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Abstract. The Fiat-Shamir heuristic [CRYPTO ’86] is used to con-
vert any 3-message public-coin proof or argument system into a non-
interactive argument, by hashing the prover’s first message to select the
verifier’s challenge. It is known that this heuristic is sound when the hash
function is modeled as a random oracle. On the other hand, the surpris-
ing result of Goldwasser and Kalai [FOCS ’03] shows that there exists a
computationally sound argument on which the Fiat-Shamir heuristic is
never sound, when instantiated with any actual efficient hash function.

This leaves us with the following interesting possibility: perhaps we can
securely instantiates the Fiat-Shamir heuristic for all 3-message public-
coin statistically sound proofs, even if we must fail for some computation-
ally sound arguments. Indeed, this has been conjectured to be the case
by Barak, Lindell and Vadhan [FOCS ’03], but we do not have any prov-
ably secure instantiation under any “standard assumption”. In this work,
we give a broad black-box separation result showing that the security of
the Fiat-Shamir heuristic for statistically sound proofs cannot be proved
under virtually any standard assumption via a black-box reduction. More
precisely:
– If we want to have a “universal” instantiation of the Fiat-Shamir

heuristic that works for all 3-message public-coin proofs, then we
cannot prove its security via a black-box reduction from any as-
sumption that has the format of a “cryptographic game”.

– For many concrete proof systems, if we want to have a “specific”
instantiation of the Fiat-Shamir heuristic for that proof system, then
we cannot prove its security via a black box reduction from any
“falsifiable assumption” that has the format of a cryptographic game
with an efficient challenger.
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1 Introduction

The Fiat-Shamir (FS) heuristic [FS86] allows us to convert an interactive public-
coin protocol between a prover P and a verifier V into a one-message (non-
interactive) protocol. Recall that, in a public-coin protocol, the verifier sends a
uniformly random challenge to the prover in each round. Under the FS heuristic,
the prover executes the original interactive protocol “in his head”, computing
the verifier’s challenge in each round by applying some public hash function
to the transcript of the protocol so far. The prover then only sends the final
protocol transcript to the actual verifier, who verifies its validity. The hash
function can be initialized with some randomly chosen public seed, which we
think of as a “common random string (CRS)”, and therefore the compiled pro-
tocol is non-interactive in the CRS model. Alternatively, the seed can also be
chosen by the verifier in an additional initial message, in which case the com-
piled protocol consists of two messages. This heuristic has numerous remarkable
applications in cryptography, such as constructing practical signature schemes
[Sch91,GQ90,Oka93], non-interactive zero knowledge (NIZK) [BR93], and non-
interactive succinct arguments [Mic00].

Soundness of FS. Although the FS heuristic seems to produce secure crypto-
graphic schemes in practice, its formal security properties remain elusive. Per-
haps the most basic question is to understand the soundness of the heuristic
when applied to a statistically sound proof or computationally sound argument
for some NP language. We say that an instance of the FS-heuristic is sound
if the resulting non-interactive protocol is a computationally sound argument,
for the same language. We can ask what kind of protocols do we need to start
with, and what kind of hash functions should we use, to make the FS-heuristic
sound. Since we are interested in a negative result, we restrict our attention to
3-message public-coin (3PC) protocols.

Applying FS to arguments. On the positive side, if the FS heuristic uses a
random oracle as its hash function, then it is known to be sound when applied
to any 3PC argument [BR93,PS00,AABN02]. On the other hand, the work of
Goldwasser and Kalai [GK03] shows a surprising negative result: the FS heuristic
cannot be securely instantiated with any actual efficient hash function that would
achieve the same result. In particular, there exists some 3PC argument on which
the FS heuristic is never sound, no matter which efficient hash function we try
to instantiate it with.

Applying FS to proofs. The above negative result only applies to compu-
tationally sound arguments, and therefore we are still left with the following
interesting possibility: perhaps the FS heuristic could be instantiated with some
hash function that makes it sound for all 3PC statistically sound proofs, even if
it can fail for some arguments. We call such a hash function FS-universal. When
instantiated with an FS-universal hash function, the FS heuristic should suc-
cessfully compile any 3PC proof into a non-interactive (computationally sound)
argument.



Barak, Lindell, and Vadhan [BLV03] conjecture that such FS-universal hash
functions should indeed exist, and define a plausible hash-function property
called entropy-preservation, which they show to be sufficient. Variants of this
entropy-preservation property were further studied by Dodis, Ristenpart and
Vadhan [DRV12], who also showed that it is necessary. Nevertheless, despite the
amazing possibility that such hash functions may exist, we do not have any can-
didate construction that is provably secure under some “standard” cryptographic
hardness assumption.

Less ambitiously, we may hope to securely instantiate the Fiat-Shamir heuris-
tic for many specific 3PC proof and argument systems. In particular, for some
candidate 3PC proof or argument Π, we can hope to have a FS(Π)-secure hash
function that preserves soundness when applying the FS heuristic specifically
to the protocol Π. We do not know how to construct such FS(Π)-secure hash
functions for essentially any “interesting” proof or argument system Π.

1.1 Our Results

In this work, we re-examine the possibility of having FS-universal hash func-
tions, or FS(Π)-secure hash functions for specific proof systems Π. We prove
broad black-box separation results showing that the security of such hash func-
tions cannot be proved under virtually any standard assumption via a black-box
reduction that treats the attacker as a black box. More specifically, we provide
two main results:

FS-Universal Hash Functions. We show that one cannot prove the secu-
rity of an FS-universal hash function via a black-box reduction from any
“cryptographic game assumption” (see below). We leverage the connection
of [BLV03,DRV12] between FS-universal and entropy preserving hash func-
tions. Specifically, we first provide a separation for entropy preserving hash
functions, and then use it to get a similar separation for FS-universal hash
functions.

