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Abstract. We propose a 2-party UC-secure protocol that can compute
any function securely. The protocol requires only two messages, commu-
nication that is poly-logarithmic in the size of the circuit description of
the function, and the workload for one of the parties is also only poly-
logarithmic in the size of the circuit. This implies, for instance, delegat-
able computation that requires no expensive off-line phase and remains
secure even if the server learns whether the client accepts its results. To
achieve this, we define two new notions of extractable hash functions,
propose an instantiation based on the knowledge of exponent in an RSA
group, and build succinct zero-knowledge arguments in the CRS model.

1 Introduction

In the setting of secure two-party computation, two parties with private inputs
wish to jointly compute some function of their inputs while preserving certain
security properties like privacy, correctness and more. Despite the stringent re-
quirements of the standard simulation-based security definitions [GL90,Can00],
it has been shown that any probabilistic polynomial-time two-party functionality
can be computed securely against malicious adversaries [Yao86,GMW87,Gol04].
Following these feasibility results many constructions have been proposed to im-
prove the efficiency of the computation [IPS09,PSSW09,NO09,LP11,IKO*11].
A recent work by Gordon et al. [GKK'11] shows an approach using oblivi-
ous RAM, with polylogarithmic amortized workload overhead. The best round
complexity is obtained by [IPS08,TKO™11] who show a single round protocol in
the non-interactive setting. For a general study of multiparty computation with
minimal round complexity, see [KK07,IKP10].

The communication complexity of these constructions depends heavily on the
size of the computed circuit. To the best of our knowledge, all works that try to
minimize the communication complexity do so for particular tasks of interests
such as private information retrieval (PIR) [KO97] or functions captured by
branching programs and random access memory machines [NNO1]. In all these
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constructions, the parties do essentially the same amount of work, namely at least
the amount of work needed to evaluate the specified circuit. Such constructions
are appropriate for settings in which the parties are equally powerful, and offer
no solution for “asymmetric settings” in which one of the devices is strictly
(computationally) weaker than the other (e.g., smartcards, mobile devices). In
this paper we will be interested in solutions for such asymmetric settings, so we
want to minimize the workload for one of the parties.

For semi-honest attacks, fully homomorphic encryption [Gen09,BV1la] can
be used to design a simple one round protocol with sublinear communication
complexity. Here one party, say P, sends its encrypted input to party P», who
uses the homomorphic property to compute ciphertexts that contain the desired
output. These ciphertexts are sent to P; who can decrypt and learn the result.
Obviously, this solution breaks down under malicious attacks. The obvious so-
lution is to have P, give a non-interactive zero-knowledge proof (NIZK) that
his response is correct, but this will not solve our problem. Even though such a
proof can be made very short [Groll], P; would have to work as hard as P5 to
check the NIZK, and hence the computational complexity for both parties would
be linear in the circuit description of the function to compute. This does not fit
our scenario where we want to minimize the work for one party.

To reach our goal, one needs a protocol by which a prover can give a short
zero-knowledge argument for an NP statement, where the verifier only needs to
do a small amount of work. More precisely, the amount of work needed for the
verifier is polynomial in the security parameter and the size of the statement
but only poly-logarithmic in the time needed to check a witness in the standard
way. Such proofs or arguments are usually called succinct. The history of such
protocols starts with the work of Kilian [Kil92] who suggested the idea of having
the prover commit to a PCP for the statement in question using a Merkle hash
tree, and then have the verifier (obliviously) check selected bits from the PCP.
This protocol is succinct and zero-knowledge but requires several rounds and so
cannot be used towards our goal of a 2-message protocol. Subsequent work in this
direction has concentrated on protocols where only a succinct non-interactive
argument (and not zero-knowedge) is required. This is known as a SNARG.
Micali [Mic00] suggested one-message solution based on Kilian’s protocol and
the Fiat-Shamir heuristic. In [ABORO00] Aiello at al. suggested a two-message
protocol where the verifier accesses bits of the PCP via a private information
retrieval scheme (PIR). In such a scheme a client can retrieve an entry in a
database held by a server without the server learning which entry was accessed.
It seems intuitively appealing that if the prover does not know which bits of the
PCP the verifier is looking at, soundness of the PCP should imply soundness
of the overall argument. However, it was shown in [DLN104] that this intuition
is not sound. Di Crescenzo and Lipmaa [CLO08| suggested a solution where the
prover commits to a PCP using the root of a Merkle tree as in Kilian’s protocol,
but to prove security, they made a very strong type of extractability assumption
implying extraction of an entire PCP from the prover in one go.



Our Contribution. Compared to the work on SNARGs just discussed, our work
makes two contributions: first, we show how to achieve simulation based privacy
also for the prover, even if the verifier is malicious. We need this since our goal
is UC-secure 2-party computation and we must have privacy for both parties,
even under malicious attacks. This is the reason we need a set-up assumption
allowing parties to give non-interactive zero-knowledge proofs of knowledge of
their inputs. Also, to get a zero-knowledge SNARG, we do not use the PCP+PIR
approach from earlier work for a general PIR, instead we build a PIR-like scheme
based on FHE, allowing the prover to compute NIZKs “inside the ciphertexts”.
Second, we suggest two notions of “extractable hash function” that are more
natural and milder than the assumption of Di Crescenzo and Lipmaa but still
allow succinct arguments.

