
One-Sided Adaptively Secure Two-Party Computation

Carmit Hazay1 and Arpita Patra2

1 Faculty of Engineering, Bar-Ilan University, Israel. carmit.hazay@biu.ac.il
2 Dept. of Computer Science, University of Bristol, UK. arpita.patra@bristol.ac.uk

Abstract. Adaptive security is a strong security notion that captures additional
security threats that are not addressed by static corruptions. For instance, it cap-
tures real-world scenarios where “hackers” actively break into computers, possi-
bly while they are executing secure protocols. Studying this setting is interesting
from both theoretical and practical points of view. A primary building block in
designing adaptively secure protocols is a non-committing encryption (NCE) that
implements secure communication channels in the presence of adaptive corrup-
tions. Current constructions require a number of public key operations that grows
linearly with the length of the message. Furthermore, general two-party protocols
require a number of NCE calls that is linear in the circuit size.
In this paper we study the two-party setting in which at most one of the par-
ties is adaptively corrupted, which we believe is the right security notion in the
two-party setting. We study the feasibility of (1) NCE with constant number of
public key operations for large message spaces (2) Oblivious transfer with con-
stant number of public key operations for large input spaces of the sender, and (3)
constant round secure computation protocols with a number of NCE calls, and an
overall number of public key operations, that are independent of the circuit size.
Our study demonstrates that such primitives indeed exist in the presence of single
corruptions, while this is not known for fully adaptive security.

Keywords: Adaptively Secure Computation, Non-Committing Encryption, Oblivious Transfer

1 Introduction

1.1 Background

Secure two-party computation. In the setting of secure two-party computation, two
parties with private inputs wish to jointly compute some function of their inputs while
preserving certain security properties like privacy, correctness and more. In this setting,
security is formalized by viewing a protocol execution as if the computation is executed
in an ideal setting where the parties send inputs to a trusted party that performs the com-
putation and returns its result (also known by simulation-based security). Starting with
the work of [36, 22], it is by now well known that (in various settings) any polynomial-
time function can be compiled into a secure function evaluation protocol with practical
complexity; see [30, 16, 33] for a few recent works. The security proofs of these con-
structions assume that a party is statically corrupted. Meaning, corruptions take place at
the outset of the protocol execution and the identities of the corrupted parties are fixed
throughout the computation. Adaptive security is a stronger notion where corruptions

takes place at any point during the course of the protocol execution. That is, upon cor-
ruption the adversary sees the internal data of the corrupted party which includes its
input, randomness and the incoming messages. This notion is much stronger than static
security due to the fact that the adversary may choose at any point which party to cor-
rupt, even after the protocol is completed! It therefore models real world threats more
accurately than the static corruption model.

Typically, when dealing with adaptive corruptions we distinguish between corrup-
tions with erasures and without erasures. In the former case honest parties are trusted to
erase data if are instructed to do so by the protocol, whereas in the latter case no such
assumption is made. This assumption is often problematic since it relies on the willing-
ness of the honest parties to carry out this instruction without the ability to verify its
execution. In settings where the parties are distrustful it may not be a good idea to base
security on such an assumption. In addition, it is generally unrealistic to trust parties to
fully erase data since this may depend on the operating system. Nevertheless, assuming
that there are no erasures comes with a price since the complexity of adaptively secure
protocols without erasures is much higher than the analogue complexity of protocols
that rely on erasures. In this paper we do not rely on erasures.

Adaptive security. It is known by now that security against adaptive attacks captures
important real-world concerns that are not addressed by static corruptions. For instance,
such attacks capture scenarios where “hackers” actively break into computers, possibly
while they are running secure protocols, or when the adversary learns from the com-
munication which parties are worth to corrupt more than others. This later issue can
be demonstrated by the following example. Consider a protocol where some party (de-
noted by the dealer) shares a secret among a public set of

√
n parties, picked at random

from a larger set of n parties. This scheme is insecure in the adaptive model if the ad-
versary corrupts

√
n parties since it can always corrupt the particular set of parties that

share the secret. In the static setting the adversary corrupts the exact same set of parties
that share the secret with a negligible probability in n.

Other difficulties also arise when proving security. Consider the following protocol
for transferring a message: A receiver picks a public key and sends it to a sender that
uses it to encrypt its message. Then, security in the static model is simple and relies on
the semantic security of the underlying encryption scheme. However, this protocol is
insecure in the adaptive model since standard semantically secure encryption binds the
receiver to a single message (meaning, given the public key, a ciphertext can only be de-
crypted into a single value). Thus, upon corrupting the receiver at the end of the protocol
execution it would not be possible to “explain” the simulated ciphertext with respect to
the real message. This implies that adaptive security is much harder to achieve.

Adaptively secure two-party computation. In the two-party setting there are scenarios
where the system is comprised from two devices communicating between themselves
without being part of a bigger system. For instance, consider a scenario where two
devices share an access to an encrypted database that contains highly sensitive data
(like passwords). Moreover, the devices communicate via secure computation but do not
communicate with other devices due to high risk of breaking into the database. Thus,
attacking one of the devices does not disclose any useful information about the content

of the database, while attacking both devices is a much harder task. It is reasonable to
assume that the devices are not necessarily statically corrupted since they are protected
by other means, while attackers may constantly try to break into these devices (even
while running secure computation).

In 2011, RSA secureID authentication products were breached by hackers that lever-
aged the stolen information from RSA in order to attack the U.S. defense contractor
Lockheed Martin. The attackers targeted SecurID data as part of a broader scheme to
steal defense secrets and related intellectual property. Distributing the SecureID secret
keys between two devices potentially enables to defend against such an attack since in
order to access these keys the attackers need to adaptively corrupt both devices, which
is less likely to occur. Many other applications face similar threats when attempt to
securely protect their databases.

We therefore focus on a security notion that seems the most appropriate in this
context. In this paper, we study secure two-party computation with single adaptive cor-
ruptions in the non-erasure model where at most one party is adaptively corrupted. To
distinguish this notion from fully adaptive security, where both parties may get cor-
rupted, we denote it by one-sided adaptive security. Our goal in this work is to make
progress in the study of the efficiency of two-party protocols with one-sided security.
Our measure of efficiency is the number of public key encryption (PKE) operations.
Loosely speaking, our primitives are parameterized by a public key encryption scheme
for which we count the number of key generation/encryption/decryption operations.
More concretely, these operations are captured by the number of exponentiations in
several important groups (e.g., groups where the DDH assumption is hard and compos-
ite order groups where the assumptions DCR and QR are hard), and further considered
in prior works such as [19]. Finally, our proofs are given in the universal composable
(UC) setting [6] with a common reference string (CRS) setup. The reductions of our
non-committing encryption and oblivious transfer with one-sided security are tight. The
reductions of our general two-party protocols are tighter than in prior works since we
do not need to encrypt the entire communication using non-committing encryption; see
more details below. All our theorems are not known to hold in the fully adaptive setting.

1.2 Our Results

One-sided NCE with constant overhead. A non-committing encryption (NCE) scheme
[8] implements secure channels in the presence of adaptive corruptions and is an im-
portant building block in designing adaptively secure protocols. In [13], Damgård and
Nielsen presented a theoretical improvement in the one-sided setting by designing an
NCE under strictly weaker assumptions than simulatable public key encryption scheme
(the assumption for fully adaptive NCE). Nevertheless, all known one-sided [8, 13] and
fully adaptive NCE constructions [13, 11] require O(1) PKE operations for each trans-
mitted bit. It was unknown whether this bound can be reduced for one-sided NCEs and
even matched with the overhead of standard PKEs.

We suggest a new approach for designing NCEs secure against one-sided adap-
tive attacks. Our protocols are built on two cryptographic building blocks that are non-
committing with respect to a single party. We denote these by NCE for the sender and
NCE for the receiver. Non-committing for the receiver (NCER) implies that one can

efficiently generate a secret key that decrypts a simulated ciphertext into any plain-
text. Whereas non-committing for the sender (NCES) implies that one can efficiently
generate randomness for any plaintext for proving that a ciphertext, encrypted under
a fake key, encrypts this plaintext. A core building block in our one-sided construc-
tion is (a variant) of the following protocol, in which the receiver generates two sets of
public/secret keys; one pair of keys for each public key system, and sends these public
keys to the sender. Next, the sender partitions its message into two shares and encrypts
the distinct shares under the distinct public keys. Finally, the receiver decrypts the ci-
phertexts and reconstructs the message. Both NCES and NCER are semantically secure
PKEs and they are as efficient as standard PKEs. Informally, we prove that,

Theorem 1 (Informal) Assume the existence of NCER and NCES with constant number
of PKE operations for message space {0, 1}q and simulatable PKE. Then there exists
a one-sided NCE with constant number of PKE operations for message space {0, 1}q ,
where q = O(n) and n is the security parameter.

