of the
quantifiers ∃S and ∀D so that the simulator S can depend on the distinguisher
D. We call the relaxed definition weak zero-knowledge (following [12]).

Definition 2 (weak zero-knowledge). Let (P, V ) be an interactive proof sys-
tem for a language L. We say that (P, V ) is weak zero-knowledge if for every
PPT adversary V ∗ and every PPT distinguisher D, there exists a PPT simula-
tor S and a negligible function ν(·) such that for every n ∈ N, x ∈ L ∩ {0, 1}n,
and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ν(n).

We now show that weak zero-knowledge is not equivalent to zero-knowledge if
we assume the existence of two-round “timed” commitment schemes and “timed”
worst-case weak one-way permutations satisfying certain properties. More pre-
cisely, we assume that there exists a polynomial p(·) such that for sufficiently
large n ∈ N, the following hold:

– There exists a collection of two-round “timed” commitment schemes {Comi}i∈[`],
where ` = log2 n, such that Comi is hard to break in p(n)i−1 steps, but can
always be broken in p(n)i steps to obtain the committed value (e.g., one can
get such timed commitment schemes from a timed commitment scheme in
[7]).

– There exists a collection of “timed” worst-case weak one-way permutations
{fi}i∈[`], where ` = log2 n, such that fi is somewhat hard to invert in p(n)i+1

steps in the worst case (i.e., an adversary running in p(n)i+1 steps will fail
to invert some instance fi(x

′) with probability at least 1/poly(n)), but can
always be inverted in p(n)i+2 steps.

Theorem 7. Assume the existence of two-round “timed” commitment schemes
and “timed” worst-case weak one-way permutations as described above. Then,
there exists an interactive proof system (P, V ) for an NP language L such that
(P, V ) is weak zero-knowledge but not zero-knowledge.
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Proof (Proof sketch). The proof roughly works as follows. Let L be the trivial
NP language {0, 1}∗ with witness relation RL(x) = {(f−11 (x), . . . , f−1

log2 |x|(x))}.
Let (P (x, y), V (x)) be the following interactive proof, where x ∈ {0, 1}∗,

n = |x|, ` = log2 n, and y = (f−11 (x), . . . , f−1` (x)):

1. The verifier V generates and sends ρi for i = 1, . . . , ` to the prover, where
ρi is the first message of an execution of Comi.

2. The prover P sends Comi(f
−1
i (x), ρi) for i = 1, . . . , ` to the verifier, where

Comi(v, r) denotes the commitment of v using Comi with first message r.
3. The verifier V accepts (i.e., outputs 1).

To see that (P, V ) is weak zero-knowledge, consider any PPT verifier V ∗ and
any PPT distinguisher D, and let T (n) be a polynomial that bounds the com-
bined running time of V ∗ and D. Then, a simulator S can compute the smallest
positive integer j such that p(n)j−1 > T (n), and then break f−11 (x), . . . , f−1j−1(x)
in polynomial time. Then, the simulator S can simulate the protocol except that
for i = j, . . . , `, the simulator S sends Comi(0

n, ρi) to V ∗ since S does not know
f−1i (x). By the hiding property of Comj , . . . ,Com`, the distinguisher D cannot
distinguish between the output of the verifier V ∗ (in a true interaction with P )
and the output of the simulator S, since D and V ∗ (combined) cannot break any
of the commitment schemes Comj , . . . ,Com` (since D and V ∗ do not run long
enough).

Intuitively, (P, V ) is not zero-knowledge because the existence of a (universal)
simulator S would allow us to invert a worst-case weak one-way permutation fj
with overwhelming probability and in less time than what is specified in our hard-
ness assumption for fj . To see this, consider a PPT distinguisher D that, given
x and a view of V , runs longer than S and breaks a commitment Comj(wj , ρ

′
j)

from the view of V such that the time needed to break fj is much longer than
the running time of the simulator S, and then verifies whether or not f(wj) = x.
The fact that the simulator S works for the distinguisher D will ensure that
with overwhelming probability, the output of S(x) will contain a commitment
Comj(wj , ρ

′
j) of some wj such that fj(wj) = x. Thus, we can now construct an

adversary A that inverts fj(wj) with overwhelming probability by running the
simulator S on input fj(wj) and breaking the commitment Comj(wj , ρ

′
j) in the

output of S. Since breaking fj takes longer time than running the simulator S
and breaking the commitment Comj(wj , ρ

′
j), the adversary A contradicts our

hardness assumption for fj . ut

See the full version of this paper for the full proof of Theorem 7.

3 From Weak to Strong (t, ε)-Zero-Knowledge

From Theorem 7, we know that zero-knowledge and weak zero-knowledge are
not equivalent. Thus, we now consider relaxed notions of zero-knowledge. We
first consider a concrete security variant of the notion of zero-knowledge.
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Definition 3 ((t, ε)-zero-knowledge). Let (P, V ) be an interactive proof sys-
tem for a language L. We say that (P, V ) is (t, ε)-zero-knowledge if for every
PPT adversary V ∗, there exists a PPT simulator S such that for every t-time dis-
tinguisher D, there exists an n0 ∈ N such that for every n ≥ n0, x ∈ L∩{0, 1}n,
and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ε(n).

Similar to before, we can relax the definition of zero-knowledge by switching
the order of the quantifiers ∃S and ∀D so that the simulator S can depend on
the distinguisher D. We call the relaxed definition weak (t, ε)-zero-knowledge.

Definition 4 (weak (t, ε)-zero-knowledge). Let (P, V ) be an interactive proof
system for a language L. We say that (P, V ) is weak (t, ε)-zero-knowledge if for
every PPT adversary V ∗ and every t-time distinguisher D, there exists a PPT
simulator S and an n0 ∈ N such that for every n ≥ n0, x ∈ L ∩ {0, 1}n, and
z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ε(n).

Note that if (P, V ) is (t, ε)-zero-knowledge (resp. weak (t, ε)-zero-knowledge)
for some super polynomial function t and some negligible function ε, then (P, V )
is zero-knowledge (resp. weak zero-knowledge) in the classic sense. We now show
that (t, ε)-zero-knowledge and weak (t, ε)-zero-knowledge are equivalent if we
consider all polynomials t and inverse polynomials ε.