FS(Π)-Secure Hash Functions. For many specific proof and argument sys-
temsΠ, we show that one cannot prove the FS(Π)-security of a hash function
via a black-box reduction from any “falsifiable assumption” (see below). In
particular, we first prove a black-box impossibility result for two-round zero
knowledge w.r.t. super-poynomial simulation, extending the result of Goldre-
ich and Oren [GO94]. Then, by relying on this result, we obtain a black-box
impossibility result for any proof/argument systemΠ for a sub-exponentially
hard language L if Π is also honest-verifier zero-knowledge (HVZK) against
sub-exponential size distinguishers and has “short” challenges. The above
includes many natural Σ-protocols.
As an additional application of our result on two-round zero knowledge,
we show a black-box impossibility result for proving soundness of Micali’s
CS-proofs [Mic94] based on any falsifiable assumption. We note that unlike
[GW11], this result also holds for non-adaptive cheating proves, who choose
the instance before seeing the verifier’s message.



We wish to emphasize that these results do not refute the highly believable
conjecture that the FS heuristic can be securely instantiated for all proofs and
many natural arguments. However, it shows that we will need to rely on new
“non-standard” assumptions or develop new “non-black box” proof techniques
if we ever hope to prove this conjecture.

Assumptions. To capture all “standard assumptions”, we consider general
classes of assumptions defined in terms of the syntactic format that the assump-
tion takes. A “cryptographic game assumption” has the format of an interactive
game between a (possibly inefficient) challenger who interacts in a black-box
manner with some candidate attacker. The assumption states that every effi-
cient attacker has at most negligible probability in winning this game. This
notion is due to [DOP05,HH09]. A “falsifiable assumption” [Nao03] is a crypto-
graphic game assumption where the challenger is also efficient. Note that these
notions capture essentially all of the concrete assumptions we use in cryptogra-
phy, such as the hardness of factoring, the RSA problem, the discrete logarithm
problem, the computational/decissional Diffie-Hellman problem (CDH/DDH),
learning with errors (LWE), etc. We stress that these notions are defined as lib-
erally as possible so as to include essentially everything that could be considered
a “standard assumption”, and to make our negative result as strong as possible.
Of course, it may also capture many non-standard (and false) assumptions, as
well as trivially true and uninteresting assumptions.

FS-Universality. The assumption that a hash function is FS-universal does not
have the format of a cryptographic game, since the assumption quantifies over all
proof systems. In particular, an attack against “FS-universality” consists of two
components: a 3PC proof system Π = (P, V ) for some language L and a breaker
A that breaks the soundness of the Fiat-Shamir transform applied to Π. The
challenger cannot test that Π is a 3PC proof system by interacting with P, V in a
black-box manner. When we talk about black-box reductions for FS-universality,
we naturally restrict the challenger to interact with P, V,A as a black box. In
other words, the reduction is black-box in the code of the attacker, as well as
the proof system Π.

FS(Π)-Security. For a particular proof system Π for a language L, the assump-
tion that a hash function is FS(Π)-secure is a cryptographic game assumption:
the attacker wins if he can come up with a false statement x and an accepting
proof π under the non-interactive argument that we get by applying the FS
heuristic to Π. However, it does not have the format of a falsifiable assump-
tion since the challenger cannot efficiently test whether x is false statement, and
therefore, whether the attacker breaks soundness.

2 Preliminaries and Definitions

Let n denote the security parameter. We say that a function f(n) = 1/nω(1)

negligible in the security parameter, and denote it by negl(n). We consider the
class of efficient schemes to be ones that can be implemented by a probabilistic



polynomial-time Turing machine, denoted by PPT. In contrast, we consider the
class of efficient adversaries A = {An} to be non-uniform families of polynomial-
size circuits, denoted by polysize.

We start by describing the Fiat-Shamir heuristic for public-coin interactive
proofs. Recall that an interactive proof system [GMR89] for a language L with
corresponding relation R is a tuple of efficient algorithms Π = (P,V), where
P and V denote the prover and the verifier algorithms respectively. We assume
familiarity of the reader with the standard notions of completeness and soundness
for an interactive proof system, and skip formal defnitions.

The Fiat-Shamir heuristic. Throughout the paper, we will mainly focus on
the special case of applying the FS heuristic to a 3-message public-coin (3PC)
interactive proof system Π = 〈P, V 〉 for an NP relation R.7 Denote the first
message of the prover by α, the verifier’s challenge by β, and the final message
of the prover by γ. Also, let π = (α, β, γ) denote the transcript of the execution.

For security parameter n, let m(n) and k(n) denote the lengths of α and β,
respectively. Let H = {hs : {0, 1}m(n) → {0, 1}k(n)}n∈N,s∈{0,1}`(n) be a family
of hash functions mapping m bits to k bits. The Fiat-Shamir collapse (or FS-
collapse in short) of protocol Π = 〈P, V 〉 using H is a two-message protocol
ΠFS = 〈PFS, VFS〉 defined as follows:

– In the first message, the FS verifier VFS(1n, x) selects a random seed s ←
{0, 1}`(n) for the hash function. (We can also skip this step by thinking of s
as a common reference string).

– In the second message, the FS prover PFS(1n, x, w) runs P (1n, x, w) to derive
its first message α. It then computes the challenge β := hs(α) by hashing α,
and passes β to P to get its third message γ. Finally, PFS outputs the tuple
(α, β, γ).

– The FS verifier VFS(1n, x) accepts the proof if β = hs(α) and the original
verifier V (1n, x) accepts the protocol (α, β, γ) when executed with random-
coins β.

We say that the FS-collapse is sound if the resulting protocol ΠFS is a
computationally-sound argument system as specified below.

Definition 1 (Fiat-Shamir soundness). We say that ΠFS is computationally
sound if, for any polysize prover P ∗ = {P ∗n} and x /∈ L(R)

Pr
s

$←{0,1}`(n)

V (1n, x, π) = 1

∣∣∣∣∣∣
π ← P ∗n(x, s)
π = (α, β, γ)
hs(α) = β

 ≤ negl(n) .

We call the above probability the advantage of P ∗ in breaking computational
soundness.

7 Indeed, this is the most common but also minimal case for which Fiat-Shamir is ex-
pected to work, and therefore restricting ourselves to this case gives us the strongest
negative result.



