
Limits on the Usefulness of Random Oracles

Iftach Haitner1⋆, Eran Omri2⋆ ⋆⋆ ⋆ ⋆ ⋆, and Hila Zarosim3⋆⋆ †

1 School of Computer Science, Tel Aviv University. E-mail: iftachh@cs.tau.ac.il
2 Dep. of Mathematics and Computer Science, Ariel University Center. E-mail:

omrier@gmail.com
3 Dep. of Computer Science, Bar Ilan University. E-mail: zarosih@cs.biu.ac.il

Abstract. In the random oracle model, parties are given oracle access
to a random function (i.e., a uniformly chosen function from the set of
all functions), and are assumed to have unbounded computational power
(though they can only make a bounded number of oracle queries). This
model provides powerful properties that allow proving the security of
many protocols, even such that cannot be proved secure in the standard
model (under any hardness assumptions). The random oracle model is
also used for showing that a given cryptographic primitive cannot be
used in a black-box way to construct another primitive; in their seminal
work, Impagliazzo and Rudich [STOC ’89] showed that no key-agreement
protocol exists in the random oracle model, yielding that key-agreement
cannot be black-box reduced to one-way functions. Their work has a
long line of followup works (Simon [EC ’98], Gertner et al. [STOC ’00]
and Gennaro et al. [SICOMP ’05], to name a few), showing that given
oracle access to a certain type of function family (e.g., the family that
“implements” public-key encryption) is not sufficient for building a given
cryptographic primitive (e.g., oblivious transfer). Yet, the following ques-
tion remained open:

What is the exact power of the random oracle model?
We make progress towards answering this question, showing that essen-
tially, any no private input, semi-honest two-party functionality that can
be securely implemented in the random oracle model, can be securely im-
plemented information theoretically (where parties are assumed to be all
powerful, and no oracle is given). We further generalize the above result
to function families that provide some natural combinatorial property.
Our result immediately yields that essentially the only no-input func-
tionalities that can be securely realized in the random oracle model (in
the sense of secure function evaluation), are the trivial ones (ones that
can be securely realized information theoretically). In addition, we use
the recent information theoretic impossibility result of McGregor et al.
[FOCS ’10], to show the existence of functionalities (e.g., inner prod-
uct) that cannot be computed both accurately and in a differentially
private manner in the random oracle model; yielding that protocols for
computing these functionalities cannot be black-box reduced to one-way
functions.

⋆ Supported by the Israeli Centers of Research Excellence program (Center No. 4/11).
⋆⋆ Supported by the Israel Science Foundation (ISF) (Grant No. 189/11)

⋆ ⋆ ⋆ Research was done while Eran Omri was at Bar Ilan University.
† Hila Zarosim is grateful to the Azrieli Foundation for the Azrieli Fellowship.

2 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

1 Introduction

In the random-oracle model, the parties are given oracle access to a random
function (i.e., a uniformly chosen function from the set of all functions — the
all-function family), and are assumed to have unbounded computational power
(though they can only make a bounded number of oracle queries). Many crypto-
graphic primitives are known to exist in this model, such as (exponentially hard)
collision resistant hash functions. More importantly, in this model it is possible
to implement secure protocols for tasks that are hard to implement in the stan-
dard model, and sometimes even completely unachievable; a well known example
is the work of Fiat and Shamir [6], showing how to convert three-message iden-
tification schemes to a highly efficient (non interactive) signature scheme. In the
random-oracle model, their methodology preserves the security of the original
scheme [20], but (for some schemes) does not do so in the standard model [10, 3].

On a different route, the random-oracle model was used to show that one
cryptographic primitive cannot be used in a black-box way to construct another
primitive. In their seminal work, Impagliazzo and Rudich [13] showed that no
key-agreement protocol exists in the random oracle model, yielding that key-
agreement cannot be black-box reduced to one-way functions. Their work has
initiated a long line of follow up works (Simon [22], Gertner et al. [9], and Gen-
naro et al. [8], to name a few) showing that given oracle access to a certain
type of function family (e.g., the family that “implements” public-key encryp-
tion) is not sufficient for building a given cryptographic primitive (e.g., oblivious
transfer). Yet, the following question remained open:

What is the exact power of the random-oracle model?

Apart from being aesthetic mathematically, answers to this question are very
likely to enrich our understanding of (the limitations of) black-box reductions
in cryptography.

It is well known that for malicious adversaries, there exist functionalities that
cannot be achieved in the information-theoretic model, i.e., where all entities are
assumed to be unbounded (with no oracle access), yet can be securely computed
in the random-oracle model (e.g., commitment schemes, coin-tossing protocols
and, non-trivial zero-knowledge proofs). All of these functionalities, however, are
blatantly trivial when considering semi-honest adversaries, which are the focus
of this work.

1.1 Our Result

We make progress towards answering the above question, showing that, essen-
tially, any no private input, semi-honest, two-party computation that can be
securely implemented in the random-oracle model, can be securely implemented
in the information-theoretic model.

Theorem 1 (Main theorem, informal). Let π be a no private-input, m-
round, ℓ-query, oracle-aided two-party protocol. Then for any ε > 0 there exists

Limits on the Usefulness of Random Oracles 3

an O(ℓ2/ε2)-query oracle-aided function Map, and a stateless, no oracle, m-

round protocol π̃ = (Ã, B̃) such that:

SD

((
outA, outB,Mapf (t)

)
f←FAF,(outA,outB,t)←⟨Af ,Bf ⟩

,
⟨
Ã, B̃

⟩)
∈ O(ε),

where FAF is the all functions family, and ⟨X,Y ⟩ stands for a random execution
of the protocol (X,Y), resulting in the parties’ private outputs and the common
transcript.

Furthermore, the projections of the above distributions to their first and third
coordinates, or to their second and third coordinates are identically distributed
(i.e., the transcripts concatenated with the outputs of one of the parties, are
identically distributed).

Namely, the distributions induced by a random execution of πf (for a random
f ← FAF) on the parties’ private outputs and the common transcript, is almost
the same as that induced by a random execution of the (no oracle) protocol π̃,
where the only difference is that one needs to apply an efficient procedure Map to
π’s transcript. Theorem 1 generalizes to all function families with the property
that answers for distinct queries, induced by drawing a random member from
the family, are independent.

