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Abstract. We devise multi-party computation protocols for general se-
cure function evaluation with the property that each party is only re-
quired to communicate with a small number of dynamically chosen par-
ties. More explicitly, starting with n parties connected via a complete and
synchronous network, our protocol requires each party to send messages
to (and process messages from) at most polylog(n) other parties using
polylog(n) rounds. It achieves secure computation of any polynomial-time
computable randomized function f under cryptographic assumptions,
and tolerates up to ( 1

3
− ε) · n statically scheduled Byzantine faults.

We then focus on the particularly interesting setting in which the func-
tion to be computed is a sublinear algorithm: An evaluation of f depends
on the inputs of at most q = o(n) of the parties, where the identity of
these parties can be chosen randomly and possibly adaptively. Typically,
q = polylog(n). While the sublinear query complexity of f makes it pos-
sible in principle to dramatically reduce the communication complexity
of our general protocol, the challenge is to achieve this while maintaining
security: in particular, while keeping the identities of the selected inputs
completely hidden. We solve this challenge, and we provide a protocol
for securely computing such sublinear f that runs in polylog(n) + O(q)
rounds, has each party communicating with at most q · polylog(n) other
parties, and supports message sizes polylog(n) · (` + n), where ` is the
parties’ input size.
Our optimized protocols rely on a multi-signature scheme, fully homo-
morphic encryption (FHE), and simulation-sound adaptive NIZK argu-
ments. However, we remark that multi-signatures and FHE are used to
obtain our bounds on message size and round complexity. Assuming only
standard digital signatures and public-key encryption, one can still ob-
tain the property that each party only communicates with polylog(n)
other parties. We emphasize that the scheduling of faults can depend on
the initial PKI setup of digital signatures and the NIZK parameters.

1 Introduction

Multiparty computation (MPC) protocols for secure function evaluation (SFE)
witnessed a significant body of work within the cryptography research commu-
nity in the last 30 years.

This research was initiated and done in part while the authors were visiting the Isaac
Newton Institute for Mathematical Sciences in Cambridge, UK.
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These days, an emerging area of potential applications for secure MPC is
to address privacy concerns in data aggregation and analysis, to match the ex-
plosive current growth of available data. Large data sets, such as medical data,
transaction data, the web and web access logs, or network traffic data, are now
in abundance. Much of the data is stored or made accessible in a distributed
fashion. This necessitated the development of efficient distributed protocols to
compute over such data. In order to address the privacy concerns associated
with such protocols, cryptographic techniques such as MPC for SFE where data
items are equated with servers can be utilized to prevent unnecessary leakage of
information.

However, before MPC can be effectively used to address today’s challenges,
we need protocols whose efficiency and communication requirements scale prac-
tically to the modern regime of massive data. An important metric that has
great effect on feasibility but has attracted surprisingly little attention thus far
is the number of other parties that each party must communicate with during
the course of the protocol. We refer to this as the communication locality. In-
deed, if we consider a setting where potentially hundreds of thousands, or even
millions of parties are participating in a computation over the internet, requiring
coordination between each pair of parties will be unrealistic.

In this work, we work to optimize the communication locality for general
secure function evaluation on data which is held distributively among n parties.
These parties are connected via a complete synchronous communication net-
work, of whom ( 1

3 − ε)n may be statically scheduled, computationally bounded
Byzantine faults. We do not assume the existence of broadcast channels.

We also focus on a particularly interesting setting in which the randomized
function f to be computed is a sublinear algorithm: namely, a random execution
of f(x1, ..., xn) depends on at most q = o(n) of the inputs xi. We consider both
non-adaptive and adaptive sublinear algorithms, in which the identities of the
selected inputs may depend on the randomness r of execution, or on both r and
the values of xi queried thus far. Sublinear algorithms play an important role
in efficiently testing properties and trends when computing on large data sets.
The sublinear query complexity makes it possible in principle to dramatically
reduce the amount of information that needs to be communicated within the
protocol. However, the challenge is to achieve this while maintaining security—
in particular, keeping the identities of the selected inputs completely hidden.

Straightforward application of known general MPC techniques results in pro-
tocols where each party sends and receives messages from all n parties, and where
the overall communication complexity is O(n2), regardless of the complexity of
the function to be computed. We remark that this is obviously the case for the
classical general SFE protocols (beginning with [26, 14, 5]) in which every party
first secret shares its input among all other parties (and exchanges messages be-
tween all n parties at the evaluation of every gate of the circuit of the function
computed). Furthermore, although much progress was made in the MPC litera-
ture of the last two decades to make MPC protocols more efficient and suitable
for practice, this is still the case both in works on scalable MPC [17, 20, 19, 18]
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and more recent works utilizing the existence of fully homomorphic encryption
schemes [35, 3] for MPC. The latter achieve communication complexity that is
independent of the circuit size, but not of the number of parties when broadcast
channels are not available.

A recent notable exception to the need of each party to communicate with
all other parties is the beautiful work of King, Saia, Sanwalani and Vee [34] on
what they call scalable protocols for a relaxation of the Byzantine agreement and
leader election problems. Their protocols require each honest party to send and
process a polylog(n) number of bits. On the down side, the protocols of [34] do
not guarantee that all honest parties will achieve agreement, but only guarantee
that 1 − o(1) fraction of the good processors reach agreement—achieving only
so-called almost everywhere agreement. In another work of King et al [32], it
is shown how using Õ(

√
n) communication, full Byzantine agreement can be

achieved. The technique of almost-everywhere leader election of [34] will be the
technical starting point of our work.