Cryptographic Games and Falsifiable Assumptions. Cryptographic games
present a general framework for defining cryptographic assumptions and security
properties. A game is given by a protocol specified via a challenger who interacts
with an arbitrary attacker – security mandates that no efficient attacker should
be able to win the game with better than negligible probability.

Definition 2 (Cryptographic game [HH09]). A cryptographic game G =
(Γ, c) is defined by a (possibly inefficient) random system Γ , called the chal-
lenger, and a constant c ∈ [0, 1). On security parameter n, the challenger Γ (1n)
interacts with some attacker An and outputs a bit b. We denote the output of
this interaction by b = (An � Γ (1n)). The advantage of an attacker An in the
game G is defined as

AdvAG (n)
def
= Pr[ (An � Γ (1n)) = 1 ]− c .

A cryptographic game G is secure if for all polysize attackers A = {An}, the
advantage AdvAG (n) is negligible. The game is T (n)-secure if for all attackers

running in time poly(T (n)) the advantage AdvAG (n) is negl(T (n)) = T (n)−ω(1).

When c = 0, the above definition of cryptographic games captures search prob-
lems such as factoring, the discrete logarithm problem, signature security etc.
When c = 1

2 , it captures decisional problems such as DDH, encryption security
etc. Note that cryptographic games may be highly interactive and may not even
have any a-priori bound on the number of rounds of interaction between A and
Γ . The work of [GW11] defined a more restricted notion of cryptographic games
called “falsifiable assumptions” (following [Nao03]) where the challenger is also
required to be efficient.

Definition 3 (Falsifiable Assumption). We say that a cryptographic game
G = (Γ, c) is a falsifiable assumption if the challenger Γ (1n) runs in time poly(n).

3 Black-Box Impossibility of Entropy-Preserving Hashing
and Fiat-Shamir Universality

In this section, we show a black-box separation between hash function that are
Fiat-Shamir-universal and general cryptographic games. As explained in the
introduction, an FS-universal hash function family guarantees the soundness of
the Fiat-Shamir heuristic for any 3PC system with appropriate message and
challenge length.

Definition 4 ((m, k)-FS-universal hash function). We say that a hash-
function family H = {hs : {0, 1}m(n) → {0, 1}k(n)}s∈{0,1}`(n) is (m(n), k(n))-
FS-universal if for every 3PC (statistically sound) proof system 〈P, V 〉 with first
and second messages of respective lengths m = m(n) and k = k(n), the FS-
collapse ΠFS is a (computationally sound) argument.



As the main step towards this separation, we show a black-box separation
between the notion of entropy-preserving hash-functions introduced by Barak
et al. [BLV03] and general cryptographic games. We then leverage the connec-
tion between entropy-preserving hashing and FS-universal hashing as shown in
[BLV03,DRV12] to prove a similar seperation for the latter.

3.1 Black-Box Impossibility for Entropy-Preserving Hashing

Barak et al. [BLV03] formulated a relatively simple entropy preservation property
for hash functions, and showed that it is sufficient for FS-universality. Recall that
the (Shannon) entropy of a random variable x is H(x) = E

x
$←x

[− log(Pr [x = x])].

For jointly distributed random variables (x,y), the conditional entropy of x given
y is defined by

H (x | y) = E
y

$←y

[H (x | y = y)] ,

where x|y=y is a random variable distributed according to x conditioned on
y = y.

Definition 5 (Definition 9.2 in [BLV03]). We say that a hash function fam-
ily H = {hs : {0, 1}m(n) → {0, 1}k(n)}s∈{0,1}`(n) preserves u(n)-entropy, if for any
polysize A, and all large enough values of the security parameter n ∈ N we have

H (hs(x) | x) > u(n) ,

where s,x are correlated random variables defined by choosing s uniformly at
random over {0, 1}`(n), and setting x to be the first m(n) bits of the output
of A(1n, s). We say that the hash function (just plain) preserves entropy if it
preserves u(n)-entropy for u(n) = 0.

The work of [BLV03] shows that any hash function family that preserves
u(n) = k(n) − O(log n) entropy is (m, k)-FS-universal. An alternative take on
the notion of “entropy preserving” hash functions and a detailed exploration of
the parameters is given by Dodis, Ristenpart, and Vadhan [DRV12]. The same
work also shows an implication in the reverse direction: any (m, k)-FS-universal
hash function family must also preserve entropy. We will thus focus on showing
a black-box separation for entropy-preserving hash functions, and then adapt
the [DRV12] result to our setting.

Black-Box Reductions. We now define the notion of a black-box reduction
from entropy-preserving hashing to a cryptographic game.

Definition 6 (BB Reduction for Entropy Preserving Hash). Let G =
(Γ, c) be a cryptographic game and let H be a hash function family with input
length m(n) and output length k(n), for some polynomials m, k. A black-box
reduction showing that H is entropy-preserving from the security of the game G
is an oracle-access PPT machine B(·) for which there exists some polynomial p
such that the following holds. Let A = {An} be any (possibly inefficient) attacker



such that H (hs(x) | x) = 0, where the random variable s,x are defined the same

way as in Definition 5, i.e., s
$← {0, 1}`(n), and x← An(s). Then, the advantage

of BAn(1n) in the game G is at least 1/p(n).

Remark 1 (Reductions from T (n)-security assumptions). We can also consider a
variant, where the black-box reduction is from the T (n)-security of the crypto-
graphic game G. In this case, we allow the reduction B(·) to run in time poly(T (n))
and only insist that its advantage is ≥ 1/p(T (n)).

For simplicity, we insist that the reduction itself has some noticeable advan-
tage 1/p(n) rather than the standard requirement that its advantage is sim-
ply non-negligible. Furthermore, we also insist that the reduction is security-
parameter preserving meaning that when it is called with security parameter
1n it only accesses the oracle An on the same security parameter n. The above
two requirements come with some loss of generality, but they hold for all of the
natural reductions in cryptography.