Importantly, the security of this protocol only works if the simulator knows the iden-
tity of the corrupted party since fake public keys and ciphertexts cannot be explained
as valid ones. We resolve this issue by slightly modifying this protocol using some-
what NCE [19] in order to encrypt only three bits. Namely, we use somewhat NCE
to encrypt the choice of having fake/valid keys and ciphertexts (which only requires
a single non-committing bit per choice). This enables the simulator to “explain” fake
keys/ciphertext as valid and vice versa using only a constant number of asymmetric
operations. In this work we consider two implementations of NCER and NCES. For
polynomial-size message spaces the implementations are secure under the DDH as-
sumption, whereas for exponential-size message spaces security holds under the DCR
assumption. The NCER implementations are taken from [25, 9]. NCES was further dis-
cussed in [17] and realized under the DDH assumption in [5] using the closely related
notion of lossy encryption.3 In this paper we realize NCES under the DCR assumption.

One-sided oblivious transfer with constant overhead. We use our one-sided NCEs to
implement 1-out-of-2 oblivious transfer (OT) between a sender and a receiver. We con-
sider a generic framework that abstracts the statically secure OT of [34] that is based
on a dual-mode PKE primitive, while encrypting only a small portion of the communi-
cation using our one-sided NCE. Our construction requires a constant number of PKE
operations for an input space {0, 1}q of the sender, where q = O(n). This is signif-
icantly better than the fully adaptively secure OT of [19] (currently the most efficient
fully adaptive construction), that requires O(q) such operations. We prove that:

Theorem 2 (Informal) Assume the existence of one-sided NCE with constant number
of PKE operations for message space {0, 1}q and dual-mode PKE. Then there exists a
one-sided OT with constant number of PKE operations for sender’s input space {0, 1}q ,
where q = O(n) and n is the security parameter.

3 This notion differs from NCES by not requiring an efficient opening algorithm that enables to
equivocate the ciphertext’s randomness. We further observe that the notion of NCES is also
similar to mixed commitments [14].

We build our one-sided OT based on the PVW protocol as follows. (1) First, we
require that the sender sends its ciphertexts via a one-sided non-committing channel
(based on our previous result, this only inflates the overhead by a constant). (2) We fix
the common parameters of the dual-mode PKE in a single mode (instead of alternating
between two modes as in the [19] protocol). To ensure correctness, we employ a special
type of ZK PoK which uses a novel technique; see below for more details. Finally, we
discuss two instantiations based on the DDH and QR assumptions.

Constant round one-sided secure computation. Theoretically, it is well known that any
statically secure protocol can be transformed into a one-sided adaptively secure protocol
by encrypting the entire communication using NCE. This approach, adopted by [26],
implies that the number of PKE operations grows linearly with the circuit size times a
computational security parameter.4 A different approach in the OT-hybrid model was
taken in [24] and achieved a similar overhead as well.

In this work we demonstrate the feasibility of designing generic constant round
protocols based on Yao’s garbled circuit technique with one-sided security, tolerating
semi-honest and malicious attacks. Our main observation implies that one-sided secu-
rity can be obtained even if only the keys corresponding to the inputs and output wires
are communicated via a one-sided adaptively secure channel. This implies that the bulk
of communication is transmitted as in the static setting. Using our one-sided secure
primitives we obtain protocols that outperform the constant round one-sided construc-
tions of [26, 24] and all known generic fully adaptively secure two-party protocols. Our
proofs take a different simulation approach, circumventing the difficulties arise due to
the simulation technique from [28] that builds a fake circuit (which cannot be applied
in the adaptive setting). Specifically, we prove that

Theorem 3 (Informal) Under the assumptions of achieving statically secure two-party
computation and one-sided OT with constant number of PKE operations for sender’s
input space {0, 1}q , where q = O(n) and n is the security parameter, there exists a con-
stant round one-sided semi-honest adaptively secure two-party protocol that requires
O(|C|) private key operations and O(|input|+ |output|) public key operations.

In order to obtain one-sided security against malicious attacks we adapt the cut-and-
choose based protocol introduced in [30]. The idea of the cut-and-choose technique is
to ask one party to send s garbled circuits and later open half of them by the choice
of the other party. This ensures that with very high probability the majority of the un-
opened circuits are valid. Proving security in the one-sided setting requires dealing with
new subtleties and requires a modified cut-and-choose OT protocol, since [30] defines
the public parameters of their cut-and-choose OT protocol in a way that precludes the
equivocation of the receiver’s input. Our result in the malicious setting follows.

Theorem 4 (Informal.) Under the assumptions of achieving static security in [30], one-
sided cut-and-choose OT with constant number of PKE operations for sender’s input

4 We note that this statement is valid regarding protocols that do not employ fully homomorphic
encryptions (FHE). To this end, we only consider protocols that do not take the FHE approach.
As a side note, it was recently observed in [27] that adaptive security is impossible for FHE
satisfying compactness.

space {0, 1}q , where q = O(n) and n is the security parameter, and simulatable PKE,
there exists a constant round one-sided malicious adaptively secure two-party protocol
that requires O(s · |C|) private key operations and O(s · (|input|+ |output|)) public
key operations where s is a statistical parameter that determines the cut-and-choose
soundness error.

This asymptotic efficiency is significantly better than in prior protocols [26, 24].

Witness equivocal UC ZK PoK for compound statements. As a side result, we demon-
strate a technique for efficiently generating statically secure UC ZK PoK for known
Σ-protocols. Our protocols use a new approach where the prover commits to an addi-
tional transcript which enables to extract the witness with a constant overhead.

We further focus on compound statements (where the statement is comprised of
sub-statements for which the prover only knows a subset of the witnesses), and denote
a UC ZK PoK by witness equivocal if the simulator knows the witnesses for all sub-
statements but not which subset is given to the real prover. We extend our proofs for
this notion to the adaptive setting as well. In particular, the simulator must be able
to convince an adaptive adversary that it does not know a different subset of witnesses.
This notion is weaker than the typical one-sided security notion (that requires simulation
without the knowledge of any witness), but is still meaningful in designing one-sided
secure protocols. In this work, we build witness equivocal UC ZK PoKs for a class of
fundamental compound Σ-protocols, without relying on NCE. Our protocols are round
efficient and achieve a negligible soundness error. Finally, they are proven secure in the
UC framework [6].

To conclude, our results may imply that one-sided security is strictly easier to
achieve than fully adaptive security, and for some applications this is indeed the right
notion to consider. We leave open the feasibility of constant round one-sided secure pro-
tocols in the multi-party setting. Currently, it is not clear how to extend our techniques
beyond the two-party setting (such as within the [4] protocol), and achieve secure con-
structions with a number of PKE operations that does not depend on the circuit size.

1.3 Prior Work

We describe prior work on NCE, adaptively secure OT and two-party computation.

Non-committing encryption. One-sided NCE was introduced in [8] which demon-
strated feasibility of the primitive under the RSA assumption. Next, NCE was studied
in [13, 11]. The construction of [13] requires constant rounds on the average and is
based on simulatable PKE, whereas [11] presents an improved expected two rounds
NCE based on a weaker primitive. [13] further presented a one-sided NCE based on a
weakened simulatable PKE notion. The computational overhead of these constructions
is O(1) PKE operations for each transmitted bit. An exception is the somewhat NCE
introduced in [19] (see Section 2.5 for more details). This primitive enables to send
arbitrarily long messages at the cost of log ` PKE operations, where ` is the equivocal-
ity parameter that determines the number of messages the simulator needs to explain.
This construction improves over NCEs for sufficiently small `’s. Finally, in [32] Nielsen

proved that adaptively secure non-interactive encryption scheme must have a decryption
key that is at least as long as the transmitted message.

Adaptively secure oblivious transfer. [1, 10] designed semi-honest adaptively secure
OT (using NCE) and then compiled it into the malicious setting using generic ZK
proofs. More recently, in a weaker model that assumes erasures, Lindell [29] used the
method of [35] to design an efficient transformation from any static OT to a semi-honest
composable adaptively secure OT. Another recent work by Garay et al. [19] presented
a UC adaptively secure OT, building on the static OT of [34] and somewhat NCE. This
paper introduces an OT protocol with security under a weaker semi-adaptive notion,
that is then compiled into a fully adaptively secure OT by encrypting the transcript of
the protocol using somewhat NCE.5 Finally, [12] presented an improved compiler for a
UC adaptively secure OT in the malicious setting (using NCE as well).

Adaptively secure two-party computation. In the non-erasure model, adaptively se-
cure computation has been extensively studied [10, 15, 7, 26, 24, 29, 11, 12, 20]. Starting
with the work of [10], it is known by now how to compute any well-formed two-party
functionality in the adaptive settings. The followup work of [15] showed how to use a
threshold encryption to achieve UC adaptive security but requires honest majority. A
generic compiler from static to adaptive security was shown in [7] (yet without consid-
ering post-execution corruptions). Then the work by Katz and Ostrovsky [26] studied
the round complexity in the one-sided setting. Their protocol is the first round efficient
construction, yet it takes the naive approach of encrypting the entire communication us-
ing NCE. Moreover, the work of [24] provided a UC adaptively secure protocol given
an adaptively secure OT. Their compiler generates one-sided schemes that either require
a number of adaptively secure OTs that is proportional to the circuit’s size, or a number
of rounds that is proportional to the depth of the circuit. Finally, a recent work by Garg
and Sahai [20] shows adaptively secure constant round protocols tolerating n − 1 out
of n corrupted parties using a non-black box simulation approach. Their approach uses
the OT hybrid compiler of [24].