1.1 Our Results

We provide multiparty computation protocols for general secure function evalu-
ation with communication locality that is polylogarithmic in the number of par-
ties. That is, starting with n parties connected via a complete and synchronous
network, we prove the following main theorem:

Theorem 1. Let f be any polynomial-time randomized functionality
on n inputs. Then, for every constant ε > 0, there exists an n-party
protocol Πf that securely computes a random evaluation of f , tolerating
t < (1/3− ε)n statically scheduled active corruptions, with the following
complexities:

(1) Communication locality: polylog(n).
(2) Round complexity: polylog(n).
(3) Message sizes: O(n · l · polylog(n)), where l = |xi| is the individual

input size.
(4) The protocol uses a setup consisting of n · polylog(n) signing keys

of size polylog(n), as well as a polylog(n)-long additional common
random string (CRS).3

The protocol assumes a secure multisignature scheme, a fully homomor-
phic encryption (FHE) scheme, simulation-sound NIZK arguments, as
well as pseudorandom generators.
Assuming only a standard signature scheme and semantically secure
public-key encryption, and setup as in (4), there exists a protocol for
securely computing f with polylog(n) communication locality.

Multisignatures [39, 36] are digital signatures which enable the verification
that a large number of signers have signed a given message, where the number

3 Adversarial corruptions may be made as a function of this setup information.
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of signers is not fixed in advance. The size of a multisignature is independent
of the number of signers, but in order to determine their identities one must
attach identifying information to the signature. Standard instantiations of such
schemes exist under the bilinear computational Diffie-Hellman assumption [44,
36].

The use of multisignatures rather than standard digital signatures enables us
to bound the size of the messages sent in the protocol. Further, the use of FHE
enables us to bound the number of messages sent, rather than depend on the time
complexity of the function f to be computed and polynomially on the input size.
However, we can obtain the most important feature of our complexity, the need
of every party to send messages to (and process messages from) only polylog(n)
parties in the network, solely under the assumption that digital signatures and
public-key encryption exist.

In addition, we show how to convert an arbitrary sublinear algorithm with
query complexity q = polylog(n) into a multi-party protocol to evaluate a ran-
domized run of the algorithm with polylog(n) communication locality and rounds,
and where the total communication complexity sent by each party is onlyO(polylog(n)·
(l + n)) for l = |x| an individual input size. We prove that participating in the
MPC reveals no information beyond the output of the sublinear algorithm exe-
cution using a standard Ideal/Real simulation-based security definition.

For underlying query complexity q, our second main theorem is as follows:

Theorem 2. Let SLA be a sublinear algorithm which retrieves q =
q(n) = o(n) different inputs. Then, for all constant ε > 0, there exists
an n-party protocol ΠSLA that securely computes an execution of the
sublinear algorithm SLA tolerating t < (1/3 − ε)n statically scheduled
active corruptions, with the following complexities, where l is the size of
the individual inputs held by the parties:
(1) Communication locality: q · polylog(n).
(2) Round complexity: O(q) + polylog(n).
(3) Message sizes: O((l + n) · polylog(n)).
(4) The protocol uses a setup consisting of n · polylog(n) signing keys of

size polylog(n), as well as a polylog(n)-long additional CRS.
The protocol assumes a secure multisignature scheme, an FHE scheme,
simulation-sound NIZK arguments, and pseudorandom generators.

Techniques. We first describe how to achieve our second result, for the case
when f is a sublinear algorithm. This setting requires additional techniques in
order to attain the communication complexity gains. After this, we describe
the appropriate modifications required to maintain polylog(n) communication
locality for general functions f .

There are three main technical components to our protocol for sublinear al-
gorithms. The first is to set up a committee structure constituted of a supreme
committee C and n input committees C1, ..Cn. These committees will all be of
size polylog(n) and with high probability have a 2/3 majority of honest parties.
Each committee Ci will (to begin with) hold shares of the input xi whereas the
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role of the supreme committee will essentially be to govern the running of the
protocol. A major challenge is to ensure that all parties in the network know
the identity of parties in all the committees. The starting point to address this
challenge is to utilize the communication-efficient almost-everywhere leader elec-
tion protocol of [34]. We remark that [34] achieves better total communication
complexity of polylog(n) bits and offers unconditional results, but only achieves
an almost-everywhere agreement: there may be a o(1) fraction of honest parties
who will not reach agreement and, in our context, will not know the makeup of
the committees. The main idea to remedy this situation is to add an iterated
certification procedure using multi-signatures to the protocol of [34], while keep-
ing the complexity of only polylog(n) messages sent and processed by any honest
party. In the process, however, we move from unconditional to computational
security and our message sizes grow, as they will be signed by multi-signatures.
Whereas the size of the multi-signatures depends only on the security parameter,
the messages should indicate the identities of the signers – this is cause for the
increased size of messages.

The second component is to implement a randomly chosen secret reshuffling
ρ of parties’ inputs within the complexity restrictions we have alloted. At the end
of the shuffling, committee Cρ(i) will hold the input of committee Ci. Informally,
this will address the major privacy issue in executing a sublinear algorithm in a
distributed setting, which is to ensure that the adversary does not learn which
of the n inputs are used by the algorithm. We implement the shuffling via dis-
tributed evaluation of a switching network with very good mixing properties
under random switching, all under central coordination by the supreme commit-
tee. We assume that a fixed switching network over n wires is given, with depth
d = polylog(n), and is known to everyone.

The third component, once the inputs will be thus permuted, is to actually
run the execution of the sublinear algorithm. For lack of space, let us illustrate
how this is done for the sub class of non-adaptive sublinear algorithms. This is
a class of algorithms that proceed in two steps:

– First, a random subset I of size q of the indices 1, ..., n is selected.
– Second, an arbitrary polynomial-time algorithm is computed on inputs xj

for j ∈ I.

To run an execution of such an algorithm, the supreme committee: first selects
a random and secret q = polylog(n) size subset I of the inputs; and second, runs
a secure function evaluation (SFE) protocol on the set of inputs in ρ(I) with the
assistance of parties in committees Cj for j ∈ ρ(I). In the adaptive case, one
essentially assumes queries are asked in sequence, and executes in a similar way
the sublinear algorithm query after query, contacting committee ρ(i) for each
query i, instead of parallelizing the computation for all inputs from I. The price
to pay is an additive factor q in the number of rounds of the protocol. However,
note that in the common case q = polylog(n), this does not affect the overall
asymptotic complexity.