BB Separation via Simulatable Attack. We now outline a general strategy
for proving black-box separations via a technique called a simulatable attack.
This strategy has been used in several prior works [BV98,Cor02,Bro05,PV05,GBL08]
[DOP05,HH09,GW11,Pas11,Seu12,DHT12,Wic12]. The main idea of this paradigm
is to construct a special inefficient attacker A that breaks the security of the
target primitive (in our case, the entropy-preserving security of H), but for
which there is an efficient simulator Sim such that no distinguisher can tell
the difference between “black-box” interaction with Sim and A. This means
that any efficient black-box reduction which can win some cryptographic game,
given oracle access to the inefficient attacker A, can also win the cryptographic
game, given oracle access to the efficient simulator Sim. Hence, if we have a
black-box reduction showing the entropy-preserving security of H under some
cryptographic-game assumption, it implies that the reduction, together with the
efficient simulator Sim, give us an efficient stand-alone attack against the as-
sumption, and so it cannot be secure to begin with!

Aspects of this technique were recently formalized in [Wic12], and we will rely
on the notation and the results from that work. However, for concreteness, we
only restrict ourselves to describing this strategy for the specific case of entropy
preserving hash functions.

Definition 7 (Simulatable Attack for Entropy-Preserving Hashing).
Let H be some hash function family with input length m(n) and output length
k(n). A ε(n)-simulatable attack on the entropy-preserving security of H con-
sists of: (1) an ensemble of (possibly inefficient) stateless non-uniform attackers
{An,f}n∈N,f∈Fn where {Fn} is some ensemble of finite sets, and (2) a stateful
PPT simulator Sim. We require that the following two properties hold:

– For each n ∈ N, f ∈ Fn, the (inefficient) attacker An,f successfully breaks
the entropy-preserving security of H.



– For every (possibly inefficient) oracle access machine M(·), making at most
q = q(n) queries to its oracle:∣∣∣∣∣ Pr
f

$←Fn,M
[MAn,r (1n) = 1] − Pr

(M,Sim)
[MSim(1n)(1n) = 1]

∣∣∣∣∣ ≤ poly(q(n)) · ε(n).

namely, oracle access to An,f for a random f
$← Fn is indistinguishable from

that to Sim.

We omit the ε(n) and just say “simulatable attack” as shorthand for an ε(n)-
simulatable attack with some negligible ε(n) = negl(n).

As discussed in the introduction, the existence of a simulatable attack against
some scheme H ensures that one cannot prove the security of H using black-
box reduction from cryptographic game assumption, unless the assumption is
false. This is because a reduction must be able to use the simulatable attacker
A against H to break the underlying assumption, but then this means that
the reduction and the simulator together would give us an efficient stand-alone
attack against the assumption to begin with. A general version of this theorem
was given in [Wic12] and therefore we get the following as a special case.

Theorem 1 (Special case of [Wic12]). If there exists a simulatable attack
against the entropy preserving security of H, and there is a black-box reduction
showing the entropy preserving security of H from the security of some crypto-
graphic game G, then G is not secure.

Furthermore, for any T (n), if there exists an ε(n) = T (n)−ω(1)-simulatable
attack against H and there is a black-box reduction from the T (n)-security of G,
then G is not T (n)-secure.

Constructing a Simulatable Attack. We now show that, for any family of
hash functions H, there is a simulatable attack against its entropy preserving
security.

Theorem 2. Let H = {hs : {0, 1}m(n) → {0, 1}k(n)}n∈N,s∈{0,1}`(n) be any fam-

ily of hash functions. Then there is a 2−Ω(m−k)-simulatable attack against the
entropy preserving security of H.

Proof outline. Let Fn be the set of functions f : {0, 1}m(n) → {0, 1}k(n), and
let F∗n ⊆ Fn be a subset consisting of all the functions f such that for every
s ∈ {0, 1}`(n), there is some x ∈ {0, 1}m on which hs(x) = f(x). We will define
a family of inefficient attackers {Breakf}, indexed by functions f ∈ F∗n, that
break the entropy preserving security of H. Before we do so, we first note that a
simple counting argument shows that F∗n is non-empty, and in fact forms a very
dense subset of Fn.

Claim. F∗n is dense in Fn with
|F∗
n|

|Fn| = (1− 2−Ω(2m−k))-fraction of Fn.



Breakf : f ∈ F∗n

Given input s ∈ {0, 1}`(n), output a random x from the set of all values satisfying
hs(x) = f(x).
(By the definition of F∗n, at least one such x always exists.)

Fig. 1.

Constructing an attack. Now, we are ready to define a family of inefficient
attackers {Breakf}, indexed by functions f ∈ F∗n, that break the entropy pre-
serving security of H as follows:

The attack is successful. For any fixed f ∈ F∗n, it is easy to see that the
attacker Breakf breaks the entropy preserving security of H. This is because,
conditioned on seeing any output x ← Breakf (s), we can completely determine
the value hs(x) without knowing the seed s, via the relation hs(x) = f(x).
Therefore, defining the random variables s to be uniform over {0, 1}`(n) and
x← Breakf (s), we have H(hs(x) | x) = 0 as desired.

The simulator for the attack. The more interesting part of the proof is showing
that for random f ← F∗n, the attacker Breakf can be simulated very efficiently,
with a small statistical error. Our (stateful) simulator is incredibly simple and, on
each invocation, just outputs a fresh random value (which wasn’t output previ-
ously). It is easy to see that the simulator satisfies the efficiency requirements

Sim(1n)

Initialize the set X := ∅.
On input s ∈ {0, 1}`(n): Sample x← {0, 1}m \X, add x to the set X, and output
x.

Fig. 2.

of the definition of a simulatable attack.
Indistinguishability of simulator. The next step is to show that a random

attacker from the class {Breakf} and the above simulator are statistically indis-
tinguishable. In particular, for any (computationally unbounded) q-query distin-
guisher M,∣∣∣∣∣ Pr

f
$←F∗

n

[
MBreakf (1n) = 1

]
− Pr

Sim

[
MSim(1n)(1n) = 1

]∣∣∣∣∣ ≤ q2 · 2−Ω(m−k) .

Theorem 1 and Theorem 2 allow us to conclude the following.

