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Abstract. In Eurocrypt 2010, Miccinacio initiated an investigation of
cryptographically sound, symbolic security analysis with respect to coin-
ductive adversarial knowledge, and showed that under an adversarially
passive model, certain security criteria may be given a computationally
sound symbolic characterization, without the assumption of key acyclic-
ity. Left open in his work was the fundamental question of “the viability
of extending the coinductive approach to prove computational soundness
results in the presence of active adversaries.” In this paper we make some
initial steps toward this goal with respect to an extension of a trace-based
security model (Micciancio and Warinschi, TCC 2004) including asym-
metric and symmetric encryption; in particular we prove that a random
computational trace can be soundly abstracted by a coinductive symbolic
trace with overwhelming probability, provided that both the underly-
ing encryption schemes provide IND-CCA2 security (plus ciphertext in-
tegrity for the symmetric scheme), and that the diameter of the under-
lying coinductively-hidden subgraph is constant in every symbolic trace.
This result holds even if the protocol allows arbitrarily nested appli-
cations of symmetric/asymmetric encryption, unrestricted transmission
of symmetric keys, and adversaries who adaptively corrupt users, along
with other forms of active attack.
As part of our proof, we formulate a game-based definition of encryption
security allowing adaptive corruptions of keys and certain forms of adap-
tive key-dependent plaintext attack, along with other common forms of
CCA2 attack. We prove that (with assumptions similar to above) secu-
rity under this game is implied by IND-CCA2 security. This also charac-
terizes a provably benign form of cyclic encryption implied by standard
security definitions, which may be of independent interest.

Keywords: Computational soundness, adaptive corruptions, coinduc-
tion, circular security, trace-based protocol security, active adversaries

1 Introduction

Provable security, since its introduction in the early 1980s, has provided a rig-
orous foundation for the security analysis of cryptographic schemes.Typically,
proving a cryptographic construction meets a given security goal within the
provable security framework requires: (1) formally defining the security goal in
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terms of what comprises a violation of the goal and what is assumed about
the computational power of the adversary, and (2) giving a feasible method
which transforms any attack against the construction to an attack against one
of its underlying primitives [12, 13]. This methodology provides strong security
assurances against resource-bounded attackers, which is a fairly realistic assump-
tion in real-world applications. However, doing computational security analysis,
even for small-sized protocols, can be a gruelingly tedious task, and normally
a small change in the protocol necessitates a new security proof. On the other
hand, formal (logic-based) methods [24, 15] greatly simplify security analysis us-
ing idealized abstractions of cryptographic primitives and limiting adversarial
computation, even allowing for automated verification. While formal methods
may help designers identify subtle flaws in their schemes, they do not necessar-
ily provide guarantees of computational security. At the very least, a formally
verified scheme may be computationally insecure if realized under “insufficiently
strong” primitives (e.g. using malleable encryption in the case of active attacks).
Motivated by the mismatch between these two approaches, a large body of work,
starting from [1], attempts to give computational justifications for formal secu-
rity proofs, in the form of computational soundness theorems. Generally speak-
ing, a formal system for security proofs is computationally sound if whenever a
scheme is proved secure in the system, it is guaranteed to also be secure in an
appropriate computational security framework.

Background. Standard notions of secure encryption [26, 38] ensure privacy
of plaintexts chosen independently from the underlying secret key(s). It has
long been known that a key encrypted under itself may no longer remain se-
cret, and recent results [20, 2] show that indeed for all k ≥ 1, k-circular secu-
rity is not implied by standard security. Moreover, currently known techniques
for standard security fall short when trying to prove non-trivial security state-
ments against more adaptive adversaries. As an example, assume in the standard
multiple-key-based indistinguishability game [9] over keys ck1, . . . , ckn, the ad-
versary is additionally allowed to obtain the (nested) encryption of any cki under
{ck1, . . . , cki−1}, giving rise to an acyclic encryption ordering between keys. One
can use a standard hybrid argument to show that security in this setting is no
stronger than standard security. However, this simple hybrid argument fails in
the case that the (acyclic) encryption ordering is a priori unknown and formed
adaptively by the adversary. (The naive approach of guessing the underlying or-
dering also trivially yields an exponential reduction factor.) In contrast, conven-
tional Dolev-Yao style security analysis models adversarial knowledge inductively
in an all-or-nothing fashion (i.e. the adversary either knows a secret piece of data,
or it does not have any information about it). As a result, adversarial power is
limited, essentially treating uniformly all symbolic ciphertexts whose encryption
keys are underivable under so-called Dolev-Yao deduction rules. Consequently,
Dolev-Yao models typically assume no difference between two symbolic encryp-
tions {k}k and {k1}k. Also, the “adaptive problem” described above seems to not
be a challenge within these models. For these reasons, most existing soundness
results are restricted in their assumptions, which include excluding key cycles
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altogether in the case of passive adversaries [1, 28], posing certain encryption
orderings in the case of passive-but-adaptive adversaries [33], and disallowing
symmetric encryption in the case of active adversaries [34, 6, 19].
As a resolution to the problems created by key cycles, Micciancio [32] proposes a
coinductive method for modeling symbolic security, and obtains computational
soundness in the setting of message indistinguishability for passive adversaries,
while allowing key cycles and assuming only semantic security for the underlying
encryption function. Coinductive symbolic security corresponds to a greatest-
fixedpoint-based definition of adversarial knowledge, as opposed to the least-
fixedpoint-based definition adopted by conventional inductive methods. From a
cryptographic perspective, [32] implicitly characterizes a provably benign form of
circular encryption, in particular the equivalence of standard security to secure
encryption under a variant of the multiple-key-based game described above in
which the adversary may obtain the (single or nested) encryption of any cki un-
der arbitrary keys, provided at least one of them is in {ck1, . . . , cki−1}, resulting
in a (possibly) cyclic encryption ordering. To obtain soundness, [32] shows that
for an a priori known sequence of exchanged symbolic messages (which is the
case in the passive setting), one may order all coinductively irrecoverable keys
from this sequence as k1, . . . , km, such that each occurrence of ki is encrypted
under at least one of {k1, . . . , ki−1}.
Our Results. In this paper we investigate the question left open in [32]; namely,
whether a coinductive approach provides similar soundness guarantees when ap-
plied in the setting of active adversaries. We consider a symbolic/computational
trace-based execution model [34], including asymmetric and symmetric encryp-
tion. In contrast to previous work, we allow symmetric keys to be freely included
in protocol messages, symmetric and asymmetric encryptions to be arbitrarily
nested, and adversaries to adaptively corrupt users, along with other forms of
active attack. We first pose the following central question: to what extent can
any encryption scheme with standard security withstand stronger types of attack
including adaptive corruptions of keys and key-dependent/circular encryption?
To formalize this, consider the following game over symmetric/asymmetric en-
cryption schemes Es = (Gs, Es, Ds), Ea = (Ga, Ea, Da), {cki}1≤i≤n ← Gs(1η),
and {(pki, ski)}1≤i≤n ← Ga(1η), in which the adversary is allowed to adap-
tively corrupt keys (symmetric and asymmetric), obtain decryptions of per-
missible ciphertexts, and issue key-dependent encryption queries of the form
Es(f(ck1, . . . , ckn), ckj) or Ea(f(ck1, . . . , ckn), pkj), where f is any arbitrary
composition of constant, pairing, projection (Pi(ck1, . . . , ckn) = cki), and en-
cryption (Eapki(·) , Escki(·)) functions. We remark asymmetric decryption keys
may not be used to form key-dependent messages, reflecting our assumption that
such keys are not sent as plaintexts in protocol messages1. This function family
allows one to describe encryption queries symbolically (e.g. Es(Es(ck1, ck2), ck1)
is denoted {{k1}k2}k1), and hence symbolically keep track of adversarial knowl-
edge. Now we ask: if Ea and Es provide IND-CCA2 security only, can we prove,