Theorem 8. Let (P, V ) be an interactive proof system for a language L. Then,
(P, V ) is weak (t, ε)-zero-knowledge for every polynomial t and inverse polyno-
mial ε if and only if (P, V ) is (t′, ε′)-zero-knowledge for every polynomial t′ and
inverse polynomial ε′.

Proof. The “if” direction clearly holds by definition. We will now prove the “only
if” direction. Suppose (P, V ) is weak (t, ε)-zero-knowledge for every polynomial
t and inverse polynomial ε. Let t′ be any polynomial, and let ε′ be any inverse
polynomial.

Let V ∗ be any PPT adversary, and let TV ∗(·) be any polynomial that bounds
the running time of V ∗. It is not hard to see that without loss of generality, we
can assume that the auxiliary input z ∈ {0, 1}∗ in the definition of (t′, ε′)-zero-
knowledge is exactly C · (TV ∗(n) + t′(n)) bits long, where C is some constant
≥ 1.7 Furthermore, it is easy to see that without loss of generality, we can also
remove the absolute value | · | and change ε′(n) to O(ε′(n)). Thus, it suffices to
construct a PPT simulator S such that for every t′-time distinguisher D, there
exists an n0 ∈ N such that for every n ≥ n0, x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗
with |z| = C · (TV ∗(n) + t′(n)), we have

Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1] ≤ O(ε′(n)).

7 This follows from standard padding techniques and the fact that the adversary V ∗

and the distinguisher D cannot read any of the bits after the first TV ∗(n) + t′(n)
bits of z.
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We will now construct the required PPT simulator S for V ∗.

High-level description of the simulator S: We first give a high-level de-
scription of the simulator S. The simulator S uses the multiplicative weights
algorithm described in [14]. The simulator S, on input (x, z) with n := |x|,
first runs a multiplicative weights algorithm to find a “good set” of simulator
machines {S1, . . . , SL}; then, the simulator S randomly and uniformly chooses
one of the simulator machines in {S1, . . . , SL} to perform the simulation, i.e.,
S runs the chosen simulator machine on input (x, z) and outputs whatever the
simulator machine outputs.

Before we describe the multiplicative weights algorithm run by the simulator
S, let us introduce some notation. Given a simulator S′ and a distinguisher D′,
let the “payoff” of S′ (with respect to D′) be

µ(S′, D′) := Pr[D′(x, z, S′(x, z)) = 1]− Pr[D′(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1].

Given a simulator S′ and a distribution D(i) over distinguishers, let

µ(S′,D(i)) := ED′∼D(i) [µ(S′, D′)] =
∑

D′∈Supp(D(i))

D(i)(D′) · µ(S′, D′).

We note that we want to design the simulator S so that for every t′-time distin-
guisher D, we have µ(S,D) ≥ −O(ε′(n)).

Let D1, D2, D3, . . . be an enumeration of the set of all (uniform) distinguish-
ers, and let D′1, D

′
2, D

′
3, . . . be the corresponding sequence where D′j is the same

as Dj except that after t′(n) steps, D′j stops and outputs 0. We note that each
fixed t′-time distinguisher D will eventually appear in the set {D′1, . . . , D′n} as
n gets larger.

We now describe the multiplicative weights algorithm run by S. In the mul-
tiplicative weights algorithm, S simulates L rounds (repetitions) of a zero-sum
game between a “simulator player” Sim and a “distinguisher player” Adv, where
the payoff function for Sim is the function µ(·, ·) defined above. In each round
i, Adv chooses a mixed strategy (i.e., a distribution) D(i) over its set of pure
strategies {D′1, . . . , D′n} (a set of distinguishers), and then Sim chooses a sim-
ulator machine Si := Si(D(i)) that hopefully “does well” against Adv’s mixed
strategy D(i), i.e., Sim’s (expected) payoff µ(Si,D(i)) is high.

In the first round, Adv chooses the uniform distributionD(1) over {D′1, . . . , D′n}.
After each round i, Adv updates its mixed strategy to get D(i+1) in a manner
similar to the multiplicative weights algorithm described in [14], which involves
the payoff function µ. However, Adv cannot compute µ efficiently, since µ in-
volves the prover P , which may be inefficient (or has a witness y that Adv
does not have). Thus, Adv uses an approximation µ̂ of the payoff function µ. In
particular, given a distinguisher D′, Adv can approximate µ(Si, D

′) by approxi-
mating OutV ∗ [P (x)↔ V ∗(x, z)] with the output of a simulator SD′ that is good
w.r.t. the distinguisher D′; the existence of such a simulator is guaranteed by the
weak zero-knowledge property of (P, V ). There are still some issues: Adv might
not be able to find SD′ efficiently and uniformly, and SD′ only works well for
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sufficiently large n. We resolve these issues by using a “universal” distinguisher
that essentially takes a description of a distinguisher D′ as auxiliary input and
runs D′, and we use a simulator that is good w.r.t. this universal distinguisher.

Using an analysis similar to that in [14], we will show that if Sim manages
to choose a simulator machine Si that does well against Adv’s mixed strat-
egy D(i) in every round i ∈ [L], then the uniform mixed strategy over the set
{S1, . . . , SL} of chosen simulator machines does well against all the distinguish-
ers in {D′1, . . . , D′n}. To choose a simulator machine Si that does well against
Adv’s mixed strategy D(i), Sim makes use of the weak zero-knowledge property of
(P, V ), which guarantees that for every distinguisher D, there exists a simulator
SD that does well against D. However, there are some complications: (1) D(i) is
a mixture of distinguishers, not a single distinguisher; (2) Sim might not be able
to efficiently and uniformly find the distinguisher-dependent simulator; and (3)
even if Sim can efficiently and uniformly find the distinguisher-dependent sim-
ulator, the simulator depends on the mixed strategy D(i), and the time needed
to sample from D(i) could be growing (exponentially) in each round, which in
turn can potentially lead to an exponential growth in the running time of the
distinguisher-dependent simulator as more rounds are performed.