Corollary 1. Let G = (Γ, c) be a cryptographic game assumption and let H
be an (m, k)-hash function family for some polynomials m = m(n), k = k(n)



such that m(n)−k(n) = ω(log(n)). If there is a black-box reduction showing that
H is entropy-preserving from the security of the game G, then G is not secure.
Furthermore, if m(n) − k(n) = ω(log(T (n)) and there is a black-box reduction
showing that H is entropy preserving from the T (n)-security of G, then G is not
T (n)-secure.

3.2 Black-Box Impossibility of Fiat-Shamir Universality

As we have already mentioned, the work of Dodis, Ristenpart and Vadhan
[DRV12], shows that any FS-universal hash function family H must also be
entropy-preserving. Intuitively, this should imply that our negative result for
entropy-preserving hashing from the previous section should yield a similar neg-
ative result for FS-universal hashing. Indeed, we do show a theorem along these
lines. However, formalizing the above intuition requires some care. For example,
it becomes important that our notion of black-box reductions for FS-universal
hashing treats the 3PC proof-system as a black box. Intuitively, this is because
the result of [DRV12] uses the attacker A against the entropy-preserving security
of a hash family H to construct a 3PC proof system ΠA = 〈PA, V A〉 as well as
to attacker DA that breaks the soundness of the FS-collapse of ΠA. Therefore,
any black-box reduction that shows the FS-universality of H under some game
assumption by treating the proof system ΠA = 〈PA, V A〉 and the attacker DA
as a black box, can also be used as a reduction showing the entropy-preserving
security of H under the same assumption by treating the attacker A as a black
box. Further details can be found in [BGW12].

4 Impossibility of Fiat-Shamir for Specific Proof Systems

In this section, we show that for many well-studied public-coin interactive proofs,
the soundness of the Fiat-Shamir heuristic cannot be proven via a black-box
reduction to any falsifiable assumption. Using similar techniques, we also show a
black-box impossibility result for proving soundness of Micali’s CS-proofs [Mic94]
based on any falsifiable assumption. The main tool underlying both of these
results is a black-box impossibility result for two-round zero-knowledge w.r.t.
super-polynomial simulation.

We note that the connection between zero-knowledge and the (in)security
of Fiat-Shamir heuristic was already made in prior works. In particular, Dwork
et al. [DNRS99] showed that if a public-coin interactive protocol is “weakly”
zero-knowledge (where the ZK property is weakened by changing the order of
quantifiers in the standard ZK definition, but requiring the simulator and dis-
tinguisher to be polynomial time) then the Fiat-Shamir heuristic applied to
this protocol is not sound. We note however, that known public-coin protocols
where the FS-heuristic would typically be applied, are not known to satisfy their
zero-knowledge property. In contrast, (as we discuss below) we only require the
protocol to be honest-verifier zero-knowledge w.r.t. sub-exponential adversaries,



and show that this property is satisfied by many well-known protocols (under
some assumptions).

The rest of this section is organized as follows. In Section 4.1, we prove a
general theorem on the black-box impossibility of 2-round zero-knowledge argue-
ments. In Section 4.2 we apply this theorem to show that for many well-studied
public-coin interactive proofs, the soundness of the Fiat-Shamir heuristic cannot
be proven via a black-box reduction to any falsifiable assumption. Finally, in
Section 4.3, we extend our techniques to show a black-box impossibility result
for proving soundness of Micali’s CS-proofs [Mic94].

4.1 Black-Box Impossibility for 2-Round Zero Knowledge

In this section, we give a black-box impossibility result for 2-round zero-knowledge
arguments. Our theorem extends the negative result of Goldreich and Oren
[GO94], and can be seen as essentially tight, in view of the positive result of
Pass [Pas03]. We refer the reader to the full version [DJKL12] for a detailed
comparison of our result with [GO94] and [Pas03].

We start with some preliminaries and then describe our result.

Hard Languages and Zero-Knowledge Proofs.We start by formally defin-
ing a hard NP language.

Definition 8 (T -Hard Language). For any T = T (n), an NP language L
is said to be T -hard if there exist two distribution families X = {Xn}n∈N and
X̄ = {X̄n}n∈N, and a PPT sampling algorithm Samp such that:

– For every n ∈ N the support of Xn is in L and the support of X̄n is in L̄.
– The distributions X and X̄ are T (n)-indistinguishable.
– The support of the sampling algorithm Samp consists of elements (x,w) such

that R(x,w) = 1, and its projection to the first coordinate yields the distri-
bution X = {Xn}n∈N.
Note that since Samp is efficient, the distribution family X is efficiently
sampleable. There are no constraints on the size of the instances in Xn or
X̄n, however since X is efficiently sampleable each x← Xn is of size at most
poly(n).

An NP language is said to be sub-exponentially hard if it is 2n-hard.8

We now define the zero-knowedge property for an interactive proof system
[GMR89].

Definition 9 (T -Zero Knowledge). For any T = T (n), we say that an in-
teractive proof system Π = (P,V) for an NP language L is (auxiliary-input) T -
zero-knowledge if for every poly-size circuit V∗ there exists a simulator SV∗(1n)

8 Note that it should be hard for a poly(2n)-time distinguisher to distinguish between
elements in Xn and elements in X̄n, where these elements can be much longer than n,
and can be of length nε for any constant ε > 0 (thus, capturing the sub-exponential
hardness).



of size poly(T (n)) such that for every n ∈ N, every instance x ∈ L of length
at most poly(n) with a corresponding witness w, and every auxiliary input z ∈
{0, 1}poly(n), it holds that for every non-uniform distinguisher D = {Dn} of size
poly(T (n))∣∣Pr[D ((P(w),V∗(z))(1n, x)) = 1]− Pr[D (SV∗(1n, x, z)) = 1]

∣∣ ≤ negl(T (n)),

where (P(w),V∗(z))(1n, x) denotes the view of the verifier V∗ after interacting
with the honest prover on input security parameter n, statement x ∈ L, auxil-
iary input z, and SV∗(1n, x, z) denotes the output of the simulator SV∗ on input
(1n, x, z).

