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Abstract. In tandem with recent progress on computing on encrypted
data via fully homomorphic encryption, we present a framework for com-
puting on authenticated data via the notion of slightly homomorphic
signatures, or P -homomorphic signatures. With such signatures, it is
possible for a third party to derive a signature on the object m′ from a
signature of m as long as P (m,m′) = 1 for some predicate P which cap-
tures the “authenticatable relationship” between m′ and m. Moreover,
a derived signature on m′ reveals no extra information about the parent
m.

Our definition is carefully formulated to provide one unified framework
for a variety of distinct concepts in this area, including arithmetic, ho-
momorphic, quotable, redactable, transitive signatures and more. It in-
cludes being unable to distinguish a derived signature from a fresh one
even when given the original signature. The inability to link derived sig-
natures to their original sources prevents some practical privacy and
linking attacks, which is a challenge not satisfied by most prior works.

Under this strong definition, we then provide generic constructions for
all univariate and closed predicates, and specific efficient constructions
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for a broad class of natural predicates such as quoting, subsets, weighted
sums, averages, and Fourier transforms. To our knowledge, these are the
first efficient constructions for these predicates (excluding subsets) that
provably satisfy this strong security notion.

1 Introduction

In tandem with recent progress on computing any function on encrypted data,
e.g., [27, 46, 44], this work explores computing on unencrypted signed data. In
the past few years, several independent lines of research touched on this area:

– Quoting/redacting: [45, 32, 2, 36, 30, 17, 16, 18] Given Alice’s signature on some
message m anyone should be able to derive Alice’s signature on a subset of
m. Quoting typically applies to signed text messages where one wants to de-
rive Alice’s signature on a substring of m. Quoting can also apply to signed
images where one wants to derive a signature on a subregion of the image
(say, a face or an object) and to data structures where one wants to derive
a signature of a subset of the data structure such as a sub-tree of a tree.

– Arithmetic: [33, 50, 22, 13, 26, 12, 11, 48] Given Alice’s signature on vectors
v1, . . . ,vk ∈ Fnp anyone should be able to derive Alice’s signature on a vec-
tor v in the linear span of v1, . . . ,vk. Arithmetic on signed data is motivated
by applications to secure network coding [25]. We show that these schemes
can be used to compute authenticated linear operations such as computing
an authenticated weighted sum of signed data and an authenticated Fourier
transform. As a practical consequence of this, we show that an untrusted
database storing signed data (e.g., employee salaries) can publish an authen-
ticated average of the data without leaking any other information about the
stored data. Recent constructions go beyond linear operations and support
low degree polynomial computations [11].

– Transitivity: [41, 35, 6, 31, 7, 43, 49, 40] Given Alice’s signature on edges in
a graph G anyone should be able to derive Alice’s signature on a pair of
vertices (u, v) if and only if there is a path in G from u to v. The derived
signature on the pair (u, v) must be indistinguishable from a fresh signature
on (u, v) had Alice generated one herself [35]. This requirement ensures that
the derived signature on (u, v) reveals no information about the path from
u to v used to derive the signature.

In this paper, we put forth a general framework for computing on authen-
ticated data that encompasses these lines of research and much more. While
prior definitions mostly contained artifacts specific to the type of malleability
they supported and, thus, were hard to compare to one another, we generalize
and strengthen these disparate notions into a single definition. This definition
can be instantiated with any predicate, and we allow repeated computation on
the signatures (e.g., it is possible to quote from a quoted signature.) During our
study, we realized that the “privacy” notions offered by many existing defini-
tions are, in our view, insufficient for some practical applications. We therefore



require a stronger (and seemingly a significantly more challenging to achieve)
property called context hiding. Under this definition, we provide two generic so-
lutions for computing signatures on any univariate, closed predicate; however,
these generic constructions are not efficient. We also present efficient construc-
tions for three problems: quoting substrings, a subset predicate, and a weighted
average over data (which captures weighted sums and Fourier transforms). Our
quoting substring construction is novel and significantly more efficient than the
generic solutions. It is detailed in Section 4. For the problems of subsets and
weighted averages, we show somewhat surprising connections to respective ex-
isting solutions in attribute-based encryption and network coding signatures in
Section 5.

1.1 Overview

A general framework. LetM be some message space and let 2M be its powerset.
Consider a predicate P : 2M ×M → {0, 1} mapping a set of messages and a
message to a bit. Loosely speaking we say that a signature scheme supports
computations with respect to P if the following holds:

Let M ⊂M be a set of messages and let m′ be a derived message, namely
m′ satisfies P (M,m′) = 1. Then there exists an efficient procedure that
can derive Alice’s signature on m′ from Alice’s independent signatures
on all of the messages in M .

For the quoting application, the predicate P is defined as P (M,m′) = 1 iff m′

is a quote from the set of messages M . Here we focus on quoting from a single
message m so that P is false whenever M contains more than one component6,
and thus use the notation P (m,m′) as shorthand for P ({m},m′). The predicate
P for arithmetic computations is defined in the full version [1] and essentially
says that P

(
(v1, . . . ,vk), v) is true whenever v is in the span of v1, . . . ,vk.

We emphasize that signature derivation can be iterative. For example, given
a message-signature pair (m,σ) from Alice, Bob can publish a derived message-
signature pair (m′, σ′) for an m′ where P (m,m′) holds. Charlie, using (m′, σ′),
may further derive a signature σ′′ on m′′. In the quoting application, Charlie is
quoting from a quote which is perfectly fine.