In the erasure model, one of the earliest works by Beaver and Haber [3] showed
an efficient generic transformation from adaptively secure protocols with ideally secure
communication channels, to adaptively secure protocols with standard (authenticated)
communication channels. A more recent work by Lindell [29] presents an efficient
semi-honest constant round two-party protocol with adaptive security.

2 Preliminaries

We denote the security parameter by n. A function µ(·) is negligible if for every poly-
nomial p(·) there exists a value N such that for all n > N it holds that µ(n) < 1

p(n) .
We denote by a ← A the random sampling of element a from a set A and write PPT
for probabilistic polynomial-time. We denote the message spaces of our schemes and
the message space of the sender in our OT protocols by {0, 1}q for q = O(n).

5 We stress that the semi-adaptive notion is incomparable to the one-sided notion since the for-
mer assumes that either one party is statically corrupted or none of the parties get corrupted.

Definition 5 (Computational indistinguishability) Let X = {Xn(a)}n∈IN,a∈{0,1}∗
and Y = {Yn(a)}n∈IN,a∈{0,1}∗ be distribution ensembles. We say that X and Y are
computationally indistinguishable, denoted X ≈c Y , if for every family {Cn}n∈IN of
polynomial-size circuits, there exists a negligible function µ(·) such that for all a ∈
{0, 1}∗, |Pr[Cn(Xn(a)) = 1]− Pr[Cn(Yn(a)) = 1]| < µ(n).

We denote a PKE by three algorithms Π = (Gen,Enc,Dec). We say that a protocol π
realizes functionality F with t PKE operations (relative to Π) if the number of calls π
makes to either one of (Gen,Enc,Dec) is at most t. Importantly, this definition is not
robust in the sense that one might define an encryption algorithm Enc′ that consists of
encrypting n times in parallel using Enc. In this work we do not abuse this definition
and achieve a single basic operation relative to algorithms (Gen,Enc,Dec), which are
implemented by O(1) group exponentiations in various group descriptions.

2.1 Simulatable Public Key Encryption

A simulatable public key encryption scheme is a semantically secure PKE with four ad-
ditional algorithms. I.e., an oblivious public key generator G̃en and a corresponding key

faking algorithm G̃en
−1

, and an oblivious ciphertext generator Ẽnc and a correspond-

ing ciphertext faking algorithm Ẽnc
−1

. Intuitively, the key faking algorithm is used
to explain a legitimately generated public key as an obliviously generated public key.
Similarly, the ciphertext faking algorithm is used to explain a legitimately generated
ciphertext as an obliviously generated one.

Definition 6 (Simulatable PKE [13]) A Simulatable PKE is a tuple of algorithms (Gen,

Enc,Dec, G̃en, G̃en
−1
, Ẽnc, Ẽnc

−1
) that satisfy the following properties:

– Semantic Security. (Gen,Enc,Dec) is a semantically secure encryption scheme.
– Oblivious public key generation. Consider the experiment (PK, SK)← Gen(1n),

r ← G̃en
−1

(PK) and PK′ ← G̃en(r′). Then, (r, PK) ≈c (r′, PK′).
– Oblivious ciphertext generation. For any message m in the appropriate do-

main, consider the experiment (PK, SK) ← Gen(1n), c1 ← ẼncPK(r1), c2 ←
Encpk(m; r2), r′1 ← Ẽnc

−1
(c2). Then (PK, r1, c1) ≈c (PK, r′1, c2).

The El Gamal PKE [18] is one example for simulatable PKE.

2.2 Dual-Mode PKE

A dual-mode PKE ΠDUAL is specified by the algorithms (Setup, dGen, dEnc, dDec,
FindBranch,TrapKeyGen) described below.

– Setup is the system parameters generator algorithm. Given a security parameter n
and a mode µ ∈ {0, 1}, the algorithm outputs (CRS, t). The CRS is a common
string for the remaining algorithms, and t is a trapdoor value that is given to either
FindBranch or TrapKeyGen, depends on the mode. The setup algorithms for messy
and decryption modes are denoted by SetupMessy and SetupDecryption, respec-
tively; namely SetupMessy := Setup(1n, 0) and SetupDecryption := Setup(1n, 1).

– dGen is the key generation algorithm that takes a bit α and the CRS as input. If
α = 0, then it generates left public and secret key pair. Otherwise, it creates right
public and secret key pair.

– dEnc is the encryption algorithm that takes a bit β, a public key PK and a message
m as input. If β = 0, then it creates the left encryption ofm, else it creates the right
encryption.

– dDec decrypts a message given a ciphertext and a secret key SK.
– FindBranch finds whether a given public key (in messy mode) is left key or right

key given the messy mode trapdoor t.
– TrapKeyGen generates a public key and two secret keys using the decryption mode

trapdoor t such that both left encryption as well as the right encryption using the
public key can be decrypted using the secret keys.

Definition 7 (Dual-mode PKE) A dual-mode PKE is a tuple of algorithms described
above that satisfy the following properties:

1. Completeness. For every mode µ ∈ {0, 1}, every (CRS, t)← Setup(1n, µ), every
α ∈ {0, 1}, every (PK, SK)← dGen(α), and everym ∈ {0, 1}`, decryption is cor-
rect when the public key type matches the encryption type, i.e., dDecSK(dEncPK(m,α)) =
m.

2. Indistinguishability of modes. The CRS generated by SetupMessy and SetupDecryption
are computationally indistinguishable, i.e., SetupMessy(1n) ≈c SetupDecryption(1n).

3. Trapdoor extraction of key type (messy mode). For every (CRS, t)← SetupMessy(1n)
and every (possibly malformed) PK, FindBranch(t, PK) outputs the public key type
α ∈ {0, 1}. Encryption at branch 1 − α is then message-lossy; namely, for every
m0,m1 ∈ {0, 1}`, dEncPK(m0, 1− α) ≈s dEncPK(m1, 1− α).

4. Trapdoor generation of keys decrypt both branches (decryption mode). For
every (CRS, t)← SetupDecryption(1n), TrapKeyGen(t) outputs (PK, SK0, SK1)
such that for every α, (PK, SKα) ≈c dGen(α).

2.3 NCE for the Receiver

An NCE for the receiver is a semantically secure PKE with an additional property that
enables generating a secret key that decrypts a simulated (i.e., fake) ciphertext into any
plaintext. Specifically, the scheme operates in two modes. The “real mode” enables to
encrypt and decrypt as in the standard definition of PKE. The “simulated mode” en-
ables to generate simulated ciphertexts that are computationally indistinguishable from
real ciphertexts. Moreover, using a special trapdoor one can produce a secret key that
decrypts a fake ciphertext into any plaintext. Intuitively, this implies that simulated ci-
phertexts are generated in a lossy mode where the plaintext is not well defined given
the ciphertext and the public key. This leaves enough entropy for the secret key to be
sampled in a way that determines the desired plaintext. Formally,

Definition 8 (NCE for the receiver (NCER)) An NCE for the receiver encryption scheme
is a tuple of algorithms (Gen,Enc,Enc∗,Dec,Equivocate) specified as follows:

– Gen,Enc,Dec are as specified for public key encryption scheme.

– Enc∗, given the public key PK output a ciphertext c∗ and a trapdoor tc∗ .
– Equivocate, given the secret key SK, trapdoor tc∗ and a plaintext m, output SK∗

such that m← DecSK∗(c∗).

Definition 9 (Secure NCER) An NCE for the receiver ΠNCR = (Gen,Enc,Dec,Enc∗,
Equivocate) is secure if it satisfies the following properties:

– Gen,Enc,Dec are as specified in the standard semantically secure encryption scheme.
– The following ciphertext indistinguishability holds for any plaintextm: (PK, SK∗, c∗,m)

and (PK, SK, c,m) are computationally indistinguishable, for (PK, SK)← Gen(1n),
(c∗, tc∗)← Enc∗(PK), SK∗ ← Equivocate(SK, c∗, tc∗ ,m) and c← EncPK(m).

A review of two implementations of NCER under the DDH [25, 9] and DCR [9] as-
sumptions is found in our full version [23].

2.4 NCE for the Sender

NCE for the sender is a semantically secure PKE with an additional property that en-
ables generating a fake public key, such that any ciphertext encrypted under this key
can be viewed as the encryption of any message together with the matched random-
ness. Specifically, the scheme operates in two modes. The “real mode” that enables to
encrypt and decrypt as in standard PKEs and the “simulated mode” that enables to gen-
erate simulated public keys and an additional trapdoor, such that the keys in the two
modes are computationally indistinguishable. In addition, given this trapdoor and a ci-
phertext generated using the simulated public key, one can produce randomness that is
consistent with any plaintext. We continue with a formal definition.

Definition 10 (NCE for the sender (NCES)) An NCE for the sender encryption scheme
is a tuple of algorithms (Gen,Gen∗,Enc,Dec,Equivocate) specified as follows:

– Gen,Enc,Dec are as specified for public key encryption scheme.
– Gen∗ generates public key PK∗ and a trapdoor tPK∗ .
– Equivocate, given a ciphertext c∗ computed using PK∗, a trapdoor tPK∗ and a plain-

text m, output r such that c∗ ← Enc(m, r).