We now state our main technical theorem:

Theorem 3. For any T (n) and any T -hard language L, there does not exist a
2-round argument system Π for L such that:

– Π is (auxiliary-input) T -zero-knowledge, and
– the soundness of Π can be proven via a black-box reduction to a T -hard

falsifiable assumption,

unless the assumption is false.

Theorem 3, which we believe to be of independent interest, is also the starting
point for our impossibility results for the Fiat-Shamir paradigm (see Section 4.2)
and for CS proofs (see Section 4.3).

Proof Idea. Consider a 2-round argument system Π for a T -hard language
L that is (auxiliary-input) T -zero-knowledge. We prove, by contradiction, that
the soundness of Π cannot be proven via a black-box reduction to a T -hard
falsifiable assumption. Let n be a security parameter and suppose that there
exists a poly(T (n))-time black-box reduction R such that given black-box oracle
access to any cheating prover P∗, uses this oracle to break a T (n)-hard falsifiable
assumption. By the definitions of a T (n)-hard falsifiable assumption and a black-
box reduction, we know the reduction R runs in time poly(T (n)).

By naturally extending Goldreich and Oren’s 2-round zero-knowledge im-
possibility result [GO94], we first prove that the T -zero-knowledge simulator S
always produces an accepting transcript, even when given a statement x ∈ L̄.
Thus, we may view S as a cheating prover. This means that R breaks the as-
sumption when given oracle access to S (and S is given x ∈ L̄). For brevity, we
say that RS(x∈L̄) breaks the assumption. However, we must be careful because
the reduction R may “lie” about the security parameter and run S with secu-
rity parameter κ 6= n. We denote by n the security parameter of the underlying
falsifiable assumption, and denote by κ the security parameter that the reduc-
tion uses when calling S (though the reduction R may call S many times with
different security parameters). Note that the bound on the running time of R
means κ ≤ T (n).

Our approach is to show that oracle access to S(x ∈ L̄κ) can be simulated
in time poly(T (n)) regardless of the value of κ. If κ ≤ n then S(x ∈ L̄κ) runs in



time poly(T (κ)) ≤ poly(T (n)) and we are done. However, if κ > n then we show
that if RS(x∈L̄κ) breaks the assumption then so does RP(x∈Lκ,w), where w is a
valid witness for x ∈ Lκ and P is the honest prover. Since P(x ∈ Lκ, w) runs
in time poly(κ) ≤ poly(T (n)), this means we can simulate S(x ∈ L̄κ) in time
poly(T (n)).

4.2 Black-Box Impossibility for Fiat-Shamir Paradigm

For the sake of simplicity of notation, we present our results for the case of 3-
round public-coin protocols. We note that although our techniques generalize to
constant-round protocols, the case of 3-rounds already covers many interesting
applications of the Fiat-Shamir paradigm.

We start by defining special honest-verifier (auxiliary-input) T -zero-knowledge.
We will later show the black-box impossibility results for protocols which have
this property.

Definition 10. For any T = T (n), we say that a 3-round public-coin proof
(or argument) system Π = (P,V) for an NP language L is (auxiliary-input)
special honest-verifier T -zero-knowledge if there exists a simulator S(1n) of size
poly(T (n)) such that for every n ∈ N, every instance x ∈ L of length at most
poly(n) with a corresponding witness w, every auxiliary input z ∈ {0, 1}poly(n),
and every random tape β of the verifier it holds that for every non-uniform
distinguisher D = {Dn} of size poly(T (n))∣∣Pr[D ((P(w),V(z, β))(1n, x)) = 1]− Pr[D (S(1n, x, z, β)) = 1]

∣∣ ≤ negl(T (n)),

where (P(w),V(z, β))(1n, x) denotes the view of the honest verifier V after in-
teracting with the honest prover on input security parameter n, statement x ∈ L,
auxiliary input z, and random tape β, and S(1n, x, z, β) denotes the output of
the simulator S on the corresponding inputs.

We note that special honest verifier zero knowledge differs from honest verifier
zero knowledge since the simulator must successfully simulate the view of the
honest verifier for every given random tape β.

We now state the main theorem of this section:

Theorem 4. For any T (n) and any T -hard language L, let Π be a 3-round
public-coin proof (or argument) system for L with 2|β| ≤ T (n) which is special
honest verifier (auxiliary input) T -zero knowledge. Then, the soundness of the
FS-collapse of Π, namely, ΠFS, cannot be proven via a black-box reduction to a
T -hard falsifiable assumption (unless the assumption is false).

Note that many public-coin proof (or argument) systems (such as those dis-
cussed in Section 4.2) consist of ` parallel repetitions of a basic protocol where
the length of the verifier’s message is a constant number of bits (or may depend
logarithmically on the size of the instance x). To save on communication, it is
desirable to repeat the protocol only ` = poly log(n) times, since this already



achieves negligible soundness error. For such protocols, Theorem 4 implies that if
the language L is quasi-polyomially hard, then the Fiat-Shamir transformation
applied to this protocol cannot be proven sound via a black-box reduction to a
falsifiable assumption.

Given Theorem 4, one may hypothesize that the Fiat-Shamir transformation,
when applied to protocols of the type discussed above, can in fact be proven
secure (via a black-box reduction to a falsifiable assumption) when the number
of parallel repetitions is increased to ` = poly(n). However, we show that this is
not the case; for many protocols of interest, the impossibility result holds even
when the number of repetitions `, is greater than the hardness of the language.

Corollary 2. Let L be a sub-exponentially hard language and let Π be a 3-round
public-coin proof (or argument) system for L with the following properties:

– The length of the second message, β, is polynomial in the security parameter,
n, and is independent of the length of the instance, x.

– Π is special honest verifier (auxiliary input) 2|β|-zero knowledge.

Then, the soundness of the FS-collapse of Π, namely, ΠFS, cannot be proven via
a black-box reduction to a 2|β|-hard falsifiable assumption (unless the assumption
is false).

Corollary 2 follows from Theorem 4, as follows. Recall that a language is said
to be sub-exponentially hard if it is T -hard for T (n) = 2n (see Definition 8).
Namely, if there exist distributions Xn and X̄n over strings of length poly(n)
that are 2n-indistinguishable, where Xn is a distribution over instances in the
language and X̄n is a distribution over instances outside the language. Note that
the length of these instances can be much larger than n, and can be of length
n1/ε for any constant ε > 0.