Based on these techniques we present a two-party protocol in the common
reference string model that computes any PPT functionality f with UC security
against malicious adversaries. Our protocol is the first to additionally achieve
the following strong properties: Polylogarithmic communication complexity in
the size of the circuit C' that computes f. One round complezity, i.e., a single
message in each direction. Polylogarithmic workload in the size of the circuit C
that computes f, for one of the parties. Our protocol is based on fully homo-
morphic encryption, non-interactive zero-knowledge proofs and the existence of
extractable hash functions. While the first two notions are fairly standard, we
explain in more detail the new notions of extractability:

The first extractability assumption (EHF1) considers a collision intractable
hash function H mapping into a small subset of a large domain and essentially
asserts that the only way to generate an element in Im(H) is to compute the
function on a given input. More precisely, we require that for every adversary
outputting a value h there exists an efficient extractor that (given the same
randomness) outputs a preimage of h, whenever h € Im(H). We propose an in-
stantiation of EHF1-extractable and collision intractable hash functions based on
a knowledge of exponent assumption [Dam91] in Z%;, for N is an RSA modulus.

The second extractability assumption (EHF2) makes a weaker demand on
the hash function H: again we require that for each adversary outputting h,
there exists an extractor that tries to find a preimage. This time, however, the
extractor is allowed to fail even if h € Im(H). The demand, however, is that
if the extractor fails, the adversary cannot find a preimage either, even if he
continues his computation with fresh randomness and auxiliary data that was
not known to the extractor.

It is easy to verify that EHF1 implies EHF2: under EHF1, the extractor
only fails if it is smpossible to find a preimage. The more interesting direction is
whether EHF2 implies EHF1. In the concurrent and independent work of Bitan-
sky et al. [BCCT11], they consider a variant of EHF1 where the hash function
has a stronger notion of collision intractability, so-called proximity collision re-
sistance. They then show that proximity EHF'1 is equivalent to proximity EHF2
and furthermore existence of such functions is equivalent to the existence of



non-interactive arguments of knowledge (SNARKs). Whether our EHF2 notion
implies EHF1 is an interesting open question.

Note that EHF2 is true in the random oracle model, where we let the random
oracle play the role of H. In this case it is easy to see that no matter how the
adversary produces a string h, there are only two cases: either h was output by
the random oracle or not. In the former case a preimage is easy to extract, in the
latter case no one can produce a preimage except with negligible probability. So
the extractor can safely fail in this case.

Finally, it is interesting to note that EHF2 opens the possibility to use many
more candidate hash functions, whereas previously only rather slow functions
based on number theoretic assumptions seemed to apply. This is because stan-
dard hash functions such as SHA (are thought to) behave similarly to a random
oracle, and such a function does not satisfy EHF1. However, using, e.g., the
random oracle preserving EMD transform from [BR06], one may get interesting
candidates for efficient functions satisfying EHF2.

We wish to warn the reader that extractability assumptions are regarded
as controversial by some; on the other hand such assumptions have recently
been studied quite intensively [BP04,CL08,Grol0,BCCT11,GLR11]. Moreover,
Gentry and Wichs [GW11] have recently shown that SNARGs cannot be shown
secure via a black-box reduction to a falsifiable assumption [Nao03]. Even more
to the point, as mentioned above, [BCCT11], shown that existence of SNARKs
imply existence of extractable hash functions. This suggests that non-standard
assumptions such as knowledge of exponent are necessary in this setting and
hence our construction is essentially tight. Finally, as we pointed out above, the
EHF2 assumption is true in the random oracle model and is implied only by the
fact that one must call the oracle to get a valid output. So we only use one of the
many “magic properties” that the random oracle model has, and this particular
one is in fact satisfied in the standard model, if our assumption holds. Therefore,
we believe that the assumption on extractable hash functions should be regarded
as much less controversial than using the random oracle model.

Applications. Variants of our construction is useful for various settings. We
briefly describe some of these applications here, for further details and additional
applications, see the full version of this paper [DFH11].

NON-INTERACTIVE SECURE COMPUTATION. In the non-interactive setting a
receiver wishes to publish an encryption of its secret input = so that any other
sender, holding a secret input y, will be able to obliviously evaluate f(x,y)
and reveal it to the receiver. This problem is useful for many web applications in
which a server publishes its information and many clients respond back. A recent
work by Ishai et al. [IKOT11] presents the first general protocol in this model
with only black-box calls to a pseudorandom generator (PRG). In contrast, our
protocol makes non black-box use of the fully homomorphic encryption but only
requires polylogarithmic communication complexity.

DELEGATABLE COMPUTATION. In this setting, a computationally weak client
wishes to outsource its computation to a more powerful server, with the aim
that the server performs this computation privately and correctly. An important



requirement in this scenario is that the amount of work put by the client in order
to verify the correctness of the computation is substantially smaller than running
this computation by itself. It is also important that the overall amount of work
invested by the server grows linearly with the original computation. Lately, the
problem has received a lot of attention; see [ATK10,CKV10,GGP10,BGV11] for
just a few examples. Our construction implies delegatable computation and can
be simplified here because P; (the client) is usually assumed to be honest, and
P, (the server) does not contribute any input y to the computation. Therefore
we do not need a set-up assumption, and in contrast to earlier work, the scheme
requires no expensive off-line phase and remains secure even if the server learns
whether the client accepts its results.

Concurrent Related Work In recent concurrent and independent work, Bi-
tanski et al [BCCT11] and Goldwasser et al. [GLR11] both define notions of
extractable hash function that are technically slightly different from our EHF1
notion, but similar in spirit. They each propose instantiations different from
ours. They then build SNARGs based on this assumption, and [BCCT11] also
build SNARGs that are in addition proofs of knowledge (SNARK’s), and show
the very interesting result that existence of SNARKSs are equivalent to two no-
tions of extractable hash function similar to EHF1, respectively EHF2, known
as strong and weak proximity extractable hash functions.

Privacy for the prover is not considered in [GLR11]. In [BCCT11] zero-
knowledge SNARKSs and secure computation based on this is shown in the CRS
model. They consider only stand-alone rather than UC security, on the other
hand they obtain a protocol whose communication complexity is independent of
the parties input. This can also be obtained from our construction using a simple
modification based on PCP’s of knowledge, but UC security would be lost.