Definition 11 (Secure NCES) An NCE for the senderΠNCES = (Gen,Gen∗,Enc,Dec,
Equivocate) is secure if it satisfies the following properties:

– Gen,Enc,Dec are as specified in the standard semantically secure encryption scheme.
– The following public key indistinguishability holds for any plaintextm: (PK∗, r∗,m, c∗)

and (PK, r,m, c) are computationally indistinguishable, for (PK∗, tPK∗)← Gen∗(1n),
c∗ ← EncPK∗(m′, r′), r∗ ← Equivocate(c∗, tPK∗ ,m) and c← EncPK(m, r).

A review of the DDH based implementation from [5] and a new DCR based implemen-
tation is found in our full version [23].

2.5 Somewhat Non-Committing Encryption [19]

The idea of somewhat NCE is to exploit the fact that it is often unnecessary for the
simulator to explain a fake ciphertext for any plaintext. Instead, in many scenarios it
suffices to explain a fake ciphertext with respect to a small set of size ` determined in
advance (where ` might be as small as 2). Therefore there are two parameters that are
considered here: a plaintext of bit length l and an equivocality parameter ` which is
the number of plaintexts that the simulator needs to explain a ciphertext for (namely,
the non-committed domain size). Note that for NCE ` = 2l. Somewhat NCE typically
improves over fully NCE whenever ` is very small but the plaintext length is still large,
say O(n) where n is the security parameter.

3 One-sided Adaptively Secure NCE

In this section we design one-sided NCE, building on NCE for the sender (NCES)
and NCE for the receiver (NCER). The idea of our protocol is to have the receiver
create two public/secret key pairs where the first pair is for NCES and the second pair
is for NCER. The receiver sends the public keys and the sender encrypts two shares
of its message m, each share with a different key. Upon receiving the ciphertexts the
receiver recovers the message by decrypting the ciphertexts. Therefore, equivocality
of the sender’s input can be achieved if the public key of the NCES is fake, whereas,
equivocality of the receiver’s input can be achieved if the ciphertext of the NCER is
fake. Nevertheless, this idea only works if the simulator is aware of the identity of the
corrupted party prior to the protocol execution in order to decide whether the keys or the
ciphertexts should be explained as valid upon corruption (since it cannot explain fake
keys/ciphertext as valid). We resolve this problem using somewhat NCE in order to
commit to the choice of having fake/valid keys and ciphertexts. Specifically, it enables
the simulator to “explain” fake keys/ciphertext as valid and vice versa using only a
constant number of asymmetric operations, as each such non-committing bit requires
an equivocation space of size 2.

Formally, denote by FSC (m,−) 7→ (−,m) the secure message transfer functional-
ity, and letΠNCES = (Gen,Gen∗,Enc,Dec,Equivocate) andΠNCER = (Gen,Enc,Enc∗,
Dec,Equivocate) denote secure NCES and NCER for a message space {0, 1}q . Con-
sider the following one-sided protocol for FSC.

Protocol 1 (One-sided NCE (ΠOSC))

– Inputs: Sender SEN is given input message m ∈ {0, 1}q . Both parties are given security
parameter 1n.

– The Protocol:
1. Message from the receiver. REC invokes Gen(1n) of ΠNCES and ΠNCER and obtains

two public/secret key pairs (PK0, SK0) and (PK1, SK1), respectively. REC sends PK1

on clear and PK0 using somewhat NCE with equivocality parameter ` = 2.
2. Message from the sender. Upon receiving PK0 and PK1, SEN creates two shares

of m, m0 and m1, such that m = m0 ⊕ m1. It then encrypts each mi using PKi,
creating ciphertext ci, and sends c0 and c1 using two instances of somewhat NCE with
equivocality parameter ` = 2.

3. Output. Upon receiving c0, c1, REC decrypts ci using SKi and outputs the bitwise
XOR of the decrypted plaintexts.

Note that the message space of our one-sided NCE is equivalent to the message
space of the NCES/NCER schemes, where q can be as large as n. Therefore, our proto-
col transmits q-bits messages using a constant number of PKE operations, as opposed
to NCEs that require O(q) such operations. We provide two instantiations for the above
protocol. One for polynomial-size message spaces using DDH based NCES and NCER,
and another for exponential-size message spaces using DCR based NCES and NCER.
We conclude with the following theorem and the complete proof.

Theorem 12 Assume the existence of NCER and NCES with constant number of PKE
operations for message space {0, 1}q and simulatable PKE. Then Protocol 1 UC re-
alizes FSC in the presence of one-sided adaptive malicious adversaries with constant
number of PKE operations for message space {0, 1}q , where q = O(n) and n is the
security parameter.

Proof: Let ADV be a malicious probabilistic polynomial-time adversary attacking
Protocol 1 by adaptively corrupting one of the parties. We construct an adversary SIM
for the ideal functionality FSC such that no environment ENV distinguishes with a non-
negligible probability whether it is interacting with ADV in the real setting or with SIM
in the ideal setting. We recall that SIM interacts with the ideal functionality FSC and the
environment ENV. We refer to the interaction of SIM with FSC and ENV as the external
interaction. The interaction of SIM with the simulated ADV is the internal interaction.
We explain the strategy of the simulation for all corruption cases.

Simulating the communication with ENV. Every input value received by the simula-
tor from ENV is written on ADV’s input tape. Likewise, every output value written
by ADV on its output tape is copied to the simulator’s output tape (to be read by its
environment ENV).

SEN is corrupted at the onset of the protocol. SIM begins by activating ADV and em-
ulates the honest receiver by sending to ADV, PK0 using the somewhat NCE and
PK1 in clear. Upon receiving two ciphertexts c0 and c1 from ADV, SIM extracts m
by computing DecSK0

(c0) ⊕ DecSK1
(c1). SIM externally forwards m to the ideal

functionality FSC.
REC is corrupted at the onset of the protocol. SIM begins by activating ADV and

obtains REC’s output m from FSC. SIM invokes ADV and receives PK0 from ADV
via the somewhat NCE and PK1 in clear. Next, SIM completes the execution play-
ing the role of the honest sender on inputm. Note that it does not make a difference
whether REC generates invalid public keys since SIM knows m and thus perfectly
emulates the receiver’s view.

If none of the parties is corrupted as above, SIM emulates the receiver’s message as
follows. It creates public/secret key pair (PK1, SK1) for ΠNCER and sends the public
key in clear. It then creates a valid public/secret key pair (PK0, SK0) and a fake public
key with a trapdoor (PK∗0, tPK∗

0
) for ΠNCES (using Gen and Gen∗, respectively). SIM

sends (PK0, PK∗0) using somewhat NCE. Namely, the simulator does not send the valid

PK0 as the honest receiver would do, rather it encrypts both valid and invalid keys
within the somehwat NCE.

SEN is corrupted after Step 1 is concluded. Since no message was sent yet on behalf
of the sender, SIM completes the simulation playing the role of the honest sender
using m.

REC is corrupted after Step 1 is concluded. Upon receiving m, SIM explains the
receiver’s internal state which is independent of the message m so far. Specifically,
it reveals the randomness for generating PK0, SK0 and PK1, SK1 and presents the
randomness for the valid key PK0 being the message sent by the somewhat NCE.
SIM plays the role of the honest sender with input m as the message.

If none of the above corruption cases occur, SIM emulates the sender’s message as
follows. It first chooses two random shares m′0,m

′
1 and generates a pair of ciphertexts

(c0, c
∗
0) for ΠNCES that encrypts m′0 using PK0 and PK∗0. It then generates a pair of

ciphertexts (c1, c∗1) for ΠNCER such that c1 is a valid encryption of m′1 using the public
key PK1, and c∗1 is a fake ciphertext generated using Enc∗ and PK1. SIM sends (c0, c∗0)
and (c∗1, c1) via two instances of somewhat NCE.

SEN is corrupted after Step 2 is concluded. Upon receiving a corruption instruction
from ENV, SIM corrupts the ideal SEN and obtains SEN’s inputm. It then explains
the sender’s internal state as follows. It explains PK∗0 for being the public key sent
by the receiver using the somewhat NCE. Furthermore, it presents the randomness
for c∗0 and c1 being the ciphertexts sent via the somewhat NCE. Finally, it computes
r′′ ← EquivocatePK∗

0
(tPK∗

0
,m′0, r,m

′′
0) for m′′0 such that m = m′′0 ⊕m′1 and r the

randomness used to encryptm′0, and presents r′′ as the randomness used to generate
c∗0 that encrypts m′′0 . The randomness used for generating c1 is revealed honestly.

REC is corrupted after Step 2 is concluded. Upon receiving a corruption instruc-
tion from ENV, SIM corrupts the ideal REC and obtains REC’s output m. It then
explains the receiver’s internal state as follows. It presents the randomness for PK0

for being the public key sent via the somewhat NCE and presents the randomness
for generating (PK0, SK0). It then explains c0 and c∗1 for being sent via the some-
what NCE. Finally, it generates a secret key SK∗1 so that m′′1 ← DecSK∗

1
(c∗1) and

m′′1 ⊕m′0 = m. That is, it explains (PK1, SK∗1) as the other pair of keys generated
by the receiver.

We now show that for every corruption case described above, there is not any polynomial-
time ENV that distinguishes with a non-negligible probability the real execution with
ADV and the simulated execution with SIM.

SEN/REC is corrupted at the onset of the protocol. In these corruption cases there
is no difference between the real execution and the simulated execution and the
views are statistically indistinguishable.