Security. We give a clean security definition that captures two properties: un-
forgeability and context hiding. We briefly discuss each in turn and give precise
definitions in the next section.

– Unforgeability captures the idea that an attacker may be given various de-
rived signatures (perhaps iteratively derived) on messages of his choice. The
attacker should be unable to produce a signature on a message that is not
derivable from the set of signed messages at his possession. E.g., suppose

6 We leave it for future work to construct systems for securely quoting from two
messages (or possibly more) as defined next.



Alice generates (m,σ) and gives it to Bob who then publishes a derived sig-
nature (m′, σ′). Then an attacker given (m′, σ′) should be unable to produce
a signature on m or on any other message m′′ such that P (m′,m′′) = 0.

– Context hiding captures an important privacy property: a signature should
reveal nothing more than the message being signed. In particular, if a sig-
nature on m′ was derived from a signature on m, an attacker should not
learn anything about m other than what can be inferred from m′. This
should be true even if the original signature on m is revealed. For example,
a signed quote should not reveal anything about the message from which
it was quoted, including its length, the position of the quote, whether its
parent document is the same as another quote, whether it was derived from
a given signed message or generated freshly, etc.

Defining context hiding is an interesting and subtle task. In the next section,
we give a definition that captures a very strong privacy requirement. We discuss
earlier attempts at defining privacy following our definition in Section 2.3; while
many prior works use a similar sounding intuition as we give above, most contain
a fundamental difference to ours in their formalization.

We note that notions such as group or ring signatures [23, 5, 19, 9, 42] have
considered the problem of hiding the identity of a signer among a set of users.
Context hiding ensures privacy for the data rather than the signer. Our goal is
to hide the legacy of how a signature was created.

Efficiency. We require that the size of a signature, whether fresh or derived,
depend only on the size of the object being signed. This rules out solutions
where the signature grows with each derivation.

Generic Approaches. We begin with two generic constructions that can be inef-
ficient. They apply to closed, univariate predicates, namely predicates P (M,m′)
where M contains a single message (P is false when |M | > 1) and where if
P (a, b) = P (b, c) = 1 then P (a, c) = 1. The first construction uses any standard
signature scheme S where the signing algorithm is deterministic. (One can en-
force determinism using PRFs [28].) To sign a message m ∈ M, one uses S to
sign each message m′ such that P (m,m′) = 1. The signature consists of all these
signature components. To verify a signature for m, one checks the signature com-
ponent corresponding to the message m. To derive a signature m′ from m, one
copies the signature components for all m′′ such that P (m′,m′′) = 1. Soundness
of the construction follows from the security of the underlying standard scheme
S and context hiding from the fact that signing in S is deterministic.

Unfortunately, these signatures may become large consisting up to |M| sig-
nature components — effecting both the signing time and signature size. Our
second generic construction alleviates the space burden by using an RSA accu-
mulator. The construction works in a similar brute force fashion where a sig-
nature on m is an accumulator value on all m′ such that P (m,m′) = 1. While
this produces short signatures, the time component of both verification and
derivation are even worse than the first generic approach. Thus, these generic



approaches are too expensive for most interesting predicates. We detail these
generic approaches and proofs in the full version [1], where we also discuss a
generic construction using NIZK.

Our Quoting Construction. We turn to more efficient constructions. First, we
set out to construct a signature for quoting substrings7, which although concep-
tually simple is non-trivial to realize securely. As an efficiency baseline, we note
that the brute force generic construction of the quoting predicate would result in
n2 components for a signature on n characters. So any interesting construction
must perform more efficiently than this. We prove our construction selectively
secure.8 In addition, we give some potential future directions for achieving adap-
tive security and removing the use of random oracles.

Our construction uses bilinear groups to link different signature components
together securely, but in such a way that the context can be hidden by a re-
randomizing step in the derivation algorithm. A signature in our system on a
message of length n consists of n lg n group elements; intuitively organized as
lg n group elements assigned to each character. To derive a new signature on a
substring of ` characters, one roughly removes the group elements not associ-
ated with the new substring and then re-randomizes the remaining part of the
signature. This results in a new signature of ` lg ` group elements. The technical
challenge consists in simultaneously allowing re-randomization and preserving
the “linking” between successive characters. In addition, there is a second op-
tion in our derive algorithm that allows for the derivation of a short signature
of lg ` group elements; however the derive procedure cannot be applied again to
this short signature. Thus, we support quoting from quotes, and also provide a
compression option which produces a very short quote, but the price for this is
that it cannot be quoted from further.

Computing Signatures on Subsets and Weighted Averages. Our final two con-
tributions are schemes for deriving signatures on subsets and weighted averages
on signatures. Rather than create entirely new systems, we show connections to
existing Attribute-Based Encryption schemes and Network Coding Signatures.
We sketch those constructions in Section 5 and provide further details in [1].

Other Predicates. One can also imagine predicates P that support more complex
operations on signed messages. One natural set of examples are spreadsheet
operations such as median, standard deviation, and rounding on signed data
(satisfying unforgeability and context hiding). Other examples include graph
algorithms such as computing a signature on a perfect matching in a signed
bipartite graph.

7 A substring of x1 . . . xn is some xi . . . xj where i, j ∈ [1, n] and i ≤ j. We emphasize
that we are not considering subsequences. Thus, it is not possible, in this setting, to
extract a signature on “I like fish” from one on “I do not like fish”.