Now, consider the case when f is a general polynomial-time function, whose
evaluation may depend on a large number of its inputs. In this case, we can skip
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the aforementioned shuffling procedure, and instead simply have each party Pi
send his (encrypted) input up to the supreme committee C to run the evaluation
of f . That is, each Pi gives an encryption of his input to the members of his
input committee Ci, and each party in Ci sends the ciphertext up to C via a
communication tree that is constructed during the process of electing committees
(in Step 1). Then, the members of the supreme committee C (who collectively
have the ability to decrypt ciphertexts) are able to evaluate the functionality f
directly via a standard SFE.

Remarks. A few remarks are in order.

– Flooding by faulty parties. There is no limit (nor can there be) on how many
messages are sent by faulty parties to honest parties, as is the case in the
works mentioned above. To address this issue in [34, 32, 33, 21], for example,
it is (implicitly) assumed that the authenticated channels between parties
can “recognize” messages from unwarranted senders which should not be
processed and automatically drop them, whereas we will use a digital sig-
nature verification procedure to recognize and drop these messages which
should not be processed.

– Security definition for sublinear algorithms. The security definition we achieve
is the standard definition of secure multiparty computation (MPC). Infor-
mally, the parties will receive the output corresponding to a random ex-
ecution of the sublinear algorithm but nothing else. Formally, we use the
ideal/real simulation-based type definition. We note that in works of [29, 23,
31] on MPC for approximation algorithms for functions f , privacy is defined
so as to mean that no information is revealed beyond the exact value of f ,
rather than beyond the approximate value of f computed by the protocol.
One may ask for a similar privacy definition for sublinear algorithms, which
are an approximation algorithm of sorts. However, this is an orthogonal con-
cern to the one we address in this work.

1.2 Further Related Work

Work on MPC in partially connected networks, such as the recent work of Chan-
dran, Garay and Ostrovsky [12, 13], shows MPC protocols for network graphs
of degree polylog(n) (thus each party is connected to no more than polylog(n)
parties). They can only show how to achieve MPC amongst all but o(n) honest
parties. Indeed, in this setting it is unavoidable for some of the honest parties
to be cut out from every other honest party. In contrast, in the present work,
we assume that although the n parties are connected via a complete network
and potentially any party can communicate with any other party, our protocols
require each honest party to communicate with only at most polylog(n) parties
whose identity is only determined during the course of the protocol execution.

The problem of sublinear communication in MPC has also been considered
in the realm of two-party protocols, e.g. by [40] who provide communication-
preserving protocols for secure function evaluation (but which require super-
polynomial computational effort), and in a recent collection of works including
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[28] which achieve amortized sublinear time protocols, and the work of [31] which
show polylogarithmic communication for specific functions.

An interesting point of comparison to our result is the work of Halevi, Lin-
dell and Pinkas [30]. They design computationally secure MPC protocols for n
parties in which one party is singled out as a server and all other parties com-
municate directly with the server in sequence (in one round of communication
each). However, it is easy to see that protocols in this model can only provide a
limited privacy guarantee: for example, as pointed out by the authors, if the last
i parties collude with the server then they can always evaluate the function on
as many input settings as they wish for variable positions n− i, n− i+ 1, . . . , n.
No such limitations exist in our model.

In a recent and independent work to the current paper, King et al [21] extends
[32] to show a protocol for unconditionally secure SFE for general f that requires
every party to send at most O(mn +

√
n) messages, where m is the size of a circuit

representation of f . A cursory comparison to our work shows that in [21] each
party sends messages to Ω(

√
n) other parties.

Finally, let us point out that our approach to anonymize access patterns
to parties is similar in spirit to problems arising in the context of Oblivious
RAM [27], and uses similar ideas to the obfuscated secret shuffling protocols of
Adida and Wilkström [2].

2 Preliminaries

We recall first the definitions of standard basic tools used throughout the paper,
and then move to some important results on shuffling and our notation for
sublinear algorithms.

2.1 Basic Tools

Non-Interactive Zero Knowledge. We make use of a standard non-interactive
zero knowledge (NIZK) argument system (Gen,Prove,Verify,S = (Scrs,SProof))
with unbounded adaptive simulation soundness, as defined in [22, 6, 7]. That is,
soundness of the argument system holds even against PPT adversaries who are
given access to an oracle that produces simulated proofs of (potentially false)
statements. For a formal definition, we refer the reader to, e.g., [22, 6, 7].

Theorem 1. [42] There exists an unbounded simulation-sound NIZK proof sys-
tem for any NP language L, based on trapdoor one-way permutations, with proof
length poly(|x|, |w|), where x is the statement and w is the witness.

Fully Homomorphic Encryption. We make use of a fully homomorphic public-
key encryption (FHE) scheme (Gen,Enc,Dec,Eval) as defined in, e.g., [25]. For
our purposes, we require an FHE scheme with the additional property of certi-
fiability. A certifiable FHE scheme is associated with a set R of “good” encryp-
tion randomness such that (repeated execution of) the Eval algorithm and the
decryption algorithm Dec are correct on ciphertexts derived from those using
randomness from R to encrypt. A formal definition follows.
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Definition 1. For a given subset R ⊆ {0, 1}poly(k) of possible randomness val-
ues, we (recursively) define the class of R-evolved ciphertexts with respect to a
public key pk to include all ciphertexts c of the form:

– c = Encpk(m; r) for some m in the valid message space and randomness
r ∈ R, and

– c = Evalpk((ci)i∈I , f) for some poly(k)-size collection of R-evolved ciphertexts
(ci)i∈I and some poly-size circuit f .

Definition 2. A FHE scheme is said to be certifiable if there exists a subset
R ⊆ {0, 1}poly(k) of possible randomness values for which the following hold.