A major ingredient in the proof of Theorem 1 is the dependency finder al-
gorithm presented by Barak and Mahmoody [1], refining a similar algorithm
by Impagliazzo and Rudich [13] (see Section 1.2). While we could have based
the proof of Theorem 1 on a combination of several results from [1] (or alter-
natively, to get a somewhat weaker variant of the theorem by basing the proof
on a followup result of Dachman-Soled et al. [5, Lemma 5] or of Mahmoody
et al. [16, Lemma A.1]), we chose to give a new proof also for this part (modulo
clearly marked parts taken from [1]). The new proof (given as part of the proof
of Lemma 2) holds with respect to a larger set of function families. More signif-
icantly, it is more modular and introduces several simplifications comparing to
the previous proofs.

Applications We demonstrate the usefulness of Theorem 1 via the following
three examples. The first example (reproving [13, 1]) concerns the existence of
key-agreement protocols in the random-oracle model. Recall that key-agreement
protocols cannot be realized in the information-theoretic model. Namely, for any
(no oracle) protocol π, there exists a passive (i.e., semi-honest) adversary that
extracts the key from the protocol’s transcript. Hence, Theorem 1 yields that
key-agreement protocols cannot be realized in the random-oracle model, and thus
key-agreement protocols cannot be black-box reduced to one-way functions. The
actual parameters achieved by applying Theorem 1, match the optimal bound
given in Barak and Mahmoody [1].

As a second more detailed example, we prove that in the random-oracle
model, it is impossible for two parties to accurately approximate the inner-
product function in a differentially private manner. Namely, in a way that very

4 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

little information is leaked about any single bit of the input of each party to the
other party. A recent result of McGregor et al. [17] shows that in the information-
theoretic model, it is impossible to approximately compute the inner product
function in a differentially private manner. Combining their result with Theo-
rem 1, we obtain the following fact.4

Theorem 2 (informal). Any ℓ-query, (ℓ2, α, γ)-differentially private protocol,

errs (with constant probability) with magnitude at least
√
n

log(n)·eα , in computing

the inner product of two n-bits strings.

Very informally, a protocol is (k, α, γ)-differentially private, if no party, making
at most k queries to the oracle, learns more then ε information about one of the
other party’s input bits, except with some small probability γ.

The above result yields the impossibility of fully black-box reducing differ-
entially private protocols for (well) approximating two-party inner-product to
the existence of one-way functions. Roughly speaking, such a fully black-box
reduction is a pair of efficient oracle-aided algorithms (Q,R) such that the fol-
lowing hold: (1) Qf is a good approximation protocol of the inner-product for
any function f , and (2) Rf,A inverts f , for any adversary A that learns too much
about the input of one of the parties in Qf . Since a random sample from the all-
function family is hard to invert (cf., [13, 8]), the existence of such a reduction
yields that Qf is differentially-private with respect to poly-query adversaries,
when f is chosen at random from the set of all functions.5 Hence, Theorem 2
yields the following result.

Corollary 1 (informal). There exists no fully black-box reduction from (α, γ)-
differentially private protocol computing the inner product of two n-bit strings

with error magnitude less than
√
n

log(n)·eα , to one-way functions.

We mention that, following an observation made by McGregor et al. [17], The-
orem 2 and Corollary 1 imply similar results for two-party differentially private
protocols for the Hamming distance functionality.6

The third (and last) example is with respect to no-input secure function eval-
uation. Let G = (GA, GB) be a distribution over A×B, where GA and GB denote
its marginal distributions over A and B respectively. A protocol π = (A,B) is
an information-theoretically δ-secure implementation of G, if it is a δ-correct
(no-oracle) implementation of G (i.e., the local outputs of the parties induced

4 Wemention that the result of [17] is stated for protocol with inputs, where Theorem 1
is only applicable to no-input protocols. Indeed, a fair amount of work was needed
to derive an impossibility result for no-input protocols, from the work of [17].

5 Assume towards a contradiction the existence of a poly-query adversary A for Qf ,
then the poly-query Rf,A would successfully invert a random f .

6 The inner product between two bit strings x, y can be expressed as IP(x, y) =
w(x) + w(y) + Hd (x, y), where the weight w(z) is number of 1-bits in z. Thus,
a differentially private protocol for estimating the Hamming distance Hd (x, y) can
be turned into one for the inner product by having the parties send differentially
private approximations of the weights of their inputs.

Limits on the Usefulness of Random Oracles 5

by a random execution of π are δ-close to G), and is δ-private according to
the simulation paradigm (against all-powerful distinguishers). Specifically, there
exists an algorithm (a simulator) that on input x ∈ Supp(GA), outputs a view
for A that is δ-close to the distribution of A’s view, conditioned on A’s local
output being x. Similarly, there exists a simulator for B’s view. A protocol π is a
(T, δ)-secure random-oracle implementation of G, if it is a correct random-model
implementation of G, and it is δ-private according to the simulation paradigm,
against T -query, all-powerful distinguishers. Finally, G is δ-trivial, if it has an
information-theoretically δ-secure implementation. Theorem 1 yields the follow-
ing result.

Theorem 3 (informal). Let π be an ℓ-query oracle-aided protocol that is an
(O(ℓ2/δ2), δ)-secure implementation of a distribution G in the random-oracle
model. Then, G is O(δ)-trivial.

Applying Theorem 3 to a distribution G that has a (poly(n), 1/poly(n))-secure
random-oracle model implementation, it follows that G has a 1/ poly(n)-secure
no-oracle implementation. We note that Theorem 3 does not seem to imply
the previous two examples. Since, for instance, the notion of differential privacy
cannot be realized via the real/ideal paradigm.

1.2 Our Technique

When using a no-oracle protocol to emulate an oracle-aided protocol π, having
oracle access to a random member of the all-function family, the crucial issue is
to find all common information the parties share at a given point. The clear ob-
stacle are the oracle calls: the parties might share information without explicitly
communicating it, say by making the same oracle call.

Here comes into play the Dependency Finder of Impagliazzo and Rudich [13],
and Barak and Mahmoody [1] (algorithm Eve, in their terminology). This oracle-
aided algorithm (Finder, hereafter) gets as input a communication transcript t
of a random execution of π, and an oracle access to f , the “oracle” used by the
parties in this execution. Algorithm Finder outputs a list of query/answer pairs
to f that with high probability contains all oracle queries that are common to
both parties (and possibly also additional ones). Moreover, with high probability
Finder is guaranteed not to make “too many” oracle queries.

Equipped with Finder, we give the following definition for the map-
ping procedure Map and the stateless (no-oracle) protocol π̃ = (Ã, B̃):
on a communication transcript t, the oracle-aided algorithm Mapf out-

puts
((

t1, I1 = Finderf (t1)
)
,
(
t1,2, I2 = Finderf (t1,2)

)
. . . ,

(
t, Im = Finderf (t)

))
.