Sim overcomes these problems by (also) using a “universal” distinguisher
DU that takes the weights (i.e., probability masses) of a distribution D over
{D′1, . . . , D′n} as auxiliary input, samples a distinguisher from the distribution
D, and then runs the sampled distinguisher. Let SDU

be the simulator that is
good w.r.t. DU ; again, the existence of such a simulator is guaranteed by the
weak zero-knowledge property of (P, V ). Sim chooses Si to be the simulator
machine that runs SDU

with the weights of the distribution D(i) provided as
auxiliary input. We now give a formal description of the simulator S.

The simulator S: Let D1, D2, D3, . . . be an enumeration of the set of all (uni-
form) distinguishers, and let D′1, D

′
2, D

′
3, . . . be the corresponding sequence where

D′j is the same as Dj except that after t′(n) steps, D′j stops and outputs 0.
The simulator S, on input (x, z) with n := |x|, proceeds as follows:

1. Let TDU
(n) = O((TV ∗(n) + t′(n) + n)2).

Given a distributionD over {D′1, . . . , D′n}, let pD denote the vector of weights
(i.e., probability masses) representing D, i.e., pD = (D(D′1), . . . ,D(D′n)).
Let DU be a “universal” distinguisher that, on input (x, z′, v), first parses
z′ as z′ = z||pD, where pD is a vector the weights representing some distri-
bution D over {D′1, . . . , D′n}; then, DU samples a distinguisher D′j from the
distribution D, and then runs D′j on input (x, z, v), but DU always stops
after TDU

(n) steps regardless of whether or not D′j finishes running.
Let SDU

be the PPT simulator for DU that is guaranteed by the weak
(TDU

, ε′)-zero-knowledge property of (P, V ).
2. Let L = Θ( logn

ε′(n)2 ) and β = 1

1+
√

(2 lnn)/L
. (L is the number of rounds we will

run the multiplicative weights algorithm for, and β is used in the multiplica-
tive update rule.)

3. Multiplicative weights algorithm:
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Let D(1) be the uniform distribution over {D′1, . . . , D′n}. (The probability
mass D(1)(D′j) for D′j can be thought of as the “weight” for D′j .)
For i = 1, . . . , L do:
(a) Choosing a simulator machine Si that does well against D(i):

Let Si be a simulator machine that, on input (x, z), outputs SDU
(x, z||pD(i)).

(b) Weight update:
Compute the distribution D(i+1) from D(i) by letting

D(i+1)(D′j) ∼ βµ̂(Si,D
′
j) · D(i)(D′j)

for every D′j ∈ {D′1, . . . , D′n} (and renormalizing), where

µ̂(Si, D
′
j) := freqk[D′j(x, z, Si(x, z))]− freqk[D′j(x, z, SDU

(x, z||pD′j ))],

where freqk[D′j(x, z, Si(x, z))] and freqk[D′j(x, z, SDU
(x, z||pD′j ))] are ap-

proximations of Pr[D′j(x, z, Si(x, z)) = 1] and Pr[D′j(x, z, SDU
(x, z||pD′j )) =

1] by taking k := Θ( log(nL/ε′(n))
ε′(n)2 ) samples, respectively, and computing

the relative frequency in which 1 is outputted.
The function µ̂ should be viewed as being an approximation of the payoff
function µ.

End for
4. Choose Si ∈ {S1, . . . , SL} uniformly at random.
5. Run the simulator Si on input (x, z) and output Si(x, z).

We now continue with the formal proof. It can be easily verified that S runs
in time poly(n, t′(n), 1

ε′(n) ). Let D be any distinguisher whose running time is

bounded by t′(n). Fix an integer n that is sufficiently large so that the distin-
guisher D appears in {D1, . . . , Dn} and SDU

works for the distinguisher DU on
input size n for x. We note that the distinguisherD also appears in {D′1, . . . , D′n},
since the running time of D is bounded by t′(n). Fix x ∈ L ∩ {0, 1}n and
z ∈ {0, 1}∗ with |z| = C · (TV ∗(n) + t′(n)). To prove the theorem, it suffices
to show that

µ(S,D) ≥ −O(ε′(n)).

To show this, we will proceed as follows: (1) We first show that if, in every round
i the chosen simulator Si does well against the distribution D(i) with respect to
our approximation µ̂ of µ, then the simulator S does well against D with respect
to µ̂; this is the first lemma below; (2) We then show that the first lemma holds
even if we replace µ̂ with µ; this is the second lemma below; (3) Finally, we
show that in each round i, the chosen simulator Si indeed does well against the
distribution D(i) with respect to µ.

We now proceed with the proof. For i = 1, . . . , L, let

µ̂(Si,D(i)) := ED′∼D(i) [µ̂(Si, D
′)] =

n∑
k=1

D(i)(D′k) · µ̂(Si, D
′
k).

One should view µ̂(Si,D(i)) as an approximation of µ(Si,D(i)).
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Lemma 1. For every distinguisher D′j ∈ {D′1, . . . , D′n}, if we run the simulator

S(x, z), then (with probability 1) S(x, z) generates D(1), . . . ,D(L) and S1, . . . , SL
such that

1

L

L∑
i=1

µ̂(Si, D
′
j) ≥

1

L

L∑
i=1

µ̂(Si,D(i))−O(ε′(n)).

The proof of Lemma 1 is essentially the same as a lemma found in [9], whose
proof is very similar to the analysis of the multiplicative weights algorithm found
in [14]. In [14], the multiplicative weights algorithm updates the weights of D(i)

using the exact value of µ(Si, D
′
j); here, we only have an approximation µ̂(Si, D

′
j)

of µ(Si, D
′
j), but with minor changes, the analysis in [14] can still be used to

show Lemma 1. We provide a proof of Lemma 1 in the full version of this paper.
We now show that we can essentially replace the µ̂ in Lemma 1 with µ.

Lemma 2. For every D′ ∈ {D′1, . . . , D′n}, if we run the simulator S(x, z),
then with probability 1 − O(ε′(n)) over the random coins of S, S(x, z) gener-
ates D(1), . . . ,D(L) and S1, . . . , SL such that

1

L

L∑
i=1

µ(Si, D
′) ≥ 1

L

L∑
i=1

µ(Si,D(i))−O(ε′(n)).