1. Pr[r ∈ R] = 1 − negl(k), where the probability is over uniformly sampled
r ← {0, 1}poly(k).

2. There exists an efficient algorithm AR such that AR(r) = 1 for r ∈ R and 0
otherwise.

3. With overwhelming probability, Gen outputs a key pair (pk, sk) such that
Decsk(Evalpk((ci)1≤i≤n, f)) = f((xi)1≤i≤n) for all poly-sized circuits f and
for all R-evolved ciphertexts c1, . . . , cn, where xi = Decsk(ci).

Certifiable FHE schemes have been shown to exist based on the Learning with
Errors assumption, together with a circular security assumption (e.g., Brakerski
and Vaikuntanathan [10] and Brakerski, Gentry, and Vaikuntanathan [9]). For
the readers who are familiar with these constructions, the set of “good” certifying
randomness R corresponds to encrypting with sufficiently “small noise.”

Multisignatures. A multisignature scheme is a digital signature scheme with
the ability to combine signatures from multiple signers on the same message
into a single short object (a multisignature).4 The first formal treatment of
multisignatures was given by Micali, Ohta, and Reyzin [39].

Definition 3. A multisignature scheme is a tuple of PPT algorithms
(Gen,Sign,Verify,Combine,MultiVerify), where syntactically (Gen,Sign,Verify) are
as in a standard signature scheme, and Combine,MultiVerify are as follows:

Combine({{vkj}j∈Ji , σi}`i=1,m): For disjoint J1, . . . , J` ⊆ [n], takes as input a
collection of signatures (or multisignatures) σi with respect to verification
keys vkj for j ∈ Ji, and outputs a combined multisignature, with respect to
the union of verification keys.

MultiVerify({vki}i∈I ,m, σ): Verifies multisignature σ with respect to the collec-
tion of verification keys {vki}i∈I . Outputs 0 or 1.

All algorithms satisfy the standard natural correctness properties, except with
negligible probability. Moreover, the scheme is secure if for any PPT adversary
A, the probability that the challenger outputs 1 in the following game is negligible
in the security parameter k:

4 Note that multisignatures are a special case of aggregate signatures [8], which in
contrast allow combining signatures from n different parties on n different messages.
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Setup. The challenger samples n public key-secret key pairs, (vki, ski)← Gen(1k)
for each i ∈ [n], and gives A all verification keys {vki}i∈[n]. A selects a
proper subset M ⊂ [n] (corresponding to parties to corrupt) and receives the
corresponding set of secret signing keys {ski}i∈M .

Signing queries. A may issue multiple adaptive signature queries, of the form
(m, i). For each such query, the challenger responds with a signature σ ←
Signski(m) on message m with respect to the signing key ski.

Output. A outputs a triple (σ̄∗,m∗, I∗), where σ̄∗ is an alleged forgery multisig-
nature on message m∗ with respect to a subset of verification keys I∗ ⊂ [n].
The challenger outputs 1 if there exists i ∈ I∗ \ M such that the mes-
sage m∗ was not queried to the signature oracle with key ski, and 1 ←
MultiVerify({vki}i∈I∗ ,m∗, σ∗).

The following theorem follows from a combination of the (standard) signature
scheme of Waters [44] together with a transformation from this scheme to a
multisignature scheme due to Lu et. al. [36].

Theorem 2. [44, 36] There exists a secure multisignature scheme with signature
size poly(k) (independent of message length and number of potential signers),
based on the Bilinear Computational Diffie-Hellman assumption.

Multi-party protocols: Model and Security Definitions. We consider the setting
of n parties P = {P1, ..., Pn} within a synchronous network who wish to jointly
compute any PPT function f over their private inputs. We allow up to t statically
chosen Byzantine (malicious) faults and a rushing adversary. In our protocols
below, we consider t ≤ ( 1

3−ε)n for any constant ε > 0. We assume that every pair
of parties has the ability to initiate direct communication via a point-to-point
private, authenticated channel. (However, we remark that in our protocol, each
(honest) party will only ever send or process information along subset of only
polylog(n) such channels.) We assume the existence of a public-key infrastruc-
ture, but allow the adversary’s choice of corruptions to be made as a function of
this public information.

The notion of security we consider is the standard simulation-based definition
of secure multiparty computation (MPC), via the real/ideal world paradigm.
Very loosely, we require that for any PPT adversary A in a real-world execution
of the protocol, there exists another PPT adversary who can simulate the output
of A given only access to an “ideal” world where he learns only the evaluated
function output. We refer the reader to, e.g., [11] for a formal definition of
(standalone) MPC security.

General secure function evaluation. The following theorem is well known and
will be use throughout this paper. Let C be a circuit with n inputs, and let FC
the functionality that computes the circuit.

Theorem 3. [5] For any t < n/3, there exists a protocol that securely computes
the functionality FC functionality, with perfect security. The protocol proceeds
in O(|C|) rounds, and each party sends poly(n) messages of size poly(k, n) each.
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Verifiable Secret Sharing. A secret sharing scheme is a protocol that allows a
dealer who holds a secret input s, to share his secret among n parties such that
any t parties do not gain any information about the secret s, but any set of (at
least) t+ 1 parties can reconstruct s. A verifiable secret sharing (VSS) scheme,
introduced by Chor et al. [15], is a secret sharing scheme with the additional
guarantee that after the sharing phase, a dishonest dealer is either rejected, or
is committed to a single secret s, that the honest parties can later reconstruct,
even if dishonest parties do not provide their correct shares.