Namely, Map invokes Finder on each prefix of the transcript, and outputs the
result. The no-oracle protocol π̃ = (Ã, B̃) is defined as follows: assume that Ã
speaks in round (i + 1), and that the i’th message is ((t1, I1), . . . , (t1,...,i, Ii)).
The stateless, no-oracle Ã samples random values for f ∈ FAF and the random
coins of A, conditioned on (t1,...,i, Ii) being the protocol’s transcript. It then lets
ti+1 be the next message of A induced by the above choice of f and random

6 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

coins, and sends
(
t
′
= (t1,...,i, ti+1),Finder

f (t
′
)
)

back to B̃. In case this is the

last round of interaction, Ã locally outputs the (local) output of A induced by

this choice of f and random coins. In other words, Ã selects a random view (in-
cluding the oracle itself) for A that is consistent with the information contained
in the no-oracle protocol augmented transcript (i.e., the transcript of the oracle
protocol and the oracle calls), and then acts as A would.

The fact that Ã perfectly emulates A (and that B̃ perfectly emulates B)
trivially holds for information theoretic reasons. For the same reason, it also
holds that the transcript generated by applying Mapf to a random transcript of
πf , where f ← FAF, generates exactly the same transcript as a random execution
of π̃ does (actually, the above facts hold for any reasonable definition of Finder7

and for any function family). The interesting part is arguing that the joint output
of the no-oracle protocol has similar distribution to that of the oracle-aided
protocol. To see that this is not trivial, assume that in the last round both
oracle parties make the same oracle query q and output the query/answer pair
(q, f(q)). If it happens that (q, ·) /∈ I, where I = Finder(t) is the query/answer
pairs made by the final call to Finder on transcript t, then the answer that each
of the no-oracle parties compute for the query q might be different. In this case,
the joint output of the no-oracle protocol does not look like the joint output of
the oracle protocol. Luckily, the above scenario is unlikely to happen due to the
guarantee of Finder; with high probability I contains all common queries that
the two parties made, yielding that the joint output of the no-oracle protocol has
similar distribution to that of the oracle protocol. It turns out that the above
example generalizes to any possible protocol, yielding that the above mapping
and no-oracle protocol are indeed the desired ones.

1.3 Related Work

In their seminal work, Impagliazzo and Rudich [13] showed that there are no key-
agreement protocols in the random-oracle model, and deduce that key-agreement
protocols cannot be black-box reduced to one-way functions. This result was
later improved by Barak and Mahmoody [1], showing there are no ℓ-query key-
agreement protocols in the random-oracle model, secure against adversary mak-
ing O(ℓ2) queries. Thus, matching the upper bound of Merkle [18].

In an independent work, Mahmoody et al. [16] show that the all-function
family (and thus one-way functions) are useless for secure function evaluation
of deterministic, polynomial input-domain, two-party functionalities. In other
words, deterministic, bounded input domain functionalities that can be securely
computed in the random-oracle model, are the trivial ones — functionalities that
can be securely computed unconditionally. The comparison to the result stated
here is that [16] handle with input functionalities, but only deterministic with
polynomial input domain, where here we handle input-less functionalities, but
including randomized ones. Putting the two results together, gives a partial char-
acterization of the power of the random-oracle model for (semi-honest) two-party

7 Whose output contains all queries it made to the oracle.

Limits on the Usefulness of Random Oracles 7

computation. It is still open, however, whether the random-oracle model is useful
for securely computing randomized functionalities with inputs, or functionalities
of super-polynomial input domain.

Additional Black-box Separations Following [13], the method of black-box
separation was subsequently used in many other works: [21] shows that there does
not exist a black-box reduction from a k-pass secret key agreements to (k − 1)-
pass secret key agreements; [22] shows that there exist no black-box reductions
from collision-free hash functions to one-way permutations; [14] shows that there
exists no construction of one-way permutations based on one-way functions.
Other works using this paradigm contain [4, 7, 8, 9, 11, 15, 23], to name a few.

Differential Privacy Distributed differential privacy was considered by Beimel
et al. [2], who studied the setting of multiparty differentially private computa-
tion (where an n-bit database is shared between n parties). They gave a sepa-
ration between information theoretic and computational differential privacy in
the distributed setting. The notion of computational differential privacy was
considered in Mironov et al. [19]. They presented several definitions of compu-
tational differential privacy, studied the relationships between these definitions,
and constructed efficient two-party computational differentially private proto-
cols for approximating the Hamming-distance between two vectors. Two-party
differential privacy (where an n-bit database is shared between two parties) was
considered by McGregor et al. [17]. They prove a lower-bound on the accuracy
of two party differentially private protocols, in the information theoretic model,
for computing the inner-product between two n-bit strings (and, consequently
for protocols for computing the Hamming distance). Hence, proving a separa-
tion between information theoretic and computational two-party differentially
private computation. In this paper, we extend the lower-bound of [17] to the
random-oracle model.

1.4 Open Problems

As mentioned above, the main open problem is the full characterization of
the power of the random-oracle model with respect to semi-honest adversaries.
Specifically, is it possible to come up with a similar mapping from any (also
with inputs) oracle-aided protocol to an equivalent one in the no-oracle model?
Another interesting problem is to use our mapping (or a variant of it) to show
that the random-oracle model is also useless for protocols (say, input-less) that
are secure against fail-stop adversaries. An immediate implication of such a re-
sult would be that optimally-fair coin tossing are impossible to achieve in the
random function model.8

8 We mention that Dachman-Soled et al. [5] showed such an impossibility result for
O(n/ logn)-round protocols, where n being the random function input length.

8 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

Paper Organization

Formal definitions are given in Section 2. We state our main result in Section 3
where different applications of our main result are given in Section 4. For lack
of space we omit most of the proofs, and they can be found in the full version
of this paper [12].

2 Preliminaries

2.1 Interactive Protocols

The communication transcript (i.e., the “transcript”) of a given execution of the
protocol π = (A,B), is the list of messages t exchanged between the parties in an
execution of the protocol, where t1,...,j denotes the first j messages in t. A view
of a party contains its input, its random tape and the messages exchanged by
the parties during the execution. Specifically, A’s view is a tuple vA = (iA, rA, t),
where iA is A’s input, rA are A’s coins, and t is the transcript of the execution.
We let (vA)j denote the partial view of A in the first j rounds of the execution
described by vA, namely, (vA)j = (iA, rA, t1,...,j); we define vB analogously. We
call v = (vA, vB) the joint view of A and B, and let vj = ((vA)j , (vB)j). Given
a distribution (or a set) D on the joint views of A and B, we let DA be the
projection of D on A’s view (i.e., PrDA

[vA] = Pr(vA,·)←D[vA]), and define DB

analogously. Finally, we sometimes refer to a well structured tuple v as a “view”
of π, even though v happens with zero probability. When we wish to stress that
we consider a view that has non-zero probability, we call it a valid view.