2 Notations and Definitions

In this section, we review standard notations. Due to space constraints, we do
not give a definition of secure computation here, the definition and proof can
be found in [DFH11]. We denote the security parameter by n and adopt the
convention whereby a machine is said to run in polynomial-time if its number of
steps is polynomial in its security parameter. We use the standard definitions
of negligible functions and indistinguishability of families of random variables,
these can be found in the full version [DFH11]. For convenience, we use a single
security parameter for all our primitives and proofs. For an integer ¢, we denote
by [t] the set {1,...,¢}, and by {0,1}<¢ the set of all binary strings of length at
most t — 1. If X is a random variable then we write x - X for the value that
the random variable takes when sampled according to the distribution of X. If
A is a probabilistic algorithm running on input z, then we write z + A(z) for
the output of A when run on input z.



2.1 Public Key Encryption Schemes

We specify the notion of public key encryption scheme. We use the standard
notion of semantic security and refer to the full version [DFH11] for a formal
definition.

Definition 1 (PKE) We say that IIg = (KeyGen, Enc, Dec) is a public key en-
cryption scheme (PKE) if KeyGen, Enc, Dec are algorithms specified as follows.

— KeyGen, given a security parameter n (in unary), outputs keys (pk, sk), where
pk is a public key and sk is a secret key. We denote this by (pk,sk) <
KeyGen(1™).

— Enc, given the public key pk and a plaintext message m, outputs a ciphertext
¢ encrypting m. We denote this by ¢ < Encpr(m); and when emphasizing
the randomness R used for encryption, we denote this by ¢ < Encyr(m; R).

— Dec, given the secret key sk and a ciphertext ¢, outputs a plaintext message
m s.t. Decgi(Encpr(m)) = m.

2.2 Fully Homomorphic Encryption Schemes

We define fully homomorphic encryption and additional desired properties. We
will say that a bit string pk is a well-formed public key, if it can be generated as
output from the KeyGen algorithm on input the security parameter and a set of
random coins in the range specified for the key generation algorithm. Similarly,
a bit string c is a well-formed ciphertext if ¢ = Encpi(m;r) for message m and
random coins r lies in the range specified for the encryption algorithm.

Definition 2 (FHE) We say that IIg = (KeyGen, Enc, Dec, Eval) is a fully ho-
momorphic encryption scheme (FHE) if KeyGen, Enc, Dec are algorithms specified
as in Definition 1 and Eval is an algorithm specified as follows.

— Eval, given a well-formed public key pk, a boolean circuit C' with fan-in of size
t and well-formed ciphertexts c1,...,cp encrypting mq,...,my respectively,
outputs a ciphertext ¢ such that Decg(c) = C(mq,...,mye).

We further require the existence of a refresh algorithm Refresh so that for well-
formed pk, c1, ..., cg, the following distributions are statistically close,

{pk, Refresh,i (Evaly,(C, c1, ..., ce))} =s {pk, Refresh, i (Encyi(C(ma, ..., my)))}

Typically, Refresh would run Eval again on ciphertexts Eval,,(C,c1,...,¢e), an
appropriately chosen encryption of zero and an addition gate. The idea is that
the randomness for the encryption of zero is chosen large enough to “drown”
the randomness coming from the original encryptions. We need that Refresh is
correct, in the sense that on input well-formed pk, c1, ..., ¢y as above, it outputs
with probability 1 a ciphertext that decrypts to C'(myq,...,me). We also require
that ITg is semantically secure. Finally, we note that we require compactness in



the sense that the output of Eval is upper bounded by some fixed polynomial
regardless of C' or the input length.

We note that our requirements on correctness of the Eval and Refresh algo-
rithms are stronger than what is usually assumed by existing schemes in the
literature: we want them to generate output of the expected form with probabil-
ity 1 whenever the input is well-formed, whereas other definitions only require
correct behavior on average over the distribution we expect the input to have.
We need the stronger requirement because we need Eval and Refresh to behave
correctly even on adversarially generated input where we cannot assume a par-
ticular distribution. All we can require is a ZK proof that the input is well
formed. However, the stronger requirement can be assumed for all FHE schemes
we are aware of [Gen09,vDGHV10,BV11a,BV11b]: typically, the key generation
and encryption involves choosing randomness according to a (discrete) Gaussian
distribution. Using a standard tail inequality, we can assume that randomness
with the correct distribution is in some small range except with negligible prob-
ability and define well-formed public keys and ciphertexts to be those that can
be produced using randomness that is in range. Since the probability of being
out of range is negligible, this will not affect the security of honestly generated
ciphertext, on the other hand, the guaranteed bound on the randomness will
give us room to evaluate and refresh without creating incorrect results.

2.3 Efficient Probabilistic Checkable Proofs (PCP)

A PCP system II = (Provpep, Verpep) for a language L consists of two PPT
algorithms: the prover Provy., and the verifier Verpe,. The prover Prov,., takes
as input an instance x € L and a witness w for z and computes a proof 7 of
length ¢ := poly(|z|, |w]). The verifier Verp, inputs a potential member x and
decides whether z € L given oracle access to the proof oracle 7. In this work, we
are interested in PCP systems where the verifier only has non-adaptive access
to the proof system. To model this, we define the PCP verifier Ver,., as a tuple
of algorithms (Verécp, Vericp): the first has no access to the PCP 7 and uses only
polylog(|x|) bits of randomness to compute ¢ := O(1) positions specifying where
to read the PCP. The second machine, VergCp7 is deterministic and takes as input
the bit values of the PCP at these ¢ positions. It outputs whether to accept or
reject m. We note that non-adaptivity is required as privacy of our protocol may
not hold in case of an adaptive corrupted verifier.