We argue that any sub-exponentially hard language is also 2p(n)-hard, for any
polynomial p. This follows by simply taking X ′n = Xp(n) and by taking X̄ ′n =
X̄p(n). Using this observation, Corollary 2 follows immediately from Theorem 4

by choosing T (n) = 2p(n) such that |β| = p(n).

Remark 2. It was first observed by Dwork et al. [DNRS99] that if Π is a 3-
round public-coin proof (or argument) system for L that is T -zero-knowledge for
T = poly(n), then the transformed protocol, ΠFS, cannot be not sound. In con-
trast, we prove our results for protocols Π that have inefficient zero-knowledge
simulators; i.e., simulators that run in T -time, where T is superpolynomial in
n. Note, however, that we only require standard soundness from ΠFS; i.e., we
require that ΠFS is sound against efficient, polynomial-time, adversaries. Thus,
our results do not follow from [DNRS99].

Applications of Theorem 4 and Corollary 2. Typically (or at least tradi-
tionally), the Fiat-Shamir paradigm is applied to 3-round identification schemes,
or more generally to what are called Σ-protocols. All these protocols are special
honest-verifier zero-knowledge (see Definition 10). Therefore, Theorem 4 and



Corollary 2 imply (black-box) negative results for the Fiat-Shamir paradigm
when applied to any such protocol. In what follows we give two specific exam-
ples, keeping in mind that there are many other natural examples that we do
not mention.

Perfect Zero-Knowledge Protocol for Quadratic Residuosity. Recall the
language LQR of quadratic residues.

LQR = {(N, y) | ∃x ∈ Z∗N s.t. y = x2 mod N}

This language is assumed to be hard w.r.t. distributions Xn and X̄n, defined
as follows. In both distributions, N is sampled by sampling two random n-bit
primes p and q, and setting N = pq; in Xn, the element y is a random quadratic
residue, and in X̄n the element y is a random quadratic non-residue with Jacobi
symbol 1.

Recall the well-known perfect zero-knowledge Σ-protocol for quadratic resid-
uosity with soundness 1/2 [Blu81]. We denote by Π`-QR the perfect special
honest-verifier zero-knowledge protocol consisting of ` parallel executions of the
basic Σ-protocol. We denote by ΠFS(`-QR) the protocol obtained when applying
the Fiat-Shamir paradigm to Π`-QR. By applying Corollary 2, we obtain the
following theorem:

Theorem 5. For any ` = `(n) = poly(n), if LQR is sub-exponentially hard
then the soundness of ΠFS(`-QR) cannot be proven via a black-box reduction to a
falsifiable assumption (unless the assumption is false).

Blum’s Zero-Knowledge Protocol for NP. Recall the well-knownΣ-protocol
for NP of Blum [Blu87], based on the NP-complete problem of Graph Hamiltonic-
ity, with soundness 1/2. We denote by Π`-Blum the special honest-verifier zero-
knowledge protocol consisting of ` parallel executions of the basic Σ-protocol.
Note that Π`-Blum is special honest-verifier 2`-zero-knowledge, if the hiding prop-
erty of the commitment scheme holds against 2`-size adversaries.9

We denote by ΠFS(`-Blum) the protocol obtained when applying the Fiat-
Shamir paradigm to Π`-Blum. By applying Corollary 2, we obtain the following
theorem:

Theorem 6. For any ` = `(n) = poly(n), if there exist NP languages L which
are sub-exponentially hard, and if ΠFS(`-Blum) is instantiated with a commitment
scheme whose hiding property holds against 2`-size adversaries, then the sound-
ness of ΠFS(`-Blum) cannot be proven via a black-box reduction to a falsifiable
assumption (unless the assumption is false).

As noted above, one can apply Theorem 4 or Corollary 2 to many other Σ
protocols (such as the ones based on the DDH assumption or on the N ’th resid-
uosity assumption), and obtain (black-box) negative results for the soundness of
the resulting protocols obtained by applying the Fiat-Shamir paradigm.

9 Recall that for a protocol to be special honest-verifier 2`-zero knowledge, the simu-
lated view needs to be 2`-indistinguishable from the real view (see Definition 10).



Proof Intuition for Theorem 4. Theorem 4 follows from the following lemma
and from Theorem 3:

Lemma 1. Let Π be a 3-round public-coin proof or argument system for a T (n)-
hard language L with the following properties:

– The length of the second message, β, satisfies 2|β| ≤ T .
– Π is special honest verifier (auxiliary input) T -zero knowledge.

Then the FS-collapse of Π, namely, ΠFS is (auxiliary-input) T -zero-knowledge.

Proof Idea. In order to show that ΠFS is (auxiliary-input) T -zero knowledge,
we must present a simulator SFS that simulates the view of every poly-sized
circuit V∗. Informally, SFS does the following:

– Begin an emulation of V∗ and continue until V∗ outputs hFS.
– Choose T 2 random values β1, . . . , βT 2

– Invoke S, the special honest verifier T -zero-knowledge simulator for Π, T 2

times on β1, . . . , βT 2 , receiving transcripts (α1, β1, γ1), . . . , (αT 2 , βT 2 , γT 2).
– Return the first transcript (αi, βi, γi), such that hFS(αi) = βi. If no such

transcript exists, return ⊥.

We show that if there is a distinguisher D of size poly(T (n)) that can dis-
tinguish between real and simulated transcripts outputted by SFS, then there is
also a distinguisher D∗ of size poly(T (n)) that distinguishes between sequences
of length T 2 of real and simulated transcripts ouputted by S. This contradicts
the special honest verifier (auxiliary-input) T -zero knowledge of Π.

Intuitively, D∗ will emulate SFS, but will receive transcripts (αi, βi, γi), from
an external challenger which are either sampled from the real distribution or
which are sampled from S. Then, D∗ will run D on the view outputted by the
emulation and will output whatever D outputs.