We call π an m-round protocol, if for every possible random tapes for the
parties, the number of rounds is exactly m. Given a joint view v (containing the
views of both parties) of an execution of (A,B) and P ∈ {A,B}, let vP denote P’s
part in v and let trans(v) denote the communication transcript in v. For j ∈ [m],
let outPj (v) = outPj (vP) denote the output of party P at the end of the j’th round

of v (i.e., the string written on P’s output tape), where outPj (v) = outPj−1(v), in
case P is inactive in the j’th round of v.

We sometimes consider stateless protocols – the parties hold no state, and
in each round act on the message received in the previous round with freshly
sampled random coins. Throughout this paper we almost solely consider no-
private input protocols – the parties’ only input is the common input (the only
exception to that is in Section 4.2, additional required notations introduced
therein). Given a no-input two-party protocol π, let ⟨π⟩ be the distribution over
the joint views of the parties in a random execution of π.

Oracle-Aided Protocols An oracle-aided, two-party protocol π = (A,B) is
a pair of interactive Turing machines, where each party has an additional tape
called the oracle tape; the Turing machine can make a query to the oracle by
writing a string q on its tape. It then receives a string ans (denoting the answer
for this query) on the oracle tape.

Limits on the Usefulness of Random Oracles 9

For simplicity, we only consider function families whose inputs and outputs
are binary strings. For an oracle-aided, no-input, two-party protocol π = (A,B)
and a function family F , we let ΩF,π be the set of all triplets (rA, rB, f), where
rA and rB are possible random coins for A and B, and f ∈ F (henceforth, we
typically omit the superscript (F , π) from the notation, whenever their values
are clear from the context). For f ∈ F , the distribution

⟨
πf = (Af ,Bf)

⟩
, is

defined analogously to ⟨π⟩ = ⟨A,B⟩, i.e., it is the distribution over the joint
views of parties in a random execution of π with access to f . Given some in-
formation inf about some element of Ω (e.g., a set of query/answer pairs, or
a view), let PrΩ [inf] = Prω←Ω [ω is consistent with inf], and let PrΩ|inf′ [inf] be
this probability conditioned that ω is consistent with inf ′ (set to zero in case
PrΩ [inf

′] = 0).

Given a (possibly partial) execution of πf , the views of the parties contain
additional lists of query/answer pairs made to the oracle throughout the execu-
tion of the protocol. Specifically, A’s view is a tuple vA = (rA, t, fA), where rA are
A’s coins, t is the transcript of the execution, and fA are the oracle answers to
A’s queries. By convention, the active party in round j first makes all its queries
to the oracle for this round, and then writes a value to its output tape and send a
message to the other party. We denote by (fP)j the oracle answers to the queries
that party P makes during the first j rounds. As above, we let (vA)j denote the
partial view of A in the first j rounds of the execution described by vA, namely,
(vA)j = (rA, t1,...,j , (fA)j). We define vB analogously.

For ω ∈ Ω, we let view(ω) be the full view of the parties determined by ω.
We say that a “view” v is consistent with (F , π), if PrΩF,π [v] > 0.

We consider the following distributions.

Definition 1 (Ω(t, I) and VIEW(t, I)). Given a partial transcript t and a
set of query/answer pairs I, let Ω(t, I) = ΩF,π(t, I) be the set of all tuples
(rA, rB, f) ∈ Ω = ΩF,π, in which f is consistent with I, and t is a prefix of
the transcript induced by

⟨
Af (rA),B

f (rB)
⟩
. Given a set P ⊆ Ω, let ΩP(t, I) =

Ω(t, I) ∩ P.
Let VIEW(t, I) = VIEWF,π(t, I) be the value of view(ω)|t| for ω ← Ω(t, I),

and define VIEWF,π
P (t, I) analogously.

We note that since we consider the uniform distribution over Ω, we have that for
any partial transcript t, set of query/answer pairs I, set P ⊆ Ω, and information
inf about some element of Ω it holds that PrΩP(t,I)[inf] = PrΩ|t,I,P [inf].

3 Mapping Oracle-Aided Protocols to No-Oracle
Protocols

In this section we prove our main result, a mapping from protocols in the random-
oracle model to (inefficient) no-oracle protocols.

10 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

3.1 Dependent Views

In the following we fix an m-round oracle-aided protocol π and a function family
F . We would like to restrict VIEW(t, I) to those views for which I contains all
the joint information of the parties about f . We start by formally defining what
it means for I to contain all the joint information.

Definition 2. Let vA be a jA-round view for A and vB be a jB-round view for
B, for some jA, jB ∈ [m]. For i ∈ [jA], let IAi be the set of query/answer pairs
that A makes in the i’th round of vA (where IAi = ∅, if A is idle in round i),
and define IBi analogously. Given a set I of query/answer pairs, we define

1. αIvA
=

∏
i∈[jA] PrΩ | I,IA1...,IAi−1

[
IAi

]
and

2. αIvA|vB
=

∏
i∈[jA] PrΩ | I,IA1,IB1,...,IAi−1,IBi−1

[
IAi

]
,

and define αIvB|vA and αIvB analogously.

Intuitively, αIvA is the probability of A’s view of f given I, and αIvA|vB is this
probability when conditioning also on B’s view. We will focus on those views
with αIvA

= αIvA|vB
and αIvB

= αIvB|vA
.

Definition 3 (dependent views). Let v = (vA, vB) be a pair of (possibly par-
tial) valid views.9 We say that vA and vB are dependent with respect to a set of
query/answer pairs I and a function family F , denoted DependentFI (v) = 1, if
αIvA ̸= αIvA|vB

or αIvB ̸= αIvB|vA
.10

A pair of views v = (vA, vB) with DependentI(v) = 0 is called indepen-
dent. We let IndF,π(t, I) = {ω ∈ Ω(t, I) : DependentFI (view(ω)|t|) = 0} and let

VIEWF,π
Ind (y) stand for VIEWF,π

IndF,π(y)
(y).

3.2 Intersecting Views

A special case of dependent views is when the two paries share a common oracle
query not in I.

Definition 4 (intersecting views). A (possibly partial) pair of views v =
(vA, vB) are intersecting with respect to a set of query/answer pairs I, denoted
IntersectI(v) = 1, if vA and vB share a common query q not in I (i.e., (q, ·) /∈ I).