SEN/REC is corrupted after Step 1 is concluded. In these cases the only difference
between the real and simulated executions is with respect to the somewhat NCE
that delivers the public key of NCES. Specifically, in the real execution it always
delivers a valid public key while in the simulated execution it delivers a fake key.
Indistinguishability follows from the security of the somewhat NCE.

SEN/REC is corrupted after Step 2 is concluded. Here the adversary sees in the
simulation either a fake public key or a fake ciphertext. Indistinguishability follows
from the security of ΠNCES and ΠNCER and the security of somewhat NCE.

4 One-Sided Adaptively Secure OT

A common approach to design an adaptive OT [2, 10] is by having the receiver gen-
erate two public keys (PK0, PK1) such that it only knows the secret key associated
with PKσ . The sender then encrypts x0, x1 under these respective keys so that the re-
ceiver decrypts the σth ciphertext. The security of this protocol in the adaptive setting
holds if the underlying encryption scheme is an augmented non-committing encryption
scheme [10]. In this section we follow the approach from [19] and build one-sided OT
based on the static OT from [34], which is based on a primitive called dual-mode PKE.

The PVW OT. Dual-mode PKE is a semantically secure encryption scheme that is ini-
tialized with system parameters of two types. For each type one can generate two types
of public/secret key pair, labeled by the left key pair and the right key pair. Similarly,
the encryption algorithm generates a left or a right ciphertext. Moreover, if the key la-
bel matches the ciphertext label (i.e., a left ciphertext is generated under the left public
key), then the ciphertext can be correctly decrypted. (A formal definition of dual-mode
PKE is given in Section 2.2.) This primitive was introduced in [34] which demonstrates
its usefulness in designing efficient statically secure OTs under various assumptions.
First, the receiver generates a left key if σ = 0, and a right key otherwise. In response,
the sender generates a left ciphertext for x0 and a right ciphertext for x1. The receiver
then decrypts the σth ciphertext.

The security of dual-mode PKE relies on the two indistinguishable modes of gener-
ating the system parameters: messy and decryption mode. In a messy mode the system
parameters are generated together with a messy trapdoor. Using this trapdoor, any pub-
lic key (even malformed ones) can be labeled as a left or as a right key. Moreover,
when the key type does not match the ciphertext type, the ciphertext becomes statisti-
cally independent of the plaintext. The messy mode is used to ensure security when the
receiver is corrupted since it allows to extract the receiver’s input bit while hiding the
sender’s other input. On the other hand, the system parameters in a decryption mode are
generated together with a decryption trapdoor that can be used to decrypt both left and
right ciphertexts. Moreover, left public keys are statistically indistinguishable from right
keys. The decryption mode is used to ensure security when the sender is corrupted since
the decryption trapdoor enables to extract the sender’s inputs while statistically hiding
the receiver’s input. [34] instantiated dual-mode PKE and their generic OT construction
based on various assumptions, such as DDH, QR and lattice-based assumptions.

Our construction. We build our one-sided OT based on the PVW protocol considering
the following modifications. (1) First, we require that the sender sends its ciphertexts
using one-sided NCE (see Section 3). (2) We fix the system parameters in a decryption

mode, which immediately implies extractability of the sender’s input and equivocality
of the receiver’s input. We further achieve equivocality of the sender’s input using our
one-sided NCE. In order to ensure extractability of the receiver’s input we employ a
special type of ZK PoK. Namely, this proof exploits the fact that the simulator knows
both witnesses for the proof yet it does not know which witness will be used by the real
receiver, since this choice depends on σ. Specifically, it allows the simulator to use both
witnesses and later convince the adversary that it indeed used a particular witness. In
addition, it enables to extract σ since the real receiver does not know both witnesses.
We denote these proofs for compound statements by witness equivocal and refer to
Section 6 for more details.

Our construction is one-sided UC secure in the presence of malicious adversaries,
and uses a number of non-committed bits that is independent of the sender’s input
size or the overall communication complexity. We formally denote the dual-mode PKE
of [34] by ΠDUAL = (SetupMessy,SetupDecryption, dGen, dEnc, dDec,FindBranch,
TrapKeyGen) and describe our construction in the (FSC,FRLR

ZKPoK)-hybrid model, where
FSC is instantiated with one-sided NCE. Furthermore, the latter functionality is required
to ensure the correctness of the public key and is defined for a compound statement that
is comprised from the following two relations,

RLEFT =
{
(PK, r0) | (PK, SK)← dGen(CRS, 0; r0)

}
,

where CRS are the system parameters. Similarly, we define RRIGHT for the right keys.
Specifically, FRLR

ZKPoK receives a public key PK and randomness rσ for σ ∈ {0, 1}
and returns Accept if either σ = 0 and PK = dGen(CRS, 0; r0), or σ = 1 and
PK = dGen(CRS, 1; r1) holds. Security is proven by implementing this functionality
using a witness equivocal ZK PoK that allows the simulator to equivocate the witness
during the simulation (i.e., explaining the proof transcript with respect to either r0 or
r1). We consider two instantiations of dual-mode PKE (based on the DDH and QR as-
sumptions). For each implementation we design a concrete ZK PoK, proving that the
prover knows rσ with respect to σ ∈ {0, 1}; see details below.

We define our OT protocol as follows,

Protocol 2 (One-sided OT (ΠOT))

– Inputs: Sender SEN has x0, x1 ∈ {0, 1}q and receiver REC has σ ∈ {0, 1}.
– CRS: CRS such that (CRS, t)← SetupDecryption.
– The Protocol:

1. REC sends SEN PK, where (PK, SK)← dGen(CRS, σ; rσ). REC calls FRLR
ZKPoK with

(PK, rσ).
2. Upon receiving Accept from FRLR

ZKPoK and PK from REC, SEN generates c0 ←
dEncPK(x0, 0) and c1 ← dEncPK(x1, 1). SEN calls FSC twice with inputs c0 and
c1, respectively.

3. Upon receiving (c0, c1), REC outputs dDecSK(cσ).

Theorem 13 Assume the existence of one-sided NCE with constant number of PKE
operations for message space {0, 1}q and dual-mode PKE. Then Protocol 2 UC realizes
FOT in the (FSC,FRLR

ZKPoK)-hybrid model in the presence of one-sided adaptive malicious
adversaries with constant number of PKE operations for sender’s input space {0, 1}q ,
where q = O(n) and n is the security parameter.

Proof: Let ADV be a probabilistic polynomial-time malicious adversary attacking
Protocol2 by adaptively corrupting one of the parties. We construct an adversary SIM
for the ideal functionality FOT such that no environment ENV distinguishes with a non-
negligible probability whether it is interacting with ADV in the real setting or with SIM
in the ideal setting. We recall that SIM interacts with the ideal functionality FOT and the
environment ENV. We refer to the interaction of SIM with FOT and ENV as the external
interaction. The interaction of SIM with the simulated ADV is the internal interaction.
Upon computing (CRS, t)← SetupDecryption(1n), SIM proceeds as follows:

Simulating the communication with ENV. Every input value received by the simula-
tor from ENV is written on ADV’s input tape. Likewise, every output value written
by ADV on its output tape is copied to the simulator’s output tape (to be read by its
environment ENV).

SEN is corrupted at the outset of the protocol. SIM begins by activating ADV and
emulates the receiver by running (PK, SK0, SK1)← TrapKeyGen(t). It then sends
PK and an Accept message to ADV on behalf of FRLR

ZKPoK. Whenever ADV returns
c0, c1 via FSC, SIM extracts SEN’s inputs x0, x1 by invoking dDecSK0(c0) and
dDecSK1(c1) as in static case. It then sends x0, x1 to FOT and completes the exe-
cution playing the role of the receiver using an arbitrary σ.
Note that, in contrast to the hybrid execution where the receiver uses its real input
σ to dGen in order to create public/secret keys pair, the simulator does not know
σ and thus creates the keys using TrapKeyGen. Nevertheless, when the CRS is set
in a decryption mode the left public key is statistically indistinguishable from right
public key. Furthermore, the keys (PK, SKi) that are generated by TrapKeyGen are
statistically close to the keys generated by dGen with input bit i. This implies that
the hybrid and simulated executions are statistically close.

REC is corrupted at the outset of the protocol. SIM begins by activating ADV and
receives its public key PK and a witness rσ on behalf of FRLR

ZKPoK. Given rσ , SIM
checks if PK is the left or the right key and use it to extract the receiver’s input
σ. It then sends σ to FOT, receiving back xσ . Finally, SIM computes the sender’s
message using xσ and an arbitrary x1−σ .
Unlike in the hybrid execution, the simulator uses an arbitrary x1−σ instead of the
real x1−σ . However, a decryption mode implies computational privacy of x1−σ .
Therefore, the hybrid view is also computationally indistinguishable from the sim-
ulated view as in the static setting proven in [34].

If none of the above corruption cases occur SIM invokes (PK, SK0, SK1)← TrapKeyGen(t)
and sends PK to the sender. Note that the simulator knows a witness r0 such that
PK = dGen(CRS, 0; r0) and a witness r1 such that PK = dGen(CRS, 1; r1).