1 Relaxing this requirement does not add to the technical difficulty of the proofs. We
assumed this requirement as it seems to be the case for most protocols in practice.
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at the end of the game, certain keys still maintain computational secrecy, in
the sense they can securely be used in an encryption-based indistinguishability
game2? Several negative results [20, 2] show certain key cycles may compromise
the secrecy of their component keys, but on the positive side this problem (in
a generic sense involving circular encryption) has not been considered much.
Motivating the discussion, the results of [32] in the context of the above game
(but where only symmetric encryption is used,) imply if all queries are made at
once (i.e. nonadaptively), then any cki, whose symbolic key ki remains coinduc-
tively irrecoverable (irrecoverable for short), even if used in key cycles, maintains
computational secrecy. Along these lines, we call (Ea, Es) CI secure if after the
adaptive execution of the above game all keys whose symbolic keys remain ir-
recoverable maintain computational secrecy. We also consider ACI security, an
extension of CI security which adds ciphertext integrity and obtain the following

Theorem (informal). If (Ea, Es) is ACI secure, it provides soundness for coin-
ductive traces.

Next we ask if CI security may be based on IND-CCA2 security. Note that
the CI attack model is ostensibly much stronger than the CCA2 one, allowing
a CI adversary to adaptively corrupt keys and obtain circularly-encrypted ci-
phertexts. A naive reduction attempt would be to a priori guess all keys which
remain irrecoverable during the game, together with their underlying encryption
ordering, and then use a hybrid argument in the style of [32] to do the reduction.
Such an idea clearly yields an infeasible reduction factor. Instead, we prove that
if the diameter of the coinductively-hidden subgraph of the resulting key graph is
constant, then CI security is implied by IND-CCA2 security. (It will soon be in-
formally described why our reduction is dependent on this parameter.) Here, the
key graph is the (random) multigraph Gk which has a node for every key in the
game, and an edge vi → vj if vi’s associated key encrypts vj ’s in an encryption
query (e.g. the encryption query {{k1}k2}k1 creates one self-loop and one normal
edge,) and by “coinductively hidden subgraph” we mean the induced subgraph
of Gk on irrecoverable nodes (nodes whose associated keys remain irrecoverable).
We remark that as long as the above condition holds, the adversary may corrupt
any number of keys, and create arbitrary key cycles and arbitrarily-long paths
in the whole key graph.
Theorem (informal). If Ea and Es are both IND-CCA2 secure, then for every
adversary A where the diameter of the coinductively hidden subgraph of Gk(A)
is constant (i.e. independent of the security parameter), A has a negligible ad-
vantage in the CI game for (Ea, Es). Moreover, if Es is also INT-CTXT secure,
A has a negligible advantage in the ACI game.

The starting point of our proof is [36]’s positive results on security against
adaptive corruptions (in an authenticated channel setting), showing that security
in a setting over Es and {cki}1≤i≤n ← Gs(1η), in which A may adaptively cor-

2 Our definition of computational secrecy is close to the idea of key usability, de-
veloped in [23], for defining alternate, composition-amenable security criteria for
key-exchange protocols.
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rupt keys, and obtain single encryptions Es(cki, ckj), for 1 ≤ i, j ≤ n, subject to
key acyclicity, is obtained via a reduction to the semantic security of Es, with a
factor of O(nl) where l is the diameter of the resulting key graph. Although the
results of [36] seem to extend, by its mere developed techniques, to an authenti-
cated setting with nested encryptions, they crucially rely on acyclicity and break
down if this latter is relaxed. Allowing cyclic nested encryptions, irrecoverable
nodes may have self-loops or oppositely-directed edges between themselves (en-
cryption queries {{k1}k2}k3 and {k2}k1 create such edges, while k1, k2 remain
irrecoverable), and we still need to prove their computational secrecy. Central to
our proof is a new notion of coinductive continuability, which for every irrecov-
erable node characterizes a special set of paths ending in that node, satisfying a
property which enables a path-based reduction proof in the style of [36]. (Our re-
duction is based on guessing random coinductiely continuable paths with certain
properties, making it depend on the diameter.) Also, allowing both nested en-
cryptions and decryption queries creates a new complication; namely, to simulate
a CI adversary ACI by a CCA2 adversary Acca, nested encryptions may make
an Acca’s challenge ciphertext a “legitimate” ciphertext for ACI (e.g., when the
ciphertext corresponding to {k1}k2 in {{k1}k2}k3 is created under Acca’s left-or-
right oracle and k3 remains irrecoverable), and if ACI makes such a decryption
query, our simulation fails. A large part of our proof, thus, involves showing ACI
may produce such ciphertexts only with negligible probability. Such a compli-
cation does not arise if one only deals with single encryptions, and in fact, the
results of [36] immediately extend if decryption queries are also allowed.

