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Abstract. Protocols for secure two-party computation enable a pair
of parties to compute a function of their inputs while preserving secu-
rity properties such as privacy, correctness and independence of inputs.
Recently, a number of protocols have been proposed for the efficient con-
struction of two-party computation secure in the presence of malicious
adversaries (where security is proven under the standard simulation-
based ideal/real model paradigm for defining security). In this paper,
we present a protocol for this task that follows the methodology of using
cut-and-choose to boost Yao’s protocol to be secure in the presence of
malicious adversaries. Relying on specific assumptions (DDH), we con-
struct a protocol that is significantly more efficient and far simpler than
the protocol of Lindell and Pinkas (Eurocrypt 2007) that follows the
same methodology. We provide an exact, concrete analysis of the effi-
ciency of our scheme and demonstrate that (at least for not very small
circuits) our protocol is more efficient than any other known today.

1 Introduction

1.1 Background

Protocols for secure two-party computation enable a pair of parties P1 and P2

with private inputs x and y, respectively, to compute a function f of their inputs
while preserving a number of security properties. The most central of these prop-
erties are privacy (meaning that the parties learn the output f(x, y) but nothing
else), correctness (meaning that the output received is indeed f(x, y) and not
something else), and independence of inputs (meaning that neither party can
choose its input as a function of the other party’s input). The standard way of
formalizing these security properties is to compare the output of a real protocol
execution to an “ideal execution” in which the parties send their inputs to an
incorruptible trusted party who computes the output for the parties. Informally
speaking, a protocol is then secure if no real adversary attacking the real proto-
col can do more harm than an ideal adversary (or simulator) who interacts in
the ideal model [13, 14, 26, 2, 3]. An important parameter when considering this
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problem relates to the power of the adversary. The two most studied models are
the semi-honest model (where the adversary follows the protocol specification
exactly but tries to learn more than it should by inspecting the protocol tran-
script) and the malicious model (where the adversary can follow any arbitrary
polynomial-time strategy).

In the 1980s powerful feasibility results were proven, showing that any prob-
abilistic polynomial-time functionality can be securely computed in the presence
of semi-honest adversaries [33] and in the presence of malicious adversaries [13].
These results showed that it is possible to achieve such secure protocols, but
did not demonstrate how to do so efficiently (where by efficiency we mean a
protocol that can be implemented and run in practice). To be more exact, the
protocol of [33] for semi-honest adversaries is efficient. However, achieving secu-
rity efficiently for the case of malicious adversaries is far more difficult. In fact,
until recently, no efficient general protocols were known at all, where a general
protocol is one that can be used for computing any functionality.

This situation has changed in the past few years, possibly due to increas-
ing interest from outside the cryptographic community in secure protocols that
are efficient enough to be used in practice. The result has been that a number
of secure two-party protocols were presented that are secure in the presence of
malicious adversaries, where security is rigorously proven according to the afore-
mentioned ideal/real model paradigm [20, 24, 28, 18]. Interestingly, these proto-
cols all take novel, different approaches and so the secure-protocol skyline is
more diverse than before, providing the potential for taking the protocols a step
closer to very high efficiency. These protocols are discussed in more detail in
Section 1.3.

We remark that the protocol of [24] has been implemented for the non-trivial
problem of securely computing the AES block cipher (pseudorandom function),
where one party’s input is a secret key and the other party’s input is a value to
be “encrypted” [31]. A Boolean circuit for computing this function was designed
with approximately 33,000 gates, and the protocol of [24] was implemented for
this circuit. Experiments showed that the running-time of the protocol was be-
tween 18 and 40 minutes, depending on the assumptions taken on the primitives
used to implement the protocol. Although this is quite a long time, for some
applications it can be reasonable. In addition, it demonstrates that it is possible
to securely compute functions with large circuits, and motivates the search for
finding even more efficient protocols that can widen the applicability of such
computations in real-world settings.

1.2 Our Results

In this paper, we follow the construction paradigm of [24] and significantly sim-
plify and improve the efficiency of their construction. The approach of [24] is to
carry out a basic cut-and-choose on the garbled circuit construction of Yao [33]
(we assume familiarity with Yao’s protocol). That is, party P1 constructs s copies
of a garbled circuit and sends them to P2, who then asks P1 to open half of them
in order to verify that they are correctly constructed. If all of the opened circuits



are indeed correct, then it is guaranteed that a majority of the unopened half
are also correct, except with probability that is negligible in a statistical security
parameter s. Thus, P1 and P2 evaluate the remaining s/2 circuits, and P2 takes
the output that appears in most of the evaluated circuits. As discussed in [24],
P2 cannot abort in the case that not all of the s/2 circuits evaluate to the same
value, even though in such a case it knows that P1 is cheating. The reason for
this is that P1 may construct a circuit that computes f in the case that P2’s first
bit equals 0, and otherwise it outputs random garbage. Now, with probability
1/2 this faulty circuit is not opened and so is one of the circuits to be evaluated.
In this case, if P2 would abort when it saw random garbage then P1 would know
that P2’s first input bit equals 1. For this reason, P2 takes the majority output
and ignores minority values without aborting.