Formally, we require the following two properties to hold:

Definition 3 (PCP) A probabilistically checkable proof (PCP) system (Provpcp,

(Ver;CP,Vericp» for a language L is a triple of (probabilistic) polynomial-time

machines, satisfying

— Completeness: If x € L, m < Provpey (2, w) and (q1,...,q) < Verécp(:z:,é;r)
with q; € [¢], then Pr[Vergcp(x,w[ql], ces @), g1y, q) = 1] = 1.



— Soundness: If x ¢ L, then for all T we have

Pr[(qla R Qt) — Ver;cp(xa |7T|;T) : Vericp(xaﬂ'[(h]v s 77T[Qt}7q1, BERE) qt) = 1]
< negl(n),

for negligible function negl(-), probability taken over the verifier’s internal
coins.

Notice that standard definitions of PCP systems usually require the soundness
error to be smaller than 1/2. We get a negligible soundness error by amplification.

In this paper, we are interested in PCP’s for NP languages such that the
verifier accepts or rejects after using only polylog(|z|) bits of randomness and
accessing only O(1) bits of m. Moreover, we are interested in efficient protocols
and, hence, require that the (probabilistic) prover runs in poly(|z|, |w|) time.
PCP proof systems with efficient verifiers were introduced in the seminal work
of Babai, Fortnow, Levin and Szegedy [BFLS91]. More efficient candidates have
for instance been proposed in [PS94,AS98 BSS05,Din07]. Most PCP systems
require only a non-adaptive verifier and, hence satisfy our additional property
from above.

2.4 Collision Resistant Hashing and Merkle Trees

Let in the following {#, }nen = {H : {0,1}*(™ — {0,1}?' (M}, be a family of
hash functions, where p(-) and p’(-) are polynomials so that p’(n) < p(n) for suf-
ficiently large n € N. For a hash function H < H,, a Merkle hash tree [Mer87] is
a data structure that allows to commit to ¢ = 2¢ messages by a single hash value
h such that revealing any message requires only to reveal O(d) hash values. A
Merkle hash tree is represented by a binary tree of depth d where the ¢ messages
my,...,my are assigned to the leaves of the tree. The values that are assigned
to the internal nodes are computed using the underlying hash function H. The
single hash value h that commits to the ¢ messages mq, ..., my is assigned to
the root of the tree. To open the commitment to a message m;, one reveals m;
together with all the values assigned to nodes on the path from the root to m;,
and the values assigned to the siblings of these nodes. We denote the algorithm
of committing to ¢ messages mq,...,my by h = Commit(mq,...,my) and the
opening of m; by (m;, path(i)) = Open(h,i). Verifying the opening of m; is car-
ried out by essentially recomputing the entire path bottom-up while comparing
the final outcome (i.e., the root) to the value given at the commitment phase.
For simplicity, we abuse notation and denote by path(i) both the values assigned
to the nodes in the path from the root to decommitted value m;, together with
the values assigned to their siblings.

The standard security property of a Merkle hash tree is collision resistance.
Intuitively, this says that it is infeasible to efficiently find a pair (z1,z2) so that
H(z1) = H(z2), where H < H,, for sufficiently large n. One can show that
collision resistance of {H, }nen carries over to the Merkle hashing. Formally,



Definition 4 (Collision Resistance) A family of hash functions {Hn}n is
collision resistant if for all PPT adversaries A there exists a negligible function
negl such that for sufficiently large n € N we have Pr[Hash 4 31, (n) = 1] < negl(n)
where game Hash 4 4, (n) is defined as follows:

1. A hash function H is sampled H < H.,,.
2. The adversary A is given H and outputs x,z’.
3. The output of the game is 1 if and only if * # 2’ and H(z) = H(a').

2.5 Non-Interactive Zero-Knowledge Proofs
In the following we repeat the definition of non-interactive zero-knowledge proof.

Definition 5 A non-interactive zero-knowledge proof for a language L is a tuple
of three PPT algorithms (CRSGen, P, V), such that the following properties are
satisfied:

Completeness: For every (z,w) € Ry, (for Ry, the witness relation of L)
Prfers <~ CRSGen(1™) : V(crs, z, P(crs, z,w)) = 1] = 1.

Soundness: For every PPT algorithm A there exists a negligible function negl
such that for all x ¢ L

Pr[(z,7) < A(crs), crs « CRSGen(1") : V(crs, z,w) = 1 ] < negl(n).

Zero-Knowledge: there exists a PPT simulator S = (S1,S2) such that for all
(x,w) € Ry, the distributions (i) {P(crs,xz,w)} and (ii) {S2(crs,x,td)} are
computationally indistinguishable, where in (i) crs <= CRSGen(1™) and in
(i) (crs,td) «+ Sp(1™).

2.6 Extractable Hash Functions

In this work, we are interested in hash functions that are extractable — so-called
extractable hash function (EHF). We provide two flavors of extractable hash
functions. The first extractability assumption (EHF1) considers a hash function
H mapping into a small subset of a large domain and essentially asserts that the
only way to generate an element in Im(H) is to compute the function on a given
input. More precisely, we require that for every adversary outputting a value
h there exists an efficient extractor that (given the same randomness) outputs
a preimage of h, whenever h € Im(H). We propose later an instantiation of
EHF1-extractable and collision intractable hash functions based on a knowledge
of exponent assumption (Damgard [Dam91]) in Z%, where N is an RSA modulus.
We continue with the formal assumption. For simplicity, we assume that the
algorithms below are keeping their state.

Definition 6 (Extractable hash function 1 (EHF1)) Let A and E be PPT
algorithms then consider the following game:



— EHF1a g3, (1", 2).