The proof of Lemma 2 roughly works as follows. We take Lemma 1 and
show that each time we approximate µ via µ̂, the approximation is good with
high probability; this follows from Chernoff bounds and the fact that SDU

is a
simulator for V ∗ that is good with respect to the “universal” distinguisher DU .
Lemma 2 then follows from the union bound. See the full version of this paper
for the proof of Lemma 2.

To complete the proof of Theorem 8, we will now show that µ(S,D) ≥
−O(ε′(n)). We first show that for every i ∈ [L], we always have µ(Si,D(i)) ≥
−O(ε′(n)). Fix i ∈ [L]. Now, we observe that

µ(Si,D(i))

=

n∑
j=1

D(i)(D′j) ·
(
Pr[D′j(x, z, Si(x, z)) = 1]− Pr[D′j(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]

)
= Pr[DU (x, z||pD(i) , Si(x, z)) = 1]− Pr[DU (x, z||pD(i) , OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]

= Pr[DU (x, z||pD(i) , SDU
(x, z||pD(i))) = 1]

− Pr[DU (x, z||pD(i) , OutV ∗ [P (x)↔ V ∗(x, z||pD(i))]) = 1]

≥ − ε′(n), (2)

where the second equality follows from the definition of DU , the third equality
follows from the definition of Si and the fact that V ∗(x, z) = V ∗(x, z||pD(i))
(since |z| ≥ TV ∗(n)), and the last inequality follows from the fact that SDU

is a
simulator for DU in the weak (t′, ε′)-zero-knowledge property of (P, V ).
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Now, combining Lemma 2 and (2), we have that with probability 1−O(ε′(n))
over the randomness of S, S(x, z) generates S1, . . . , SL such that

1

L

L∑
i=1

µ(Si, D) ≥ −O(ε′(n)). (3)

Now, recall that after generating S1, . . . , SL, the simulator S(x, z) chooses a
uniformly random Si ∈ {S1, . . . , SL} and runs Si(x, z). Thus, conditional on

S(x, z) generating a particular sequence S1, . . . , SL, we have µ(S,D) =
∑L
i=1

1
L ·

µ(Si, D). Combining this with (3) (which holds with probability 1 − O(ε′(n))
over the randomness of S), we get

µ(S,D) ≥ −O(ε′(n))−O(ε′(n)) = −O(ε′(n)),

as required. This completes the proof of Theorem 8. ut

4 From Super-Weak to Strong Distributional
(T, t, ε)-Zero-Knowledge

In this section we consider a “super-weak” notion of zero-knowledge, where not
only do we allow the simulator to depend on the distinguisher, but also, we only
require that the simulator manages to make the distinguisher output 1 with at
least as high probability (minus some “small” gap) as the probability that the
distinguisher outputs 1 when given a true view of V ∗. That is, we only consider
“one-sided” indistinguishability. (Such a notion was previously considered in
[21].)

In the full version of this paper, we show that super-weak (t, ε)-zero-knowledge
is not equivalent to weak (t, ε)-zero-knowledge. Thus, we here consider an alter-
native “distributional” notion of zero-knowledge (a la [17]) where indistinguisha-
bility of the simulation is only required for any distribution over statements (and
auxiliary inputs), and the simulator as well as the distinguisher can depend on
the distribution. Additionally, we here model both the distinguisher and the
simulator as non-uniform algorithms (as opposed to uniform ones). (The com-
bination of these variants was previously considered by [12]). For concreteness,
we also add a parameter T to the definition and require that the simulator is of
size at most T (n), and thus we also bound the size of the malicious verifier V ∗

by t(n).

Definition 5 (distributional (T, t, ε)-zero-knowledge). Let (P, V ) be an in-
teractive proof system for a language L. We say that (P, V ) is distributional
(T, t, ε)-zero-knowledge if for every n ∈ N, every joint distribution (Xn, Yn, Zn)
over (L ∩ {0, 1}n)× {0, 1}∗ × {0, 1}∗, and every randomized t(n)-size adversary
V ∗, there exists a randomized T (n)-size simulator S such that for every random-
ized t(n)-size distinguisher D, we have

|Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]− Pr[D(Xn, Zn, S(Xn, Zn)) = 1]|
≤ ε(n).
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In the above definition, if L is an NP-language, then we require (i.e., assume)
Yn to be a witness of Xn (this also applies to the corresponding definition below).
Weak distributional (T, t, ε)-zero-knowledge can be defined in an analogous way
by switching the ordering of the quantifiers ∃S and ∀D. We now turn to define
super-weak distributional (T, t, ε)-zero-knowledge.

Definition 6 (super-weak distributional (T, t, ε)-zero-knowledge). Let (P, V )
be an interactive proof system for a language L. We say that (P, V ) is super-weak
distributional (T, t, ε)-zero-knowledge if for every n ∈ N, every joint distribution
(Xn, Yn, Zn) over (L ∩ {0, 1}n) × {0, 1}∗ × {0, 1}∗, every randomized t(n)-size
adversary V ∗, and every randomized t(n)-size distinguisher D, there exists a
randomized T (n)-size simulator S such that

Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]− Pr[D(Xn, Zn, S(Xn, Zn)) = 1]

≤ ε(n).

We may consider an even weaker notion of super-weak distributional zero-knowledge—
let us refer to it as super-weak* distributional zero-knowledge—where we only
require indistinguishability to hold against deterministic distinguishers D that
may output a real value in [0, 1] (such a distinguisher can easily be converted
to a randomized distinguisher by simply first computing the output p of the
deterministic one and then sampling a decision bit b = 1 with probability p).

We now show that super-weak distributional (T, t, ε)-zero-knowledge is equiv-
alent to distributional (T, t, ε)-zero-knowledge if we consider all polynomials for
T and t and all inverse polynomials for ε. In fact, we prove a more general
theorem that also describes the loss in the parameters T , t, and ε.