For concreteness, we consider a class of VSS constructions that takes advan-
tage of reconstruction and secrecy properties of low-degree polynomials [43, 38].
In particular, security of such a VSS protocol Share is formalized as emulating the
ideal functionality F tVSS for parties PD, P1, ..., Pn with distinguished dealer PD
such that FVSS(q, (∅, ..., ∅)) =

(
∅, (q(α1), ..., q(αn))

)
for fixed evaluation points

α1, . . . , αn if deg(q) ≤ t, and FVSS(q, (∅, ..., ∅)) = (∅, (⊥, ...,⊥)) otherwise. The
party can also run a reconstruction protocol Reconst such that if honest parties
input the correct shares output by the above functionality to them, then they
recover the right value. The following result is well known.

Theorem 4. [5, 4] For any t < n/3, there exists a constant-round protocol Share
that securely computes the F tVSS functionality, with perfect security. Each party
sends poly(n) messages of size O(l log l), where l = max{|x|, n}.

Also, we will be interested in the case where the dealer D can be any of
the n parties, and he sends shares to a subset P ′ of the n parties of size n′

(e.g., n′ = polylog(n)), and we may not necessarily have D ∈ P ′. The above
functionality can be extended to this case naturally, and it is a folklore result
that the protocols given by the above theorem also remain secure in this case as
long as less than a fraction 1/3 of the parties in P ′ are corrupted.

Broadcast. Another important functionality we need to implement is broadcast.
To define, a broadcast protocol can be seen as an example of an MPC imple-
menting a functionality FBC for parties PD, P1, ..., Pn with distinguished dealer
PD, defined as FBC(m, (∅, ..., ∅)) =

(
∅, (m, . . . ,m))

)
, where m is the message to

be broadcast.

Theorem 5. [24] For any t < n/3, there exists a constant-round protocol that
securely computes the FBC functionality, with perfect security. Each party sends
poly(n) messages of size O(|m|) each.

2.2 Random Switching Networks and Random Permutations.

Our protocol will employ what we call an n-wire switching network, which con-
sists of a sequence of layers, each layer in turn consisting of one or more swapping
gates which decide to swap the values of two wires depending on a bit. Formally,
given an input vector x = (x1, . . . , xn) (which we assume to be integers wlog), a
swap gate operation swap(i, j,x, b) returns x′, where if b = 0 then x = x′, and
if b = 1 then we have x′i = xj , x

′
j = xi, and x′k = xk for all k 6= i, j. A switching
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layer is a set L = {(i1, j1), . . . , (ik, jk)} of pairwise-disjoint pairs of distinct in-
dices of [n]. A d-depth switching network is a list SN = (L1, . . . , Ld) of switching
layers. Note that for each assignment of the bits of the gates in SN , the network
defines a permutation from [n] to [n] by inputting the vector x = (1, 2, . . . , n)
to the network. The question we are asking is the following: If we set each bit in
each swap gate uniformly and independently at random, how close to uniform is
the resulting permutation? The following theorem guarantees the existence of a
sufficiently shallow switching network giving rise to an almost-uniform random
permutation.

Theorem 6. For all c > 1, there exists an efficiently computable n-wire switch-
ing network of depth d = O(polylog(n) · logc(k)) (and size O(n · d)) such that
the permutation π̂ : [n] → [n] implemented by the network when setting swaps
randomly and independently has negligible statistical distance (in k) from a uni-
formly distributed random permutation on [n].

Proof. By Theorem 1.11 in [16], there exists such network SN of depth d =
O(polylog(n)) where the statistical distance is of the order O(1/n). Consider
now the switching network SN ′ obtained by cascading r copies of SN . Then,
when setting switching gates at random, the resulting permutation π̂ equals
π̂1 ◦ · · · ◦ π̂n, where π̂i are independent permutations obtained each by setting
the gates in SN uniformly at random. With π being a random permutation, a
well-known property of the statistical distance ∆(·, ·), combined with the fact
permutation composition gives a group (see e.g. [37] for a proof) yields

∆(π̂, π) ≤ 2r−1 ·
r∏
i=1

∆(π̂i, π) ≤ O
((

2

n

)r)
≤ O(2r(log 2−log(n))) ,

which is negligible in k for r = logc(k). ut

Note that in particular this means that each wire is connected to at most d =
O(polylog(n) · logc(k)) other wires via a switching gates, as each wire is part of
at most one gate per layer.

2.3 Sublinear algorithms

We consider a model where n inputs x1, . . . , xn are accessible to an algorithm SLA
via individual queries for indices i ∈ [n]. Formally, a Q-query algorithm in the
n-input model is a tuple of (randomized) polynomial time algorithms SLA =
(SLA.Sel1,SLA.Sel2, . . . ,SLA.SelQ,SLA.Exec). During an execution with inputs
(x1, . . . , xn), SLA.Sel1 takes no input and produces as output a state σ1 and
a query index i1 ∈ [n], and for j = 2, . . . , n, SLA.Selj takes as input a state
σj−1 and input xij−1

, and outputs a new state σj and a new query index ij .
Finally, SLA.Exec takes as input σQ and xQ, and produces a final output y.
We say that SLA is sublinear if Q = o(n). We will also consider the special
case of non-adaptive algorithms which consist without loss of generality of only
two randomized algorithms SLA = (SLA.Sel,SLA.Exec), where SLA.Sel outputs a
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subset I ⊆ [n] of indices of inputs to be queried, and the final output is obtained
by running SLA.Exec on input (xi)i∈I .

Examples of sublinear algorithms, many of them non-adaptive, include al-
gorithms for property testing such as testing sortedness of the inputs, linearity,
approximate counting, and numerous graph properties, etc. Surveying this large
area and the usefulness of these algorithms goes beyond the scope of this paper,
and we refer the reader to the many available surveys [1].

3 Multi-Party Computation for Sublinear Algorithms

We present a high-level overview geared at illustrating the techniques used within
our sublinear algorithm compiler (Theorem 2), which is the more involved of
our two results. For exposition, we focus on the case of non-adaptive algorithms.
Given aQ-query non-adaptive sublinear algorithm SLA, we would like to evaluate
it in a distributed fashion along the following lines. First, a small committee
C consisting of polylog(n) parties is elected, with the property that at least
two thirds of its members are honest. This committee then jointly decides on a
random subset of Q parties I, output by SLA.Sel, from which inputs are obtained.
The parties in C∪I jointly execute a multi-party computation among themselves
to produce the output of the sublinear algorithm according to the algorithm
SLA.Exec, which is then broadcasted to all parties.