Although intuitively appealing, the cut-and-choose approach introduces a
number of difficulties which significantly affect the efficiency of the protocol
of [24]. First, since the parties need to evaluate s/2 circuits rather than one,
there needs to be a mechanism to ensure that they use the same input in all
evaluations (the solution for this for P2’s inputs is easy, but for P1’s inputs
turns out to be hard). The mechanism used in [24] required constructing and
sending s2ℓ commitments. In the implementation by [31], they set s = 160 and
ℓ = 128. Thus, the overhead due to these consistency proofs is the computation
and transmission of 3, 276, 800 commitments! Another problem that arises in
the protocol of [24] is that a malicious P1 can input an incorrect key into one
of the oblivious transfers used for P2 to obtain the keys associated with its
input wires in the garbled circuit. For example, it can set all the keys associated
with 0 for P2’s first input bit to be garbage, thereby making it impossible for
P2 to decrypt any circuit if its first input bit indeed equals 0. In contrast, P1

can make all of the other keys be correct. In this case, P1 is able to learn P2’s
first input bit, merely by whether P2 obtains an output or not. The important
observation is that the checks on the garbled circuit carried out by P2 do not
detect this because there is a separation between the cut-and-choose checks and
the oblivious transfer. The solution to this problem in [24] requires making the
circuit larger and significantly increasing the size of the inputs by replacing
each input bit with the exclusive-or of multiple random input bits. Finally, the
analysis of [24] yields an error of 2−s/17. Thus, in order to obtain an error level
of 2−40 the parties need to exchange 680 circuits. We remark that it has been
conjectured in [31] that the true error level of the protocol is 2−s/4; however,
this has not been proven.

Our protocol. We solve the aforementioned problems in a way that is far
simpler and far more efficient than in [24]. In addition, we reduce the error
probability to 2−0.311s and thus for an error of 2−40 it suffices to send only
128 circuits. This is an important improvement because the experiments of [31]
demonstrate that the bottleneck in efficiency is not the exponentiations, but
rather the number of circuits and the commitments for proving consistency.
Thus, in our protocol we moderately increase the number of exponentiations,
while reducing the number of circuits, completely removing the commitments,



and also removing the need to increase the size of the inputs. We remark that
the price for these improvements is that our protocol relies heavily on the deci-
sional Diffie-Hellman (DDH) assumption, while the protocol of [24] used general
assumptions only. We now proceed to describe our two main techniques:

1. Our solution for ensuring consistency of P1’s inputs is to have P1 determine
the keys associated with its own input bits via a Diffie-Hellman pseudo-
random synthesizer [27]. That is, P1 chooses values ga

0
1 , ga

1
1 , . . . , ga

0
ℓ , ga

1
ℓ and

gr1 , . . . , grs and then sets the keys associated with its ith input bit in the jth
circuit to be ga

0
i ·rj , ga

1
i ·rj . Given all of the {ga0

i , ga
1
i , grj} values and any sub-

set of keys of P1’s input generated in this way, the remaining keys associated
with its input are pseudorandom by the DDH assumption. Furthermore, it
is possible for P1 to efficiently prove that it is using the same input in all
circuits when the keys have this nice structure.

2. As we have described, the reason that the inputs and circuits were needed
to be made larger in [24] is due to the fact that the cut-and-choose cir-
cuit checks were separated from the oblivious transfer. In order to solve this
problem, we introduce a new primitive called cut-and-choose oblivious trans-
fer. This is an ordinary oblivious transfer with the sender inputting many
pairs (x0

1, x
1
1), . . . , (x

0
s, x

1
s), and the receiver inputting bits σ1, . . . , σs. How-

ever, the receiver also inputs a set J ⊂ [s] of size exactly s/2. Then, the
receiver obtains xσi

i for every i (as in a regular oblivious transfer) along with
both values (x0

j , x
1
j ) for every j ∈ J . The use of this primitive in our pro-

tocol intertwines the oblivious transfer and the circuit checks and solves the
aforementioned problem. We also show how to implement this primitive in a
highly efficient way, under the DDH assumption. We believe that this prim-
itive is of independent interest, and could be useful in many cut-and-choose
scenarios.

Efficiency analysis. Our entire protocol, including all subprotocols, is explic-
itly written and analyzed in a concrete and exact way for efficiency. Considerable
effort has been made to optimize the constructions and reduce the constants
throughout. We believe that this is of great importance when the focus of a
result is efficiency. See Section 1.3 for a summary of the exact complexity of our
protocol, and Section 3 for a complete analysis, with optimizations in Section 3.3.

Variants. Another advantage of our protocol over that of [24] is that we ob-
tain a universally composable [4] variant that is only slightly less efficient than
the stand-alone version. This is because our simulator only rewinds during zero-
knowledge protocols. These protocols are also Σ protocols and so can be ef-
ficiently transformed into universally composable zero-knowledge. As with our
basic protocol, we provide an explicit description of this transformation and an-
alyze its exact efficiency. Finally, we also show how our protocol yields a more
efficient construction for security in the presence of covert adversaries [1], when
high values of the deterrent factor ϵ are desired.



1.3 Comparison to Other Protocols

We provide an analysis of the efficiency of recent protocols for secure two-party
computation. Each protocol takes a different approach, and thus the approaches
may yield more efficient instantiations in the future. Nevertheless, as we will
show, our protocol is significantly more efficient than the current best instanti-
ations of the other approaches (at least, for not very small circuits).

– Committed input method (Jarecki-Shmatikov [20]): The secure two-
party protocol of [20] works by constructing a single circuit and proving that
it is correct. The novelty of this protocol is that this can be done with only a
constant number of (large modulus) exponentiations per gate of the circuit.
Thus, for circuits that are relatively small, this can be very efficient. However,
an exact count gives that approximately 720 exponentiations are required
per gate. Thus, even for small circuits, this protocol is not yet practical. For
large circuits like AES with 33,000 gates, the number of exponentiations is
very large (23, 760, 000 for AES), and is not realistic. (The authors comment
that if efficient batch proofs can be found for the languages they require then
this can be significantly improved. However, to the best of our knowledge,
no such improvements have yet been made. Furthermore, for a large circuit
we believe it unlikely that this method will yield a highly efficient protocol.)