Theorem 9. Let (P, V ) be an interactive proof system for a language L, and
suppose (P, V ) is super-weak distributional (T, t, ε)-zero-knowledge. Then, (P, V )
is also distributional (T ′, t′, 2ε)-zero-knowledge, where t′(n) = Ω(ε(n)

√
t(n)−n)

and T ′(n) = O( t
′(n) ln(n+t′(n))

ε(n)2 ) · T (n).

Proof. Let n ∈ N, let (Xn, Yn, Zn) be any joint distribution over (L∩ {0, 1}n)×
{0, 1}∗ × {0, 1}∗, and let V ∗ be any t(n)-size adversary. It is easy to see that
w.l.o.g., we can assume that the length of Zn is always bounded by t′(n), and we
can remove the absolute value | · | in the definition of distributional (T ′, t′, 2ε)-
zero-knowledge. Thus, it suffices to show the following claim:

Claim. There exists a T ′(n)-size simulator S such that for every t′(n)-size dis-
tinguisher D,

Pr[D(Xn, Zn, S(Xn, Zn)) = 1]− Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]

≥ −2ε(n).

We now proceed to showing the above claim. We define a two-player zero-sum
game between a “simulator player” Sim and a “distinguisher player” Adv. The
set StratSim of pure strategies for Sim is the set of all T (n)-size simulators, and
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the set StratAdv of pure strategies for Adv is the set of all t′(n)-size distinguishers.
The payoff for Sim when Sim chooses a simulator S ∈ StratSim and Adv chooses
a distinguisher D ∈ StratAdv is

µn(S,D)

:= Pr[D(Xn, Zn, S(Xn, Zn)) = 1]− Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1].

For mixed strategies (i.e., distributions) S over StratSim, and D over StratAdv,
we define

µn(S,D) := ES←S,D←D[µn(S,D)].

The following simple lemma states that any distribution over circuits can be
approximated by a small randomized circuit, obtained by taking an appropriate
number of samples from the original distribution. This proof technique was used
in [1] and [24] for obtaining sparse approximations to randomized strategies in
two-player zero-sum games. A fact similar to our lemma was implicitly used by
Impagliazzo [22] and several subsequent works, but we find it useful to explicitly
formalize it as a lemma (that we hope will be useful also in other contexts).

Lemma 3 (Approximating a distribution over circuits by a small cir-
cuit obtained via sampling). Let X and A be finite sets, let Y be any random
variable with finite support, let C be any distribution over s-size randomized cir-
cuits of the form C : X×Supp(Y )→ A, and let U be any finite set of randomized
circuits of the form u : X × Supp(Y )×A→ {0, 1}. Then, for every ε > 0, there

exists a randomized circuit Ĉ of size T = O( log |X|+log |U |
ε2 · s) such that for every

u ∈ U and x ∈ X, we have

|EC←C [u(x, Y, C(x, Y ))]− E[u(x, Y, Ĉ(x, Y ))]| ≤ ε.

Additionally, there exists a deterministic circuit C̃ of size T such that for all
inputs x, y, C̃(x, y) = Pr[Ĉ(x, y) = 1].

The lemma follows easily from a Chernoff bound and a union bound; see
the full version of this paper for the proof. This proof of the main theorem now
follows from three relatively simple steps:

Step 1. We first show that for any mixed strategy D for Adv (i.e., any dis-
tribution over t′(n)-size distinguishers), there exists a T (n)-size simulator
SD ∈ StratSim such that µn(SD,D) ≥ −3ε(n)/2. By Lemma 3, we can ap-

proximate D by a t(n)-size distinguisher D̂, and then use the super-weak
distributional (T, t, ε)-zero-knowledge property of (P, V ) to get a T (n)-size

simulator SD̂ for D̂ such that µn(SD̂, D̂) ≥ −ε(n). Since D̂ approximates D
to within ε(n)/2, we have µn(SD̂,D) ≥ −3ε(n)/2, as required.

Step 2. We now apply the minimax theorem to the result of Step 1 to get a
mixed strategy S for Sim (i.e., a distribution over T (n)-size simulators) such
that for every t′(n)-size distinguisher D ∈ StratAdv, we have µn(S, D) ≥
−3ε(n)/2.
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Step 3. By Lemma 3, we can approximate S (from Step 2) by a T ′(n)-size

simulator Ŝ so that µn(Ŝ,D) ≥ −2ε(n) for every t′(n)-size distinguisher
D ∈ StratAdv.

The result of Step 3 shows Claim 4, which completes the proof of the theorem.
We now provide the details for Steps 1 and 3.

Details of Step 1.
By Lemma 3 (in the statement of the lemma, we let X = Supp(Xn)×Supp(Zn)×
{0, 1}t′(n), A = {0, 1}, Y = 0, C = D, U be a set containing only the circuit

(x, y, a) 7→ a, and ε = ε(n)/2), there exists a distinguisher D̂ of size O((n +
t′(n))2/ε(n)2) = t(n) such that for every x ∈ Xn, z ∈ Zn, and v ∈ {0, 1}t′(n), we

have |PrD←D[D(x, z, v) = 1]−Pr[D̂(x, z, v) = 1]| ≤ ε(n)/2. Since (P, V ) is super-
weak distributional (T, t, ε)-zero-knowledge, there exists a T (n)-size simulator

SD̂ such that µn(SD̂, D̂) ≥ −ε(n). From the result above and the definition of

µn, we have |µn(SD̂,D) − µn(SD̂, D̂)| ≤ ε(n)/2, so µn(SD̂,D) ≥ −3ε(n)/2, as
required.