SEN is corrupted between Steps 1 and 2. SIM trivially explains the the sender’s
internal state since SEN did not compute any message so far. The simulator com-
pletes the simulation by playing the role of REC using arbitrary σ as in the case
when the sender is corrupted at the outset of the execution.
Indistinguishability for this case follows similarly to the prior corruption case when
SEN is corrupted at the outset of the execution.

REC is corrupted between Steps 1 and 2. Upon corrupting the receiver SIM obtains
σ, xσ from FOT and explains the receiver’s internal state as follows. It first explains
rσ as the witness given to FRLR

ZKPoK and PK as the outcome of dGen(CRS, σ; rσ).
The simulator completes the simulation playing the role of the honest sender with
xσ and an arbitrary x1−σ .
Indistinguishability for this case in the hybrid setting follows similarly to the prior
corruption case, since the only difference in the simulation is relative to the witness
equivocality proof which only makes a difference in the real execution.

If none of the above corruption cases occur then SIM chooses two arbitrary inputs x′0, x
′
1

for the sender and encrypts them using the dual-mode encryption. Denote these cipher-
texts by c′0, c

′
1. SIM pretends sending these ciphertexts using FSC.

SEN is corrupted after Step 2. Upon corrupting the sender, SIM obtains (x0, x1)
from FOT. It then explains the sender’s internal state as follows. It first computes
c0, c1 that encrypts x0 and x1 respectively. It then explains c0 and c1 as being sent
using FSC.
In the hybrid setting indistinguishability follows as in the prior corruption case of
the sender, since the simulator emulates the sender’s message via the one-sided
non-committing channel. In the real execution, security is reduced to the security
of the one-sided encryption scheme implementation.

REC is corrupted after Step 2. Upon corrupting the receiver, SIM obtains REC’s
input and output (σ, xσ) from FOT. It then explains the receiver’s internal state as
follows. It first explains rσ as the witness given toFRLR

ZKPoK and PK as the outcome of
dGen(CRS, σ; rσ). Finally, it explains the output of FSC as cσ so that cσ is indeed
a valid encryption of xσ .
Indistinguishability follows similarly to the prior corruption case of the receiver
since the second message is computed by the sender which is not corrupted.

Concrete instantiations. In the DDH-based instantiation the CRS is a Diffie-Hellman
tuple (g0, g1, h0, h1) and the trapdoor is logg0 g1. Moreover, the concrete ZK PoK func-
tionality is FRDL,OR

ZKPoK which is invoked with the statement and witness
(
((g0h0, g

r
σh

r
σ),

(g1h1, g
r
σh

r
σ)), r

)
, such that PK = (grσ, h

r
σ), SK = r and r ← Zp.

In the QR-based instantiation the CRS is a quadratic residue y and the trapdoor is s
such that y = s2 mod N and N is an RSA composite. The concrete ZK PoK function-
ality is FRQR,OR

ZKPoK which is invoked with the statement and witness
(
(y · PK, PK), r

)
,

such that PK = r2/yσ , SK = r and r ← Z∗N .

5 Constant Round One-Sided Adaptively Secure Computation

In the following section we demonstrate the feasibility of one-sided adaptively secure
two-party protocols in the presence of semi-honest and malicious adversaries. Our con-
structions are constant round and UC secure and use a number of non-committed bits
that is independent of the circuit size, thus reduce the number of PKE operations so that
it only depends on the input and output lengths. A high-level overview of Yao’s garbled
circuit construction G(C) for a circuit C is found in the full version.

5.1 One-Sided Secure Computation for Semi-Honest Adversaries

Our first construction adapts the semi-honest two-party protocol [36, 28] into the one-
sided adaptive setting at a cost ofO(|C|) private key operations andO(|input|+ |output|)
public key operations. Using our one-sided secure primitives we obtain efficient pro-
tocols that outperform the constant round one-sided constructions of [26, 24] and all
known fully adaptively secure two-party protocols. Namely, we show that one-sided
security can be obtained by only communicating the keys corresponding to the in-
put/output wires via a non-committing channel. This implies that the number of PKE
operations does not depend on the garbled circuit size as in prior work.

Informally, the input keys that correspond to P0’s input are transferred to P1 using
somewhat NCE with equivocation parameter ` = 2, whereas P1’s input keys are sent us-
ing one-sided OT. Next, the entire garbled circuit (without the output decryption table)
is sent to P1 using a standard communication channel. P1 evaluates the garbled circuit
and finds the keys for the output wires. The parties then run a one-sided bit OT for each
output key where P1 plays the role of the receiver, and learns the output bit that corre-
sponds to its output wire. Finally, P1 sends P0 the output using one-sided NCE. We note
that obtaining the output via one-sided OT is crucial to our proof since it enables us to
circumvent the difficulties arise when implementing the simulation technique from [28]
that uses a fake circuit. To carry out these OTs successfully we require that the keys
associated with a output wire have distinct most significant bits that are fixed indepen-
dently of the bits they correspond to. For simplicity we only consider deterministic and
same-output functionalities. This can be further generalized using the reductions speci-
fied in [21]. The formal description of our one-sided semi-honest protocol Π SH

f is given
below in the FOT-hybrid model.

Protocol 3 (One-sided adaptively secure semi-honest Yao (Π SH
f))

– Inputs: P0 has x0 ∈ {0, 1}n and P1 has x1 ∈ {0, 1}n. Let x0 = x10, . . . , x
n
0 and x1 =

x11, . . . , x
n
1 .

– Auxiliary Input: A boolean circuit C such that for every x0, x1 ∈ {0, 1}n, C(x, y) =
f(x, y) where f : {0, 1}n × {0, 1}n → {0, 1}n. Furthermore, we assume that C is such
that if a circuit-output wire leaves some gate, then the gate has no other wires leading from
it into other gates (i.e. no circuit-output wire is also a gate-output wire). Likewise, a circuit-
input wire that is also a circuit-output wire enters no gates.

– The Protocol:
1. Setup and garbling circuit computation. P0 constructs garbled circuit G(C) subject

to the constraint that the keys corresponding to each circuit-output wire have a distinct
most significant bit.

2. Transferring the garbled circuit and input keys to P1. Let (k0i , k
1
i) be the key pair

corresponding to the circuit-input wire that takes the ith bit of x0 and let (k0n+i, k
1
n+i)

be the key pair corresponding to the circuit-input wire that takes the ith bit of x1. Then,

(a) For all i ∈ [1, . . . , n], P0 sends kx
i
0
i using an instance of somewhat NCE with

` = 2.
(b) For all i ∈ [1, . . . , n], P0 and P1 call FOT with input (k0n+i, k

1
n+i) and xi1, re-

spectively. Let kx
i
1
n+i denotes P1’s ith output.

(c) P0 sends G(C) without the output decryption table to P1.

3. Circuit evaluation and interactive output computation. P1 evaluates G(C) on the
above input keys and obtains the keys that correspond to f(x0, x1) in the circuit-output
wires. Let (k02n+i, k

1
2n+i) be the key pair corresponding to the ith circuit-output wire

with distinct most significant bits. Also assume P1 obtains key kα2n+i corresponding to
the ith circuit-output wire of G(C). Then,
(a) For all i ∈ [1, . . . , n], P0 and P1 call FOT in which P0’s input equals (0, 1) if

the most significant bit of k02n+i is 0, and (1, 0) otherwise. P1’s input is the most
significant bit of kα2n+i.

(b) P1 computes f(x0, x1) by concatenating the bits received from the above n calls.
4. Output communication. P1 sends y using an instance of one-sided NCE.

Theorem 14 (One-sided semi-honest) Let f be a deterministic same-output function-
ality and assume that the encryption scheme for garbling has indistinguishable encryp-
tions under chosen plaintext attacks, and an elusive and efficiently verifiable range.
Furthermore, assume that FOT is realized in the presence of one-sided semi-honest ad-
versaries with constant number of PKE operations for sender’s input space {0, 1}q ,
where q = O(n) and n is the security parameter. Then Protocol 3 UC realizes Ff
in the presence of one-sided semi-honest adversaries at a cost of O(|C|) private key
operations and O(|input|+ |output|) public key operations.

We note that the ideal OT calls in Step 2 can be realized using string one-sided OTs,
whereas the OT calls in Step 3 can be replaced with bit one-sided OTs. The complete
proof can be found in our full version [23].

5.2 Security against Malicious Adversaries

Next, we modify ΠSH

f and adapt the cut-and-choose OT protocol introduced in [30] in
order to achieve security against malicious adversaries. The idea of the cut-and-choose
technique is to ask P0 to send s garbled circuits and later open half of them (aka, check
circuits) by the choice of P1. This ensures that with very high probability the majority
of the unopened circuits (aka, evaluation circuits) are valid. The cut-and-choose OT
primitive of [30] allows P1 to choose a secret random subset J of size s/2 for which it
learns both keys for each input wire that corresponds to the check circuits, and the keys
associated with its input with respect to the evaluation circuits.