8 Following an analog of [20], selective security for signatures requires the attacker to
give the forgery message before seeing the verification key.



2 Definitions

Definition 1 (Derived messages). Let M be a message space and let P :
2M × M → {0, 1} be a predicate from sets over M and a message in M
to a bit. We say that a message m′ is derivable from the set M ⊆ M if
P (M,m′) = 1. We denote by P ∗(M) the set of messages derivable from M by
repeated derivation. That is, let P 0(M) be the set of messages derivable from M
and for i > 0 let P i(M) be the set of messages derivable from P i−1(M). Then
P ∗(M) := ∪∞i=0P

i(M).
We define the closure of P , denoted P ∗, as the predicate defined by P ∗(M,m) =

1 iff m ∈ P ∗(M).

A P -homomorphic signature scheme Π for message spaceM and predicate P is
a triple of PPT algorithms:

KeyGen(1λ): the key generation algorithm outputs a key pair (pk , sk). We treat
the secret key sk as a signature on the empty tuple ε ∈ M∗. We also assume
that pk is embedded in sk .

SignDerive(pk , ({σm}m∈M ,M),m′, w): the algorithm takes as input the public
key, a set of messagesM ⊆M and corresponding signatures {σm}m∈M , a derived
message m′ ∈ M, and possibly some auxiliary information w. It produces a
new signature σ′ or a special symbol ⊥ to represent failure. For complicated
predicates P , the auxiliary information w serves as a witness that P (M,m′) = 1.
To simplify the notation we often drop w as an explicit argument.

As shorthand we write Sign(sk ,m) := SignDerive(pk , (sk , ε),m, ·) to de-
note that any message can be derived when the original signature is the signing
key. For a set of messages M = {m1, . . . ,mk} ⊂ M∗ it is convenient to let
Sign(sk ,M) denote independently signing each of the k messages, namely:

Sign(sk ,M) :=
(

Sign(sk ,m1), . . . ,Sign(sk ,mk)
)
.

Verify(pk ,m, σ): given a public key, message, and purported signature σ, the
algorithm returns 1 if the signature is valid and 0 otherwise.
We assume that testing m ∈M can be done efficiently, and that Verify returns
0 if m 6∈ M.

Correctness. We require that for all key pairs (sk , pk) generated by KeyGen(1n)
and for all M ∈M∗ and m′ ∈M we have:

– if P (M,m′) = 1 then SignDerive(pk , (Sign(sk ,M),M),m′) 6= ⊥, and

– for all signature tuples {σm}m∈M such that σ′ ← SignDerive(pk ,
({σm}m∈M ,M),m′) 6= ⊥, we have Verify(pk ,m′, σ′) = 1.

In particular, correctness implies that a signature generated by SignDerive can
be used as an input to SignDerive so that signatures can be further derived
from derived signatures, if allowed by P .



Derivation efficiency. In many cases it is desirable that the size of a derived sig-
nature depend only on the size of the derived message. This rules out signatures
that expand as one iteratively calls SignDerive. All the constructions in this
paper are derivation efficient in this sense.

Definition 2 (Derivation-Efficient). A signature scheme is derivation-efficient
if there exists a polynomial p such that for all (pk , sk) ← KeyGen(1λ), set
M ⊆M∗, signatures {σm}m∈M ← Sign(sk ,M) and derived messages m′ where
P (M,m′) = 1, we have |SignDerive(pk , {σm}m∈M ,M,m′)| = p(λ, |m′|).

2.1 Security: Unforgeability

To define unforgeability, we extend the basic notion of existential unforgeability
with respect to adaptive chosen-message attacks [29]. The definition captures
the idea that if the attacker is given a set of signed messages (either primary
or derived) then the only messages he can sign are derivations of the signed
messages he was given. This is defined using a game between a challenger and
an adversary A with respect to scheme Π over message space M.

— Game Unforg(Π,A, λ, P ):
Setup: The challenger runs KeyGen(1λ) to obtain (pk , sk) and sends pk to A.

The challenger maintains two sets T and Q that are initially empty.
Queries: Proceeding adaptively, the adversary issues the following queries to

the challenger:
– Sign(m ∈M): the challenger generates a unique handle h, runs Sign(sk ,m)→
σ and places (h,m, σ) into a table T . It returns the handle h to the adversary.

– SignDerive(h = (h1, . . . , hk), m′): the oracle retrieves the tuples (hi, σi,mi)
in T for i = 1, . . . , k, returning ⊥ if any of them do not exist. Let M :=
(m1, . . . ,mk) and {σm}m∈M := {σ1, . . . , σk}. If P (M,m′) holds, then the
oracle generates a new unique handle h′, runs SignDerive(pk , ({σm}m∈M ,
M),m′)→ σ′ and places (h′,m′, σ′) into T , and returns h′ to the adversary.

– Reveal(h): Returns the signature σ corresponding to handle h, and adds
(σ′,m′) to the set Q.

Output: Eventually, the adversary outputs a pair (σ′,m′). The output of the
game is 1 (i.e., the adversary wins the game) if:
– Verify(pk ,m′, σ′) = 1 and,
– let M ⊆ M be the set of messages in Q then P ∗(M,m′) = 0 where P ∗

is the closure of P from Definition 1.
Else, the output of the game is 0. Define ForgA as the probability that
Pr[Unforg(Π,A, λ, P ) = 1].