– LEGO (Nielsen-Orlandi [28]): The LEGO protocol [28] follows the cut-
and-choose methodology in a completely different way. Specifically, the cir-
cuit constructor first sends the receiver many gates, and the receiver checks
that they are correctly constructed by asking for some to be opened. After
this stage, the parties interact in a way that enables the gates to be securely
soldered (like Lego blocks) into a correct circuit. Since it is not guaranteed
that all of the gates are correct, but just a vast majority, a fault tolerant
circuit of size O(s · |C|/ log |C|) is constructed, where s is a statistical secu-
rity parameter. The error as a function of s is 2−s and the constant inside
the “O” notation for the number of exponentiations is 32 [29]. Thus, for an
error of 2−40 we have that the overall number of exponentiations carried out
by the parties is 1280 · |C|/ log |C|. For large circuits, like that of AES, this
is unlikely to be practical. (For example, for the AES circuit with 33,000
gates we have that the parties need to carry out 2, 816, 000 exponentiations.
Observe that due to the size of the circuit, the log |C| factor is significant
in making the protocol more efficient than [20], as predicted in [28]. This
protocol also relies on the DDH assumption. It is worthy to note that expo-
nentiations in this protocol are in a regular “Diffie-Hellman” group and so
Elliptic curves can be used, in contrast to [20] who work in Z∗

N .)
– Virtual multiparty method (Ishai et al. [18, 19]): This method works

by having the parties simulate a virtual multiparty protocol with an honest
majority. The cost of the protocol essentially consists of the cost of running
a semi-honest protocol for computing the multiplication of additive shares,
for every multiplication carried out by a party in a multiparty protocol with
honest majority. Thus, the actual efficiency of the protocol depends heavily
on the multiparty protocol to be simulated, and the semi-honest protocols



used for simulating the multiparty protocol. An asymptotic analysis demon-
strates that this method may be competitive. However, no concrete analysis
has been carried out, and it is currently an open question whether or not it
is possible to instantiate this protocol in a way that will be competitive with
other known protocols.

– Cut-and-choose on circuits (Lindell-Pinkas [24]): Since this protocol
has been discussed at length above, we just briefly recall that the complexity
of the protocol is O(ℓ) oblivious transfers for input-length ℓ (where the con-
stant inside here is not small because of the need to increase the number of
P2’s inputs), and the construction and computation of s garbled circuits and
of s2ℓ commitments. In addition, the proven error of the protocol is 2−s/17

and its conjectured error is 2−s/4. The actual value has a significant impact
on the efficiency.

In contrast to the above, the complexity of our protocol is as follows. The
parties need to compute 15sℓ + 39ℓ + 10s + 6 exponentiations, where ℓ is the
input length and s is a statistical security parameter discussed below. We further
show that with optimizations the 15sℓ component can be brought down to just
5.66sℓ full exponentiations, and if preprocessing can be used then only sℓ/2
full exponentiations need to be computed after the inputs become known. In
addition, the protocol requires the exchange of 7sℓ + 22ℓ + 7s + 5 group
elements, and has 12 rounds of communication. Finally, there are 6.5|C|s
symmetric encryptions for constructing and decrypting the garbled circuits
and 4|C|s ciphertexts sent for transmitting these circuits. An important factor
here is the value of s needed. The error of our protocol is 2−0.311s and so
for an error of 2−40 it suffices to set s = 128. (The overhead of computing
an AES circuit, after preprocessing, with |C| = 33, 000, and s = ℓ = 128,
is therefore about 93, 000 exponentiations, 27, 500, 000 symmetric encryptions,
and communicating 28.6 Mbytes, where about 95% of the communication is
spent on sending the garbled circuits.) Finally, we stress also that all of our
exponentiations are of the basic Diffie-Hellman type and so can be implemented
over Elliptic curves, which is much cheaper than RSA-type operations.

Full version. In this extended abstract we do not have space to present the
proofs of security of our protocols. A full version of this paper appears in the
Cryptology ePrint Archive (report 2010/284).

2 Cut-and-Choose Oblivious Transfer

2.1 The Functionality and Construction Overview

Our protocol for secure two-party computation uses a new primitive that we
call cut-and-choose oblivious transfer. Loosely speaking, a cut-and-choose OT is
a batch oblivious transfer protocol (meaning an oblivious transfer for multiple
pairs of inputs) with the additional property that the receiver can choose a subset
of the pairs (of a predetermined size) for which it learns both values. This is a



very natural primitive which has clear applications for protocols that are based
on cut-and-choose, as is our protocol here for general two-party computation.

The cut-and-choose OT functionality, denoted Fccot, with parameter s, is
formally defined in Figure 1, together with a variant functionality that we will
need, which considers the case that R is forced to use the same choice σ in every
transfer. This variant is denoted FS

ccot.

FIGURE 1 (The cut-and-choose OT functionalities)

The cut-and-choose OT functionality Fccot:

– Inputs:
• S inputs a vector of pairs x = {(xi

0, x
i
1)}si=1

• R inputs σ1, . . . , σs ∈ {0, 1} and a set of indices J ⊂ [s] of size exactly
s/2.

– Output: If J is not of size s/2 then S and R receive ⊥ as output. Oth-
erwise,
• For every j ∈ J the receiver R obtains the pair (xj

0, x
j
1).

• For every j /∈ J the receiver R obtains xj
σj
.

The single-choice cut-and-choose OT functionality FS
ccot:

– Inputs: The same as above, but with R having only a single input bit σ.
– Output: As above, but with R obtaining the value xj

σ for every j /∈ J .

In order to motivate the usefulness of this functionality, we describe its use
in our protocol. Oblivious transfer is used in Yao’s protocol so that the party
computing the garbled circuit (call it P2) can obtain the keys (garbled values)
on the wires corresponding with its input while keeping its input secret. It is
crucial that P2 obtain only a single key for each wire, since this is what ensures
that it can only obtain a single output. When applying cut-and-choose, many
circuits are constructed and then half of them are opened, where opening means
that P2 receives all of the input keys to the circuit, enabling it to decrypt all
garbled gates and check that they were correctly constructed. By using cut-and-
choose OT, P2 receives all of its keys in the circuits to be opened directly, in
contrast to having P1 send them separately after the indices of the circuits to be
opened are sent from P2 to P1. The advantage of this approach is that P1 cannot
use different keys in the OT and when opening the circuit. See Section 3.1 for
discussion on why this is important.