H + Han
Repeat until A halts:

h+ A(1",H,z; R)

2+ E(1", H,2,R, iR

If h € Im(H) and H(z) # h return 1, else reply A with z
Return 0

for R and R’ the randomness used by A and E respectively. Then the family
{Hn}nen satisfies the first extractability assumption (EHF1) if for every PPT
adversary A there exists a PPT extractor E such that for any sufficiently large
n € N and any auziliary information z € {0,1}*

PI‘[EHFIA7E,HNV(1”,2) = 1] S negl(n).
for a negligible function negl, the probability is over the randomness of the game.

In the above definition, we require that it should be feasible to verify that a
value h is in the image of H; we call this function Im(H).

The second extractability assumption (EHF2) makes a weaker demand on
the hash function H: as before, we require that for each adversary outputting h,
there exists an extractor that tries to find a preimage. This time, however, the
extractor is allowed to fail even if h € Im(H). Specifically, the demand is that
if the extractor fails, the adversary cannot output a preimage either. For this
definition not to be vacuous, one clearly needs that when the adversary tries to
“beat” the extractor, it is given randomness/auxiliary input that is not known
to the extractor. Otherwise the extractor could simulate the adversary and out-
put whatever the adversary does. To formalize this, we assume a probabilistic
algorithm G that outputs a pair (¢, '), sampled from some joint distribution. ¢
is given to both the adversary and the extractor, while ¢’ is only given to the
adversary later when she tries to “beat” the extractor. In our case, { is a pub-
lic key for an encryption scheme and (’ is its corresponding secret key. Notice
that our demand on G is weak as G does not depend on the choice of the hash
function.

Finally, we note that in [BCCT11] a simpler definition is considered, where
the adversary runs an arbitrary algorithm in the last stage of the game and
the extractor is required to work for any such algorithm. In particular, it must
work for an adversary that knows something not known to the extractor. This
is a much stronger demand that may exclude some potential constructions of
extractable hash functions.

Definition 7 (Extractable hash function 2 (EHF2)) Let A and E be PPT
algorithms then consider the following game:

! [BCCT11] also considers weaker variants. While the basic idea of EHF2 is a con-
tribution of this paper, the precise formulation was in part inspired by discussions
with the authors of [BCCT11].



— EHF2a6.5%, (1" 2).

i=0,H < Hn, ((,¢) + G(A")
Repeat until A halts:
i=i+1
hi +— A(1",H,2,(; R)
2z« BE(1", H,z,R,hi,; R)
(2,...,20) <~ AQ", H,z,R,¢; R")
If 31<j<i, st H(z)#hj AH(2}*) = hy return 1, else return 0

Then {Hn}nen satisfies the EHF2 assumption if for every PPT adversary A
and any PPT algorithm G there exists a PPT extractor E such that for any
sufficiently large n € N and any auziliary information z € {0,1}*

PT[EHF2A7g7E7yn(1n, Z) = 1] S negl(n).
for a negligible function negl, the probability is over the randomness of the game.

When we talk in the following of an extractable hash function, then we mean
that it satisfies the property given in Definition 7, i.e., any PPT adversary has
a negligible advantage in EHF24 ¢ g ., -

Note that EHF2 is true in the random oracle model, where we let the random
oracle play the role of H. In this case it is easy to see that no matter how the
adversary produces a string h, there are only two cases: either i was output by
the random oracle or not. In the former case a preimage is easy to extract, in the
latter case no one can produce a preimage except with negligible probability. So
the extractor can safely fail in this case.

It is easy to verify that EHF1 implies EHF2: under EHF1, the extractor only
fails if it is impossible to find a preimage.

2.7 The Knowledge of Exponent Assumption

The knowledge of exponent assumption proposed by Damgard [Dam91] was previ-
ously used in designing 3-round zero-knowledge proofs [HT98], plaintext-aware
encryption [BP04,Den06] and more. It was originally defined with respect to
prime order groups; here we consider its variant for composite order groups.
Say N is a product of two safe primes p = 2p’ + 1 and ¢ = 2¢' + 1. We con-
sider the group of so-called signed quadratic residues QT\’,;. It consists of all
numbers in Zy with Jacobi symbol 1 in the interval [0,...,(N — 1)/2]. The
product of a,b € QRY, is defined to be ab mod N if ab mod N < (N —1)/2 and
N —ab mod N otherwise. QR} is isomorphic to the group of quadratic residues
mod N and so has order p’q’. Furthermore, it has the nice property that mem-
bership in QR} is easy to check. We let g,¢’ be generators for QRK where
g = g% and z is picked at random from Ly - Informally, the assumption says
that for any PPT algorithm A(N, g, g’) that outputs h, h’ such that h = ¢g¥ and
h' = ¢g*¥ there exists an extractor E such that (h,h',y) < E(N,g,¢’) with high



probability. We refer the reader to the full version for a formal definition of the
knowledge of exponent assumption in the group of signed quadratic residues.

Based on the knowledge of exponent assumption, we can construct an ex-
tractable hash function according to Definition 6. Moreover, under the factoring
assumption our construction is collision resistant. The public parameters of our
family of hash functions are a composite N which is the product of two safe
primes p = 2p' + 1 and ¢ = 2¢’ + 1 and two generators g,h for QR}. For
some concrete N, p,q,g,h, we compute the hash function on some input z as
H(z) = (9% mod N, h* mod N). Collision resistance follows from factoring, since
for every z # 2’ such that H(z) = H(z') it holds that p’q’ divides z — 2’. More-
over, if one knows x such that h = ¢ mod N, then one can check membership of
a pair (a, b) in the image of H by checking whether a € QR} and a® mod N =b.
Finally we note that H is an EHF1, which follows from the knowledge of expo-
nent assumption.