For most function families, an intersection implies being dependent (with re-
spect to the same list of query/answer pairs). In this paper we limit our attention
to “simple” function families for which also the other direction holds, namely
dependency implies intersection.

9 While properly defined for any pair of views (vA, vB), we will typically only consider
the following notions for pairs with trans(vA) = trans(vB) (i.e., both views induce the
same transcript).

10 One can verify that DependentFI (v) = 1, in case v is inconsistent with F , namely,
PrF [IA, IB] = 0, where IA and IB, are the lists of query/answer pairs appear in vA
and vB respectively.

Limits on the Usefulness of Random Oracles 11

Definition 5 (simple function families). A function family F is simple, if
for any oracle-aided protocol π, list I of query/answer pairs that is consistent
with some f ∈ F , and a (possibly partial) pair of views v = (vA, vB) consistent
with I, it holds that DependentFI (v) = 1 iff IntersectI(v) = 1.

It is not hard to verify that the all-function family is simple (see proof in [12]).

Definition 6 (the all-function family). For n ∈ N, let FAFn be the family of
all functions from n-bit strings to n-bit strings.

Lemma 1. For every n ∈ N, the family FAFn is simple.

3.3 Oracle-Aided to No-Oracle Protocol Mapping

The following theorem shows that an execution of an oracle-aided protocol with
oracle access to a random f ∈ F , where F is a simple function family, can be
mapped to an execution of a related protocol with no oracle access. In Section 4
we use this result to prove limitations on the power of oracle-aided protocols in
achieving specific cryptographic tasks.

Definition 7 (oracle-aided to no-oracle mapping). A pair of a function
family F and a no-input, m-round, oracle-aided protocol π = (A,B), has a (T, ε)-
mapping, if there exists a deterministic, oracle-aided T -query algorithm Map
and a stateless, m-round, no-input (and no-oracle) protocol (Ã, B̃), such that the
following hold:

1. SD (DF ,DP) ≤ ε for every j ∈ [m], where

DF =
(
outAj (v), out

B
j (v),Mapf (trans(v)1,...,j)

)
f←F,v←⟨Af ,Bf ⟩

and,

DP =
(
outÃj (v), out

B̃
j (v), trans(v)1,...,j

)
v←⟨Ã,B̃⟩

.11

Furthermore, DP [1, 3] ≡ DF [1, 3] and DP [2, 3] ≡ DF [2, 3].12
2. For every f ∈ F , an m-round transcript t and j ∈ [m], it holds

that Mapf (t1,...,j) = Mapf (t)1,...,j. Furthermore, the oracle calls made in

Mapf (t1,...,j) are a subset of those made in Mapf (t).

Theorem 4. Let F be a simple function family and let π = (A,B) be an ℓ-query,
oracle-aided, no-input protocol, then (F , π) has an (256 · ℓ2/ε2, ε)-mapping for
any 0 < ε ≤ 1.

Remark 1 (Round complexity of the no-oracle protocol). The proof of Theorem 4
can be easily modified to yield a one-message no-oracle protocol (in this case, DF
and DP should be modified to reflect the transcript and outputs at the end of
the executions). The roles of Ã and B̃ in the resulting protocol however, cannot
reflect as closely the roles of A and B, as done in the many-round, no-oracle
protocol stated above.

12 I.e., the projections of DP and DF to their transcript part and the output of one of
the parties, are identically distributed.

12 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

The heart of the proof is the following lemma, proof given in [12] .13

Definition 8 (DependencyFinder). Let F be a function family and let π = (A,B)
be an m-round oracle-aided protocol. A deterministic oracle-aided algorithm
Finder is a (T, ε)-DependencyFinder for (F , π) if the following holds for any
j ∈ [m]: consider the following random process CF = CF(F , π,Finder):

1. Choose (rA, rB, f) ← ΩF,π and let t be the j-round transcript of π induced
by (rA, rB, f).

2. For i = 1 to j set Ii = Ii−1 ∪ Finderf (t1,...,i, Ii−1) (letting I0 = ∅), where
Finderf (x) is the set of queries/answers made by Finderf (x) to f .

3. Output
(
t, Ij

)
.

Then

1. Ed←CF

[
SD

(
VIEWF,π(d), (VIEWF,π(d)A,VIEWF,π(d)B)

)]
≤ ε, and

2. Pr[# of f -calls made in CF > T] ≤ ε.

That is, conditioned on a random transcript of πF and the oracle queries
made by a (T, δ)-DependencyFinder, the parties’ views are close to being in a
product distribution.

Lemma 2. Let F be a simple function family and let π = (A,B) be an ℓ-query
oracle-aided protocol, then (F , π) has a (64/δ2, ℓδ)-DependencyFinder for any
0 < δ ≤ 1/ℓ.

We now use Lemma 2 to prove Theorem 4.

Proving Theorem 4 Fix a simple function family F and a no-input, m-round,
ℓ-query oracle-aided protocol π. Fix 0 < ε ≤ 1 and let Finder be the (T =
256 · ℓ2/ε2, ε/2)-DependencyFinder guaranteed by Lemma 2 for (F , π) (taking
δ = ε/2ℓ). We start by defining the mapping algorithm and then we define a
protocol with no oracle access.

Algorithm 5 (Map)
Oracle: f ∈ F .
Input: j-round transcript t of π.
Operation:

1. For i = 1 to j set Ii = Ii−1 ∪ Finderf (t1,...,i, Ii−1) (letting I0 = ∅).
2. If in some round i∗ the overall number of f calls (made by Finder) is T ,

halt the above procedure and set Ii∗ to be the set of T query/answer pairs
obtained so far,14 and set Ii = Ii∗ for all i∗ < i ≤ j.

3. Output
(
t1, I1

)
,
(
t1,2, I2

)
, . . . ,

(
t, Ij

)
.

13 As mentioned in the introduction, the proof of Lemma 2 could be essentially derived
by combining several statements in [1]. Alternatively, a somewhat weaker variant of
the lemma can be directly proved using the followup result of Dachman-Soled et al.
[5, Lemma 5] or of Mahmoody et al. [16, Lemma A.1].

14 I.e., augmenting Ii∗−1 with the queries/answers made in round i∗ before halting.

Limits on the Usefulness of Random Oracles 13

The no-oracle protocol. Our stateless, no-oracle protocol π̃ = (Ã, B̃), emulates
the oracle-aided protocol π by keeping the “important” oracle queries as part of
the transcript, and selecting the rest of the oracle at random (independently in

each round). In particular, Ã is active in π̃ in the same rounds that A is in π

(same for B̃ and B). The definition of Ã is given below (B̃ is analogously defined).