Details of Step 3.
By Lemma 3, there exists a simulator Ŝ of size O((log |StratAdv|/ε(n)2) · T (n))
such that for every t′(n)-size distinguisher D ∈ StratAdv, we have

|PrS←S [D(Xn, Zn, S(Xn, Zn)) = 1] − Pr[D(Xn, Zn, Ŝ(Xn, Zn)) = 1]| ≤ ε(n)/2,

which implies |µn(S, D) − µn(Ŝ,D)| ≤ ε(n)/2. Combining this with the result

of Step 2, we have µn(Ŝ,D) ≥ −2ε(n) for every t′(n)-size distinguisher D ∈
StratAdv. Furthermore, the simulator Ŝ has size at most T ′(n), since there are at
mostO(q(n)+t′(n))O(t′(n)) circuits of size t′(n) on q(n) input bits, so |StratAdv| ≤
O(n+ t′(n))O(t′(n)). ut

We note that by the “additional” part of Lemma 3, the above proof actu-
ally directly shows equivalence also between super-weak* distributional zero-
knowledge and distributional zero-knowledge:

Theorem 10. Let (P, V ) be an interactive proof system for a language L, and
suppose (P, V ) is super-weak* distributional (T, t, ε)-zero-knowledge. Then, (P, V )
is also distributional (T ′, t′, 2ε)-zero-knowledge, where t′(n) = Ω(ε(n)

√
t(n)−n)

and T ′(n) = O( t
′(n) ln(n+t′(n))

ε(n)2 ) · T (n).

4.1 Laconic Prover Implies Distributional (T, t, ε)-Zero-Knowledge

In this section, we first use Theorem 10 to show that an interactive proof
with short prover communication complexity implies distributional (T, t, ε)-zero-
knowledge. We then describe applications of this result.

Theorem 11. Let (P, V ) be an interactive proof system for a language L, and
suppose that the prover P has communication complexity `(n), i.e., the total
length of the messages sent by P is `(n), where n is the length of the common
input x. Then, for every function t′(n) ≥ Ω(n) and ε′(n), (P, V ) is distributional

(T ′, t′, ε′)-zero-knowledge, where T ′(n) = O
(

2`(n) · t
′(n)3 ln(t′(n))

ε′(n)4

)
.
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Proof. By Theorem 10, it suffices to show that (P, V ) is super-weak* distribu-

tional (T, t, ε′/2)-zero-knowledge, where t(n) = Θ( t
′(n)2

ε′(n)2 ) and T (n) = O(2`(n) ·
t′(n)2

ε′(n)2 ). Let n ∈ N, let (Xn, Yn, Zn) be a joint distribution over (L ∩ {0, 1}n) ×
{0, 1}∗ × {0, 1}∗, let V ∗ be any randomized t(n)-size adversary, and let D be
any deterministic t(n)-size distinguisher outputting a real value in [0, 1]. Con-
sider some inputs x, z and randomness r for the verifier V ∗. For any sequence of
messages (m1, . . . ,mk), let (m1, . . . ,mk) ↔ V ∗r (x, z) denote the protocol where
the prover sends the message mi to V ∗ in round i, where the randomness of V ∗

is fixed to r.
Let S be the simulator that, on input (x, z) and given randomness r, enu-

merates each of the 2`(n) possible sequences of messages (m1, . . . ,mk) of total
length `(n) (that the prover P may possibly send) and picks the sequence of mes-
sages that maximizes D(x, z, OutV ∗ [(m1, . . . ,mk)↔ V ∗r (x, z)]). By construction
it follows that for every random tape r, D(x, z,OutV ∗ [P (x) ↔ V ∗r (x, z)]) ≤
D(x, z, Sr(x, z)) and thus

Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1] ≤ 0.

Furthermore, we note that the size of the simulator S is O(2`(n) · t(n)) = T (n).
Thus, (P, V ) is super-weak* distributional (T, t, 0)-zero-knowledge, which com-
pletes the proof. ut

Let us now provide a few corollaries of Theorem 11. The first two are new
proofs of old theorems (with some new generalizations). The third one is a new
result on 2-round zero-knowledge.

Application 1: Leakage Lemma of Gentry-Wichs Roughly speaking, the
“Leakage Lemma” of Gentry-Wichs [16] states that for every joint distribution
(X,π(X)), where |π(x)| = O(log |x|) (π should be thought of as leakage on
X), and for every distribution Y that is indistinguishable from X, there exists
some leakage π̃ such that the joint distributions (X,π(X)) and (Y, π̃(Y )) are
indistinguishable. We now show that this result follows as a simple corollary of
Theorem 11.

Two distributions X and Y are (s, ε)-indistinguishable if every s-size circuit
C can only distinguish X from Y by at most ε, i.e., |Pr[C(X) = 1]−Pr[C(Y ) =
1]| ≤ ε.

Corollary 1 (The leakage lemma of Gentry-Wichs [16]). Let (X,π(X))
be any joint distribution, where |π(X)| ≤ `. Let Y be any distribution that is
(s, ε)-indistinguishable from X. Then, there exists a joint distribution (Y, π̃(Y ))
such that (X,π(X)) and (Y, π̃(Y )) are (s′, 2ε)-indistinguishable, where s′ =

Ω
(

3

√
ε4·s

2`·ln(s)

)
.

Proof. Let L = {0, 1}∗ be the trivial language with the trivial witness relation
RL(x) = {0, 1}∗. Let (P, V ) be an interactive proof system for L where the
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prover P , on input a statement x with witness y, simply sends the first ` bits of
y to the verifier V , who simply always accepts. By Theorem 11, (P, V ) is distri-
butional (T, s′, ε)-zero-knowledge, where T ≤ s/2. By considering the statement
distribution X with witness distribution π(X), it follows that there exists a T -
size simulator S such that (X,π(X)) and (X,S(X)) are (s′, ε)-indistinguishable.
Also, (X,S(X)) and (Y, S(Y )) are (s/2, ε)-indistinguishable, since X and Y are
(s, ε)-indistinguishable and T ≤ s/2. It follows that (X,π(X)) and (Y, S(Y )) are
(s′, 2ε)-indistinguishable, so letting π̃ = S yields the result. ut

Let us note that our proof of the leakage lemma yields an even stronger
statement—namely, we have found an efficient simulator π̃; such a version of
the leakage lemma was recently established by Jetchev and Pietrzak [23]. (As
an independent contribution, our proof of Theorem 4 is actually significantly
simpler than both the proof of [16] and [23].) Additionally, since our result
on zero-knowledge applies also to interactive protocols, we directly also get an
interactive version of the leakage lemma.