Interestingly, for some predicates it may be difficult to test if the adversary won
the game. For all the predicates we consider in this paper, this will be quite easy.

Definition 3 (Unforgeability). A P -homomorphic signature scheme Π is un-
forgeable with respect to adaptive chosen-message attacks if for all PPT adver-
saries A, the function ForgA is negligible in λ.



A P -homomorphic signature scheme Π is selective unforgeable with re-
spect to adaptive chosen-message attacks if for all PPT adversaries A who begin
the above game by announcing the message m′ on which they will forge, ForgA
is negligible in λ.

Properties of the definition. By taking P to be the equality oracle, namely
P (x, y) = 1 iff x = y, we obtain the standard unforgeability requirement for
signatures.

Notice that Sign and SignDerive queries return handles, but do not return the
actual signatures. A system proven secure under this definition adequately rules
out the following attack: suppose (m,σ) is a message signature pair and (m′, σ′)
is a message-signature pair derived from it, namely σ′ = SignDerive(pk , σ,
m,m′). For example, suppose m′ is a quote from m. Then given (m′, σ′) it
should be difficult to produce a signature on m and indeed our definition treats
a signature on m as a valid forgery.

The unforgeability game imposes some constraints on P : (1) P must be
reflexive, i.e. P (m,m) = 1 for all m ∈ M, (2) P must be monotone, i.e.
P (M,m′)⇒ P (M ′,m′) where M ⊆M ′. It is easy to see that predicates that do
not satisfy these requirements cannot be realized under Definition 3.

2.2 Security: Context Hiding (a.k.a., Privacy)

Let M be some set and let m′ be a derived message from M (i.e., P (M,m′) = 1).
Context hiding captures the idea that a signature on m′ derived from signatures
on M should reveal no information about M beyond what is revealed by m′. For
example, in the case of quoting, a signature on a quote from m should reveal
nothing more about m: not the length of m, not the position of the quote in m,
etc. The same should hold even if the attacker is given signatures on multiple
quotes from m.

We put forth the following powerful statistical definition of context hiding
and discuss its implications following the definition. We were most easily able to
leverage a statistical definition for our proofs, although we also give an alternative
computational definition in the full version [1].

Definition 4 (Strong Context Hiding). Let M ⊆ M∗ and m′ ∈ M be
messages such that P (M,m′) = 1. Let (pk , sk) ← KeyGen(1λ) be a key pair.
A signature scheme (KeyGen,SignDerive, Verify) is strongly context hid-
ing (for predicate P ) if for all such triples ((pk , sk),M,m′), the following two
distributions are statistically close:{(

sk , {σm}m∈M ← Sign(sk ,M), Sign(sk ,m′)
)}

sk ,M,m′{(
sk , {σm}m∈M ← Sign(sk ,M), SignDerive(pk , ({σm}m∈M ,M),m′)

)}
sk ,M,m′

The distributions are taken over the coins of Sign and SignDerive. Without
loss of generality, we assume that pk can be computed from sk.



The definition states that a derived signature on m′, from an honestly-
generated original signature, is statistically indistinguishable from a fresh sig-
nature on m′. This implies that a derived signature on m′ is indistinguishable
from a signature generated independently of M . Therefore, the derived signature
cannot (provably) reveal any information about M beyond what is revealed by
m′. By a simple hybrid argument the same holds even if the adversary is given
multiple derived signatures from M .

Moreover, Definition 4 requires that a derived signature look like a fresh
signature even if the original signature on M is known. Hence, if for example
someone quotes from a signed recommendation letter and somehow the original
signed recommendation letter becomes public, it would be impossible to link the
signed quote to the original signed letter. The same holds even if the signing key
sk is leaked.

Thus, Definition 4 captures a broad range of privacy requirements for derived
signatures. Earlier work in this area [32, 16, 18, 15] only considered weaker pri-
vacy requirements using more complex definitions. The simplicity and breadth
of Definition 4 is one of our key contributions.

Definition 4 uses statistical indistinguishability meaning that even an un-
bounded adversary cannot distinguish derived signatures from newly created
ones. In the full version [1], we give a definition using computational indistin-
guishability which is considerably more complex since the adversary needs to be
given signing oracles. In the unbounded case of Definition 4 the adversary can
simply recover a secret key sk from the public key and answer its own signature
queries which greatly simplifies the definition of context hiding. All the signature
schemes in this paper satisfy the statistical Definition 4.

As mentioned above, the context-hiding guarantee applies to all derivations
that begin with an honestly-generated signature. One might imagine a scenario
where a malicious signer creates a signature that passes the verification algo-
rithm, but contains a “watermark” that allows the signer to detect if other
signatures are derived from it. To prevent such attacks from malicious signers,
we could alter the definition so that indistinguishability holds for any derivative
that results from a signature that passed the verification algorithm.

A simpler approach to proving unforgeability. For systems that are strongly con-
text hiding, unforgeability follows from a simpler game than that of Section 2.1.
In particular, it suffices to just give the adversary the ability to obtain top level
signatures signed by sk . In the full version [1], we define this simpler unforge-
ability game and prove equivalence to Definition 3 using strong context hiding.