Algorithm 6 (Ã)

Input: A pair (t, I), where t is a transcript of length j and I is a set of
query/answer pairs.

Operation:

1. Sample (rA, rB, f)← Ω(t, I), and let outj+1 and tj+1 denote A’s output and
message respectively, in the (j + 1) round of

⟨
Af (rA),B

f (rB)
⟩
.

2. Output outj+1.

3. Compute the value of Ij+1 output by Mapf (tj+1) for tj+1 = (t, tj+1).

4. Send (tj+1, Ij+1) to B̃.

Using Lemma 2, one can prove that above mapping function and no-oracle pro-
tocol, indeed establish mapping and protocol guaranteed in Theorem 4. For the
formal proof, see the full version.

4 Applications

In this section we use our main result (i.e., the oracle-aided to no-oracle protocol
mapping for simple function families) from Section 3 to derive the impossibility
of realizing three cryptographic tasks, with respect to simple function families
(implying the same result with respect to the all function family, which is simple).
In Section 4.1 we re-establish the result of [13], showing that key-agreement
protocols cannot be realized with respect to simple function families. Then, in
Section 4.2, we extend the lower-bound of [17] on the accuracy of two-party
differentially private no-oracle protocols, to show it also holds (with a slight loss
in parameters) for oracle-aided differentially private protocols (with respect to
this class of function families). Finally, in Section 4.3, we show that no-input
functionalities that cannot be securely evaluated in the no-oracle model (even
when allowing some small loss of security), cannot be securely evaluated (again,
even with some small loss of security) by oracle-aided protocols that are given
access to a random member of a simple function family.

Remark 2 (definitions for no-oracle primitives). Throughout this section we only
give formal definitions (of the security and correctness) of primitives with respect
to oracle-aided protocols. Deriving formal definitions for their no-oracle coun-
terparts can be easily done by considering the trivial function family (i.e., a
singleton family, whose only member returns ⊥ on any query).

14 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

4.1 Key Agreement Protocols

In a key-agreement protocol two parties wish to agree on a common secret in
a secure way — an observer (adversary) seeing the communication transcript,
cannot find the secret. Below we prove that with respect to a certain class of
function families, non-trivial key-agreement cannot be achieved. We start by
formally defining the notion of key agreement. We then recall the known fact that
in the no-oracle model, an adversary can reveal any secret agreement between
two parties in the strongest possible sense (i.e., with the same probability that
the parties themselves agree). Combining this fact with the mapping from oracle-
aided to no-oracle protocols, described in Section 3, yields a similar result for
oracle-aided protocols.

We remark that the results presented in this section yield very little concep-
tual added-value to what was already shown by [13, 1]. We do, however, present
them here to demonstrate how they are easily derived from our main result
(Theorem 4), and as a warm-up before moving on to the other applications of
our main result, described in Sections 4.2 and 4.3.

Standard Definitions and Known Facts Recall (see Section 2.1) that for a
joint view v ∈ Supp

(⟨
πf

⟩)
, we let trans(v) denote the communication transcript

in v, and outPi (v) denote the output of the party P at the i’th round. In the
following we let outP(v) = outPm(v), where m is the last round in v.

Definition 9 (key agreement protocol). Let 0 ≤ γ, α ≤ 1 and k ∈ N. A
two-party, oracle-aided protocol π = (A,B) is a (k, α, γ)-key-agreement protocol
with respect to a function family F , if the following hold:

Consistency: π is (1−α)-consistent with respect to F . Namely for every f ∈ F ,

Pr
v←⟨πf ⟩

[
outA (v) = outB (v)

]
≥ 1− α. (1)

Security: For every P ∈ {A,B} and any k-query adversary Eve,

Pr
f←F,v←⟨πf ⟩

[
Evef (trans (v)) = outP (v)

]
≤ γ. (2)

A protocol π is an (α, γ)-key-agreement protocol, if it is a (·, α, γ)-key-agreement
protocol with respect to the trivial function family.15

In the no-oracle model, all correlation between the parties is implied by the
transcript. Hence, an adversary that on a given transcript t samples a random
view for A that is consistent with t and outputs whatever A would upon this
view, agrees with B with the same probability as does A. This simple argument
yields the following fact.

15 We remark that our impossibility result (as well the results of [13, 1]) would also
hold with respesct to a weaker definition, requiring consistency to hold for a random
f , rather than for every f ∈ F .

Limits on the Usefulness of Random Oracles 15

Fact 7 Let 0 ≤ α ≤ 1 and let π = (A,B) be a no-oracle, two-party, no-input
protocol. Assume that the probability that in a random execution of π both parties
output the same value is 1 − α. Then there exists an adversary that, given the
transcript of a random execution of π, outputs the same value as does B with
probability 1− α.

An immediate implication of Fact 7 is that there does not exist any no-oracle,
two-party, (α, γ)-key-agreement protocol for any 0 ≤ γ < 1−α. We next use our
main result from Section 3 to prove a similar result for oracle-aided protocols.

Our Result In the language of the above definition, our main result is stated
as follows.

Theorem 8. Let F be a function family and let π be an oracle-aided protocol.
Assume that the pair (F , π) has a (T, ε)-mapping, then π is not a (T, α, γ)-key-
agreement with respect to F for any 0 ≤ γ < 1− (α+ ε).

Proof. Assume to the contrary that π is a (T, α, γ)-key-agreement with respect

to F for some 0 ≤ γ < 1 − (α+ ε). Let π̃ = (Ã, B̃) and Map be the no-input
no-oracle protocol and oracle-aided algorithm, guaranteed by the assumption of
the theorem. The first item in Definition 7 yields that

SD
(
(outÃ (v) , outB̃ (v))v←⟨π̃⟩, (out

A (v) , outB (v))f←F,v←⟨πf ⟩

)
≤ ε (3)

Hence, the (1− α)-consistency of π yields that

τ := Pr
v←⟨π̃⟩

[
outÃ (v) = outB̃ (v)

]
≥ 1− (α+ ε) . (4)

Fact 7 yields an adversary Ẽve that given the transcript of a random execution of
π̃, outputs the same value as does B with probability τ . Let Eve be an adversary
for π that upon a transcript t (of an execution of π with access to f) applies

Ẽve to Mapf
(
t
)
and outputs whatever Ẽve does. Note that by Definition 7, Eve

makes at most T oracle calls. The definition of Eve yields that

Pr
f←F,v←⟨πf ⟩

[
Evef (trans (v)) = outB (v)

]
(5)

= Pr
f←F,v←⟨πf ⟩

[
Ẽve

(
Mapf (trans (v))

)
= outB (v)

]
= Pr

ṽ←⟨π̃⟩

[
Ẽve (trans (ṽ)) = outB̃ (ṽ)

]
= τ ≥ 1− (α+ ε) ,

where the second equality follows from the furthermore statement of the first
item in Definition 7, stating that (Mapf (trans (v)) , outB (v)) is identically dis-

tributed as (trans (ṽ) , outB̃ (ṽ)), where f , v, and ṽ are sampled as in Equation (5).
�

Combining Theorems 4 and 8 yields the following result.