But things will not be as simple. Interestingly, one main challenge is very
unique to the setting of sublinear algorithms: An execution of the protocol needs
to hide the subset I of parties whose inputs contribute to the output! More
precisely, an ideal execution of the sublinear algorithm via the functionality
FSLA only reveals the output of the sublinear algorithm. Therefore, we need to
ensure that the adversary does not learn any additional information about the
composition of I from a protocol execution beyond what leaked via the final
output. Our protocol will indeed hide the set I completely. This will require
modifying the above naive approach considerably.

The second challenge is complexity theoretic in nature. Enforcing low com-
plexity of our protocol when implementing the above steps, while realizing our
mechanism to hide the subset I, will turn out to be a delicate balance act.

In particular, at a high level our protocol will consist of the following com-
ponents:

Committee election phase. The n parties jointly elect a supreme committee
C, as well as individual committees C1, . . . , Cn on which they all agree,
sending each at most polylog(n) messages of size each n·poly(log n, log k). All
committees have size polylog(n) and at least a fraction 2/3 of the parties in
them are honest. As part of this process, the parties set up a communication
structure that allows the supreme committee to communicate messages to
all parties.

Commitment phase. Each party Pi commits to its input so that Ci holds
shares of these inputs.
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Shuffling phase. To hide the access pattern of the algorithm (i.e., which inputs
are included in the computation), the committees will randomly shuffle the
inputs they hold with respect to a random permutation ρ. This will happen
by using a switching network with good shuffling properties. For each swap
gate (i, j) in the switching network, committees Ci and Cj will swap at ran-
dom the sharings they hold via a multi-party computation under a random
decision taken by the supreme committee C. The supreme committee then
holds a secret sharing of ρ.

Evaluation phase. The parties in the supreme committee C sample a random
query set I according to SLA.Sel via MPC and learn ρ(I) only. They will
then include the parties in committees Ci for i ∈ ρ(I) in a multi-party
computation to evaluate the sublinear algorithm on the inputs they hold.
(Recall that C holds ρ in shared form.)

Output phase. The supreme committee broadcasts the output of the compu-
tation to all parties, using the communication structure from the first stage.

In addition, we carefully implement sharings and multi-party computations using
FHE to improve complexity, making the dependency of both the communication
and round complexities linear in the input length |x|, rather than polynomial,
and independent of the circuit sizes to implement the desired functionalities.

The following paragraphs provide a more detailed account of the techniques
used within our protocol. In addition, a high-level description of the protocol
procedure is given in Figure 1.

Committee election phase. The backbone behind this first phase is given by
the construction of a communication tree using a technique of King et al [34].
Such tree is a sparse communication subnetwork which will ensure both the
election of the supreme committee, as well as a basic form of communication
between parties and the supreme committee where each party communicates
only with polylog(n) other parties and only polylog(n) rounds of communication
are required. Informally, the protocol setting up the tree assigns (possibly over-
lapping) subsets of parties of polylogarithmic size to the nodes of a tree with
polylogarithmic height and logarithmic degree. The set of parties assigned to the
root will take the role the supreme committee C. Communication from the root
to the parties (or the other way round) occurs by communicating messages over
paths from the root to the leaves of the tree, with an overall communication cost
of polylog(n) messages per party. To elect the committees C1, . . . , Cn, we can
have the supreme committee agree on the seed s of a PRF family F = {Fs}s via
a coin tossing protocol, where Fs maps elements of [n] to subsets of [n] of size
polylog(n), and send s to all parties. We then let Ci = Fs(i).

However, a closer look reveals that it is only possible for the protocol building
the communication tree to enforce that a vast majority of the nodes of the
tree are assigned to a set of parties for which a 2/3 majority is honest, but
some nodes are unavoidably associated with too large a fraction of corrupted
parties. Indeed, some parties may be connected to too many bad nodes and
their communication ends up being essentially under adversarial control. As a
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consequence, the supreme committee is only able to correctly communicate with
a 1 − o(1) fraction of the (honest) parties. Moreover, individual parties are not
capable of determining whether the value they hold is correct or not. We refer
to this situation as almost-everywhere (ae) agreement.

Our main contribution here is the use of cryptographic techniques to achieve
full agreement on C and s in this stage, while maintaining polylog(n) commu-
nication locality; this improves on previous work in the information-theoretic
setting [32, 33, 21] which requires each party to talk to O(

√
n · polylog(n)) other

parties to reach agreement. We tackle these two issues in two separate ways.

1. From ae agreement to ae certified agreement. We first move to a stage where
a large 1 − o(1) fraction of the parties learn the value sent by the supreme
committee, together with a proof that the output is the one sent by the com-
mittee, whereas the remaining parties who do not know the output are also
aware of this fact. We refer to this scenario as almost-everywhere certified
agreement. Let us start with the basic idea using traditional signatures (we
improve on this below using multisignatures). After having the supreme com-
mittee send a value m to all parties with almost-everywhere agreement, each
party Pi receiving a value mi will sign mi with his own signing key, producing
a signature σi. Then, Pi sends (mi, σi) up the tree to the supreme committee,
and each member will collect at least n/2 signatures on σi on some message
m. Note that this will always be possible, as a fraction 1− o(1) > n/2 of the
honest parties will receive the message mi = m and send a valid signature up
the tree. Moreover, the adversary would need to forge signatures for honest
parties in order to produce a valid certificate for a message which was not
broadcast by the supreme committee.