3 Secure Two-Party Computation with Low
Communication

Consider two parties P; with input x and P with input y, respectively, who wish
to jointly compute a function f(x,y). Without loss if generality we only consider
single-output functions and assume that only P; learns the output f(z,y) (the
general case can be easily obtained from this special case [Gol04] but this requires
additional communication). We are interested in protocols that allow P; and P
to securely compute f(x,y) in the presence of malicious adversaries that follow
arbitrary behavior. Our proof of security guarantees the strongest notion of sim-
ulation based UC security [Can01] in the presence of static malicious adversaries.
Moreover, we require that our protocol achieves the following strong properties:
Polylogarithmic communication complexity in the circuit-size C' that computes
f. One round complexity, i.e., a single message in each direction assuming an
appropriate trusted setup. In this work we prove our protocol in the common
reference string model. Polylogarithmic workload for Py in the circuit-size C.

We introduce our main construction step-by-step. Our starting point is a
standard protocol secure against honest-but-curious adversaries for which party
P, sends its encrypted input to party P», who uses the homomorphic property
to compute ciphertexts that contain that the output of the specified circuit
when evaluated on P;’s (encrypted) input and his own private input. These
ciphtertexts are sent to P; who can decrypt and learn the result. Obviously,
this solution completely breaks down against malicious attacks. So additional
cryptographic tools must be used in order to ensure correct behavior. We then
use this protocol as a building block in our main construction, adding new tools
to protect against an increasingly powerful adversary. Namely, we first show how
to prove security in the presence of a corrupted P, and then prove simulation
based security for both corruption cases. For completeness, we formally describe
the standard protocol with security against honest-but-curious adversaries.



3.1 Security against Honest-But-Curious Adversaries

We begin with a standard protocol with security in the face of honest-but-curious
adversaries. The main building block here is fully homomorphic encryption Il =
(KeyGen, Enc, Dec, Eval, Refresh).

Protocol 1 (Honest-but-curious adversaries.)

— Inputs: Input x for party P1 and input y for party P>. A description of function
f for both.
— The protocol:
1. Pi(z) generates a key pair (PK o, Skeonp) < KeyGen(1™) for a fully homomor-
phic encryption scheme, computes ez = Encpk, (z) and sends (PK opp, ) to
Ps.
2. P2(y) computes d = Bvalpk . (Cf,y,es) and sends c = Refreshyc . (d) to Pr.
8. Py decrypts ¢ and obtains the result of the computation f(x,y) = DeCsk o, (C)-

com (

Security of P; follows by the semantic security of Ilg. Similarly, security of
P, follows from the ability to refresh the ciphertext sent back to P; so that it
only encrypts the outcome. It is easy to see that the communication complexity
is independent of the complexity of the circuit-size C' that computes f, and only
depends on its inputs and outputs lengths, and the security parameter.

3.2 Security against a Malicious P;

We extend the above protocol and allow P; to be malicious (if corrupted),
while P remains honest-but-curious. To this end, we use standard techniques
to achieve security in the malicious setting by relying on NIZK proof systems
(CRSGen, P, V) and an idealized setup. Specifically, we let P; send two encryp-
tions encrypted under two different keys (one public key for which P; knows the
secret key and the other public key is placed in the common reference string),
so that the same plaintext is encrypted. This enables the simulator to extract x
using the trapdoor of the common reference string. In addition to that, P; must
prove that its public key, together with the ciphertexts, are well-formed. Note
that the statement proved below asserts that each ciphertext is produced from
a message and randomness of the expected range, so it is implicitly asserted
that these ciphertexts are well-formed. Nevertheless, we still need to prove well-
formness of pk.,,,. This is essentially immediate when specifying the random
coins used to generate it as part of the witness, since all it takes is to verify
whether these coins are of the expected range. In order to formalize this proof
we define language L as follows.

L := {(ex, €%, Pheonps PKy) 3 (Skcomps Tpks T, 75 @) 8.t €5 = Encpi  (57)
A e} = Encpi (2;75) A (PKomps SKeomp) <~ KeyGen (17,7 )
A 1pk yields a well formed pk oy }-

This proof is utilized in Step 1b of Protocol 2. The complete protocol follows.



Protocol 2 (Malicious P;.)

— Setup: Generate keys (pk,,sks) < KeyGen(1™). Set the common reference string
crs = (pk,,0), where o < CRSGen(1") is the common reference string used for
proving membership in L.

— Input: Input x for party P1 and input y for party P». A description of function f
for both.

— The protocol:

1. First message computed by party P;.
(a) Setup. Generate a key pair (pK oy, Skeomp) < KeyGen(1™) for a fully ho-
momorphic encryption scheme and compute e, = Enc,f,kmp (z).
(b) Proof of consistency. Compute €}, = Encp (z) and a NIZK proof mL
proving that pk..,, and ex are well-formed and that e, and el, encrypt the
same plaintext x.

(c) The complete message. Send (e, €}, pk pk,, L) to Ps.

comp?

2. Second message computed by party P».

(a) Verification of NIZK. Upon receiving message (€x, €y, PKeonps PKy, TL)
from Py, verify w1, by running V((es, €, PKeomps PK,), ). If it outputs 0,
then abort.

(b) Circuit evaluation. Compute d = Evaly, (Ct,y,ez) for Cy a PPT
circuit computing f, and refresh the ciphertezt to get ¢ = Refreshpy, - (d).

(¢) The complete message. Send the result ¢ to P;.

3. The output. P; decrypts c and obtains the result of the computation f(z,y) =

Decsk,om (€)-

Clearly, if both parties behave honestly P, learns the correct output.

Theorem 8 (One-Sided Security) If Iy = (KeyGen, Enc, Dec, Eval, Refresh)
is semantically secure and (CRSGen, P,V) is a non-interactive zero-knowledge
proof, Protocol 2 securely evaluates f in the presence of malicious Py and honest-
but-curious Py with constant communication in the circuit-size for f.