In cut-and-choose on Yao’s protocol, one oblivious transfer is needed for every
bit of P2’s input (equivalently, every wire on the circuit), and P2 should receive
the keys associated with this fixed bit in all of the circuits. In order to ensure
that P2 uses the same input in all circuits, we devised a single-choice variant of
cut-and-choose OT. In the full version, we separately present the basic variant
since it is of independent interest and may be useful in other applications.



2.2 Constructing a Single-Choice Cut-and-Choose OT Protocol

The starting point for our construction of cut-and-choose OT is the universally
composable protocol of Peikert et al. [30]; we refer only to the instantiation of
their protocol based on the DDH assumption because this is the most efficient.
However, our protocol can use any of their instantiations. The protocol of [30]
is cast in the common reference string (CRS) model, where the CRS is a tuple
(g0, g1, h0, h1) where g0 is a generator of a group of order q (in which DDH is
assumed to be hard), g1 = (g0)

y for some random y, and it holds that h0 = (g0)
a

and h1 = (g1)
b where a ̸= b. We first observe that it is possible for the receiver

to choose this tuple itself, as long as it proves that it indeed fulfills the property
that a ̸= b. Furthermore, this can be proven very efficiently by setting b = a+1;
in this case, the proof that b = a+1 is equivalent to proving that (g0, g1, g0,

h1

g1
)

is a Diffie-Hellman tuple (note that the security of [30] is based only on a ̸= b
and not on these values being independent of each other). We thus obtain a
highly efficient version of the protocol of [30] in the stand-alone model.

Next, observe that the protocol of [30] has the property that if (g0, g1, h0, h1)
is a Diffie-Hellman tuple (i.e., if a = b) then it is possible for the receiver to
learn both values (of course, in a real execution this cannot happen because the
receiver proves that a ̸= b). This property is utilized by [30] to prove universal
composability; in their case the simulator can choose the CRS so that a = b
and then learn both inputs of the sender, something that is needed for proving
simulation-based security. However, in our case, we want the receiver to be able
to sometimes learn both inputs of the sender. We can therefore utilize this exact
property and have the receiver choose s pairs {(hj

0, h
j
1)}sj=1 such that for s/2 of

the pairs (hj
0, h

j
1) it holds that a ̸= b (ensuring that it learns only one input)

and for s/2 of the pairs (hj
0, h

j
1) it holds that a = b (enabling it to learn both

inputs by actually running the UC simulator). This therefore provides the exact
cut-and-choose property in the OT that is needed. Of course, the receiver must
also prove that it behaved in this way. Specifically, it proves in zero-knowledge
that s/2 out of s pairs are such that a ̸= b. This proof too can be computed at
low cost using the technique of Cramer et al. [7]; see the full version of the paper
for a full description and efficiency analysis of the zero-knowledge protocol.

In the oblivious transfer protocol, the receiver with an input σ chooses a ran-
dom r and sends (gσ)

r and (h1
σ)

r, . . . , (hs
σ)

r to the sender, using the g0, g1, (h
j
0, h

j
1)

values sent previously. In order to ensure that the single-choice property holds,
the receiver R must prove that it used the same σ in every computation of
(hj

σ)
r. The protocol has been carefully designed so that the way that R chooses

the values enables this proof to be carried out efficiently. Specifically, the required
zero-knowledge proof is that there exists an r ∈ Zq such that either g′ = (g0)

r

and hj = (hj
0)

r for every 1 ≤ j ≤ s, or g′ = (g1)
r and hj = (hj

1)
r for every

1 ≤ j ≤ s, which is just a proof that one of two sets of tuples are all of the
Diffie-Hellman type; see the protocol specification below and the full version for
details. The cost of this proof is s+ 18 exponentiations and the exchange of 10
group elements.



PROTOCOL 2 (Single-Choice Cut-and-Choose Oblivious Transfer)
– Inputs: The sender’s input is a vector of s pairs (xj

0, x
j
1) and the receiver’s

input is a single bit σ ∈ {0, 1} and a set J ⊂ [s] of size exactly s/2.
– Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0),

where G is an efficient representation of a group of order q with a generator
g0, and q is of length n.

– Setup phase:
1. R chooses a random y ← Zq and sets g1 = (g0)

y.

2. For every j ∈ J , R chooses a random αj ← Zq and computes hj
0 = g

αj

0

and hj
1 = g

αj

1 .

3. For every j /∈ J , R chooses random αj ← Zq and computes hj
0 = g

αj

0

and hj
1 = g

αj+1
1 .

4. R sends (g1, h
1
0, h

1
1, . . . , h

s
0, h

s
1) to S

5. R proves using a zero-knowledge proof of knowledge to S that s/2 of the

tuples (g0, g1, h
j
0,

hj
1

g1
) are DH tuples (and through this, that the tuples

(g0, g1, h
j
0, h

j
1) are not DH tuples). If S rejects the proof then it outputs

⊥ and halts.
– Transfer phase (for every j):

1. The receiver chooses a random value r ← Zq and computes g′ = (gσ)
r.

Then, for every j, it computes hj = (hj
σ)

r. It sends (g′, h1, . . . , hs) to the
sender.

2. The receiver proves in zero knowledge that either all {(g0, hj
0, g

′, hj)}sj=1

or all {(g1, hj
1, g

′, hj)}sj=1 are Diffie-Hellman tuples.
3. The sender operates in the following way:

• Define the function RAND(w, x, y, z) = (u, v), where u = (w)s · (y)t
and v = (x)s · (z)t, and the values s, t← Zq are random.