2.3 Related Work

Early work on quotable signatures [45, 32, 38, 37, 30, 17, 21, 15] supports quoting
from a single document, but does not achieve the privacy or unforgeability prop-
erties we are aiming for. For example, if simple quoting of messages is all that is
desired, then the following folklore solution would suffice: simply sign the Merkle
hash of a document. A quote represents some sub-tree of the Merkle hash; so



a quoter could include enough intermediate hash nodes along with the original
signature in any quote. A verifier could simply hash the quote, and then build
the Merkle hash tree using the computed hash and the intermediate hashes, and
compare with the original signature. Notice, however, that every quote in this
scheme reveals information about the original source document. In particular,
each quote reveals information about where in the document it appears. Thus,
this simple quoting scheme is not context hiding in our sense.

The work whose definition is closest to what we envision is the recent work
on redacted signatures of Chang et al. [21] and Brzuska et al. [15] (see also Nac-
cache [39, p. 63] and Boneh-Freeman [12, 11] 9). However, there is a subtle, but
fundamental difference between their definition and the privacy notion we are
aiming for. In our formulation, a quoted signature should be indistinguishable
from a fresh signature, even when the distinguisher is given the original signa-
ture. (We capture this by an even stronger game where a derived signature is
distributed statistically close to a fresh signature.) In contrast, the definitions
of [21, 15, 12, 11] do not provide the distinguisher with the original signature.
Thus, it may be possible to link a quoted document to its original source (and in-
deed it is in the constructions of [21, 15, 12, 11]), which can have negative privacy
implications. Overcoming such document linkage while maintaining unforgeabil-
ity is a real technical challenge. This requires moving beyond techniques that
use nonces to link parts of messages.

Indeed, in most prior constructions, such as [21, 15], nonces are used to pre-
vent “mix-and-match” attacks (e.g., forming a “quote” using pieces of two dif-
ferent messages.) Unfortunately, these nonces reveal the history of derivation,
since they cannot change during each derivation operation. Arguably, much of
the technical difficulty in our current work comes precisely from the effort to
meet our definition and hide the lineage. We introduce new techniques in this
work which link pieces together using randomness that can be re-randomized in
controlled ways.

Another line of work studies computing on authenticated data by holders
of secret information. Examples include sanitizable signatures [38, 2, 36, 18, 16]
that allow a proxy to compute signatures on related messages, but requires the
proxy to have a secret key, and incremental signatures [4], where the signer can
efficiently make small edits to his signed data. In contrast, our proposal is more
along the lines of homomorphic encryption and Rivest’s vision [41], where anyone
can compute on the authenticated data.

9 As acknowledged in Section 2.2 of Boneh-Freeman [11], our definitional notion is
stronger than and predates the “weak context hiding” notion of [11]. Indeed, the fact
that [11] uses our framework lends support to its generality, and the fact that they
could not achieve our context hiding notion highlights its difficulty. Their “weak” def-
inition, which is equivalent to [15], only ensures privacy when the original signatures
remain hidden. In their system, signature derivation is deterministic and therefore
once the original signatures become public it is easy to tell where the derived signa-
ture came from. Our signatures achieve full context hiding so that derived signatures
remain private no matter what information is revealed. This is considerably harder
and is not known how to do for the lattice-based signatures in Boneh-Freeman.



3 Preliminaries: Algebraic Settings

Bilinear Groups and the CDH Assumption. Let G and GT be groups of prime
order p. A bilinear map is an efficient mapping e : G×G → GT which is both:
(bilinear) for all g ∈ G and a, b← Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate)
if g generates G, then e(g, g) 6= 1. We will focus on the Computational Diffie-
Hellman assumption in these groups.

Assumption 1 (CDH [24]) Let g generate a group G of prime order p ∈
Θ(2λ). For all PPT adversaries A, the following probability is negligible in λ:
Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

4 A Powers-of-2 Construction for Quoting Substrings

We now provide our main construction for quoting substrings in a text document.
It achieves the best time/space efficiency trade-off to our knowledge for this
problem. We will have two different types of signatures called Type I and Type
II, where a Type I signature can be quoted down to another Type I or Type
II signature. A Type II signature cannot be quoted any further, but will be a
shorter signature. The quoting algorithm will allow us to quote anything that is
a substring of the original message. We point out that the Type I, II signatures
of this system conform to the general framework given in Section 2. In particular,
we can view a message M as a pair (t,m) ∈ {0, 1}, {0, 1}∗. The bit t will identify
the message as being Type I or Type II (assume t = 1 signifies Type I signatures)
and m will be the quoted substring. The predicate

P (M = (t,m),M ′ = (t′,m′)) =

{
1 if t = 1 and m′ is a substring of m;
0 otherwise.

The bit t′ will indicate whether the new message is Type I or II (i.e., whether
the system can quote further.) We note that this description allows an attacker
to distinguish between any Type I signature from any Type II signature since
the “type bit” of the messages will be different and thus they will technically
be two different messages even if the substring components are equal. For this
reason we will only need to prove context hiding between messages of Type I
or Type II, but not across types. In general, flipping the bit t will not result
in a valid signature of a different type on the same core message, because the
format will be wrong; however, moving from a Type I to a Type II on the same
core message is not considered a forgery since Type II signatures can be legally
derived from Type I.