16 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

Theorem 9. Let F be a simple function family. For parameters k, ℓ ∈ N and

α, γ ∈ R with k ≥ 210 ·
(

ℓ
1−α−γ

)2

and 1 − α > γ ≥ 0, there exists no ℓ-query

oracle-aided protocol, that is (k, α, γ)-key-agreement with respect to F .

4.2 Differentially Private Two-Party Computation

In this section we apply our main result to extend the lower-bound of McGre-
gor et al. [17] to oracle-aided protocols equipped with simple function families.
Specifically, we show that when given access to a random member of a sim-
ple function family (e.g., the all-function family), any two-party, differentially
private, oracle-aided protocol computing the inner product of two s-bit strings,
exhibits error magnitude of roughly Ω (

√
s/ log s) .

Standard Definitions For strings x, x′ ∈ Σs, let Hd (x, x
′) =

|{i ∈ [s] : xi ̸= x′i}| denote the Hamming distance between x and x′.

Definition 10 (differential privacy for oracle-aided protocols). Let F be
a function family and let π = (A,B) be an s-bit input, oracle-aided protocol. The
protocol π is (k, α, γ)-differentially private with respect to F and A, if for every k-
query, oracle-aided distinguisher D and every x, x′, y ∈ {0, 1}s with Hd (x, x

′) =
1, it holds that

Pr
f←F,v←⟨πf (x,y)⟩

[
Df (trans (v)) = 1

]
≤ eα · Pr

f←F,v←⟨πf (x′,y)⟩

[
Df (trans (v)) = 1

]
+ γ.

Being (k, α, γ)-differentially private with respect to F and B, is analogously de-
fined. If π is (k, α, γ)-differentially private with respect to F and both parties,
then it is (k, α, γ)-differentially private with respect to F .
Finally, π is (α, γ)-differentially private, if it is (·, α, γ)-differentially private
with respect to the trivial function family.

Note that for no-oracle protocols, the above definition of (α, γ)-differentially
private matches the standard (no-oracle) definition (slightly relaxed, as we only
require the transcript to preserve the privacy of the parties). Our impossibility
results, given below, apply to privacy parameter α being smaller than some
constant.

Since differentially private mechanisms cannot be deterministic, for any de-
terministic (non-constant) function g of the input, one can only hope for the
output of the mechanism being a good approximation for g. We next define a
notion of accuracy for differentially private protocols.

Definition 11 (good approximations). Let g : {0, 1}s × {0, 1}s 7→ R be a
deterministic function and let π = (A,B) be an s-bit input, oracle-aided protocol.
The protocol π is a (β, d)-approximation for g with respect to a function family
F , if for very f ∈ F , for every x, y ∈ {0, 1}s and P ∈ {A,B}, it holds that

Pr
v←⟨πf (x,y)⟩

[∣∣g (x, y)− outP (v)
∣∣ > d

]
< β. (6)

Limits on the Usefulness of Random Oracles 17

Namely, we require that the output of both parties is within distance d from
g (x, y) with probability at least β.

For two s-bit strings x and y, let IP(x, y) denote the inner product of x and
y; that is IP(x, y) =

∑
i∈[s] xi · yi.

Our Result Combining Theorem 4 and the lower bounds of McGregor et al.
[17] we get the following result (see proof in [12]) .

Definition 12 (the sampled-input variant µ (π)). Given an s-bit input,
(possibly, oracle-aided) protocol π = (A,B), let µ (π) = (µ (A) , µ (B)) denote
the following s-bit sampled-input protocol:
The parties µ (A) and µ (B) interact in an execution of (A(xA; rA),B(xB; rB)),
taking the roles of A and B respectively, where xA [resp., xB] is the first s bits
of µ (A)’s [resp., µ (B)’s] coins, and rA [resp., rB] is the rest of µ (A)’s [resp.,
µ (B)’s] coins. Let a and b be the outputs of A and B, respectively, in this execu-
tion, then the outputs of µ (A) and µ (B) will be (xA, a) and (xB, b), respectively.

Theorem 10. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and
z ∈ N such that the following holds. Let F be a function family and let π = (A,B)
be an oracle-aided, s-bit input protocol.

Assume that π is (T, α, γ)-differentially private with respect to F , that the
pair (F , µ (π)) has a (T, ε)-mapping (where µ (π) is sampled-input variant of
π) and that s ≥ z, then for some f ∈ F ,16 and every P ∈ {A,B}, there exist
x, y ∈ {0, 1}s such that

Pr
v←⟨πf (x,y)⟩

[∣∣outP(v)− IP(x, y)
∣∣ ≤ ∆ := λ ·

√
s

log s
· (τ − ε)

]
≤ τ (7)

for every τ ≤ 1 with τ − ε ≥ max {48sγ, ν}.17

Combining Theorems 8 and 10 yields the following result.

Theorem 11. Let F be a simple function family. For numbers 0 < ν < 1
and α ≥ 0, there exist numbers λ > 0 and z ∈ N such that, for s ≥ z, the
following holds. Assume that π is an s-bit input, ℓ-query oracle-aided protocol

that is (k, α, γ)-differentially private with respect to F , with k > 210 ·
(

ℓ
1−ν

)2

and γ ≤ ν
48·s . Then, π is not a (β, d)-approximation with respect to F for the

inner-product function, with β < 1−ν
2 and d ≤ λ · ν ·

√
s

log s .

4.3 Secure Function Evaluation

In this section we apply our main result to show that when given access to
a random member of a simple function family (e.g., the all-function family),

16 Actually, the following holds for most elements of F .
17 This constraint implies that γ should be smaller than the inverse of some polynomial

in s, however, this is how we typically think of γ.

18 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

no oracle-aided protocol can securely compute any no-input functionality that
cannot be (almost) securely computed by a no-oracle protocol.

In semi-honest no-input secure function evaluation, two parties A and B
wish to compute some (randomized) functionality privately and correctly. Let
G = (GA, GB) be a distribution over A×B, where GA and GB denote its marginal
distributions over A and B respectively. The parties wish to perform a compu-
tation, where party A learns gA and party B learns gA for g = (gA, gB) ← G,
but nothing else. Since the parties are semi-honest, they will always follow the
prescribed protocol. A corrupted party, however, may try to use its view in the
computation to infer additional information after the computation terminates.