Applications. Our reduction result implies for a protocol Π (which may contain
symmetric keys and nonces as atomic messages) and a trace-expressible security
property P (here, loosely speaking, by a trace we mean a sequence of states cre-
ated during an execution of a protocol as a result of adversarial/honest-parties’
actions. Formal definitions are given in Section 3), if the following two sym-
bolic assertions hold, then the (CCA2, CCA2+CTXT)-based implementation
of Π provably achieves P (in an insecure channel setting) with strong security
guarantees against adaptive corruptions: (a) No symbolic coinductive adversary
may create a trace containing an arbitrarily-long encryption chain (in the sense
described above), and (b) Π is coinductively secure; namely, no coinductive sym-
bolic adversary may produce a trace not satisfying the underlying symbolic prop-
erty. We observe that all protocols in the Clark-Jacob library [21], in which the
only primitives used are asymmetric/symmetric encryption, satisfy our sound-
ness restriction (item (a) above), making it applicable to them. A number of
these protocols are asymmetric encryption-based, and analyzable under previ-
ous soundness theorems (e.g. [34, 6]). Using our techniques, we show that [27] the
Wide-Mouthed Frog authentication protocol, which is not analyzable under the
cryptographic library of [4] due to the classic commitment problem prevalent in
simulation-based approaches, satisfies our soundness restriction. This advocates
for the use of coinduction as a strong tool in yielding provably-sound security
proofs, while circumventing issues involved with using induction-based methods.
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Why not KDM security? It may be asked why we bother to investigate
soundness of coinductive methods, when there are constructions in the stan-
dard model for secure encryption under key-dependent messaging [14, 16]. We
note that security against adaptive corruptions is a necessary requirement for
any encryption scheme used in a protocol which is run in an environment with
adversarially adaptive corruptions. In such situations, once a key is corrupted,
the security of the protocol will depend on the preservation of secrecy for keys
which are not trivially corrupted. Even in the idealized static corruption model,
a key may dynamically be revealed by the exploitation of potential weaknesses
of a protocol (e.g., consider a situation where the adversary gets to alter a com-
municated message by replacing an “honest” key with his own key, making an
honest party then encrypt a secret key under the adversarial key.) To the best of
our knowledge, there are no provable constructions of KDM-secure encryption
in the standard model which also provide security against adaptive corruptions.
Backes et al. [5] consider a limited case in which security is defined only in
a left-or-right indistinguishability sense, not addressing the above problem. In
subsequent work, [3] considers the problem in its full generality as described
above, but their construction is in the random-oracle model. Moreover, they do
not consider the question of whether generic constructions from KDM-secure
encryption schemes exist (in the standard model) which also provide security
against adaptive corruptions.

Related Work. Obtaining sound abstract security proofs for protocols involving
symmetric encryption has also been considered following the ideal/real simula-
tion paradigms of [17, 37]. [4] shows that secure realization of ideal symmetric
encryption (in the sense of reactive simulatability) is possible in their crypto-
graphic library [6] if the commitment problem does not occur (i.e. any honest
party’s key, after it is used for encryption, never becomes “known” to the ad-
versary), and the used-order property is satisfied. (i.e. Deployed keys admit an
a priori encryption ordering.) The authors of [30], by extending the framework
of [19] to allow symmetric encryption, show if a key-exchange protocol satisfies
their symbolic criteria and if the above conditions hold, the protocol securely
realizes a key-exchange functionality in the sense of universal composability. We
comment the commitment problem may intrinsically occur as a direct result of
security formalizations; adaptive corruptions, for instance, trivially enable this
possibility. Also, the requirement that “a session-key loss in a key-exchange pro-
tocol should not affect the secrecy of other session keys” is formalized by allowing
the adversary to adaptively learn session keys, leading, possibly, to the commit-
ment problem. Thus the aforementioned frameworks do not consider the above
two attack scenarios. We remark the commitment problem was known long be-
fore in the setting of adaptively-secure multiparty computation, with initial solu-
tions given in [18]. The results of [22] are aimed at indistinguishability-based
security properties (e.g., secrecy requirements for key-exchange protocols), by
showing that observational equivalence between two processes implies computa-
tional indistinguishability under standard cryptographic assumptions. Although
[22] allows symmetric encryption, it imposes the same restrictions as [4, 30].
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A very different approach which in principle supports reasoning about sit-
uations which include key-cyclic encryption and adaptive corruption for both
symmetric and asymmetric encryption as well as other primitives is the use of
what might be called general-purpose security logics. Here we include probabilis-
tic process calculi [31, 35], logics which axiomatize computational indistinguisha-
bility [29, 8] and first-order logics augmented with axioms characterizing specific
security properties [7]. The tradeoff involved in taking a more generic approach
is the loss of structure in proofs, potentially undermining some of the benefits
of the formal approach.
Basic Notation: For a review of the standard notions of encryption security,
we refer to [10, 11]. If D is a probability distribution, then x← D denotes choos-
ing an element according to D, and if S is a set, x ← S denotes choosing an
element uniformly at random from S. For a probability distribution D, sup[D]
denotes the support set of D, and we write x ∈ D to mean x ∈ sup [D]. We call
a function negligible if it grows more slowly than the inverse of any polynomial
function. For ease of notation, we use negl(·) to refer to any negligible function.

2 Preliminaries

A Formal Language for Cryptographic Expressions. Expressions are built
from four infinite sets of basic symbols – identifiers, ID, public-key symbols,
Kpub, private-key symbols Kpriv, and nonces, X – using encryption, {�}◦, and
concatenation, (·, ·), operators for building compound messages. We further parti-
tion Kpriv into asymmetric private keys, Kprivasym, and symmetric private keys
Kprivsym. We fix a bijective key-inverse operation (.)−1 : Kpub ∪ Kprivsym →
Kpriv, which induces the identity function on subdomain Kprivsym.

Whenever it is essential to distinguish between the adversary’s and honest
parties’ basic symbols, we add a subscript A or H to basic symbols, and for
every set S defined above, we further define S = SH ∪SA (e.g. KprivH and KprivA ).
Moreover, whenever it is necessary to distinguish between symmetric and asym-
metric private-key symbols, we add a superscript sym to symmetric ones. (e.g.
we have (ksym1 )−1 = ksym1 .) The set of formal expressions, Exp, is:

Exp ::= Plain | Cipher | (Exp,Exp)

Plain ::= ID | X | Kpub | Kprivsym

Cipher ::= {Plain}k∈Kpub∪Kprivsym | {Cipher}k∈Kpub∪Kprivsym

Coniductive Modeling of Adversarial Knowledge. We take a coinduc-
tive approach to modeling adversarial attacks. To model coinductive adversar-
ial knowledge [32], we define a key-recovery function, F , which specifies given
e ∈ Exp and T ⊆ KprivH , what keys can be deduced by “single-round” applica-

tions of Dolev-Yao rules. Defined naturally, Fs(T ) = s∩KprivH for a basic symbol

s, F(e1,e2)(T ) = Fe1(T )∪Fe2(T ), and F{e}k(T ) = Fe(T ) if k−1 ∈ T ∪KprivA and
F{e}k(T ) = ∅, otherwise. T is a fixedpoint of Fe if Fe(T ) = T , and is the greatest
(resp. least) fixedpoint if T is the greatest (resp. least) solution of Fe(X) = X
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(according to ⊆ ordering). Now T is coinductively (resp. inductively) defined by
Fe if T is the greatest (resp. least) fixedpoint of Fe. It is easy to see that Fe is
a monotone function (i.e., S1 ⊆ S2 ⇒ Fe(S1) ⊆ Fe(S2).