Intuitively, security against malicious P; follows from the soundness of proof 7.
A simulator §; for an adversary corrupting P; can be designed by first verifying
the proof 7p,. Next, S; extracts the adversary’s input z’ using the secret key
sky. 81 sends x’ to the trusted party computing f and receives the outcome.
It then encrypts this value and sends it back to the adversary. Security against
corrupted P; follows from the semantic security property of ITg. Communication
complexity depends only on the input/output length of f.

3.3 Security against Malicious Adversaries

In this section we present our full protocol that protects against malicious ad-
versarial attacks. Our protocol uses Protocol 2 as a building block but adds
additional tools. This essentially amounts to a SNARG allowing P; to verify the
correctness of the output issued by P,. More precisely:



1. We first add a PCP system (Provpp, (Ver;cp, Vericp)> (cf. Definition 3), used

by P, for proving membership in the language L;. Formally, L; is defined by

Ly := {(c, eq, PKcomps €ys PKy» [) 13 (dy a5y, y) st d = Evalpkcomp(Cf,y,ez)
ANec= Refreshpkwmp(d; ra) ey = Encpy, (y;7y) }

Namely, the PCP shows that if one decrypts c it gets the desired result
f(z,y), where x is the plaintext contained in e, and y is the plaintext in e,,.
This proof is utilized in Step 2c of Protocol 3. We recall that the statement
proved asserts that e, is produced from a message and randomness of the
expected range so it is implicitly asserted that e, is well-formed.

We further let P> commit to this proof using a Merkle hash tree instantiated
with an extractable collision resistance hash function H : {0,1}* — {0,1}"
(cf. Definition 7). The main problem with this is that hashing the proof does
not necessarily conceal it, unless a special hiding property is required form
the underlying hash function. We fix that by hashing the committed PCP
instead, and then prove that the values embedded within these commitments
correspond to a valid proof.

2. Furthermore, since the verifier must not see the queried bits from the proof
(due to privacy considerations), we consider an NP statement claiming that
if the PCP verifier Verf)cp is run on Decy, (cq, ), - - -, Decsk, (cq,), denoting
the ciphertexts encrypting (I'y,, ..., Iy, ) — the openings for the PCP queries
(g1,--.,qt), then it will accept. That is,

Lo := {(ch;n(q1,...7qt),(cq1,...,cqt)) :
El (Fqn'Yqu- .. 7th77(h77"pk) s.t. (VZ = [t] :qu — Encpky(l—‘qi;’yqi))
/\Ver;2>cp (chP;Fqu...,th,ql,...7qt) :1}

for the instance zpep € Li. In our protocol, (g, cq,, ..., cq,) are all encrypted
under FHE with respect to public key pk,,, enabling Py to verify this proof.
Note that the code of Verf)Cp is independent of the strategy followed by a
malicious P;. Furthermore, notice that the we do not explicitly need to
include checks of well-formedness for the ciphertext c,,, ..., ¢, since these
are implied by the fact that the ciphertext are possible outputs on proper
inputs I7,,vq,- This proof is utilized in Step 2f in Protocol 3. Importantly,
the number of queries asked by P is polylogarithmic in the PCP size (and

hence in the circuit-size that computes f).

The above implies that P; has to provide encryptions of the queries ¢, ..., ¢:.
In order to ensure correctness of these queries, we add a non-interactive zero-
knowledge proof for which P; proves that the queries were indeed sampled from
the correct range. This is formalized in Step 1c of Protocol 3 below.

An overview of our protocol. We summarize the discussion above. (1) At first,
P, sends its input x encrypted under two distinct public keys together with



the encrypted PCP queries and a proof of correct behavior. (2) P, then replies
with ciphertexts that contain the output of the specified circuit, as generated
above. It then produces a PCP for this computation and commits to it using a
Merkle tree. Finally, P, computes ciphertexts that contain the answers for the
PCP queries by opening the corresponding paths in the Merkle tree generated
above (note that this step is performed obliviously within the fully homomorphic
encryption scheme). Py sends the computation of f(z,y) and answers to PCP
queries with a non-interactive zero-knowledge proof for correct computations.
Intuitively, the overall communication complexity depends on the number of
PCP queries, the answers to these queries and the overhead induced by the non-
interactive zero-knowledge proofs. Recall first that PCP systems are sound even
after observing only polylogarithmic bits of the proof. Moreover, each answer to
such a query requires providing the corresponding path in the hashed Merkle tree
of the PCP which includes logarithmic number of elements (in the proof’s size).
Finally, we utilize zero-knowledge proofs with communication that is polynomial
in the size of the witness. All these tools ensure that the overall communication
is polylogarithmic in the circuit’s size. We are now ready to present our protocol.

Protocol 3 (Malicious adversaries.)

— Setup: Generate keys (pk,,sks) + KeyGen(1") and (pk,,sky) < KeyGen(1™).?2
Set the common reference string crs = (pk,, pk,,o), where o is a joint common
reference string used by Py for proving membership in L. and by P> for proving
membership in L1 and La. Pick an extractable collision-resistant hash function
H « H, for H:{0,1}*" — {0,1}*' ("),

— Input: Input x for party P1 and input y for party P>. A description of function f
for both.

— The protocol:

1. First message computed by party P;.
(a) Setup. Generate key pairs for a fully homomorphic encryption scheme
(PKcomp» Skeomp) < KeyGen(1™) and (pk,,,,Skpro) + KeyGen(1™), and com-
pute ez = Encpr,, (7).

pro?

(b) Proof of consistency. Compute €, = Encp (z) and a NIZK proof w1
proving that pKyyq, PKeonp, €z are well-formed and that e, and el, encrypt
the same plaintext x.