• S computes the pairs (uj
0, v

j
0) = RAND(g0, gj , h

j
0, hj) and (uj

1, v
j
1) =

RAND(g1, gj , h
j
1, hj).

• S sends the receiver the values (uj
0, w

j
0) where wj

0 = vj0 · x
j
0, and

(uj
1, w

j
1) where wj

1 = vj1 · x
j
1, for every j.

– Output:
1. For every j ∈ {1, . . . , s}, the receiver computes xj

σ = wj
σ/(u

j
σ)

r.
2. For every j ∈ J , the receiver also computes xj

1−σ = wj
1−σ/(u

j
1−σ)

r·z

where z = y−1 mod q if σ = 0, and z = y if σ = 1.

The fact that the output obtained is correct follows from the correctness (and
simulation strategy) of the protocol of [30]. We prove the following:

Proposition 3 If the Decisional Diffie-Hellman assumption holds in the group
G, then Protocol 2 securely realizes the FS

ccot functionality in the presence of
malicious adversaries.

The proof of Proposition 3 is based on the following ideas. Suppose first that
the adversary controls the receiver; we briefly describe an ideal-model simula-
tor “interacting” with the adversary. The simulator receives from the adversary



the values (g0, g1) and (h1
0, h

1
1, . . . , h

0
s, h

1
s) of the setup phase, and then runs

the extractor of the zero-knowledge proof of knowledge to learn the witness
set. The extracted witnesses identify exactly the set J of s/2 indices for which
(g0, g1, h

j
0, h

j
1) is a Diffie-Hellman tuple, and in addition provides the simulator

with the set of values αj for all j /∈ J . Next, in the transfer phase, given g′ and
hj , the simulator can extract the value of σ by simply checking if (g′)αj = hj ;
alternatively, it can run the extractor for the zero-knowledge proof of the trans-
fer phase. The simulator then sends the set J and bit σ to the trusted party
and obtains the corresponding outputs. Now, for every j ∈ J , the simulator
received both values xj

0 and xj
1 and so can compute (uj

0, w
j
0) and (uj

1, w
j
1) just

like the honest sender. In contrast, for every j /∈ J , the simulator received only
xj
σ. In this case, it can still compute (uj

σ, w
j
σ) like the honest sender. Regarding

(uj
1−σ, w

j
1−σ), these can just be taken as uniformly distributed values in G, by the

property of the RAND transformation when applied to non-Diffie-Hellman tu-
ples.

Next consider the case that the adversary controls the sender. In this case,
the simulator chooses the (hj

0, h
j
1) values such that (g0, g1, h

j
0, h

j
1) is a Diffie-

Hellman tuple for all j. The simulator then “cheats” in the zero-knowledge proof
by generating a simulated zero-knowledge proof with the adversary. Given that
now all (g0, g1, h

j
0, h

j
1) are Diffie-Hellman tuples, the simulator can extract both

inputs (xj
0, x

j
1) for every j = 1, . . . , s, using the same computation as an honest

receiver would for j ∈ J . Finally, the simulator sends the values {(xj
0, x

j
1)}sj=1

to the trusted party, outputs whatever the adversary outputs, and halts. The
fact that this is indistinguishable from a real execution follows directly from the
indistinguishability of simulated zero-knowledge proofs from real proofs, and
from the DDH assumption.

Exact efficiency. In the full version, we present an exact analysis of this pro-
tocol, including the cost of all zero-knowledge proofs. The result is that the pro-
tocol requires 20.5s+ 24 exponentiations, the exchange of 11s+ 15 group
elements, and 6 rounds of communication.

2.3 Batch Single-Choice Cut-and-Choose OT

In our protocol we need to carry out cut-and-choose oblivious transfers for all
wires in the circuit (where for each wire the input used is P2’s input bit). How-
ever, the subset of indices for which the receiver obtains both pairs must be the
same in all transfers. This is due to the fact that this determines which of the
circuits are checked and which are evaluated, and it is crucial that in all of the
evaluated circuits P2 only receives one value on every wire. We call a functionality
that achieves this “batch single-choice cut-and-choose OT” and denote it FS,B

ccot .
In order to realize this functionality it suffices to run the setup phase of Pro-

tocol 2 once (this ensures that the set J is the same in all executions). Then,
the transfer phase of the single-choice protocol is run ℓ times in parallel (with
the single choice in the ith execution being some σi). We remark that paral-
lel composition holds here because the simulation only rewinds in the transfer



phase for the zero-knowledge protocol, which is zero-knowledge under parallel
composition. We have the following:

Proposition 4 Assuming that the Decisional Diffie-Hellman assumption holds
in G, the above-described protocol securely realizes FS,B

ccot in the presence of ma-
licious adversaries.

Exact efficiency. The setup phase here remains the same, and including the
zero-knowledge proof it costs 9s+5 exponentiations and the exchange of 5s+5
group elements. The transfer phase is repeated ℓ times, where each transfer
incurs a cost of 11.5s + 19 exponentiations and the exchange of 6s + 10 group
elements. We conclude that there are 11.5sℓ+19ℓ+9s+5 exponentiations,
6sℓ+10ℓ+5s+5 group elements sent and 6 rounds of communication.
In Section 3.3 we observe that 10.5sℓ of the exponentiations are “fixed-base”
and thus the overall effective cost is about 4.5sℓ exponentiations.