The Tarski-Knaster Theorem implies for every monotone function F : ℘(D)→
℘(D), where D is some set and ℘(D) is its powerset, the least fixedpoint, fix(F ),
and greatest fixedpoint, FIX(F ), of F exist and are obtained as follows

fix(F ) =
⋂

S:F (S)⊆S

S (1) FIX(F ) =
⋃

S:S⊆F (S)

S (2)

Note that if T ⊆ Fe(T ), then cl(T )
4
= ∪i≥1F ie(T ) is a fixedpoint, for which

T ⊆ cl(T ), where F ie(T ) denotes i successive applications of Fe on T . The
latter follows from monotonicity of Fe, and the former follows observing that
Fke (T ) = Fk+1

e (T ) for sufficiently large k’s. (This is because the number of keys
in e is finite.) Thus the following equivalent formulations follow:

fix(Fe) =
⋂

Fe(S)=S

S =
⋃
i≥1

F ie(∅) (3)

FIX(Fe) =
⋃

S=Fe(S)

S =
⋂
i≥1

F ie(K
priv
H )

(4)

We show (4); the proof for (3) follows by a dual argument. The first equal-
ity for FIX(Fe) follows from (2) and the argument presented above. The sec-
ond equality follows from the following three observations: (a)

⋂
i≥1F ie(K

priv
H )

is a fixedpoint of Fe, (b) if T is a fixedpoint of Fe, then T =
⋂
i≥1F ie(T ),

and (c) by monotonicity,
⋂
i≥1F ie(T ) ⊆

⋂
i≥1F ie(K

priv
H ). Now the set of coinduc-

tively recoverable keys of e is the set coinductively defined by Fe. For example
for e = k−1, {{ksym1 }ksym

2
, {ksym2 }ksym

1
}
k
, its coinductively recoverable keys are

{k−1, ksym1 , ksym2 }. (As a convention, we omit parentheses in expressions and
write e1, e2 for (e1, e2).) See [32] for more examples.

We define the coinductive closure set of e ∈ Exp, denoted closurec(e),
to be the smallest set satisfying: (i) closurec(e) contains e, FIX(Fe), ID,
Kpub, and all the adversary’s basic symbols, (ii) if (e1, e2) ∈ closurec(e) then
e1, e2 ∈ closurec(e), (iii) if e′ and e′′ are both in closurec(e), so is (e′, e′′), (iv)
if {m}k ∈ closurec(e) and k−1 ∈ closurec(e) then m ∈ closurec(e), and (v)
if m ∈ closurec(e) and k ∈ closurec(e) then {m}k ∈ closurec(e). Although
the above definition is a hybrid of inductive and coinductive definitions, an
equivalent, (fully) coinductive definition is also possible; however, we adopt the
above one as it is more natural. Now e1 is coinductively recoverable from e if
e1 ∈ closurec(e). Note, if e1 ∈ closurec(e) but ksym /∈ closurec(e), Rule (v) does
not allow us to deduce {e1}ksym ∈ closurec(e). This models the idealized sym-
bolic assumption that if the adversary does not know an honest party’s symmet-
ric key, he cannot produce a ciphertext which decrypts to a meaningful plaintext
under that key. To support this assumption in our computational model, we will
assume the symmetric encryption scheme provides ciphertext integrity.

We say e′ is a subexp of (or occurs in) e, denoted e′ v e, if e = e′, or
e = (e1, e2) and e′ v e1 or e′ v e2, or e = {e1}k and e′ v e1. We say k1 encrypts
k−12 in e, denoted k1 →e k−12 , if for some {e1}k1 which occurs in e, k−12 v e1. An
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expression is key cyclic if it contains a key cycle, that is a sequence k0, k1, . . . ki−1
such that kj → k−1(j+1 mod i) for all j ≥ 0, and is called key acyclic if it is not

key cyclic. It is known the inductive and coinductive definitions coincide for key-
acyclic expressions[32]. The converse of this, however, does not hold true; it is
possible some keys occur in certain key cycles but remain coinductively irrecov-
erable (e.g. consider {{k−11 }k1}k2). In fact, we will prove it is exactly such keys
that remain “secure” under concrete implementations.
Computational Interpretation of Cryptographic Expressions. Under
a pair of symmetric/asymmetric schemes Ep = (Esym, Easy) with parameters
(ηsym, ηasy), an invertible pairing function, and a mapping τ(ηsym, ηasy, ◦), which
gives a concrete value to every basic symbol, every e ∈ Exp induces a natural

probability distribution, denoted JeKEpτ , which we call the computational image

of e with respect to Ep and τ . If E ∈ JeKEpτ and e1 v e, given τ , one may define
the underlying value of e1 in E in a natural way.

3 Symbolic and Computational Trace-Based Protocol
Security

We will now introduce a protocol specification language and consider an exten-
sion of the model given in [34] for analyzing security protocols in the presence of
active adversaries. For simplicity, we consider two-party protocols, and assume
that each protocol runs in a constant number of rounds, and admits a symbolic
specification. Under these assumptions, a protocol can be described as a se-
quence Π = (M I

1 ,M
R
1 ,M

I
2 ,M

R
2 , . . .M

I
r ,M

R
r ) of messages being sent alternately

between two parties: initiator and responder. (Here having the responder send
the last message is arbitrary.) We assume that each party has an associated long-
lived public key which the other party may use to encrypt messages, and whose
matching private key is never sent as a plaintext. The parties, however, may gen-
erate fresh symmetric keys, send them (encrypted) to each other, and later on
use exchanged keys to encrypt future messages. Messages that we use to specify
protocols are built upon four disjoint sets Ids = {I,R}, nonces = {X1, X2, . . . },
pubkeys = {KI ,KR}, and symkeys = {Ksym

1 ,Ksym
2 , . . . }, using encryption and

concatenation for building compound messages, where KI and KR denote the
parties’ respective public keys. We further require protocols be computationally
executable; in particular, a party should be able to fully decrypt (all encrypted
parts of) a message she receives. (Our results seem to easily extend by relax-
ing this restriction, allowing, e.g., ciphertext forwarding, which allows a party
to forward a message without decrypting it.) To summarize our assumptions,
we call Π valid if: (1) for all 1 ≤ i ≤ r and x ∈ {I,R}; K−1I and K−1R do not
occur in Mx

i , and (2) for all 1 ≤ i ≤ r, x ∈ {I,R}, and y = {I,R} − {x}; if Mx
i

has a subexp {M}K , then K is inductively recoverable from (Ky,M
x
1 , . . . ,M

x
i ).