Now, in the case that (αi, βi, γi), are sampled from the real distribution, SFS
outputs ⊥ with negligible (in T ) probability. This is the case since in the real
distribution, each βi is independent of αi and so the probability that hFS(αi) 6= βi
is 1− 1/T . Therefore, the probability that for all 1 ≤ i ≤ T 2, hFS(αi) 6= βi, is at

most (1−1/T )T
2

. Thus when (αi, βi, γi), are sampled from the real distribution,
the output of D∗ is statistically close to a real execution of ΠFS.

On the other hand, when (αi, βi, γi) are outputted by S, then the output of
D∗ is identical to the output of SFS. Thus, D, and so also D∗, will distinguish
between the two cases.

4.3 Separating CS Proofs from Falsifiable Assumptions

In this section we show that for sufficiently hard NP languages, there exist
probabilistically checkable proofs (PCPs) such that Micali’s CS proofs [Mic94]
instantiated with such a PCP cannot be proven sound (even when the state-
ment is chosen “non-adaptively”) via a black-box reduction to any falsifiable
assumption.



Let ΠFS denote Micali’s 2-message CS proof system obtained by applying
the Fiat-Shamir transformation to Kilian’s succinct argument system [Kil92] Π
using hs ← H. For any NP language L and any PCP, Πpcp, for L, Micali proved
that ΠFS is sound in the so called random oracle model, where the FS-hash hs is
modeled as a random oracle. We now prove that for every 2`(n)-hard language L,
there exists an `-query PCP such that the CS proof ΠFS for language L cannot
be proven sound via a black-box reduction to any falsifiable assumption. More
formally,

Theorem 7. For all ` = `(n) and any 2`(n)-hard language L, there exists an
`-query PCP Πpcp such that the soundness of CS proof ΠFS instantiated with
Πpcp for language L cannot be proven via a black-box reduction to a 2`(n)-hard
falsifiable assumption (unless the assumption is false).

The following corollary follows easily from Theorem 7.

Corollary 3. For any sub-exponentially hard language L and for any ` = poly(n),
there exists an `-query PCP Πpcp such that the soundness of CS proof ΠFS in-
stantiated with Πpcp for language L cannot be proven via a black-box reduction
to a 2`(n)-hard falsifiable assumption (unless the assumption is false).

Let L be a 2`(n)-hard language. Our main idea is to show that when Kil-
ian’s succinct argument Π is instantiated with a specific PCP (with some zero-
knowledge properties), then it is a (special) honest verifier 2`(n)-zero knowledge
argument for L, where the verifier’s second message is of length at most `. This,
when combined with Theorem 4 immediately yields the proof of Theorem 7. Due
to lack of space, we defer the proof to the full version [DJKL12].
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[Cor02] Jean-Sébastien Coron. Security proof for partial-domain hash signature
schemes. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 613–626. Springer,
August 2002.

[Cra12] Ronald Cramer, editor. Theory of Cryptography - 9th Theory of Cryptog-
raphy Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012.
Proceedings, volume 7194 of Lecture Notes in Computer Science. Springer,
2012.

[DHT12] Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the instantiability of
hash-and-sign rsa signatures. In Cramer [Cra12], pages 112–132.

[DJKL12] Dana Dachman-Soled, Abhishek Jain, Yael Tauman Kalai, and Adriana
Lopez-Alt. On the (in)security of the fiat-shamir paradigm, revisited. Cryp-
tology ePrint Archive, Report 2012/706, 2012. http://eprint.iacr.org/.

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer.
Magic functions. In FOCS, pages 523–534, 1999.

[DOP05] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic
insecurity of the full domain hash. In Victor Shoup, editor, Advances in
Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 449–466. Springer, August 2005.

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness
condensers for efficiently samplable, seed-dependent sources. In Cramer
[Cra12], pages 618–635.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO, volume 263 of Lecture Notes in Computer Science, pages 186–
194. Springer, 1986.

[GBL08] Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved
bounds on security reductions for discrete log based signatures. In David
Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of
Lecture Notes in Computer Science, pages 93–107. Springer, August 2008.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. In 44th Annual Symposium on Foundations of Computer
Science, pages 102–115. IEEE Computer Society Press, October 2003.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989. Preliminary version appeared in STOC ’85.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7(1):1–32, December 1994.

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In Shafi Goldwasser,
editor, Advances in Cryptology – CRYPTO’88, volume 403 of Lecture Notes
in Computer Science, pages 216–231. Springer, August 1990.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd Annual ACM Symposium on Theory of Computing,
pages 99–108. ACM Press, June 2011.



[HH09] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key de-
pendent encryption. In Omer Reingold, editor, TCC 2009: 6th Theory of
Cryptography Conference, volume 5444 of Lecture Notes in Computer Sci-
ence, pages 202–219. Springer, March 2009.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
STOC ’92, pages 723–732, 1992.

[Mic94] Silvio Micali. A secure and efficient digital signature algorithm. Technical
Memo MIT/LCS/TM-501b, Massachusetts Institute of Technology, Labo-
ratory for Computer Science, April 1994.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000. Preliminary version appeared in FOCS ’94.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of
the 23rd Annual International Cryptology Conference, CRYPTO ’03, pages
96–109, 2003.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and
corresponding signature schemes. In Ernest F. Brickell, editor, Advances
in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer
Science, pages 31–53. Springer, August 1993.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to
protocol composition. In EUROCRYPT, pages 160–176, 2003.

[Pas11] Rafael Pass. Limits of provable security from standard assumptions. In
Lance Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM Symposium
on Theory of Computing, pages 109–118. ACM Press, June 2011.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signa-
tures and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may
not be equivalent to discrete log. In Bimal K. Roy, editor, Advances in
Cryptology – ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer
Science, pages 1–20. Springer, December 2005.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, 1991.

[Seu12] Yannick Seurin. On the exact security of schnorr-type signatures in the
random oracle model. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages
554–571. Springer, 2012.

[Wic12] Daniel Wichs. Barriers in cryptography with weak, correlated and
leaky sources. Cryptology ePrint Archive, Report 2012/459, 2012.
http://eprint.iacr.org/.