3 The Protocol for Secure Two-Party Computation

3.1 Protocol Description

Before describing the protocol in detail, we first present an intuitive explanation
of the different steps, and their purpose:

Step 1: P1 constructs s copies of a Yao garbled circuit for computing the func-
tion. The keys (garbled values) on the wires of the s copies of the circuit are
all random, except for the keys corresponding to P1’s input wires, which are
chosen in a special way. Namely, P1 chooses random values a01, a

1
1, . . . , a

0
ℓ , a

1
ℓ

(where the length of P1’s input is ℓ) and r1, . . . , rs, and sets the keys on

the wire associated with its ith input in the jth circuit to be ga
0
i ·rj and

ga
1
i ·rj . Note that the 2ℓ + s values ga

0
1 , ga

1
1 , . . . , ga

0
ℓ , ga

1
ℓ , gr1 , . . . , grs consti-

tute commitments to all 2ℓs keys.1 (The keys are actually a pseudorandom
synthesizer [27], and therefore if some of the keys are revealed, the remaining
keys remain pseudorandom.)

Step 2: The parties execute batch single-choice cut-and-choose OT. P1 inputs
the key-pairs for all wires associated with P2’s input, and P2 inputs its
input and a random set J ⊂ [s] of size s/2. The result is that P2 learns all
the keys on the wires associated with its own input for s/2 of the circuits
as indexed by J (called check circuits), and in addition learns the keys
corresponding to its actual input in these wires in the remaining circuits
(called evaluation circuits).

1 The actual symmetric keys used are derived from the ga
0
i ·rj , ga

1
i ·rj values using a

randomness extractor; a universal hash function suffices for this [6, 16]. The only
subtlety is that P1 must be fully committed to the garbled circuits, including these
symmetric keys, before it knows which circuits are to be checked. However, random-
ness extractors are not 1− 1 functions. This is solved by having P1 send the seed for

the extractor before Step 4 below. Observe that the {ga
0
i , ga

1
i , grj} values and the

seed for the extractor fully determine the symmetric keys, as required.



Step 3: P1 sends P2 the garbled circuits, and the values ga
0
1 , ga

1
1 , . . . , ga

0
ℓ , ga

1
ℓ ,

gr1 , . . . , grs which are commitments to all the keys on the wires associated
with P1’s input. Observe that at this stage P1 is fully committed to all s
circuits, but does not yet know which circuits are to be opened.

Step 4: P2 reveals to P1 its choice of check circuits and proves that was indeed
its choice by sending, for each check circuit, both values on the wire associated
with P2’s first input bit. Note that P2 can know both these values only for
circuits that are check circuits.

Step 5: To completely decrypt the check circuits in order to check that they
were correctly constructed, P2 also needs to obtain all the keys on the wires
associated with P1’s input. Therefore, if the jth circuit is a check circuit,
then P1 sends rj to P2. Given all of the ga

0
i , ga

1
i values and rj , party P2

can compute all of the keys ga
0
i ·rj , ga

1
i ·rj in the jth circuit by itself (and P1

cannot change the values). Furthermore, this reveals nothing about the keys
in the evaluation circuits.

Step 6: Given all of the keys on all of the input wires, P2 checks the valid-
ity of the s/2 check circuits. This ensures that P2 will catch P1 with high
probability if many of the garbled circuits generated by P1 do not compute
the correct function. Thus, unless P2 detects cheating, it is assured that a
majority of the evaluation circuits are correct.

Step 7: All that remains is for P1 to send P2 the keys associated with its actual
input, and then P2 will be able to compute the evaluation circuits. This raises
a problem as to how P2 can be sure that P1 sends keys that correspond to the
same input in all circuits. This brings us to the way that P1 chose these keys
(via the Diffie-Hellman pseudorandom synthesizer). Specifically, for every

wire i and evaluation-circuit j, party P1 sends P2 the value ga
xi
i ·rj where xi

is the ith bit of P1’s input. P1 then proves in zero-knowledge that the same
axi
i exponent appears in all of the values sent. Essentially, this is a proof

that the values constitute an “extended” Diffie-Hellman tuple and thus this
statement can be proven very efficiently.

Step 8: Finally, given the keys associated with P1’s inputs and its own inputs,
P2 evaluates the evaluation circuits and obtains their output values. Recall,
however, that the checks above only guarantee that a majority of the circuits
are correct, and not that all of them are. Therefore, P2 outputs the value that
is output from the majority of the evaluation circuits. We stress that if P2 sees
different outputs in different circuits, and thus knows for certain that P1 has
tried to cheat, it must ignore this observation and output the majority value
(or otherwise it might leak information to P1, as in the example described
in Section 1.2).

We remark on one type of attack discussed in [21, 24]. The concern there
was that P1 would use correct keys for all of P2’s input bits when opening the
check circuit, but would use incorrect keys in some of the oblivious transfers.
This is problematic because if P1 input incorrect keys for the zero value of P2’s
first input bit, and correct keys for all other values, then P2 would not detect
any misbehavior if its first input bit equals 1. However, if its first input bit



equals 0 then it would have to abort (because it would not be able to decrypt
any of the evaluation circuits). This results in P1 learning P2’s first input bit
with probability 1. In order to solve this problem in [24] it was necessary to
split P2’s input bits into random shares, thereby increasing the size of the input
to the circuit and the size of the circuit itself. In contrast, this attack does not
arise here at all because P2 obtains all of the keys associated with its input bits
in the cut-and-choose oblivious transfer, and the values are not sent separately
for check and evaluation circuits. Thus, if P1 attempts a similar attack here
for a small number of circuits then it will not be the majority and so does not
matter, and if it does so for a large number of circuits then it will be caught
with overwhelming probability. We now proceed to the full protocol description.

PROTOCOL 5 (Computing f(x, y))
Inputs: P1 has input x ∈ {0, 1}ℓ and P2 has input y ∈ {0, 1}ℓ.
Auxiliary input: a statistical security parameter s, the description of a circuit
C such that C(x, y) = f(x, y), and (G, q, g) where G is a cyclic group with
generator g and prime order q, and q is of length n.