(We will use a coinductive approach for modeling adversarial attacks, and this
condition is solely meant to specify our class of protocols. In particular, since we
require parties be able to fully decrypt their received messages, and their roles
be computationally executable, such a condition seems necessary.)
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So far we have only described the “syntax” of protocols; this should not be
confused with the formal execution semantics to be presented below. Treating
Π as a tuple of messages, we denote its ith message by Πi. We denote the set
of protocol users (participants) by U = {u1, u2, ..., un}, where any two of whom
may initiate an instance of the protocol together, in a manner controlled by an
adversary. The adversary is not himself a protocol user, but may dynamically
subvert users during the execution. We model adversarial power as an oracle
with which he is adaptively interacting, by making the following types of query:

– corrupt(i): Corrupts user ui. In response, the long-lived secret key of ui (and
all other ui’s internal information) is given to the adversary.

– new-session(i, j): Causes ui and uj to start a new session, with ui as the
initiator. The oracle assigns a unique number, sn, to their session and gives
sn to the adversary plus the first message that ui sends to uj in this session.

– send(sn,m1, I): Causes the oracle to send message m1 to the initiator of
session sn and give m2, the message that the user produces in response,
to the adversary. Here m2 may be a valid message, an error message ⊥
(indicating m1 was not of the right format), or a flag message ∗ indicating
that the user has received her last message, finishing her session.

– send(sn,m1, R): Similar to above, but m1 is sent to the responder of sn.

We now give formal and computational semantics for protocols. In the formal
setting, we denote the long-lived public key of ui by kui , and for each session
sn that ui is a user of, we denote ui’s generated symmetric keys and nonces in
sn, respectively, by Ksym

i,sn = {ksymi,sn,j | j ∈ N} ⊆ KprivsymH , Xi,sn = {xi,sn,j | j ∈
N} ⊆ XH . The adversary may use his own basic symbols to build new messages;
we denote the adversary’s symmetric keys and nonces, respectively, by Ksym

A =

{ksymA,j | j ∈ N} ⊆ KprivsymA , XA = {xA,j | j ∈ N} ⊆ XA. We let Expbasic be the

union of all XA,K
sym
A , Ksym

i,sn ’s, Xi,sn’s.
The adversary initially knows only his own basic symbols and parties’ IDs

and public keys. If he corrupts ui, he receives k−1ui
as well as Ksym

i,sn ∪ Xi,sn,
for every sn that ui has engaged in. A protocol state is characterized by the
following components:

f : {I,R} ×BS(Π)× SN → Expbasic ∪ {⊥} l : {I,R} × SN → Πi ∪ {
√
}

h : {I,R} × SN → U corr-users ⊆ {u1, . . . , un}

Here SN denotes the set of all session numbers, and, recall that, U is the set of all
protocol users. Function f represents the symbolic values that the initiator and
responder of each session of the protocol give to basic symbols in that session,
and ⊥ means that the party does not yet know the value of the corresponding
basic message. Function l denotes the index of the next message in the protocol
that the initiator and responder of each session expect to receive, and

√
indicates

that the party has finished her respective session. Finally function h indicates
what protocol users take the roles of “initiator” and “responder” in each session.

We denote the initial state of the system by FS0, where corr-users = ∅, and
l, f, h map all their inputs to null values. An execution of a formal adversary,
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AF , can be described as a sequence of queries E(AF ) = (q1, q2, . . . ), with cor-
responding replies (r1, r2, . . . ). We then call AF coinductively legitimate if m ∈
closurec(r1, r2, . . . , ri−1) for all i such that qi = send(sn,m, {I,R}). Under AF ’s
execution, we denote the induced formal trace by FT (AF ) = (FS0, FS1 . . . ),
where state FSi is obtained from FSi−1 as a result of query qi.

Under the computational execution, elements of BS(Π) ⊆ Ids ∪ nonces ∪
pubkeys ∪ symkeys are replaced with random bitstrings, sampled w.r.t. a pair
Ep = (Easy, Esym), with w.l.o.g. a shared security parameter 1η, and the coins
tossed by both protocol users and the adversary during the protocol execution.
Each (initially honest) ui, before engaging in the protocol execution, samples
her long-lived key pair, (pki, ski) ← Genasy(η), and for each session sn that ui
participates in, ui uses a (polynomially-long) uniformly-selected random string
Ri,sn to sample her nonces and symmetric keys in that session, where symmetric
keys are sampled according to Gensym, and nonces chosen uniformly at random
from a fixed nonce space, NS = {0, 1}poly(η). The adversary, using random string
RA, may choose his nonces and symmetric keys (to, e.g., replace those of cor-
rupted parties, inject in messages on the network, etc.) in any arbitrary efficient
manner; he may also initially corrupt a party and choose her public/private key
pair in any arbitrary manner (not necessarily following Genasy).

Letting Cη = NS∪sup [Gensym(η)]∪sup
[
Genasy1(η)

]
, a computational state

of the protocol is given by (F,L,H,Corr-Users), where L,H,Corr-Users are
defined analogously to their formal counterparts, and F is also defined similarly
to f by replacing Expb with Cη. The adversary interacts with a computational or-
acle by issuing the four types of queries explained above, where the input/output
of queries are probabilistic, depending on RA and RH . (Here RH is the concate-
nation of all random coins used by honest parties.) Among oracle queries, we
only explain the effect of a corruption query (the others are fairly straightfor-
ward): if the adversary corrupts ui, he is given (pki, ski), and for every session
sn in which ui takes the role X ∈ {I,R}, the adversary is given F (X, bs, sn), for
every bs ∈ BS(Π). Finally, under fixed RH and RA, the induced computational
trace is deterministic and denoted by CT (A,RA,RH , ΠEp).
Let FT = 〈(f1, l1, h1, corr-users1), (f2, h2, l2, corr-users2), . . . 〉 be a formal trace
and let τ : Expbasic → Cη be a concrete mapping. We say a concrete trace

CT = 〈(F1, L1, H1, Corr-Users1), (F2, L2, H2, Corr-Users2), . . . 〉

is an encoding of FT under τ , written FT ≺τ CT , if li = Li, hi = Hi,
Corr-Users = corr-users and Fi = τfi, for all i ≥ 1. We say CT is the compu-
tational image of FT , written FT ≺ CT , if there exists τ such that FT ≺τ CT .

We are now ready give the computational soundness definition.

Definition 1. A pair Ep = (Easy, Esym) provides a computationally-sound in-
terpretation of symbolic encryption with respect to coinductive Dolev-Yao traces
(shortly, provides soundness) if for all valid protocols Π, adversaries Ac, we have

Pr
RA,RH

[∃{coind-legit AF } : FT (AF ) ≺ CT (Ac,RA,RH , ΠEp)] ≥ 1− negl(η)
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4 Computational Realization of Coinductive Methods

We describe a joint notion of security for asymmetric/symmetric encryption
which provides soundness for coinductive symbolic traces. We then explore how
this notion may be achieved under standard complexity-theoretic assumptions.