2. From ae certified agreement to full agreement. We finally describe a transfor-
mation from ae certified agreement to full agreement. If a committee wants
to broadcast m to all parties, the committee additionally generates a seed
s for a PRF and broadcasts (m, s) in a certified way using the above trans-
formations. Each party i receiving (m, s) with a valid certificate π forwards
(m, s, π) to all parties in “his” committee Fs(i). Whenever a party receives
(m, s, π) with a valid certificate, it stops and outputs m. Note that no party
sends more than polylog(n) additional messages in this transformation. More-
over, it is not hard to see that with very high probability every honest party
will be in at least one of the Fs(i) for a party i who receives (m, s) correctly
with a certificate, by the pseudorandomness of F . Note in particular that the
same seed s can be used over multiple executions of this broadcast procedure
from the committee to the parties, and can be used directly to generate the
committees C1, . . . , Cn.

While we do guarantee that every party sends at most polylog(n) messages, a
problem of the above approach is the potentially high complexity of processing
incoming messages if dishonest parties flood an honest party by sending too
many messages. Namely, the t = Θ(n) corrupted parties can always each send
(m, s) with an invalid certificate to some honest party Pi, who needs to verify
all signatures in the certificate to confirm that these messages are not valid.
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We propose a solution based on multisignatures that alleviates this problem by
making certificates only consist of an individual aggregate signature (instead of
of Θ(n)), as well as of a description of the subset of parties whose signatures
have been aggregated. The main idea is to have all parties initially sign the value
they receive from the supreme committee with their own signing keys. However,
when sending their values up the tree, parties assigned to inner nodes of the tree
will aggregate valid signatures on the message which was previously sent down
the tree, and keep track of which signatures have contributed.

Commitment phase. Our instantiations of multi-party computations among
subsets of parties will be based on fully homomorphic encryption (FHE). To this
end, we want parties in each input committee Ci to store an FHE encryption
Enc(pk, xi) of the input xi that we want to be committing. The FHE public
key pk is generated by the supreme committee (who holds secret shares of the
matching secret key sk), and sent to all parties using the methods outlined above.
A party i is committed to the value xi if the honest parties in Ci all hold the
same ciphertext encrypting xi. This presents some challenges which we address
and solve as follows:

1. First, a malicious party Pi must not be able to broadcast an invalid cipher-
text to the members of the committee Ci. This is prevented by appending
a simulation-sound NIZK argument π to the ciphertext c that there exists a
message x and “good” randomness r such that Enc(pk, x; r) = c.

2. Second, for a security proof to be possible, it is well known that not only
the encryption needs to be hiding and binding, but a simulator needs to be
able to have some way to extract the corresponding plaintext from a valid
ciphertext-proof pair (c, π). A major issue here is that the simulated setup
must be independent of the corrupted set in our model. This prevents the
use of NIZK arguments of knowledge. Moreover, we can expect the FHE
encryption to be secure against chosen plaintext attacks only. We will solve
this by means of double encryption, following Sahai’s construction [41] of a
CCA-secure encryption scheme from a CPA-secure one. Namely, we provide
an additional encryption c2 of x under a different public-key (for which no one
needs to hold the secret key), together with an additional NIZK argument
that c1 and c2 encrypt the same message. The ciphertext c2 will not be
necessary at any later point in time and serves only the purpose of verifying
commitment validity (and permitting extraction in the proof).

3. Third, a final problem we have to face is due to rushing adversaries and the
possibility of mauling commitments, in view of the use of the same public
key pk for all commitments. This can be prevented in a black-box way by
letting every party Pi first (in parallel) VSS its commitment to the parties
in Ci, and then in a second phase letting every committee Ci reconstruct
the corresponding commitment. If the VSS protocol is perfectly secure, this
ensures input-independence.

Another challenge is how to ensure that ciphertext sizes and the associated NIZK
proof length are all of the order |x| · poly(k), instead of poly(|x|, k). We achieve
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this by encrypting messages bit-by-bit using a bit-FHE scheme, whose cipher-
texts are hence of length poly(k). The corresponding NIZK proof is obtained
by sequentially concatenating individual proofs (each of length poly(k)) for the
encryptions of individual bits.

Shuffling phase. The major privacy issue in executing a sublinear algorithm
in a distributed setting is that the adversary must not learn which parties have
contributed their inputs to the protocol evaluation, beyond any information that
the algorithm’s output itself reveals. Ideally, we would like parties to shuffle their
inputs in a random (yet oblivious) fashion, so that at the end of such a protocol
each party Pi holds the input of party Pπ(i) for a random permutation π, but
such that the adversary has no information about the choice of π and for which
party π(i) he holds an input. At the same time, the supreme committee jointly
holds information about the permutation π in a shared way. Unfortunately, this
seems impossible to achieve: A disrupting adversary may always refuse to hold
inputs for other parties. However, we can now exploit the fact that the inputs
are held by committees C1, . . . , Cn containing a majority of honest parties.

The actual shuffling is implemented via distributed evaluation of a switching
network SN , under central coordination by the supreme committee. We assume
that a switching network over n wires is given, with depth d = polylog(n),
and is known to everyone, and with the property given by Theorem 6: i.e., it
implements a nearly uniform permutation on [n] under random switching. For
each swap gate (i, j) in the network, the supreme committee members jointly

produce an encryption b̂i,j of an (unknown) random bit bi,j , indicating whether
the inputs xi and xj are to be swapped or not when evaluating the corresponding

swapping gate. The value b̂i,j is broadcast to all parties in Ci and Cj . At this
point, each party in Ci broadcasts his copy of x̂i to all parties in Cj , and each
party in Cj does the same with x̂j to all parties in Ci. (Each party then, given
ciphertexts from the other committee, will choose the most frequent one as the
right one.) Then, each party in Ci (or Cj) will update his encryption x̂i to

be an encryption of Dec(sk, x̂j) or Dec(sk, x̂i), depending on the value of b̂i,j ,
using homomorphic evaluation of the swap-or-not function. We note that this
operation can be executed in parallel for all gates on the same layer, hence the
swapping requires d rounds.