Standard Definitions

Definition 13 (no-input secure function evaluation). Let G = (GA, GB) be
a distribution over A×B, where GA and GB denote its marginal distributions A
and B respectively. A two-party, oracle-aided protocol π = (A,B) is a (m, k, δ)-
secure protocol for G with respect to a function family F , for δ ∈ [0, 1] and
m, k ∈ N, if the following hold:

Correctness: π is a δ-correct implementation of G with respect to F :

SD
((

outA (v) , outB (v)
)
v←⟨πf ⟩ , G

)
≤ δ

for every f ∈ F .
Privacy: π is an (m, k, δ)-private implementation of G with respect to F : for

every P ∈ {A,B} there exists an m-query algorithm (simulator) SimP such
that

E
f←F

∣∣∣∣[Pr[D((Simf
P (g) , g

)
g←GP

)
= 1

]
−Pr

[
D
((

vP, out
P (v)

)
v←⟨πf ⟩

)
= 1

]]∣∣∣∣≤ δ

for any k-query distinguisher D.

A protocol π is a δ-secure (no-oracle) implementation of G if it is a (·, ·, δ)-secure
implementation of G with respect to the trivial (i.e., the empty) function family.
A distribution G is δ-trivial, if G has a δ-secure no-oracle implementation.

Our Result In the language of the above definitions, our main result is stated
as follows (see proof in [12]) .

Theorem 12. Let F be a function family, and let π be an oracle-aided protocol
that is a (·, T, δ)-secure oracle-aided implementation of a distribution G with
respect to F . Assume that the pair (F , π) has a (T, δ)-mapping. Then, G is
2δ-trivial.

Combining Theorems 4 and 12 yields the following result.

Theorem 13. Let F be a simple function family. For parameters k, ℓ ∈ N and

δ ∈ R with k ≥ 256 ·
(
ℓ
δ

)2
, and for a distribution G that is not 2δ-trivial,

there exists no ℓ-query oracle-aided protocol that is a (·, k, δ)-secure oracle-aided
implementation of G with respect to F .

Bibliography

1. B. Barak and M. Mahmoody. Merkle puzzles are optimal - an O(n2)-query
attack on any key exchange from a random oracle. In Advances in Cryptology
– CRYPTO ’09, pages 374–390, 2009.

2. A. Beimel, K. Nissim, and E. Omri. Distributed private data analysis: On
simultaneously solving how and what. CoRR, abs/1103.2626, 2011.

3. R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle methodology
as applied to length-restricted signature schemes. In Theory of Cryptography,
First Theory of Cryptography Conference, TCC 2004, 2004.

4. Y.-C. Chang, C.-Y. Hsiao, and C.-J. Lu. On the impossibilities of basing
one-way permutations on central cryptographic primitives. In Advances in
Cryptology – CRYPTO ’02, pages 110–124, 2002.

5. D. Dachman-Soled, Y. Lindell, M. Mahmoody, and T. Malkin. On the black-
box complexity of optimally-fair coin tossing. In tcc11, pages 450–467, 2011.

6. A. Fiat and A. Shamir. How to prove yourself: practical solutions to iden-
tification and signature problems. In Advances in Cryptology – CRYPTO
’86, pages 186–194, 1987.

7. R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In Proceedings of the 41st Annual Symposium
on Foundations of Computer Science, pages 305–313, 2000.

8. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency
of generic cryptographic constructions. SIAM Journal on Computing, 35(1):
217–246, 2005.

9. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The
relationship between public key encryption and oblivious transfer. In Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Computing
(STOC), 2000.

10. S. Goldwasser and Y. Tauman-Kalai. On the (in)security of the fiat-shamir
paradigm. In Proceedings of the 44th Annual Symposium on Foundations of
Computer Science (FOCS), 2003.

11. I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in
interactive protocols – A tight lower bound on the round complexity of
statistically-hiding commitments. In Proceedings of the 48th Annual Sym-
posium on Foundations of Computer Science (FOCS), 2007.

12. I. Haitner, E. Omri, and H. Zarosim. Limits on the usefulness of random
oracles. Technical Report 2012/573, Cryptology ePrint Archive, 2012. http:
//eprint.iacr.org/2012/573.

13. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-
way permutations. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing (STOC), pages 44–61. ACM Press, 1989.

14. J. Kahn, M. Saks, and C. Smyth. A dual version of reimer’s inequality
and a proof of rudich’s conjecture. In Computational Complexity, 2000.
Proceedings. 15th Annual IEEE Conference on, pages 98 –103, 2000.

http://eprint.iacr.org/2012/573
http://eprint.iacr.org/2012/573

20 Iftach Haitner, Eran Omri⋆, and Hila Zarosim⋆⋆

15. J. H. Kim, D. Simon, and P. Tetali. Limits on the efficiency of one-way
permutation-based hash functions. In Foundations of Computer Science,
1999. 40th Annual Symposium on, pages 535 –542, 1999.

16. M. Mahmoody, H. K. Maji, and M. Prabhakaran. Limits of random oracles
in secure computation. Technical Report 1205.3554v1, arXiv, 2012. arXiv:
1205.3554v1.

17. A. McGregor, I. Mironov, T. Pitassi, O. Reingold, K. Talwar, and S. P.
Vadhan. The limits of two-party differential privacy. Electronic Colloquium
on Computational Complexity (ECCC), page 106, 2011. Preliminary version
in FOCS’10.

18. R. C. Merkle. Secure communications over insecure channels. In SIMMONS:
Secure Communications and Asymmetric Cryptosystems, 1982.

19. I. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan. Computational
differential privacy. In Advances in Cryptology – CRYPTO ’09, pages 126–
142, 2009.

20. D. Pointcheval and J. Stern. Security proofs for signature schemes. In
Advances in Cryptology – EUROCRYPT ’96, pages 387–398, 1996.

21. S. Rudich. The use of interaction in public cryptosystems. In Proceedings of
the 11th Annual International Cryptology Conference on Advances in Cryp-
tology, CRYPTO ’91, pages 242–251, 1992.

22. D. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Advances in Cryptology – EURO-
CRYPT ’98, pages 334–345, 1998.

23. H. Wee. One-way permutations, interactive hashing and statistically hiding
commitments. In Theory of Cryptography, Fourth Theory of Cryptography
Conference, TCC 2007, pages 419–433, 2007.

arXiv:1205.3554v1
arXiv:1205.3554v1

	Limits on the Usefulness of Random Oracles