We begin with some motivation. Consider a single run of a protocol against a
passive adversary, in which the whole sequence of exchanged messages is known
a priori. We wish to formalize what it means for a piece of data (nonce or sym-
metric key) to remain secure in both the formal and computational settings.
Under the formal approach, one would typically say the secrecy of a piece of
data is retained if it cannot be deduced by applying Dolev-Yao rules. For a
nonce X, for instance, if X is not formally deducible, it means all occurrences of
X are encrypted under keys which cannot be obtained by a Dolev-Yao adversary.
Thus, under the concrete instantiation, after the adversary has received the com-
putational representations of the exchanged messages, the random nonce value
underlying X should still be as computationally random as a freshly-generated
random nonce, provided the encryption scheme is sufficiently strong. However,
for the case of symmetric keys the situation is quite different: even if a symmetric
key is not Dolev-Yao-style deducible, the key may leak significant information
when it comes to a concrete implementation. For instance, a symmetric-key value
may lose its original randomness if used for encryption. (i.e. The adversary will
be able to tell it apart from a fixed key, causing it to not be as “random” as a
freshly generated key.) Thus the definition of secrecy for symmetric keys in the
computational model turns out to be more delicate.

Our ultimate goal is to establish a close correspondence between coinduc-
tive Dolev-Yao adversaries and computational adversaries, by showing that a
computational adversary essentially cannot do anything (in terms of mounting
successful attacks) which cannot already be performed by a simple Dolev-Yao ad-
versary. We capture the essence of active-attack scenario within a cryptographic
game, played between an adversary and a challenger, in which the adversary is
faced with a number of unknown keys (both asymmetric and symmetric) and
nonces, generated by the challenger, and his goal is to infer “non-trivial” in-
formation from the challenger’s secret data, by exploiting active attacks such
as corrupting arbitrary keys of the challenger, getting her to encrypt messages
which depend on her own secret data, and getting her to decrypt “permissible”
ciphertexts. Our goal is to show that, under sufficiently strong security require-
ments, the computational adversary cannot learn non-trivial information from
a piece of data (nonce or private key) that cannot already be obtained by a
coinductive Dolev-Yao adversary. The key point in our security definition is to
formalize the idea of “computational secrecy” for private keys. As it is probably
clear from the above discussion, “requiring the adversary not be able to distin-
guish the private key (used in the game) from a freshly generated key” would
not work. We formalize it in the following standard way: a private key retains
its computational secrecy if the adversary is unable to distinguish between the
encryptions of real/random messages under that key. We will be able to show
that security in our game provides computational soundness.
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Our security notion is formalized via the following game which we call the
coinductive, key-dependent indistinguishability game, or the CI game for short.

Below, for S = {(s11, s21), . . . (s1n, s
2
n)}, we define Si

4
= {si1, . . . , sin} for i ∈ {1, 2}.

4.1 Coinductive, Key-Dependent Indistinguishability (CI) Game

Assume Easy = (Genasy, Encasy, Decasy) and Esym = (Gensym, Encsym, Decsym)
are asymmetric/symmetric encryption schemes whose joint security is to be de-
fined, w.l.o.g., w.r.t. the shared security parameter 1η. The game is played be-
tween an adversary, A, and a challenger, B, and is parameterized over a publicly-
known, poly-bounded integer function n(η) (we write n for n(η)). Suppose τB(·)
and τA(·) are (dynamically growing) mappings which give bitstring values to,
respectively, the basic symbols of B and A (we will see shortly what those sym-
bols are), and let τ be a mapping defined to be τB on the domain of B’s symbols
and τA on A’s. Here τA is publicly known, while access to τB and τ is restricted
to B. The game proceeds in three phases: setup, interaction, and guessing.

In the setup phase, B first picks b ← {0, 1}, generates {(pki, ski)}1≤i≤n ←
Genasy(η), symmetric keys {cki}1≤i≤n ← Gensym(η), and nonces {nci}1≤i≤n ←
{0, 1}q(η) (for some poly q), makes {pki}1≤i≤n public, and keeps the rest se-

cret. We introduce {(ki, k−1i )}1≤i≤n ∈ KpubH × KprivasymH , and {ksymi }1≤i≤n ∈
KprivsymH , and {xi}1≤i≤n ∈ XH , and assign τB(ki) = pki, τB(k−1i ) = ski,
τB(ksymi ) = cki and τB(xi) = nci, for 1 ≤ i ≤ n. We initialize eval-exp = ∅.
During the interaction phase, A may dynamically update τA, mapping his
newly-created basic symbols to arbitrary values. In the interaction phase A
adaptively interacts with B by issuing queries of the following types:

1. Corruption: A may corrupt a B’s key by issuing corrupt(s), where s ∈
{k−11 , . . . , k−1n , ksym1 , . . . , ksymn }. In response A receives τ(s), and (s, τ(s))
is added to eval-exp.

2. Encryption: A may issue a query encrypt(e, x), where x ∈ {k1, . . . , kn, ksym1

, . . . , ksymn }, and e may not have any k−1i ’s as a subexp. In response, A is
given c ← J{e}xKτ and ({e}x, c) is added to eval-exp. Here e may contain
both the challenger’s and adversary’s basic symbols.

3. Decryption: A may issue decrypt(c, s′), where s′ ∈ {k−11 , . . . , k−1n , ksym1 ,
. . . , ksymn }. In responseA receivesDecasy(c, ski) if s′ = k−1i andDecsym(c, cki)
if s′ = ksymi , unless there exists ({e}kp , cp) ∈ eval-exp such that {e}kp has a
subexp {e′}s (where s′ = s−1) which in {e}kp is encrypted only under keys

whose decryption keys are in closurec(eval-exp
1), and that c corresponds to

the computational image of {e′}s in cp. In this case the answer is ⊥.

After making a number of such queries, A proceeds to the final, guessing
phase, in which he claims he is able to infer “non-trivial” information about ir-
recoverable secret data of B. He does so by issuing a challenge query, which is ei-
ther of the form challenge(s), where s ∈ {x1, . . . , xn} (nonce challenge), or of the
form challenge(s, bs), where bs ∈ {0, 1}∗ and s ∈ {k−11 , . . . , k−1n , ksym1 , . . . , ksymn }
(secret key challenge.) The response to the query is decided as follows: if s ∈
closurec(eval-exp

1), then he is given ⊥, otherwise:
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– if b = 0, A is given ncj if s = xj , Encasy(bs, pkj) if s = k−1j , and otherwise
Encsym(bs, ckj) if s = ksymj .

– if b = 1, A is given nc′j ← {0, 1}q(η) if s = xj , Encasy(r, pkj) if s = k−1j , and

Encsym(r, ckj) if s = ksymj , where r ← {0, 1}|bs|.