(c) Queries for PCP. Sample t positions (qu,...,q:) < Verse,(zpep,£) and
for each i encrypt them as b; = Encpkpm(qi). Moreover, for each i compute
a NIZK proof w; that ¢; lies in the correct range [{].

(d) The complete message. Sendmi := ((€x, €%, PKeonpy PKoro» L), (b, i )ic[r])
to PQ.

2. Second message computed by party P».
(a) Verification of NIZK’s. Upon receiving message m1 from Pi, verify mr,
by running V((es, ek, PKeomps PK,), L) If it outputs O, then abort.
(b) Circuit evaluation. Compute d = Evalp,, (Cy,y,€z) and refresh it to
get ¢ = Refreshpc . (d;ra). Also, compute e, = Encpk, (y57y)-
2 We note that these public keys do not have to be associated with the fully homo-
morphic encryption scheme. For convenience, we assume that they do in order to
avoid overload of parameters.



(¢) Compute PCP. Compute a PCP I' = Provpep(2pep, Wpep) Of length £ =
poly(n), where wpep := (d,r4,ry,y) forms an NP witness for the instance
Zpep = (C, €z, pkcomp? €y, pky? f) € L.

(d) Commit to PCP. Fori € [{] compute ciphertexts c; = Encyk, (Ii;7:) and
compute the Merkle hash root using H, for h = Commit(cu,...,c¢), where
for simplicity we let £ be a power of 2.

(e) Answer PCP queries. Compute pg, = Encpi,, (Path(qi); pg;) for i € [t]
by running Evalp,, on input b; (sent by P1) and (ci,...,c¢) (computed
above), where path(g;) = Open(h, ).

(f) Proving correctness. Compute an encrypted proof Crp, = Encpkpm(ﬂLQ)
for proving that (zpep, (q1,---,qt), (Cq1s---,Cq)) € La. This is done by run-
ning Evalpk,, on input zpep, (b1, ..., be), (c1,. .., ce), (Y1500, 72)-

(9) The complete message. Send mz := (¢, ey, h, (Pqy, - - - Pa,)s Crp,) to Pr.
Notice that cq; is part of path(q;) which is contained in pq, .

8. Verifying the second message ma. P1 decrypts ¢ and obtains the result
of the computation f(x,y) = DeCok o, (c). For each i € [t] it also decrypts
path(q:) = Decs,,, (pqg;) and verifies that path(g;) is correct with respect to the
root h. It then uses the leaves cqy,...,cq, and T, = Decskpro(cﬂLz) together
with the common reference string o and verifies the correctness of m,. If all
these checks succeed, then it outputs f(x,y), otherwise it aborts.

Then we claim the following theorem, the proof can be found in [DFH11].

Theorem 9 (Main) Assuming that IIy = (KeyGen, Enc, Dec, Eval, Refresh) is
semantically secure, (CRSGen, P, V) is a non-interactive zero-knowledge proof,
(Provpep, (Verll,cp,Verf)cp)) is a PCP system, {Hn}nen is collision-resistant and
satisfies the EHF2 assumption, Protocol 8 evaluates f UC-securely against ma-

licious adversaries with polylogarithmic communication in the circuit-size of f.

We give a brief overview of our proof. We distinct two corruption cases.
Let P; be controlled by an adversary A. In this case we face the difficulty of
protecting the privacy of P», since revealing bits from I" so that the PCP verifier
will be able to validate the proof is insecure. Loosely speaking, privacy follows
due to hashing the committed proof rather than the proof itself. Thus, secrecy
is obtained from the hiding property of the commitment scheme. Simulating A’s
view requires from the simulator to verify the correctness of the message mq
received from A as the honest P, would. Then it extracts A’s input, forwarding
it to the trusted party. Finally, upon receiving from the trusted party f(z,y), it
encrypts this value under pk.,,, and sends it back to .A. Now, since the simulator
does not use the real honest party’s input, ¥, it cannot construct a valid proof I’
and therefore has to build the hash tree on commitments to the zero string. It
further simulates the NIZK proof for Ly. Indistinguishability follows due to: (1)
Zero-knowledge property of the proof system of La. (2) Semantic security of I1g.
(3) Refresh algorithm of [Ty that produces a ciphertext indistinguishable from a
ciphertext that encrypts f(z,y) directly (without going through homomorphic
evaluation). (4) Soundness of the proof system of L.

We now consider the case where Ps is corrupt. Intuitively, security should

follow from semantic security of encryptions under pkp,,, soundness of the PCP



and the fact that P, is committed to a PCP string via sending the root of the
Merkle tree: by soundness of the PCP, the only way P, could cheat would be
to look at the encrypted PCP queries and adapt the PCP string it commits
to, to the specific queries that are asked. Supposedly, this is not possible by
semantic security. The technical difficulty, however, is that to have P, help us
conclude anything on which queries have been encrypted in a given ciphertext
(to make a reduction to semantic security), we would need to see the responses
P, sends back. Unfortunately, these are encrypted under the same key pkp,,, and
if we want to do a reduction to semantic security, we cannot know skyr, and so
cannot see the responses directly. This is solved by first observing that by the
extractability of the hash function, we can extract a Merkle tree T based on the
root of the tree sent by P», and hence also a PCP string (we can assume we
know sk, so we can decrypt the commitments containing PCP bits). We then
show that the encrypted paths path(g;) must be contained in 7, or else we could
break extractability or collision resistance of H,,. So the responses we want to see
will be embedded in the tree we can extract. The reduction to semantic security
can therefore ask for an encryption of one of two sets of queries q° or q'. It
shows the ciphertext to P, and extracts a PCP string from the root sent by Ps.
Then if g° leads to accept with the extracted PCP P; would also accept in a
real execution, so we guess that g® was the encrypted plaintext.
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