In order to ensure that P0 hands P1 consistent input keys for all the circuits, the [30]
protocol ensures that the keys associated with P0’s input are obtained via a Diffie-
Hellman pseudorandom synthesizer [31]. Namely, P0 chooses ga

0
1 , ga

1
1 , . . . , ga

0
n , ga

1
n

and gc1 , . . . , gcs , where n is the input/output length, s is the cut-and-choose parameter
and g is a generator of a prime order group G. So that the pair of keys associated with
the ith input of P0 in the jth circuit is (ga

0
i cj , ga

1
i cj).6 Given values {ga0i , ga1i , gcj}

and any subset of keys associated with P0’s input, the remaining keys associated with
its input are pseudorandom by the DDH assumption. Furthermore, when the keys are
prepared this way P0 can efficiently prove that it used the same input for all circuits. P1

6 The actual key pair used in the circuit garbling is derived from (ga
0
i cj , ga

1
i cj) using an extrac-

tor. A universal hash function is used in [30] for this purpose, where the seeds for the function
are picked by P0 before it knows J .

then evaluates the evaluation circuits and takes the majority value for the final output. In
Section 5.2 we demonstrate how to adapt the cut-and-choose OT protocol into the one-
sided setting using the building blocks introduced in this paper. This requires dealing
with new subtleties regarding the system parameters and the ZK proofs. Formally,

Theorem 15 (One-sided malicious) Let f be a deterministic same-output functional-
ity and assume that the encryption scheme for garbling has indistinguishable encryp-
tions under chosen plaintext attacks, an elusive and efficiently verifiable range, and that
the DDH and DCR assumptions are hard in the respective groups. Then Protocol ΠMAL

f

UC realizesFf in the presence of one-sided malicious adversaries at a cost ofO(s·|C|)
private key operations and O(s · (|input|+ |output|)) public key operations where s is
a statistical parameter that determines the cut-and-choose soundness error.

Specifically, the concrete DCR assumption implies cut-and-choose OT with constant
number of PKE operations for sender’s input space {0, 1}q , where q = O(n) and n is
the security parameter.

One-sided Single Choice Cut-and-Choose OT We describe next the single choice
cut-and-choose OT functionality FCCOT from [30] and present a protocol that imple-
ments this functionality with UC one-sided malicious security. We then briefly describe
our batch single choice cut-and-choose OT construction using a single choice cut-and-
choose OT, which is used as a building block in our two-party protocol. Formally,
FCCOT is defined as follows

1. Inputs:
(a) SEN inputs a vector of pairs {(xj0, x

j
1)}sj=1.

(b) REC inputs a bit σ and a set of indices J ⊂ [s] of size exactly s/2.
2. Output: If J is not of size s/2, then SEN and REC receive ⊥ as output. Otherwise,

(a) For all j ∈ J , REC obtains the pair (xj0, x
j
1).

(b) For all j 6∈ J , REC obtains xjσ .

This functionality is implemented in [30] by invoking the DDH based [34] OT s
times, where the receiver generates the system parameters in a decryption mode for s/2
indices corresponding to J and the remaining system parameters are generated in a
messy mode. The decryption mode trapdoor enables the receiver to learn both sender’s
inputs for the instances corresponding to J . This idea is coupled with two proofs that
are run by the receiver: (i) a ZK PoK for proving that half of the system parameters set
is in a messy mode which essentially boils down to a ZK PoK realizing functionality
FRDDH,COMP(s,s/2)

ZKPoK (namely, the statement is a set of s tuples and the prover proves the
knowledge of s/2 Diffie-Hellman tuples within this set). (ii) A ZK PoK to ensure that
the same input bit σ has been used for all s instances which boils down to a ZK proof
realizing functionality FRDDH,OR(s)

ZKPoK (namely, the statement contains two sets of tuples,
each of size s, for which the prover proves that one of the sets contains DH tuples).

Our first step towards making the [30] construction one-sided adaptively secure is
to invoke our one-sided OT scheme s times with all system parameters in a decryption
mode. Notably, we cannot use the messy mode for the s/2 instances not in J as in the

static settings since that would preclude the equivocation of the receiver’s bit. Similarly
to [30], our constructions have two phases; a setup phase and a transfer phase. In the
setup phase, the receiver generates the system parameters in a decryption mode for
the s/2 OTs corresponding to indices in J , while the remaining system parameters
are generated in the same mode but in a way that does not allow REC to learn the
trapdoor. This is obtained by fixing two random generators g0, g1, so that the receiver
sets the first component of every CRS from the system parameters to be g0. Moreover,
the second component in positions j 6∈ J is a power of g1, else this element is a power
of g0. Note that REC does not know logg0 g1 which is the decryption mode trapdoor for
j 6∈ J . To ensure correctness, REC proves that it knows the discrete logarithm of the
second element with respect to g1 of at least s/2 pairs. This is achieved using a witness
equivocal proof for functionality FRDL,COMP(s,s/2)

ZKPoK .
In the transfer phase, the receiver uses these system parameters to create a pub-

lic/secret key pair for each OT execution, for keys not in the set J . For the rest of
the OT executions the receiver invokes the TrapKeyGen algorithm of the dual-mode
PKE and obtains a public key and two secret keys that enable it to decrypt both of
the sender’s inputs. In order to ensure that the receiver uses the same input bit σ for
all OTs the receiver proves its behavior using a proof for functionality FRDDH,OR(s)

ZKPoK . To
ensure one-sided security, the proof if further witness equivocal (see Section 6). Finally,
we prove the equivocality of the sender’s input and the receiver’s output based on our
one-sided NCE.

Formally, denote by ΠDUAL = (SetupMessy,SetupDecryption, dGen, dEnc, dDec,
FindBranch,TrapKeyGen) the DDH based dual-mode PKE of [34]. We present our
one-sided OT ΠCCOT in the (FSC,F

RDL,COMP(s,s/2)
ZKPoK ,FRDDH,OR(s)

ZKPoK)-hybrid model.

Protocol 4 (One-sided adaptive single choice cut-and-choose OT (ΠCCOT))

– Inputs: SEN inputs a vector of pairs {(xi0, xi1)}si=1 and REC inputs a bit σ and a set of
indices J ⊂ [s] of size exactly s/2.

– Auxiliary Inputs: Both parties hold a security parameter 1n and G, p, where G is an
efficient representation of a group of order p and p is of length n.

– CRS: The CRS consists of a pair of random group elements g0, g1 from G.
– Setup phase:

1. REC chooses a random xj ∈ Zp and sets gj1 = g
xj
0 for all j ∈ J and gj1 = g

xj
1

otherwise.
For all j, REC chooses a random yj ∈ Zp and sets CRSj =

(
g0, g

j
1, h

j
0 = (g0)

yj , hj1 = (gj1)
yj
)
.

It then sends {CRSj}sj=1 to SEN.
Furthermore, for all j ∈ J , REC stores the decryption mode trapdoor tj = xj .

2. REC calls FRDL,COMP(s,s/2)
ZKPoK with ({g1, gj1}sj=1, {xj}j∈J) to prove the knowledge of

the discrete logarithms of s/2 values within the second element in {CRSj}j and with
respect to g1.

– Transfer phase (repeated in parallel for all j):
1. For all j 6∈ J , REC computes (PKj , SKj) = ((gj , hj), rj)← dGen(CRSj , σ).

For all j ∈ J , REC computes (PKj , SK0
j , SK1

j) = ((gj , hj), rj , rj/tj)← TrapKeyGen(CRSj , tj).
Finally, REC sends the set {PKj}sj=1 and stores the secret keys.

2. REC callsFRDDH,OR(s)
ZKPoK with input (({(g0, hj0, gj , hj)}sj=1, {(gj1, h

j
1, gj , hj)}sj=1), {rj}sj=1)

to prove that all the tuples in one of the sets {(g0, hj0, gj , hj)}sj=1 or {(gj1, h
j
1, gj , hj)}sj=1

are DH tuples.

3. For all j, SEN generates cj0 ← dEncPKj (x
j
0, 0) and cj1 ← dEncPKj (x

j
1, 1). Let cj0 =

(cj00, c
j
01) and cj1 = (cj10, c

j
11). SEN calls FSC with cj01 and cj11.

– Output: Upon receiving (cj01, c
j
11) from FSC,

1. REC outputs xjσ ← dDecSKj (c
j
σ) for all j /∈ J .

2. REC outputs (xj0, x
j
1)← (dDecSK0

j
(cj0), dDecSK1

j
(cj1)) for all j ∈ J .

Theorem 16 Assume that the DDH assumption is hard in G. Then Protocol 4 UC real-
izes FCCOT in the (FSC,F

RDL,COMP(s,s/2)
ZKPoK ,FRDDH,OR(s)

ZKPoK)-hybrid model in the presence
of one-sided malicious adversaries.

The complete proof can be found in our full version [23].

Malicious One-Sided Adaptively Secure Two-Party Computation First, we remark
that the single choice cut-and-choose protocol is executed for every input bit of P1 in
the main two-party computation protocol, but with respect to the same set J . In order
to ensure that the same J is indeed used the parties engage in a batch single choice cut-
and-choose OT where a single setup phase is run first, followed by n parallel invocations
of the transfer phase. We note that CRS and the set J are fixed in the setup phase and
remain the same for all n parallel invocations of the transfer phase. We denote the batch
functionality by FBATCH

CCOT and the protocol by ΠBATCH
CCOT .

We are now ready to describe the steps of our generic protocol ΠMAL

f computing
any functionality f on inputs x0 and x1. We continue with a high-level overview of [30]
adapted to the one-sided setting.