A finally outputs his guess for b. Denoting by ACI
Ep
b the output of A when the

secret bit is b, his CI-advantage is (below Ep refers to the pair of schemes):

AdvCI
Ep,A(η) =

∣∣Pr[ACI
Ep
b (η) = 1 | b = 0]− Pr[ACI

Ep
b (η) = 1 | b = 1]

∣∣.
Definition 2. A pair of Ep = (Esym, Easy) provides joint security under the CI
game (shortly, is CI-secure) if for every A, AdvCI

Ep,A(η) is negligible.

We now explain the restrictions on challenge and decryption queries. For our
discussion, assume that E = (Gen,Enc,Dec) is a symmetric encryption scheme
wherein Enc(ck, ck) leads to computation of ck. (This could happen although
E is secure in any standard sense.) In the absence of the condition for chal-
lenge queries, A could simply win the game by doing the following: make two
queries encrypt(ksym1 , ksym1 ) and encrypt(ksym2 , ksym1 ) to receive, respectively, c1
and c2, and then issue the challenge query challenge(ksym2 , 0n); A may now ob-
tain τ(ksym1 ) from c1 and τ(ksym2 ) from c2, trivially winning the game. Also in
the absence of the condition for decryption queries, A could simply win as fol-
lows: (1) make two queries encrypt(ksym1 , ksym1 ) and encrypt({ksym2 }ksym

3
, ksym1 )

to receive, respectively, c1 and c2, (2) after computing τ(ksym1 ) from c1, issue
the decryption query decrypt(c3, k

sym
3 ), where c3 = Dec(c2, τ(ksym1 )), and (3)

after obtaining τ(ksym2 ) issue the challenge query challenge(ksym2 , 0n), trivially
winning the game. Finally we remark that the recent results of [20] show that
there exists an IND-CCA2-secure symmetric encryption scheme such that cipher-
texts Enc(ck1, ck2), . . . , Enc(ckn−1, ckn), Enc(ckn, ck1), for randomly-generated
cki’s, lead to revelation of all ck1, . . . , ckn (a weaker case than k-circular secu-
rity). Therefore, the above attack methods extend to longer key cycles.

Note, A may use an encrypt query to obtain the encryption of any bitstring.
For example, to encrypt m under cki, he may introduce a new basic symbol xA,
set τA(xA) = m, and then issue encrypt(xA, k

sym
i ). Also it is possible to define

and extend results we present about CI security to a (seemingly) stronger notion
in which A is allowed to make multiple challenge queries, possibly making them
interleave with the other types of queries. Right now for applications that we
consider, CI security suffices. CI security may be thought of as a variant of KDM
security with the underlying function family consisting of any arbitrary compo-
sition of constant, projection, pairing and encryption functions. However, since
we aim to prove generic implication results from standard security definitions,
we have to restrict the set of keys for which we want to prove computational
secrecy (i.e. those which remain coinductively irrecoverable). This differs from
KDM security in which one wants to prove computational secrecy for all keys,
regardless of what encryption queries were made. Finally we stress that a key A
challenges in the guessing phase may have previously occurred in key cycles.
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CI security is still insufficient for providing soundness as it does not provide
integrity of ciphertexts. To account for this, we strengthen it to also provide
ciphertext integrity and call the new notion authenticated CI (or ACI) security.
We say (Easy, Esym) is ACI secure if it is CI secure and further any A has a
negligible chance of winning in the ACI game defined as follows: the setup and
interaction phases proceed exactly as in the CI game, while in the guessing
phase, A outputs (c, i) and wins if: (1) Decsym(c, cki) 6= ⊥, and (2) there does
not exist ({e}kj , c′) ∈ eval-exp such that {e}kj has a subexp {e′}ki encrypted

in {e}kj only under keys whose decryption keys are in closurec(eval-exp
1), and

that c is the corresponding image of {e′}ki in c′.
As a step toward proving soundness with respect to ACI security, we formu-

late a new notion which characterizes security requirements capturing the basic
Dolev-Yao assumptions made in protocol analysis, and prove that it provides
soundness. Our notion, which we call coinductive, key-dependent non-malleability
(shortly CNM ) notion, is a generalization of the Dolev-Yao non-malleability no-
tion of [28], which was defined for the passive setting.

4.2 Coinductive, Key-Dependent Non-Malleability (CNM) Game

The game is parameterized, again, over Ep = (Easy, Esym), a shared security pa-
rameter η, and a computational mapping τ , and runs in three phases with the
setup and interaction phases as in the CI game (except that no b is sampled).
However, in the guessing phase, A claims he is able to construct the compu-
tational image of an expression which is not coinductively constructible from
eval-exp1. To this end, he outputs (e, E), where e ∈ Exp (containing, possibly,
both the adversary’s and challenger’s symbols) and E ∈ {0, 1}∗. The output of
the game is 1, written as CNMEp,η(A) = 1, if the following two conditions hold:

1. e /∈ closurec(eval-exp1); and

2. E is a possible mapping of e under τ and Ep; namely, E ∈ JeKEpτ .
Note condition (2) is efficiently verifiable given access to τ . We define

AdvCNM
Ep,η (A) = Pr[CNMEp,η(A) = 1].

Definition 3. A pair Ep = (Easy, Esym) provides security under the CNM game
(shortly, is CNM-secure) if for every adversary A, AdvCNM

Ep,η (A) is negligible.

Theorem 1. 1. CNM security ⇒ soundness
2. ACI security ⇒ CNM security.

Proof (Outline): For (2) if Acnm is able to output a CNM-valid (e, E), then
e /∈ T , where T = closurec(eval-exp

1) implies e has a subexp s such that s
is either a nonce/private key, or s = {·}ksym

j
, and that any subexp of e which

contains s is not in T . This implies the underlying value of s is recoverable from
E (with the aid of the decryption oracle) through successive decryptions down
along the path leading to s, which will then enable an attack either against CI
security or ciphertext integrity depending on the type of s. The proof for (1)
also follows using ideas similar to those of [34]. We give a full proof in [27]. ut
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For an adversary A in either of the above games, we define a labeled key graph,
G(A) = (VA, EA), as follows: VA = {vasy1 , . . . , vasyn , vsym1 , . . . , vsymn }, and vxi

a−→
vyj ∈ EA, for x, y ∈ {asy, sym} and a ∈ N, if kxi encrypts the ath occurrence of

(kyj )−1 in the sequence ofA’s encryption queries. Here ath occurrence refers to an
increasing numbering given to each decryption key as it appears in the sequence;
for example, if e1 = {ksym1 , ksymp }

k3
, ksymp and e2 = ksym2 , {ksymp }k4 and the first

two encryption queries are encrypt(e1, k3) and encrypt (e2, k5); the set of keys
that encrypt the 3rd occurrence of ksymp is {k4, k5}. We call vxi coinductively

irrecoverable (irrecoverable for short) if kxi
−1 /∈ closurec(eval-exp

1), and we
refer to the induced subgraph on irrecoverable nodes as the hidden subgraph.
The diameter of a graph is the length of the longest path in the graph. We
define indeg(vxi ) to be the maximum a for which we have an incoming edge with
label a to vxi ; this specifies the number of times kxi

−1 occurs in A’s encryption
queries. Note, indeg(vasyi ) = 0, for every 1 ≤ i ≤ n, and also both G(A) and
indeg(vi) are random variables depending on the coins tossed during the game.