For presentational clarity, we will split the description of our quoting algo-
rithm into two quoting algorithms for quoting to Type I and to Type II sig-
natures; likewise we will split the description of our verification algorithm into
two separate verification algorithms, one for each type of signature. The type of
signature used or created (i.e., bit t) will be implicit in the description.
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“one” arrow (overlapped)

“zero” arrow

a path which represents
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Fig. 1. The top diagram represents a signature on “abcdefghijklmn” with length N =
14. Each arrow corresponds to some group elements in the construction. Logically,
whenever the elements corresponding to an arrow are included in a quoted signature,
the characters underneath this arrow are included in the quoted message. The bold
path through the top diagram shows how to construct a Type II signature on “defgh”;
it is very short, but cannot be re-quoted. The gray box in this figure shows how to
construct a Type I signature on “cdefghi” of length ` = 7; it includes all the arrows in
the lower figure and can be re-quoted. A technical challenge is to enforce that following
the arrows is the only way to form a valid signature. Details are below.

Notation: We use notation mi,j to denote the substring of m of length j starting
at position i.

Intuition: We begin by giving some intuition. We design Type I signatures that
allow re-quoting and Type II signatures that cannot be further quoted, but are
ultra-short. For an original message of length n, our signature structure should
be able to accommodate starting at any position 1 ≤ i ≤ n and quoting any
length 1 ≤ ` ≤ (n− i+ 1) substring.10

To (roughly) see how this works for a message of length n, visualize (n+ 1)
columns with (blg nc + 2) rows as in Figure 1. The columns correspond to the
characters of the message, so if the 14-character message is “abcdefghijklmn”
then there are 15 columns, with a character in between each column. The rows
10 Technically, our predicate P (m,m′) will take the quote from the first occurrence

of substring m′ in m, but for the moment imagine that we allowed quoting from
anywhere in m.



correspond to the numbers lg n down to 0, plus an extra row at the bottom.11

Each location in the matrix (except along the bottom-most row) contains one
or more out-going arrows. We’ll establish rules for when these arrows exist and
where each arrow ends shortly.

A Type II quote will trace a (lg n+1)-length path on these arrows through
this matrix starting in a row (with outgoing arrows) of the column that begins
the quote and ending in the lowest row of the first column after the quote ends.
The starting row corresponds to the largest power of two less than or equal to the
length of the desired quote. E.g., to quote “bcdef”, start in row 2 immediately
to the left of ‘b’ (because 22 = 4 is the largest power of two less than 5) and
end in row 0 immediately to the right of ’f’. Intuitively, taking an arrow over a
character includes it in the quote. A Type II quote on “defgh” is illustrated in
Figure 1.

A technical challenge is to make this a O(lg n)-length path rather than a
O(n)-length path. To do this, the key insight is to view the length of any possible
quote as the sum of powers of two and to allow arrows that correspond to covering
the quote in pieces of size corresponding to one operand of the sum at a time.
Each location (ic, ir) in the matrix (except the bottom-most row) contains:

– a “start” arrow: an arrow that goes down one row and over 2ir columns
ending in (ic + 2ir , ir − 1), if this end point is in the matrix. This adds all
characters from position ic to ic+ 2ir −1 to the quoted substring; effectively
adding the largest power-of-two-length prefix of the quote characters. This
arrow indicates that the quote starts here. These are represented as Si,j , S̃i,j
pairs in our construction.

– a “one” arrow: operate similarly to start arrows and used to include charac-
ters after a start arrow includes the quote prefix. These are represented as
Ai,j , Ãi,j pairs in our construction.

– a “zero” arrow: an arrow that goes straight down one row ending in (ic, ir−
1). This does not add any characters to the quoted substring. These are
represented as Di,j , D̃i,j pairs in our construction.

A Type II quote always starts with a start arrow and then contains one
and zero arrows according to the binary representation of the length of the
quote. In our example of original message “abcdefghijklmn”, we have 15 columns
and 5 rows. We will logically divide our desired substring of “bcdef” (length
5 = 22 + 20 = 4 + 1) into its powers-of-two components “bcde”(length 4 = 22)
and “f” (length 1 = 20). To form the Type II quote, we start in row 2 (since
4 = 22) of column 2 (to the left of ’b’) and take the start arrow (S2,2) to row
1 of column 7, take the zero arrow (D7,1) to row 0 of column 7, and then take
the one arrow (A7,0) to the lowest row of column 8. The arrows “pass over” the
characters “bcdef”. Figure 1 illustrates this for quote “defgh”.

For a quote of length `, the elements on this O(lg `)-length path of arrows
form a very short Type II signature. For Type I signatures, we include all the
11 The lowest row is intentionally not assigned a number. The second lowest row is row

0. We do this so that row i can correspond to a jump of length 2i.



elements corresponding to all arrows that make connections within the columns
corresponding to the quote. We illustrate this in Figure 1. This allows quoting
of quotes with a signature size of O(` lg `).

It is essential for security that the signature structure and data algorithm
enforce that the quoting algorithm be used and not allow an attacker to “splice”
together a quote from different parts of the signature. We realize this by adding
in random “chaining” variables. In order to cancel these out and get a well
formed Type II quote a user must intuitively follow the prescribed procedure
(i.e., following the arrows is the only way to form a valid quote.)

The Construction: We now describe our algorithms. While Sign is simply
a special case of the SignDerive algorithm, we will explicitly provide both
algorithms here for clarity purposes.

KeyGen(1λ) : The algorithm selects a bilinear group G of prime order p > 2λ

with generator g. Let L be the maximum message length supported and
denote n = blg(L)c. Let H : {0, 1}∗ → G and Hs : {0, 1}∗ → G be the
description of two hash functions that we model as random oracles. Choose
random z0, . . . , zn−1, α ∈ Zp. The secret key is (z0, . . . , zn−1, α) and the
public key is:

PK = (H,Hs, g, g
z0 , . . . , gzn−1 , e(g, g)α).