Application 2: Dense Model Theorem We proceed to show that the dense
model theorem (e.g., see [28, 30, 13]) follows as a corollary of Theorem 11. A
distribution R is δ-dense in a distribution X if for every r, Pr[R = r] ≤ 1

δ Pr[X =
r]. Equivalently, R is δ-dense in X if there exists a joint distribution (X,B(X))
with Pr[B(X) = 1] ≥ δ such that R = X|(B(X) = 1). Let Un be the uniform
distribution over {0, 1}n.

Corollary 2 (The dense model theorem). Let X be any distribution over
{0, 1}n that is (s, ε)-indistinguishable from Un, and suppose R is δ-dense in X.
Then, there exists a distribution M that is (δ − 2ε)-dense in Un, and M and R

are (s′, 2εδ )-indistinguishable, where s′ = Ω
(

3

√
ε4·s
ln(s)

)
.

Proof. Since R is δ-dense in X, there exists a joint distribution (X,B(X)) with
Pr[B(X) = 1] ≥ δ such that R = X|(B(X) = 1). Without loss of generality,
we can assume that B(X) is always either 0 or 1. Let L = {0, 1}∗ be the trivial
language with the trivial witness relation RL(x) = {0, 1}∗. Let (P, V ) be an
interactive proof system for L where the prover P , on input a statement x with
witness y, simply sends the first bit of y to the verifier V , who simply always
accepts. By Theorem 11, (P, V ) is distributional (T, 2s′, ε)-zero-knowledge, where
T ≤ s/2. By considering the statement distribution X with witness distribution
B(X), it follows that there exists a T -size simulator S such that (X,B(X)) and
(X,S(X)) are (2s′, ε)-indistinguishable. Also, (X,S(X)) and (Un, S(Un)) are
(s/2, ε)-indistinguishable, since X and Un are (s, ε)-indistinguishable and T ≤
s/2. It follows that (X,B(X)) and (Un, S(Un)) are (2s′, 2ε)-indistinguishable.
Thus, Pr[S(Un) = 1] ≥ δ − 2ε (since Pr[B(X) = 1] ≥ δ), so Un|(S(Un) = 1) is
(δ − 2ε)-dense in Un. Also, X|(B(X) = 1) and Un|(S(Un) = 1) are (s′, 2ε/δ)-
indistinguishable, so letting M = Un|(S(Un) = 1) yields the result. ut
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Application 3: 2-Round ZK A final corollary of Theorem 11 is that the
classic two-round graph non-isomorphism protocol (which is only known to be
honest-verifier zero-knowledge) is also distributional (T, t, ε)-zero-knowledge for
T (n) = poly(t(n), 1

ε(n) ).
8 In fact, by using the complete problem for SZK (the

class of promise problems having a statistical zero-knowledge proof for an honest
verifier) by Sahai and Vadhan [29], we can show that every language in SZK has a
2-round distributional (T, t, ε)-zero-knowledge proof for T (n) = poly(t(n), 1

ε(n) ).

Theorem 12. For every language L ∈ SZK and every function δ(n) ≥ 1
2poly(n) ,

there exists a two-round interactive proof (P, V ) for L with completeness 1 −
negl(n) and soundness error δ(n) such that for every function t and ε, (P, V ) is
distributional (T, t, ε)-zero-knowledge, where T (n) = poly( 1

δ(n) , t(n), 1
ε(n) ).

Proof. From [29], there exists a two-round interactive proof (P ′, V ′) for a com-
plete problem LSZK for SZK with completeness negligibly close to 1 and sound-
ness error negligibly close to 1

2 , and the prover P ′ only sends a single bit to the
verifier V ′. By repeating the proof in parallel O(log 1

δ(n) ) times, we get a two-

round interactive proof for LSZK with completeness negligibly close to 1 and
soundness error δ(n), and the prover only sends O(log 1

δ(n) ) bits to the verifier.

Then, by Theorem 11, this interactive proof for LSZK is distributional (T, t, ε)-
zero-knowledge, where T (n) = poly( 1

δ(n) , t(n), 1
ε(n) ). Since LSZK is a complete

problem for SZK, the theorem follows. ut

In Theorem 12, if we choose δ(n) = 1
nlog n , t(n) = nlogn, and ε(n) = 1

nlog n ,
then every language in SZK has a 2-round “quasi-polynomial-time simulatable”
distributional zero-knowledge proof (i.e., T (n) is a quasi-polynomial) with com-
pleteness 1− negl(n) and negligible soundness error. Alternatively, if we choose
δ(n) = 1

poly(n) , t(n) = poly(n), and ε(n) = 1
poly(n) , then every language in

SZK has a 2-round “polynomial-time simulatable” (T, t, ε)-distributional zero-
knowledge proof (i.e., T (n) is a polynomial) with completeness 1− negl(n) and
soundness error 1

poly(n) .

4.2 Necessity of Non-Black-Box Simulation

The universal simulator in Theorem 12 is obtained via Theorem 11, which uses
Theorem 9, so the universal simulator makes non-black-box usage of V ∗. We
remark that this non-black-box usage is also necessary (assuming standard com-
plexity theoretic assumptions): We will show that black-box simulation tech-
niques cannot be used to demonstrate distributional (T, t, ε)-zero-knowledge for
2-round proof systems for languages that are hard-on-average. Thus, as long as
SZK contains a problem that is hard-on-average, our non-black-box techniques
are necessary. Let us first give the definition of black-box distributional (T, t, ε)-
zero-knowledge.

8 Recall that in the classic GNI protocol the prover sends just a single bit.
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Definition 7 (black-box distributional (T, t, ε)-zero-knowledge). Let (P, V )
be an interactive proof system for a language L. We say that (P, V ) is black-box
distributional (T, t, ε)-zero-knowledge if for every n ∈ N and every joint distri-
bution (Xn, Yn, Zn) over (L∩{0, 1}n)×{0, 1}∗×{0, 1}∗, there exists a T (n)-size
simulator S such that for every t(n)-size adversary V ∗ and every t(n)-size dis-
tinguisher D, we have

|Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]

− Pr[D(Xn, Zn, S
V ∗(Xn,Zn)(Xn, Zn)) = 1]| ≤ ε(n).

where SV
∗(Xn,Zn) means that S is given oracle access to the verifier V ∗(Xn, Zn).