Step 1. P0 constructs s copies of Yao’s garbled circuit for computing the function f .
All wires keys are picked at random. Keys that are associated with P0’s input wires
are picked as follows. P0 picks n pairs of random values ((a01, a

1
1), . . . , (a

0
n, a

1
n))

and (c1, . . . , cs) and sets the keys associated with the ith input wire of the jth circuit
as the pair (ga

0
i cj , ga

1
i cj). These values constitute commitments to all 2ns keys of

P0.7 This set of keys forms a pseudorandom synthesizer [31], implying that if some
subset of the keys is revealed then the remaining keys are still pseudorandom. We
also require that each pair of keys that is associated with a circuit output wire differs
within the most significant bit.

Step 2. The parties call FBATCH
CCOT where P0 inputs the key pairs associated with P1’s in-

put and P1 inputs its input x1 and a random subset J ⊂ [s] of size s/2. P1 receives
from FBATCH

CCOT the keys that are associated with its input wires for the s/2 circuits
indexed by J (denoted the check circuits). In addition, it receives the keys corre-
sponding to its input for the remaining circuits (denoted the evaluation circuits).

Step 3. P0 sends P1 s copies of the garbled circuit (except for the output tables) and the
values ((ga

0
1 , ga

1
1), . . . , (ga

0
n , ga

1
n), (gc1 , . . . , gcs)) which are the commitments to

the input keys on the wires associated with P0’s input. At this point P0 is committed
to all the keys associated with the s circuits.

7 Recall that the actual symmetric keys of the ith input within the jth circuit are derived from
(ga

0
i cj , ga

1
i cj) using randomness extractor such as a universal hash function.

Step 4. P1 reveals J and proves that it used this subset in the cut-and-choose batch
OT protocol by sending the keys that are associated with P1’s first input bit in each
check circuit. Note that P1 knows the keys corresponding to both bits only for the
check circuits.

Step 5. In order to let P1 know the keys for the input wires of P0 within the check
circuits, P0 sends cj for j ∈ J . P1 computes the key pair (ga

0
i cj , ga

1
i cj).

Step 6. P1 verifies the validity of the check circuits using all the keys associated with
their input wires. This ensures that the evaluation circuits are correct with high
probability.

Step 7. To complete the evaluation phase P1 is given the keys for the input wires of
P0. P0 must be forced to give the keys that are associated with the same input for
all circuits. Specifically, the following code is executed for all input bits of P0:

1. For every evaluation circuit Cj , P0 sends yi,j = ga
xi
0

i cj using an instance of
somewhat NCE with ` = 2, where xi0 is the ith input bit of P0.

2. P0 then proves that ax
i
0
i is in common for all keys associated with the ith input

bit, which is reduced to showing that either the set {(g, ga
xi
0

i , gcj , yi,j)}sj=1

or the set {(g, ga
1−xi

0
i , gcj , yi,j)}sj=1 is comprised of DH tuples. Notably, it is

sufficient to use a single UC ZK proof for the simpler relation RDDH,OR since
the above statement can be compressed into a compound statement of two DH
tuples as follows: P0 first chooses s random values γ1, . . . , γs ∈ Zp and sends
them to P1. Both parties compute g̃ =

∏s
j=1(g

cj)γj , ỹ =
∏s
j=1(yi,j)

γj , of

which P0 proves that either (g, ga
xi
0

i , g̃, ỹ) or (g, ga
1−xi

0
i , g̃, ỹ) is a DH tuple.

Step 8. Upon receiving Accept from FRDDH,OR
ZKPoK , P1 completes the evaluation of the

circuits. Namely, for every i ∈ [1, . . . , ns] P0 and P1 call FOT in which P0’s input
equals (0, 1) if the most significant bit of the output wire key is associated with 0,
and (1, 0) otherwise. Moreover, P1’s input is the most significant bit of its output
key. P1 concatenates the bits obtained from these OTs and sets the majority of these
values as the output y.

Step 9. P1 sends y using an instance of one-sided NCE.

To ensure the one-sided security of ΠMAL

f we realize the functionalities used in the
protocol as follows: (1) FBATCH

CCOT is realized in Step 2 using our one-sided batch single
choice cut-and-choose OT. This implies the equivocation of P1’s input. (2) The state-
ment of FRDDH,OR

ZKPoK is transferred in Step 7.1 via a somewhat NCE with ` = 2. To
obtain a witness equivocal proof for functionality FRDDH,OR

ZKPoK (invoked in Step 7.2), it
is sufficient to employ a standard static proof realizing this ZK functionality where the
prover sends the third message of the proof using a somewhat NCE with ` = 2 (this
is due to the fact that we anyway send the statement using a somewhat NCE). Specif-
ically, a statically secure proof is sufficient whenever both the statement and the third
message of the (Σ-protocol) proof can be equivocated. This implies the equivocation
of P0’s input. (3) Finally, in Step 8 the FOT calls are realized using one-sided bit OT.
This implies output equivocation.

6 Efficient Statically Secure and Witness Equivocal UC ZK PoKs

This section includes two results that are given in details in the full version. First, we
discuss a technique for generating efficient statically secure UC ZK PoK for various Σ-
protocols. Our protocols take a new approach where the prover commits to an additional
transcript which, in turn, enables witness extraction without using rewinding. Our in-
stantiations imply UC ZK PoK constructions that incur constant overhead and achieve
negligible soundness error. Briefly, the prover is instructed to send two responses to a
pair of distinct challenges. The first response is sent on clear and publicly verified as
specified in the protocol, whereas the second response is encrypted using a homomor-
phic PKE and its validity is carried out by a UC ZK proof of consistency.

Next, we show how to generate efficient witness equivocal UC ZK PoK for vari-
ous compound Σ-protocols. The additional feature that witness equivocal UC ZK PoK
offers over statically secure UC ZK PoK is that it allows the simulator to equivocate
the simulated proof upon corrupting the prover. Interestingly, we build witness equiv-
ocal UC ZK PoKs for a class of fundamental compound Σ-protocols without relying
on NCE. Our approach yields witness equivocal UC ZK PoK only for compound state-
ments where the simulator knows the witnesses for all sub-statements (but not the real
witness). This notion is weaker than the notion of one-sided UC ZK PoK where the
simulator is required to simulate the proof obliviously of the witness, and later prove
consistency with respect to the real witness. The rest of the details can be found in [23].

References

1. Donald Beaver. Plug and play encryption. In CRYPTO, pages 75–89, 1997.
2. Donald Beaver. Adaptively secure oblivious transfer. In ASIACRYPT, pages 300–314, 1998.
3. Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against dynamic

adversaries. In EUROCRYPT, pages 307–323, 1992.
4. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-

cols (extended abstract). In STOC, pages 503–513, 1990.
5. Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for

encryption and commitment secure under selective opening. In EUROCRYPT, pages 1–35,
2009.

6. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

7. Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. Adaptive
versus non-adaptive security of multi-party protocols. J. Cryptology, 17(3):153–207, 2004.

8. Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In STOC, pages 639–648, 1996.

9. Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive public-key
encryption. In TCC, pages 150–168, 2005.

10. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, 2002.

11. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved non-
committing encryption with applications to adaptively secure protocols. In ASIACRYPT,
pages 287–302, 2009.

12. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box
constructions of adaptively secure protocols. In TCC, pages 387–402, 2009.

13. Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes
based on a general complexity assumption. In CRYPTO, pages 432–450, 2000.

14. Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In CRYPTO, pages 581–596,
2002.

15. Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty com-
putation from threshold homomorphic encryption. In CRYPTO, pages 247–264, 2003.

16. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

17. Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes secure
against chosen-ciphertext selective opening attacks. In EUROCRYPT, pages 381–402, 2010.

18. Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

19. Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing encryption
and efficient adaptively secure oblivious transfer. In CRYPTO, pages 505–523, 2009.

20. Sanjam Garg and Amit Sahai. Adaptively secure multi-party computation with dishonest
majority. In CRYPTO, pages 105–123, 2012.

21. Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, 2004.

22. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

23. Carmit Hazay and Arpita Patra. One-sided adaptively secure two-party computation. IACR
Cryptology ePrint Archive, 2013:593, 2013.

24. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious trans-
fer - efficiently. In CRYPTO, pages 572–591, 2008.

25. Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Intro-
ducing concurrency, removing erasures. In EUROCRYPT, pages 221–242, 2000.

26. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In
CRYPTO, pages 335–354, 2004.

27. Jonathan Katz, Aishwarya Thiruvengadam, and Hong-Sheng Zhou. Feasibility and infea-
sibility of adaptively secure fully homomorphic encryption. In Public Key Cryptography,
pages 14–31, 2013.

28. Y. Lindell and B. Pinkas. A proof of security of yaos protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

29. Yehuda Lindell. Adaptively secure two-party computation with erasures. In CT-RSA, pages
117–132, 2009.

30. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose obliv-
ious transfer. J. Cryptology, 25(4):680–722, 2012.

31. Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construc-
tion of psuedo-random functions. In FOCS, pages 170–181, 1995.

32. Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO, pages 111–126, 2002.

33. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In CRYPTO, pages 681–700,
2012.

34. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In CRYPTO, pages 554–571, 2008.

35. Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In EUROCRYPT, pages
222–232, 2006.

36. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164, 1982.