Sign(sk ,M = (t,m) ∈ {0, 1} ×Σ`≤L) : If t = 1, signatures produced by this
algorithm are Type I as described below. If t = 0, the Type II signature can
be obtained by running this algorithm and then running the Quote-Type II
algorithm below to obtain a quote on the entire message. The message space
is treated as ` ≤ L symbols from alphabet Σ.
Recall: we use notation mi,j to denote the substring of m of length j starting
at position i.
For i = 3 to `+1 and j = 0 to blg(i−1)−1c, choose random values xi,j ∈ Zp.
These will serve as our random “chaining” variables, and they should all
“cancel” each other out in our short Type II signatures. By definition, set
xi,−1 := 0 for all i = 1 to `+ 1.

A signature is comprised of the following values for i = 1 to ` and j = 0 to
blg(`− i+ 1)c, for randomly chosen values ri,j ∈ Zp:

[start arrow: start and include power j]

Si,j = gαg−xi+2j ,j−1Hs(mi,2j )ri,j , S̃i,j = gri,j

Together with the following values for i = 3 to ` and j = 0 to min(blg(i −
1)− 1c, blg(`− i+ 1)c), for randomly chosen values r′i,j ∈ Zp:

[one arrow: include power j and decrease j]

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j )r
′
i,j , Ãi,j = gr

′
i,j



Together with the following values for i = 3 to `+1 and j = 0 to blg(i−1)−1c,
for randomly chosen values r′′i,j ∈ Zp:

[zero arrow: decrease j]

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j

We provide an example of how to form Type II signatures from this con-
struction shortly. To see why our Ai,j and Di,j values start at i = 3, note
that Type II quotes at position i of length 20 = 1 symbol include only the
Si,0 value, where the x·,0−1 term is 0 by definition. Type II quotes at position
i of length 21 = 2 symbols include the Si,1 value plus an additional Di+2,0

term to cancel out the xi+2,0 value (leaving only xi+2,−1 = 0.) Quotes at
position i of length 21 + 1 = 3 symbols include the Si,1 value plus an addi-
tional Ai+2,0 term to cancel out the xi+2,0 value (leaving only xi+3,−1 = 0.)
Since we index strings from position 1, the first position to include an Ai,j
or Di,j value is i+ 2 = 3.

SignDerive(pk , σ,M = (t,m),M ′ = (t′,m′)) : If P (M,M ′) = 0, output⊥. Oth-
erwise, if t′ = 1, output Quote-Type I(PK, σ,m,m′); if t′ = 0, output Quote-
Type II(PK, σ,m,m′), where these algorithms are defined below.

Quote-Type I(pk , σ,m,m′) : The quote algorithm takes a Type I signature
and produces another Type I signature that maintains the ability to be
quoted again. Intuitively, this operation will simply find a substring m′ in m,
keep only the components associated with this substring and re-randomize
them all (both the xi,j and ri,j terms in every component.)
If m′ is not a substring of m, then output ⊥. Otherwise, let `′ = |m′|.
Determine the first index k at which substring m′ occurs in m. Parse σ as a
collection of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j values, exactly as would come from
Sign with ` = |m|.
First, we choose re-randomization values (to re-randomize the xi,j terms of
σ.) For i = 2 to `′ + 1 and j = 0 to blg(i − 1) − 1c, choose random values
yi,j ∈ Zp. Set yi,−1 := 0 for all i = 1 to `′ + 1. Later, we will choose ti,j
values to re-randomize the ri,j terms of σ.

The quote signature σ′ is comprised of the following values:

For i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c, for randomly chosen ti,j ∈ Zp:

S′i,j = Si+k−1,j · g−yi+2j ,j−1Hs(mi+k−1,2j )ti,j , S̃′i,j = ˜Si+k−1,j · gti,j

Together with the following values for i = 3 to `′ and j = 0 to min(blg(i −
1)− 1c, blg(`′ − i+ 1)c), for randomly chosen t′i,j ∈ Zp:

A′i,j = Ai+k−1,j · gyi,jg−yi+2j ,j−1H(mi+k−1,2j )t
′
i,j , Ã′i,j = ˜Ai+k−1,j · gt

′
i,j

Together with the following values for i = 3 to `′ + 1 and j = 0 to blg(i −
1)− 1c, for randomly chosen t′′i,j ∈ Zp:

D′i,j = Di+k−1,j · gyi,jg−yi,j−1gzjt
′′
i,j , D̃′i,j = ˜Di+k−1,j · gt

′′
i,j



Quote-Type II(pk , σ,m,m′) : The quote algorithm takes a Type I signature
and produces a Type II signature. If P (m,m′) 6= 1, then output ⊥.
A quote is computed from one start value and logarithmically many sub-
sequent pieces depending on the bits of |m′|. All signature pieces must be
re-randomized to prevent content-hiding attacks.
Consider the length `′ written as a binary string. Let β′ be the largest index of
`′ = |m′| that is set to 1, where we start counting with zero as the least signifi-
cant bit. That is, set β′ = blg(`′)c. Select random values v, vβ′−1, . . . , v0 ∈ Zp.
Set the start position as B := Sk,β′ and
k′ := k + 2β

′
. Then, from j = β′ − 1 down to 0, proceed as follows:

– If the jth bit of `′ is 1, set B := B ·Ak′,j ·H(mk′,2j )vj , set k′ := k′ + 2j ,
and Zj := Ãk′,j · gvj ;

– If the jth bit of `′ is 0, set B := B ·Dk′,j · gzjvj and Zj := D̃k′,j · gvj .
To end, re-randomize as B := B ·Hs(mk,2β )v and S̃ := S̃k,β · gv; output the
quote as

σ′ = (B, S̃, Zβ−1, . . . , Z0)

Verify(pk ,M = (t,m), σ) : If t = 1, output Verify-Type I(pk ,m, σ). Otherwise,
output Verify-Type II(pk ,m, σ), where these algorithms are defined imme-
diately below.