For any language L and any x ∈ {0, 1}∗, let L(x) = 1 if x ∈ L, and L(x) = 0
otherwise. We now show that any 2-round interactive proof for a language L with
“hard-on-average” instances is not black-box distributional zero-knowledge.

Theorem 13. Let L be any language with hard-on-average instances, i.e., there
exists an ensemble {Xn}n∈N of distributions Xn over {0, 1}n such that for ev-
ery non-uniform PPT algorithm A and for sufficiently large n ∈ N, we have
Pr[A(Xn) = L(Xn)] ≤ 1

2 + ε(n), where ε is any function such that ε(n) < 1
12 for

sufficiently large n ∈ N.
Then, there exists a polynomial t such that any 2-round interactive proof

(P, V ) for L with completeness 2
3 and soundness error at most 1

3 is not black-box
(T, t, ε)-distributional zero-knowledge for any polynomial T .

Proof. Let t(n) = O(TV (n)), where TV (n) is a polynomial bound on the running
time of V on instances x of length n. To obtain a contradiction, suppose (P, V )
is black-box (T, t, ε)-distributional zero-knowledge for some polynomial T . Let
n ∈ N, let X ′n be Xn conditioned on the event Xn ∈ L, let X ′′n be Xn conditioned
on the eventXn /∈ L, let Yn always be the empty string, and let Zn be the uniform
distribution over {0, 1}t(n). Then, there exists a polynomial-size simulator S such
that for every t(n)-size adversary V ∗ and every t(n)-size distinguisher D, we have

|Pr[D(X ′n, Zn, OutV ∗ [P (X ′n, Yn)↔ V ∗(X ′n, Zn)]) = 1]

− Pr[D(X ′n, Zn, S
V ∗(X′n,Zn)(X ′n)) = 1]| ≤ ε(n). (1)

Let V ∗ be the verifier that, on input (x, z), runs the honest verifier Vz(x) with
random tape z to interact with the prover, and then outputs the message a
received from the prover. Let D be the distinguisher that, on input (x, z, a),
outputs 1 if Vz(x, a) = 1, and 0 otherwise, where Vz(x, a) represents the output
of V (x) with random tape z and with message a received from the prover.

Claim. Pr[D(X ′n, Zn, S
V ∗(X′n,Zn)(X ′n)) = 1] ≥ 2

3 − ε(n).

Proof (of claim). Since (P, V ) has completeness 2
3 , we have

Pr[D(X ′n, Zn, OutV ∗ [P (X ′n, Yn)↔ V ∗(X ′n, Zn)]) = 1]

= Pr[OutV [P (X ′n, Yn)↔ V (X ′n)] = 1]

≥ 2

3
.
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Now, combining this with (1), we have

Pr[D(X ′n, Zn, S
V ∗(X′n,Zn)(X ′n)) = 1] ≥ 2

3
− ε(n),

as required. This completes the proof of the claim. ut

Claim. Pr[D(X ′′n , Zn, S
V ∗(X′′n ,Zn)(X ′′n)) = 0] ≥ 2

3 − ε(n).

Proof (of claim). To obtain a contradiction, suppose Pr[D(X ′′n , Zn, S
V ∗(X′′n ,Zn)(X ′′n)) =

0] < 2
3 − ε(n). We note that the event D(X ′′n , Zn, S

V ∗(X′′n ,Zn)(X ′′n)) = 0 occurs if

and only if the event VZn
(X ′′n , S

V ∗(X′′n ,Zn)(X ′′n)) = 0 occurs, where VZn
(X ′′n , S

V ∗(X′′n ,Zn)(X ′′n))
represents the output of V (X ′′n) with random tape Zn and with message SV

∗(X′′n ,Zn)(X ′′n)
received from the prover. Thus, we have Pr[VZn

(X ′′n , S
V ∗(X′′n ,Zn)(X ′′n)) = 0] <

2
3 − ε(n).

Now, consider an adversarial prover P ∗ that, on input x and upon receiving a
message c from the verifier V , simulates S(x) while responding to oracle queries
with the message c, and then sends the output of S(x) to V . Now, we note
that the event VZn

(X ′′n , S
V ∗(X′′n ,Zn)(X ′′n)) = 0 occurs if and only if the event

OutV (P ∗(X ′′n , Yn)↔ VZn
(X ′′n)) = 0 occurs. Thus, we have

Pr[OutV (P ∗(X ′′n , Yn)↔ VZn
(X ′′n)) = 0] <

2

3
− ε(n),

and since we always have X ′′n /∈ L, this contradicts the assumption that (P, V )
has soundness error at most 1

3 . This completes the proof of the claim. ut

Now, using the polynomial-size simulator S and the t(n)-size distinguisher
D, we will construct a non-uniform PPT algorithm A that contradicts the as-
sumption that L has hard-on-average instances, i.e., for infinitely many n ∈ N,
we have

Pr[A(Xn) = L(Xn)] >
1

2
+ ε(n).

Let A be the non-uniform PPT algorithm that, on input x ∈ {0, 1}n, samples a
uniformly random z from Zn, computes SV

∗(x,z)(x) (while simulating the oracle
V ∗(x, z) for S(x)) and outputs D(x, z, SV

∗(x,z)(x)). Then, for infinitely many
n ∈ N, we have

Pr[A(Xn) = L(Xn)]

= Pr[D(Xn, Zn, S
V ∗(Xn,Zn)(Xn)) = L(Xn)]

= Pr[Xn ∈ L] · Pr[D(X ′n, Zn, S
V ∗(X′n,Zn)(X ′n)) = 1]

+ Pr[Xn /∈ L] · Pr[D(X ′′n , Zn, S
V ∗(X′′n ,Zn)(X ′′n)) = 0]

≥ Pr[Xn ∈ L] · (2/3− ε(n)) + Pr[Xn /∈ L] · (2/3− ε(n))

=
2

3
− ε(n),

where the inequality follows from the two claims above. This contradicts the
assumption that L has hard-on-average instances. This completes the proof. ut
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