If all encryption queries were of the form encrypt(ksymi , kxj ) (i.e. single en-
cryptions) without cycle creation, then all nodes from which there was a path
to an irrecoverable node would also be irrecoverable. However, in the case of
nested encryptions with key cycles, the above appealing property no longer holds;
namely, an irrecoverable node may occur in certain key cycles, and may have
edges from nodes which are recoverable. For example, assuming e1 = {ksym1 }ksym

2

and e2 = {ksym3 }ksym
4

, ifAmakes queries encrypt(e1, k
sym
5 ), encrypt(ksym2 , ksym1 ),

encrypt(e2, k
sym
6 ), and corrupt(ksym4 ), all keys except ksym4 remain irrecoverable,

and there exists, for instance, edges in both directions between vsym1 and vsym2

in G(A).
However, in the case of cyclic nested encryption, we will base our hybrid

arguments on a provable property, which we call coinductive continuability, of

irrecoverable nodes. In G(A), we say vxy1
a2−→ vsymy2

a3−→ . . .
ap−→ vsymyp , for x ∈

{sym, asy}, is a coinductively continuable path if the following conditions hold:
(below for better clarity we drop the superscripts x and sym.)

1. Path validity: For all 2 ≤ i ≤ p, vyi−1
→ai vyi ∈ EA, and if 1 ≤ w < h ≤ p

then vyw 6= vyh ,
2. For all s ∈ {kxy1

−1, ksymy2 , . . . , ksymyp } it holds s /∈ closurec(eval-exp1), and
3. either indeg(vy1) = 0 or for every 1 ≤ a1 ≤ indeg(vy1) there exists vwi , with

w ∈ {asy, sym}, such that vwi
a1−→ vy1

a2−→ . . .
ap−→ vyp is a coinductively

continuable path.

We call vxi coinductively continuable if its associated path of length zero is so.

Lemma 1. At any point, any irrecoverable node is coinductively continuable.

Proof (Outline): We prove this by an induction over the length of the longest
path ending in the irrecoverable node. A full proof is given in [27]. ut

Definition 4. We say that Ep = (Easy, Esym) provides l-CI security if AdvCI
E,A(η)

is negligible for every A for whom the diameter of the hidden subgraph of G(A) is
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always at most l. We say Ep provides l-ACI security if it is l-CI secure and any
A (under the ACI game) for which the diameter of the resulting hidden subgraph
is always at most l has a negligible advantage.

Theorem 2. If Easy and Esym are both IND-CCA2 secure, then (Easy, Esym)
provides l-CI security, for every constant l.

Proof (Outline): The central idea is to guess a “random”, coinductively con-
tinuable path, with some associated parameters, which ends in the challenge
key, give “fake” values to certain private keys occurring as plaintexts, and prove
the adversary’s advantage under this replying strategy is negligibly different from
that under the standard game. A full proof is given in [27]. ut

Theorem 3. If Easy provides IND-CCA2 security, and Esym provides both IND-
CCA2 and INT-CTXT security, then (Easy, Esym) provides l-ACI security, for
every constant l.

Proof (Outline): We first show if Aaci is able to output an ACI-valid (c, i), then
in a world, Wi, in which occurrences of ksymi as a plaintext and its occurrences
as an encryption key are given two independent values, Aaci should have “the
same” probability of producing a valid (c, i), or otherwise a CI-attack can be
made. Next, we show if under Wi an adversary A is able to produce an ACI-valid
(c, i) and c is already a plaintext of a ciphertext obtained under an encryption
query (e.g. A has called encrypt({x1}ksym

i
, ksym2 ) to obtain c2, ksym2 remains

coinductively irrecoverably, and c = Decsym(c2, ck2)), then a CI attack follows,
and otherwise an INT-CTXT attack follows. A full proof is given in [27]. ut

5 Conclusion

We investigated soundness of coinductive methods in a protocol model allowing
arbitrary composition of symmetric/asymmetric encryption, as well as unre-
stricted transmission of secret keys. In such situations, an active adversary may
selectively influence the encryption ordering between deployed keys, dynamically
compromise them (naturally or under his corruption power), and potentially ob-
tain encryption cycles. Any weakness in the underlying encryption schemes in the
face of such an adversary may lead to insecure instantiations of protocols. Most
previous work on computationally sound symbolic analysis of protocols either
does not allow symmetric encryption, or imposes restrictions aimed at avoiding
the above possibilities. Our soundness theorem, founded on coinduction, does
not assume any such restrictions, while providing strong computational secu-
rity guarantees against adaptive corruptions. Our results, however, rely on a
property of protocols we call boundedness (formalized in [27]), which requires
that no symbolic execution of the underlying protocol produce a coinductively-
irrecoverable encryption chain of nonconstant length. We observe that almost
all protocols from [21] (when run in isolation) admit (at most) 2-boundedness.
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(All of them are bounded.) In [27], we provide statements on how one can rea-
son about boundedness of a protocol, and whether the boundedness property is
retained when two (individually bounded) protocols are run concurrently.

While the main focus of this paper is on trace-based security, we believe sim-
ilar results can also be proved for key-exchange (KE) security tasks. A central
security requirement for key exchange is the secrecy condition, requiring a secret
key exchanged by a KE protocol be indistinguishable from a freshly generated
key. Our CI game is rich enough to encompass common features of a KE attack
model, including adaptive corruptions of users and session keys, while guaran-
teeing that (under stated complexity assumptions) coinducitve symbolic secrecy
under the game implies computational secrecy (real-or-random indistinguisha-
bility in the case of nonces and key usability [23] in the case of secret keys).

For simplicity we have assumed if a user is corrupted, the adversary obtains
only her long-lived key and her past generated secret keys/nonces, but not her
past random coins. In [27] we give partial results about this more general case.

As briefly explained in the introduction, current results about KDM security
do not seem sufficient for (unrestricted) secure realizations of protocols with in-
ductive, symbolic security proofs. It would be interesting to extend (and realize)
KDM security definitions to support adaptive corruptions. As pointed out earlier,
defining the extension in an entirely left-or-right indistinguishability sense, as in
[5], would entail inherent limitations; for example, if a left-or-right encryption
query is made under ck, then ck cannot be corrupted afterward.

Finally it would be interesting to improve the bounds imposed by our sound-
ness theorem (and those of [36]), and investigate its extensions to more general
cryptographic frameworks supporting compositional reasoning [6, 19].
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