The protocol:

1. Input key choice and circuit preparation:

(a) P1 chooses random values a01, a
1
1, . . . , a

0
ℓ , a

1
ℓ ∈R Zq and r1, . . . , rs ∈R Zq.

(b) Let w1, . . . , wℓ be the input wires corresponding to P1’s input in C, and
denote by wi,j the instance of wire wi in the jth garbled circuit, and by
kbi,j the key associated with bit b on wire wi,j. Then, P1 sets the keys for

its input wires to: k0i,j = H(ga
0
i ·rj ) and k1i,j = H(ga

1
i ·rj ), where H is a

suitable randomness extractor [6, 16]; see also [10].
(c) P1 constructs s independent copies of a garbled circuit of C, denoted

GC1, . . . , GCs, using random keys except for wires w1, . . . , wℓ for which
the keys are as above.

2. Oblivious transfers: P1 and P2 run batch single-choice cut-and-choose
oblivious transfer with parameters ℓ (the number of parallel executions) and
s (the number of pairs in each execution):

(a) P1 defines vectors z1, . . . zℓ so that zi contains the s pairs of random
symmetric keys associated with P2’s ith input bit yi in all garbled circuits
GC1, . . . , GCs.

(b) P2 inputs a random subset J ⊂ [s] of size exactly s/2 and bits σ1, . . . , σℓ ∈
{0, 1}, where σi = yi for every i.

(c) P2 receives all the keys associated with its input wires in all circuits GCj

for j ∈ J , and receives the keys associated with its input y on its input
wires in all other circuits.

3. Send circuits and commitments: P1 sends P2 the garbled circuits (i.e.,
the gate and output tables), the “seed” for the randomness extractor H, and
the following “commitment” to the garbled values associated with P1’s input

wires:
{
(i, 0, ga

0
i ), (i, 1, ga

1
i )
}ℓ

i=1
and

{
(j, grj )

}s

j=1
.



4. Send cut-and-choose challenge: P2 sends P1 the set J along with the
pair of keys associated with its first input bit y1 in every circuit GCj for
j ∈ J . If the values received by P1 are incorrect, it outputs ⊥ and aborts.
Circuits GCj for j ∈ J are called check-circuits, and for j /∈ J are called
evaluation-circuits.

5. Send all input garbled values in check-circuits: For every check-
circuit GCj, party P1 sends the value rj to P2, and P2 checks that these are
consistent with the pairs {(j, grj )}j∈J received in Step 3. If not, P2 aborts
outputting ⊥.

6. Correctness of check circuits: For every j ∈ J , P2 uses the ga
0
i , ga

1
i

values it received in Step 3, and the rj values it received in Step 5, to compute

the values k0i,j = H(ga
0
i ·rj ), k1i,j = H(ga

1
i ·rj ) associated with P1’s input in

GCj. In addition it sets the garbled values associated with its own input in
GCj to be as obtained in the cut-and-choose OT. Given all the garbled values
for all input wires in GCj, party P2 decrypts the circuit and verifies that it
is a garbled version of C.

7. P1 sends its garbled input values in the evaluation-circuits:
(a) P1 sends the keys associated with its inputs in the evaluation circuits:

For every j /∈ J and every wire i = 1, . . . , ℓ, party P1 sends the value
k′i,j = ga

xi
i ·rj ; P2 sets ki,j = H(k′i,j).

(b) P1 proves that all input values are consistent: For every input wire i =
1, . . . , ℓ, party P1 proves in parallel that there exists a value σi ∈ {0, 1}
such that for every j /∈ J , k′i,j = ga

σi
i ·rj . If any of the proofs fail, then

P2 aborts and outputs ⊥.
8. Circuit evaluation: P2 uses the keys associated with P1’s input obtained

in Step 7a and the keys associated with its own input obtained in Step 2c to
evaluate the evaluation circuits GCj for every j /∈ J . If a circuit decryption
fails, then P2 sets the output of that circuit to be ⊥. Party P2 takes the output
that appears in most circuits, and outputs it.

3.2 Properties

The security of the protocol is expressed in the following theorem, which is
proved in the full version of the paper:

Theorem 6 Assume that the decisional Diffie-Hellman assumption is hard in
G, that the protocol used in Step 2 securely computes the batch single-choice cut-
and-choose oblivious transfer functionality, that the protocol used in Step 7b is
a zero-knowledge proof of knowledge, and that the symmetric encryption scheme
used to generate the garbled circuits is secure. Then, Protocol 5 securely computes
the function f in the presence of malicious adversaries.

We remark here on one aspect of the proof that is crucial to the concrete
efficiency of the protocol. Party P1 can successfully cheat if it manages to pass
the cut-and-choose test with a majority of the evaluation circuits being incor-
rect. To do this, at least s/4 circuits must be incorrect. In the proof of security



we show that the probability that at least this many circuits are incorrect with-
out P2 catching P1 is approximately 2−0.311s where the approximation is due to
Stirling’s formula. Based on this, it suffices to use 128 garbled circuits in order
to obtain an error of 2−40. (We also compared the exact bound to this approx-
imation on the concrete value of s = 128, to verify that the approximation is
good for s of this size.)

Exact efficiency. An exact analysis of the protocol yields that there are 15sℓ+
39ℓ + 10s + 5 exponentiations (of which 11.5sℓ are for Step 2, performing
the OTs), 7sℓ + 22ℓ + 7s + 5 group elements sent and 12 rounds of
communication. In addition, there are 6.5|C|s symmetric encryptions,
of which 4|C|s encryptions for constructing all s garbled circuits, and 2|C|s
encryptions for P2 to check s/2 of them. Finally, there are 4|C|s ciphertexts
sent for transmitting these circuits. The overhead of the protocol can be improved
by different optimizations, as shown in Section 3.3 below.