Evaluation phase. Once the parties’ inputs have been (obliviously) shuffled,
we are ready to run the sublinear algorithm. The execution is controlled by the
supreme committee C. First, the members of C will run an MPC to randomly
select the subset of inputs I ⊂ [n] to be used by the algorithm. The output of
the MPC will be the set of permuted indices σ(I) := {σ(i) : i ∈ I}. The corre-
sponding committees {Cj : j ∈ σ(I)} are invited to join in a second MPC. Each
member of Cj enters the MPC with input equal to his currently held encrypted
secret share (of some unknown input xi, for which j = σ(i)). Each member of
C enters the MPC with input equal to his share of the secret decryption key sk.
Collectively, the members of C∪(

⋃
j∈σ(I) Cj) run an MPC which (1) recombines
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Protocol for Non-adaptive Sublinear Algorithm Evaluation (Overview)

Committee Election Phase
1. Execute almost-everywhere committee election protocol of [34] to generate a com-

munication tree together with a committee C at its root (where (1− o(1)) fraction
of honest parties agree on C).

2. Achieve certified almost-everywhere agreement on C and individual committees
{Ci}i∈[n] as follows. Members of C collectively sample a PRF seed s and commu-
nicate it to (almost) all parties. Each Ci is defined by Fs(i). Every party signs his
believed value of (C, s) and passes it up the communication tree to C, where agree-
ing signatures are aggregated into a single multisignature at each inner node. The
message and “certificate” multisignature that contains signatures from a majority
of all parties is sent back down the tree.

3. Achieve full agreement on C, {Ci}i∈[n] as follows. Each party Pi possessing a valid
certificate π on (C, s) sends (C, s, π) to each party in Ci := Fs(i). Each party Pj
who does not have a valid certificate listens for incoming messages and adopts the
first properly certified tuple. (Note steps 2-3 enable C to broadcast messages).

Commitment Phase
4. Parties in the primary committee C run the (standard) MPC protocol of [5]

amongst themselves to generate keys for the FHE scheme and a second standard
PKE scheme. Parties in C receive the public keys pk, pk′ and a secret share of FHE
key sk. They broadcast pk, pk′ to all parties.

5. In parallel, each party Pi acts as dealer to VSS the following values to his input
committee Ci: (1) an FHE encryption of his input x̂i ← Encpk(xi), (2) a second
encryption of xi under the standard PKE with pk′, and (3) NIZK proofs that x̂i
is a valid encryption and the two ciphertexts encrypt the same value.

Shuffling Phase
6. Parties in primary committee C run an MPC to generate a random permutation

ρ, expressed as a sequence of random swap bits in the switching network SN . The
output is an FHE encryption ρ̂ of ρ, which they broadcast to all parties.

7. The committees Ci obliviously shuffle their stored input values, as follows.
For each layer L1, ..., Ld in the sorting network SN ,
– Let L` = ((i1, j1), ..., (in/2, jn/2)) be the swapping pairs in the current layer `.
– In parallel, the corresponding pairs of committees (Ci1 , Cj1), ..., (Cin/2

, Cjn/2
)

exchange their currently held input ciphertexts x̂p, x̂q (using broadcast then
majority vote) and homomorphically evaluate the swap-or-not function on
x̂p, x̂q, and the appropriate encrypted swap bit b̂ contained in ρ̂.

Outcome: each party in committee Ci holds encryption of input xρ(i).
Evaluation Phase

8. Parties in primary committee C run an MPC to execute the input selection proce-
dure I ← SLA.Sel. The output of the MPC is the set of permuted indices ρ(I) ⊂ [n].

9. Every party in C sends a message “Please send encrypted input `” to every party
Pj in C` for which ` ∈ ρ(I).

10. Each party Pj ∈ C` who receives consistent messages “Please send encrypted input
`” from a majority of the parties in C, broadcasts his currently held encrypted input
x̂jp` to all parties in C. (Recall that this allegedly corresponds to an encryption of
the input xp held by the committee C` = Cρ(p) after the ρ-permutation shuffle).

11. The parties of C evaluate the second portion of the sublinear algorithm, SLA.Exec
via an MPC. Each party of C broadcasts the resulting output answer to all parties.

Fig. 1: High-level overview of the protocol ΠSLA for secure distributed evaluation
of a non-adaptive sublinear algorithm SLA = (SLA.Sel,SLA.Exec).
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the shares of sk, (2) decrypts the secret shares held by each Cj , (3) reconstructs
each of the relevant inputs xi, i ∈ I, from the corresponding set of secret shares,
(4) executes the sublinear algorithm on the reconstructed inputs, and (5) out-
puts only the output value dictated by the sublinear algorithm (e.g., for many
algorithms, this will simply be YES/NO).

The main challenge is making the complexity of this stage such that only
poly(log n, log k) rounds are executed, and only messages of size |x|·poly(log k, log n)
will be exchanged. This will be achieved by performing most of the computations
locally via FHE by the parties in the supreme committee, and by generating the
randomness to be used in SLA.Sel and SLA.Exec by first agreeing on a poly(k)-
short seed of a PRG via coin-tossing, and then subsequently using the PRG
output as the actual randomness.

Extension: Adaptive algorithms. The above protocol can be modified to accom-
modate adaptive sublinear algorithms SLA = (SLA.Sel1, . . . ,SLA.Selq,SLA.Exec)
simply by modifying the evaluation phase such that an MPC is run for each
next-query SLA.Selj to obtain the permuted index of the next query ρ(ij). Note
that without loss of generality all queries are distinct. As a result of this mod-
ification, the number of rounds unavoidably increases: Namely, we need O(q)
additional rounds to obtain inputs from the committees Cρ(ij) one by one. How-
ever, the proof and the protocol are otherwise quite similar, and we postpone a
more detailed description to the final version of this paper.
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