Verify–Type I(pk ,m, σ) : Parse σ as the set of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j .
Let ` = |m|.
Let Xi,j denote e(g, g)xi,j . We can compute these values as follows. The value
Xi,−1 = 1, since for all i = 1 to `+1, xi,−1 = 0. For i = 3 to `+1 and j = 0 to
blg(i−1)−1c, we compute Xi,j in the following manner: Let I = i−2j+1 and
J = j + 1. Next, compute Xi,j =

(
e(g, g)α · e(Hs(mI,2J ), S̃I,J)

)
/ e(SI,J , g).

The verification accepts if and only if all of the following hold:
– for i = 3 to ` and j = 0 to min(blg(i− 1)− 1c, blg(`− i+ 1)c),

e(Ai,j , g) = Xi,j/Xi+2j ,j−1 · e(H(mi,2j ), Ãi,j)

– and for i = 3 to `+1 and j = 0 to blg(i−1)−1c, e(Di,j , g) = Xi,j/Xi,j−1 ·
e(gzj , D̃i,j).

Verify-Type II(pk ,m, σ) : We give the verification algorithm for Type II sig-
natures. Parse σ as (B, S̃, Zβ−1, . . . , Z0). Let ` = |m| and β be the index of
the highest bit of ` that is set to 1. If σ does not include exactly β Zi values,
reject. Set C := 1 and k = 1. From j = β − 1 down to 0, proceed as follows:
– If the jth bit of ` is 1, set C := C · e(H(mk,2j ), Zj) and k := k + 2j ;
– If the jth bit of ` is 0, set C := C · e(gzj , Zj).

Accept if and only if e(B, g) = e(g, g)α · e(Hs(m1,2β ), S̃) · C.

Theorem 2 (Security under CDH). If the CDH assumption holds in G,
then the above quotable signature scheme is selectively quote unforgeable and
context-hiding in the random oracle model.

In the full version [1], we prove this theorem. We also discuss in detail the
efficiency of this construction, how to remove the random oracle, and how to
obtain full security.



5 Subsets and Weighted Averages

For the problems of subsets and weighted averages, we show somewhat surpris-
ing connections to respective existing solutions in attribute-based encryption
and network coding signatures. We sketch these constructions here and provide
further details in the full version of this paper [1].

Briefly, our subset construction extends the concept of Naor [10] who ob-
served that every IBE scheme can be transformed into a standard signature
scheme by applying the IBE KeyGen algorithm as a signing algorithm. Here we
show an analog for known Ciphertext-Policy (CP) ABE schemes. The KeyGen
algorithm which generates a key for a set S of attributes can be used as a signing
algorithm for the set S. For known CP-ABE systems [8, 34, 47] it is straightfor-
ward to derive a key for a subset S′ of S and to re-randomize the signature/key.
To verify a signature on S we can apply Naor’s signature-from-IBE idea and en-
crypt a random message X to a policy that is an AND of all the attributes in S
and see if the signature can be used as an ABE key to decrypt to X. Signatures
for subsets have been previously considered in [31, §6.4], but without context
hiding requirements.

Next, we consider a construction for weighted averages, which captures Fourier
transforms and weighted sums. This is particularly interesting, because so far
we only constructed schemes for univariate predicates P . We can now give an
example where one computes on multiple signed messages. Let p be a prime, n
a positive integer, and T a set of tags. The message space M consists of pairs:

M := T × Fnp

Now, define the predicate P as follows: P (ε,m) = 1 for all m ∈M and12

P

( (
(t1,v1), . . . , (tk,vk)

)
, (t,v)

)
= 1 ⇐⇒

{
t = t1 = · · · = tk, and
v ∈ span(v1, . . . ,vk)

Thus, given signatures on vectors v1, . . . ,vk grouped together by the tag t,
anyone can create a signature on a linear combination of these vectors. This can
be done iteratively so that given signed linear combinations, new signed linear
combinations can be created. Unforgeability means that if the adversary obtains
signatures on vectors v1, . . . ,vk for particular tag t ∈ T then he cannot create
a signature on a vector outside the linear span of v1, . . . ,vk.

Signature schemes for this predicate P are presented in [13, 12, 11, 14, 3] while
schemes over Z (rather than Fp) are presented in [26]. These schemes were origi-
nally designed to secure network coding where context hiding is not needed since
there are no privacy requirements for the sender (in fact, the sender is explicitly
transmitting all his data to the recipient). The question then is how to construct
a system for predicate P above that is both unforgeable and context hiding.
Fortunately, we observe that under the CDH assumption, the linearly homomor-
phic signature scheme, NCS1, due to Boneh, Freeman, Katz and Waters [13]

12 Recall, the signature on ε is the output the KeyGen algorithm.



is unforgeable and context-hiding in the random oracle model, assuming tags
are generated independently at random by the unforgeability challenger when
responding to Sign queries.
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