3.3 Optimizations

Fixed-base exponentiations. Exponentiations are commonly computed by
repeated squaring, which for a group of order q of length m bits requires on av-
erage 1.5m multiplications for a full exponentiation. If multiple exponentiations
of the same base are computed, then the repeated binary powers of the base
can be computed once for all exponentiations, reducing the amortized overhead
of an exponentiation on average to 0.5m multiplications. All but sℓ of the ex-
ponentiations in our protocol are fixed-based, and thus taking this into account
the effective overhead of the exponentiations is equivalent to that of just 5.66sℓ
full exponentiations.

Reducing the computation of P2 in Step 6. In Step 6 of Protocol 5, P2

performs sℓ exponentiations in order to compute the garbled values associated
with P1’s input in the check circuits. Namely, given the (i, 0, ga

0
i ), (i, 1, ga

1
i ) tuples

and rj for every j ∈ J , party P2 computes ga
0
i ·rj , ga

1
i ·rj for all i = 1 . . . ℓ and

j ∈ J . This step costs sℓ exponentiations (2ℓ exponentiations for each of the
s/2 check circuits). We can reduce this to about a quarter by having P1 send the

ga
0
i ·rj , ga

1
i ·rj values to P2 and prove that they are correct (not in zero-knowledge).

The protocol is modified by changing Step 6 as follows (recall that P2 already

has all of the (i, 0, ga
0
i ), (i, 1, ga

1
i ) tuples and rj values):

1. P1 sends P2 all of the values k′
0
i,j = ga

0
i ·rj and k′

1
i,j = ga

1
i ·rj for i = 1, . . . , ℓ

and j ∈ J .
2. P2 chooses random values γ0

i , γ
1
i ∈ [1, 2L] for i = 1, . . . , ℓ.

3. For every j ∈ J , party P2 computes the values αj =
(∏ℓ

i=1(g
a0
i )γ

0
i · (ga1

i )γ
1
i

)rj

and βj =
∏ℓ

i=1(k
′0
i,j)

γ0
i ·(k′1i,j)γ

1
i Note that computing αj requires only a sin-

gle full exponentiation since the value (ga
0
i )γ

0
i ·(ga1

i )γ
1
i can be computed once

for all j.
4. P2 accepts P1’s input if and only if αj = βj for all j ∈ J .



Claim 7 The probability that P2 accepts if there exists an i ∈ {1, . . . , ℓ} and

j ∈ J such that k′
0
i,j ̸= ga

0
i ·rj or k′

1
i,j ̸= ga

1
i ·rj is at most s

2 · 2
−L.

Preprocessing. The bulk of the exponentiations performed in the protocol can
be precomputed. Step 1 of the protocol, where P1 computes its input keys, can
clearly be computed before P1 receives its inputs. Step 2 executes the oblivious
transfers. It can be slightly changed to be run before P2 receives its inputs: P2

can execute this step with random inputs σ1, . . . , σℓ. Then, when it receives its
input bits y1, . . . , yℓ, it sends to P1 a string of correction bits y1⊕σ1, . . . , yℓ⊕σℓ.
P1 exchanges the roles of the two keys of input wires of P2 for which it receives
a correction bit with the value 1. (The security proof can be easily adapted
for this variant of the protocol.) Given this change, both Steps 1 and 2 can be
precomputed. These steps account for 13.5sℓ of the 15sℓ exponentiations of the
protocol, where the remaining 1.5sℓ exponentiations are fixed base. This means
that if preprocessing is used, then after receiving their inputs the parties need
to effectively compute only sℓ/2 full exponentiations.

4 Universal Composability and Covert Adversaries

4.1 Universally Composable Two-Party Computation

The simulators in the proof of Theorem 6 carry out no rewinding, and likewise
the intermediate simulators used to prove the reductions. Thus, if the protocols
used to compute the batch cut-and-choose oblivious transfer functionality and
the zero-knowledge proof of knowledge of Step 7b are universally composable,
then so is Protocol 5. In order to obtain this property, we simply need to apply a
transformation from Sigma protocols to universally-composable zero knowledge,
which can be achieved efficiently using universally-composable commitments.
Details of how this can be achieved are given in the full version of the paper. We
have the following:

Theorem 8 Assume that the decision Diffie-Hellman assumption holds. Then,
for every efficiently computable two-party function f with inputs of length ℓ,
there exists a universally composable protocol that securely computes f in the
commitment-hybrid model in the presence of malicious adversaries, with 8 rounds
of computation and O(sℓ+ s2) exponentiations.

4.2 Covert Security

In the model of security in the presence of covert adversaries [1], the requirement
is that any cheating by an adversary will be caught with some probability ϵ. The
value of ϵ taken depends on the application, the ramifications to an adversary
being caught, the value to an adversary of successfully cheating (if not caught)
and so on. The analysis of our protocol shows that for every value of s (even
if s is very small) the probability that an adversary can cheat without being
caught is at most 2−

s
4+1. This immediately yields a protocol that is secure in

the presence of covert adversaries, as stated in the following theorem.



Theorem 9 Assume that the decisional Diffie-Hellman assumption is hard in
G, that the protocol used in Step 2 securely computes the batch single-choice cut-
and-choose oblivious transfer functionality, that the protocol used in Step 7b is
a zero-knowledge proof of knowledge, and that the symmetric encryption scheme
used to generate the garbled circuit is secure. Then, for any integer s > 4, Proto-
col 5 securely computes the function f in the presence of covert adversaries with
ϵ-deterrent (under the strong explicit cheat formulation), for ϵ = 1− 2−

s
4+1.

We stress that our protocol is significantly more efficient than the protocols
of [1] and [15] when values of ϵ that are greater than 1/2 are desired. For example,
in order to obtain an ϵ-deterrent of 0.98, the protocol of [1] requires using 50
garbled circuits. However, taking s = 50 in our protocol here yields an ϵ-deterrent
of 1− 2−11.5 which is much much larger.
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